
FIG. 3. Energy band structure of antimony.

for electrons. Calculating with the help of (1) the angle
between the curve c and the C3 axis, we can find that the
angle 8H is arccos (l/v3) = 54.7° at the point H(kz = 0)
and 0L = 54.7° - arctg[V2£,/(£0 + £1) ] = 86.6° at the
point L(kz = — -n/la). In this way, our attention is drawn
to the curve c. Taking into account that the size of the Fermi
surface in the direction perpendicular to the curve c is 1/10
of the size of the Brillouin zone, simple analytical expres-
sions for cyclotron masses and extremal sections were ob-
tained.7 By comparing these expressions with experimental
data, it was possible to find theoretical parameters for anti-
mony, and then to calculate the electron structure in sym-
metric directions (Fig. 3). The most significant difference
between the bismuth and antimony spectra is evident in the
extreme right sides of Figs. 1 and 3, which show the disper-
sion along the curve c along the path from L to T. It can be
seen that in making the transition from bismuth to antimony
the hole extremum shifts from T towards L in such a way
that the electron and hole valleys become separated in k-
space by a rather narrow barrier.

The proposed method allows one to study different phe-
nomena in semimetals: the probabilities and frequencies of
optical transitions,4 specifics of the phonon spectra,3 dielec-
tric8 and magnetic susceptibilities, dopant and surface
states.
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B. A. Volkov and O. A. Pankratov. Inverted contact in
semiconductors—a new inhomogeneous structure with a two-
dimensional gas of zero-mass electrons. By varying
the composition of semiconductor compounds (e.g.,
Cd, _ x Hgx Te or Pb, _ x Sn., Te), it is possible to select pairs
of materials in which the energy levels corresponding to
band edges are mutually inverted, and the wave function
symmetry of the conduction band in one material is the same
as the wave function symmetry of the valence band, and vice
versa. The contact of such materials is a new type of an inho-
mogeneous semiconductor structure.' The specifics of such
inverted contact are determined by the presence in it of elec-
tron states that do not depend on the form of the transition
region and that are similar to soliton states in one-dimen-
sional systems. In the contact area these states are character-
ized by a linear zero-mass spectrum nondegenerate with re-
spect to spin.

For the Pb, ,, Sn* Te-type semiconductors the energy
spectrum of an inverted contact is described in the two-band
approximation by the Dirac Hamiltonian:

orp

op — e
(1)

where the role of the rest mass me2 is played by the half-
width of the forbidden energy-gap eg /2, that depends on the
coordinate z, a is a vector formed by the Pauli matrices, and
the anisotropy of the effective mass is taken into account in
the operator p = — tfi( v± Vx ,1̂  Vy , v^ Vz ) . The two compo-
nents of the Dirac ^-function satisfy the equation

l . J=0. (2)

The equation for other two components *3 4 is obtained
from (2) by changing the sign offg (the vector kx lies in the
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plane of the contact). If the signs of the £g are different on
both sides of the contact, then there exists a solution local-
ized at the contact for *, 2 (if eg ( — oo ) < 0, eg ( oo ) > 0) or
for *3 4 (for the opposite case) that corresponds to the zero
mode of the supersymmetric quantum mechanics

(3)

The energy of this state

(4)

depends linearly on ki, with the Kramers degeneracy being
absent for ki ^0. The spectrum of an inverted contact thus
consists of two branches—a three-dimensional Dirac-type
branch £D ( k L ) and a two-dimensional branch of the Weil-
type fermions £w (kL ) (Fig. 1).

When the width of the transition region exceeds the
critical value /„ = 1fa)\\ £g ( o o ) ~30 A (for eg ~0.1 eV), in
addition to the state (3) there appear other, doubly degener-
ate states that also lie in the forbidden energy gap and that
are shown in Fig. 1 by the dashed line.

In a magnetic field H directed perpendicular to the
plane of the contact, the spectrum (4) is split into the Lan-
dau levels

e (n) ±(2«eB (oo) Aa)c)1''2, n 0 ,1 , 2 (5)

where coc is the cyclotron frequency for the conduction elec-
trons. For weak fields eg ( oo )fuoc < T 2 the two-dimensional
states (3) give a diamagnetic contribution to the magnetic
susceptibility

Kg (oo)

TYh2 (6)

The quantity^ here is normalized to the contact unit volume
(5/0) ~ ' , ft is the chemical potential. It can be seen from (6)
that \x\ is a nonmonotonic function of temperature (Fig. 2),
reaching the maximum

I X m a x I " 96it7i,,.,c=
(7)

FIG. 1

FIG. 2

at the temperature Tzz \/J,}/2^lJ75.^max is of the same order
of magnitude as Landau diamagnetism increased by the fac-
tor £g(oo)//Z.

In the area of strong fields the dependence of a magnetic
moment on the field has a saw-tooth shape, in accordance
with the results of Peierls.2 The oscillation period in \/H is
equal to e/2irficns (ns is the concentration of two-dimen-
sional zero-mass electrons). The oscillations of these elec-
trons must start before the oscillations of the de Haas-van
Alfen band electrons and can end beyond the ultraquantum
limit for Dirac electrons.

In conclusion we must note that structures with a Weil-
type branch of elementary excitations have already been pro-
duced. First of all, these are heterocontacts and CdTe-HgTe
superlattices.3 In these semiconductors the energy levels F6

and F8 are mutually inverted. Because of the asymmetry of
such an inverted contact the Weil spectrum has termination
points merging with the energy bands of light electrons in
HgTe. Moreover, for k± ^0 a hybridization of the Weil
branch with the energy band of heavy holes takes place.

Theoretical studies of similar structures carried out
abroad recently by the authors of Ref. 3 together with Bas-
tard (see Ref. 4), and later by Lin-Lin and Sham5 are based
on a Luttinger Hamiltonian which takes into account only
the band multiple! F8. For the inverted CdTe-HgTe con-
tact, however, where the terms F6 and F8 cross over, one
should use not the Luttinger Hamiltonian but- the Cane
Hamiltonian. For this reason the approach of Bastard and
Sham in principle cannot lead to the correct conical form of
the two dimensional spectrum in a single contact.

In a recent work by Cade6 a sharp CdTe-HgTe contact
and a rectangular CdTe-HgTe-CdTe quantum well were
studied numerically using a Cane model. Calculations6 have
confirmed the presence of a conical point of the Weil branch
of the spectrum for kL = 0 and its strong hybridization with
the band of heavy holes for k± ^0.

At the same time, numerical calculations cannot dem-
onstrate the main property of a Weil branch, i.e., its univer-
sality caused by supersymmetry. As can be seen from formu-
las (2) - (4), the presence of the Weil branch of the spectrum
is dictated only by the supersymmetry of the Hamiltonian
(2), i.e., is determined only by the global characteristics of
the function £g ( z ) , that plays the role of a superpotential
(and namely, only by the signs of its asymptotes for
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