
them8 and the calculation ofg-factors,9 but also gives a qual-
itatively correct description of energy bands for wide energy
intervals [ formula (1) ]. For these reasons it became possi-
ble to study analytically the deep localized states caused by
impurities and defects,10 to understand the phenomenon of
long-term relaxation,11 dielectric properties12"14 and struc-
tural phase transitions.

In summary, we have developed a unified theory giving
a practically complete description of the physical properties
of a large group of real materials-the quasicubic crystals.

'B. A. Volkov and D. A. Pankratov, Zh. Eksp. Teor. Fiz. 75, 1362 (1978)
[Sov. Phys. JETP48, 687 (1978)].

2B. A.Volkov, O. A. Pankratov, and A. V. Sazonov, Zh. Eksp. Teor. Fiz.
85, 1395 (1983) [Sov. Phys. JETP 58, 809 (1983)].

3B. A. Volkov, O. A. Pankratov, and S. V. Pakhomov, Zh. Eksp. Teor.
Fiz. 86, 2293 (1984) [Sov. Phys. JETP 59, 1336 (1984)].

4A. A. Abrikosov and L. A. Fal'kovskil, Zh. Eksp. Teor. Fiz. 43, 1089
(1962) [ Sov. Phys. JETP 16, 769 (1963) ].

5S. A. Gordyunin and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 63, 1922
(1972) [Sov. Phys. JETP 36, J017 (1973)].

6A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 65, 2063 (1973) [Sov. Phys.
JETP 32, 1031 (1974)].

7J. O. Dimmock and G. B.Wright, Phys. Rev. A135, 821 (1964).
8B. A. Volkov, O. A. Pankratov, and A. V. Sazonov, Fiz. Tverd. Tela
(Leningrad) 26, 430 (1984) [Sov. Phys. Solid State 26, 255 (1984) ].

9O. A. Pankratov and A. V. Sazonov, Fiz. Tverd. Tela (Leningrad) 26,
2254(1984) [Sov. Phys. Solid State 26, 1368 (1984)].

IOB. A. Volkov and O. A. Pankratov, Zh. Eksp. Teor. Fiz. 88, 280 (1985)
[Sov. Phys. JETP 61, 164(1985)].

"B. A.Volkov and O. A. Pankratov, Dokl. Akad. Nauk SSSR 255, 93
(1980) [Sov. Phys. Dokl. 25, 922 (1980)].

12B. A. Volkov, V. P. Kushnir, and O. A. Pankratov, Fiz. Tverd. Tela
(Leningrad) 24, 415 (1982) [Sov. Phys. Solid State 24, 235 (1982)].

13B. A. Volkov and V. P. Kushnir, Fiz. Tverd. Tela (Leningrad) 24, 3293
(1982) [Sov. Phys. Solid State 24, 1869 (1982)].

I4V. A. Volkov and V. P. Kushnir, Fiz. Tverd. Tela (Leningrad) 25
(1983) [Sov. Phys. Solid State 25, 1038 (1983)].

L. A. Fal'kovskii. The origin of electron spectra of group
V semimetals. It is well known that the lattice of group V
semimetals can be obtained from a simple cubic lattice by a
small shift of atoms. This fact was already used1 for the cal-
culation of the carrier spectrum in bismuth, in which carri-
ers occupy the small neighborhoods around the symmetical
points of a Brillouin zone.

Here we suggest to consider group IV-VI semiconduc-
tors2 and group V semimetals3 within the framework of a
single theory that makes it possible to determine the electron
structure throughout the entire Brillouin zone and to calcu-
late various other properties. The substance of the method
can be presented in the following way. Of the five valence
electrons in group V metals, two are in the deep s-states, and
three are in the/?-states with higher energy. The overlapping
of nearest neighbor wave functions transforms theses-states
into energy bands of the following type

= i0 cos kxa + E! (cos kya + cos kza), (D

where £0sr3.5 eV, £,~ — 1.1 eV, and a is the period of a
simple cube. Two other bands can be obtained from this
expression by cyclical permutation of the indices x ->y-+z. It

is important that the hybridization of these three bands oc-
curs only as a result of the overlapping of wave functions of
more distant neighbors and is described by energies of the
order of 17 ~ 0.2 eV. Thus the/»-bands turn out to be quasi-
one-dimensional. If one takes into account that three valence
/^-electrons can fill these bands only half-way, one can see
that the state under consideration is unstable to such small
atomic shifts for which a Brillouin zone decreases by a factor
of 2 and becomes completely filled. The so-called Peierls
transition with period-doubling will occur. In semimetals
such transitions actually happen as the result of a small shift
u of alternating atomic layers in the direction perpendicular
to the third order axis C3. In IV-VI group semiconductors
the role of the shift is played by a chemical difference
between metal and chalcogenide atoms that stabilizes the
cubic lattice. A factor that, together with hybridization of?;,
prevents the Peierls transition from occurring is the spin-
orbital interaction A which is greatest for heavy atoms. For
example, for bismuth the intensity of this interaction is char-
acterized, according to atomic calculations, by the value A/
3 = 0.53 eV, and for its neighbor in the periodic table, polo-
nium, the only metal in nature with a simple cubic lattice, by

XV K

FIG. 1. Energy band structure of bismuth.
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TABLE I. Carrier parameters in bismuth.

Carriers

Holes

Electrons

m<i
ml,2

A'.,
A\,s
V
ep
mx
my
mz

A'*
Kvsl
0
*g

Experiment

O.OC39±0,0003
0,212^-0.0005
6.76±0.01

22.49±0.02
1,87 or 2,13

11,5
0,1 19 ±0.0005
0,088±0,002

0,0082±0,00005
19,234-0.05
14.48±0,04
1,300±0,003

06,38
11,2

Theoretical results
4

0.0655
0.225
(i,42

22,05
1,74

10,7
0,115
0,100
0,0087

10,70
14.79
1,33

96,74
11.4

5

0.17
0,05

18,4
65,2

1.9
11.6
0,11
0.091
0.018

17,29
14.6
2.88

100
5,4

&

0.10
0,38
7,66

28,9
—
8

0.161
0.148
0.015

18.0
14.4

1,27
98,2
16

The values of the cyclotron masses m are given in units of m0; the measurement units for the
sections Sare 10~42 g2cm2/s2, for the Fermi-energy £F measured from the extremum, and for the
forbidden energy gap eg they are meV; for the angle Q between the C3 axis and the normal to the
minimal cross-section they are deg.

A/3 = 0.1 eV. It is not surprising that the shift u, as it turned
out, has in semimetals a value u 5 0.5 eV in energy units.

Together with the shift one must also take into account
a rhombohedral deformation that accompanies a Peierls
transition. By calculating the electron contribution to the
total energy and minimizing it, it is possible to find that the
value of the deformation tensor etj is related to the shift
vector: eij~uiuj ln(£0/«). This estimate is in agreement
with crystallographic data, and in energy units gives
£jc,£0~0.15eV.

In order to determine precise values of the spectrum
parameters that were estimated above, the following mea-
sured and calculated characteristics of carriers were com-
pared: cyclotron masses, extremal sections of the Fermi-sur-
face and the spin splitting factor y (the ratio of the
spin-splitting of energy levels in a magnetic field to cyclotron
splitting).

In the case of bismuth it is known that holes and elec-
trons occupy small neighborhoods of the points Tand Lin a
Brillouin zone. For this reason, in general theoretical formu-
las a quadratic expansion near the extremum was utilized for
holes, and a closely located valence band was taken into con-
sideration for electrons. After thus determining the param-

FIG. 2. cr-plane. The hexagon represents the Brillouin zone (BZ) of anti-
mony, the deformed rectangle—BZ of the cubic "parent phase"; the "el-
lipsoids" represent the Fermi-surfaces of electrons and holes.

eters that enter the theory, we have constructed4 electron
dispersion curves for a number of symmetric directions
(Fig. 1). The degree of agreement between the measured and
calculated characteristics of carriers can be seen from Table
I. Moreover, the values of direct gaps between different ener-
gy bands in Fig. 1 also agree with the results of optical mea-
surements. Let us also note that the parameters that charac-
terize the cubic paraphase, such as g0, § and 17, turned out to
be close to their values in Group IV-VI semiconductors, and
the spin-orbital constant was simply taken from atomic spec-
tra. Table I gives also the results of pseudopotential calcula-
tions.5'6 Poor agreement with the data for holes is noticeable.
One should keep in mind that the pseudopotential calcula-
tions require a large amount of computer time and that they
do not lead to analytical results.

In the case of arsenic and antimony the situation is more
complicated. Although the electrons in this case occupy, as
in bismuth, the neighborhood of the point L, the maximum
size of their Fermi-surface is comparable with the size of the
Brillouin zone itself. As for the holes, it is only known that
their extremum lies at a point of common position that be-
longs to the symmetry plane a. For this reason, it is neces-
sary to study in greater detail the Fermi-surface of the cubic
paraphase in order to establish the location of holes. As can
be seen from (1), this Fermi-surface (it corresponds to
I" = 0, while £0> |£,|) consists of three slightly corrugated
planes which, roughly speaking, are parallel to the faces of a
simple cube. These planes intersect the diagonal plane a
along the curves c and c, shown in Fig. 2. The energy is
constant along the curves in a simple cube and starts chang-
ing at a rate proportional to u only after the Peierls transi-
tion. In the direction perpendicular to any of these curves,
the rate of the energy change is of the order of J"0, i.e., is
rather large. For this reason the isoenergetic surface in a
semimetal must be elongated in the direction of the dis-
cussed curves. From experiments it is known, for example,
that for antimony the angle between the direction of Fermi-
surface elongation and the C3 axis is 53.0° for holes and 87.7°
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FIG. 3. Energy band structure of antimony.

for electrons. Calculating with the help of (1) the angle
between the curve c and the C3 axis, we can find that the
angle 8H is arccos (l/v3) = 54.7° at the point H(kz = 0)
and 0L = 54.7° - arctg[V2£,/(£0 + £1) ] = 86.6° at the
point L(kz = — -n/la). In this way, our attention is drawn
to the curve c. Taking into account that the size of the Fermi
surface in the direction perpendicular to the curve c is 1/10
of the size of the Brillouin zone, simple analytical expres-
sions for cyclotron masses and extremal sections were ob-
tained.7 By comparing these expressions with experimental
data, it was possible to find theoretical parameters for anti-
mony, and then to calculate the electron structure in sym-
metric directions (Fig. 3). The most significant difference
between the bismuth and antimony spectra is evident in the
extreme right sides of Figs. 1 and 3, which show the disper-
sion along the curve c along the path from L to T. It can be
seen that in making the transition from bismuth to antimony
the hole extremum shifts from T towards L in such a way
that the electron and hole valleys become separated in k-
space by a rather narrow barrier.

The proposed method allows one to study different phe-
nomena in semimetals: the probabilities and frequencies of
optical transitions,4 specifics of the phonon spectra,3 dielec-
tric8 and magnetic susceptibilities, dopant and surface
states.
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B. A. Volkov and O. A. Pankratov. Inverted contact in
semiconductors—a new inhomogeneous structure with a two-
dimensional gas of zero-mass electrons. By varying
the composition of semiconductor compounds (e.g.,
Cd, _ x Hgx Te or Pb, _ x Sn., Te), it is possible to select pairs
of materials in which the energy levels corresponding to
band edges are mutually inverted, and the wave function
symmetry of the conduction band in one material is the same
as the wave function symmetry of the valence band, and vice
versa. The contact of such materials is a new type of an inho-
mogeneous semiconductor structure.' The specifics of such
inverted contact are determined by the presence in it of elec-
tron states that do not depend on the form of the transition
region and that are similar to soliton states in one-dimen-
sional systems. In the contact area these states are character-
ized by a linear zero-mass spectrum nondegenerate with re-
spect to spin.

For the Pb, ,, Sn* Te-type semiconductors the energy
spectrum of an inverted contact is described in the two-band
approximation by the Dirac Hamiltonian:

orp

op — e
(1)

where the role of the rest mass me2 is played by the half-
width of the forbidden energy-gap eg /2, that depends on the
coordinate z, a is a vector formed by the Pauli matrices, and
the anisotropy of the effective mass is taken into account in
the operator p = — tfi( v± Vx ,1̂  Vy , v^ Vz ) . The two compo-
nents of the Dirac ^-function satisfy the equation

l . J=0. (2)

The equation for other two components *3 4 is obtained
from (2) by changing the sign offg (the vector kx lies in the
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