
, J/K-mol
1.5

1.0

250 290 T,K

FIG. 2. Temperature dependence of anomalous heat capacity for RS. The
points—the data from Ref. 2, the continuous line—calculated curve.

Brillouin scattering,7 anomalous absorption of ultrasound8

and microwave dispersion.9 The only remaining difficulty
was that it was not possible to give a quantitative description
of the temperature dependence of the soft mode frequency
(1) , i.e., the dependence that served as the starting point for
the development of the approach being used. This question
has been clarified by the low-temperature studies that we
performed on the dielectric spectra of Rochelle salt. These
studies have demonstrated that with a temperature decrease
the relaxation soft mode transforms into an optical phonon
with a high g-factor (Q~ 300) which becomes stabilized in
the spectrum at the frequency of 22 cm"1. As can be seen
from Fig. 3, as the crystal is cooled, together with the attenu-
ation of the G mode its oscillator strength / also changes.
This means'' that the observed process of the soft mode tem-
perature evolution is a result of the mode interaction with
another thermally unstable process of lattice excitation. As-
suming that the frequency of the given (but not yet experi-
mentally observed) excitation has a temperature depen-
dence that is also determined by the thermodynamic
potential constructed by us, and that its decay is the usual
linear function of temperature, we can obtain a complete
description of the behavior of the soft mode of Rochelle salt
in the low temperature phase.l2

Thus, the complete picture of Rochelle salt dynamics
can be visualized as follows. At low temperatures, at a fre-
quency of approximately 100 cm~', crystal spectra contain a
thermally unstable polar optical phonon. At a temperature
near T~ 150 K this phonon interacts with another mode of
lower frequency (v = 22 cm~' at T= 80 K) and, by trans-
ferring to it its oscillator strength and decay, changes it into
relaxation excitation. In the absence of a piezoeffect (a
clamped crystal) the frequency of the relaxation mode
would have to become zero at the "double" critical point T0.
However, in a real crystal the soft mode becomes coupled,

FIG. 3. Temperature dependences of the soft mode parameters for Ro-
chelle salt: the frequency v0 and the attenuation C (a) , and the inverse
dielectric contribution I/Ac and the oscillator strength /= Af • v2

0 (b) .
The circles are the experimental data,12 and the continuous lines are the
calculations results based on a phenomenological model.

due to the piezoeffect, to the transverse acoustic mode, as a
result of which the phase transitions take place at 71, and T2.

Thus, Rochelle salt gives an interesting and very rare in
solid state physics example of a system close to the "double"
critical point, with a surprisingly diverse dynamics of phase
transition.
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B. A. Volkov and O. A. Pankratov. Electronic structure
of quasicubic crystals: energy bands, dielectric properties, and
defects in narrow-gap semiconductors. Though completely
different, at first glance, crystal materials—group V semi-
metals, group VI semiconductors—chalcogenides, semicon-

ductor compounds of elements from IV and VI groups, and a
number of complex ternary and quarternary compounds are
similar to each other in the origin of their electronic and
crystal structure. '~3 The lattices of these materials, i.e., qua-
sicubic crystals, are similar to simple cubic lattices and differ
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from them only by small structural distortions or by the
weak nonequivalency of composing atoms. The energy
bands close to the Fermi energy are formed mainly from the
atomic states of ^-symmetry. For this reason the electron
spectra of quasicubic crystals can be obtained from the uni-
versal spectrum of a so-called "parent phase"—a hypotheti-
cal metal with a simple cubic lattice and three overlapping/>-
type energy bands. The degree of filling of these bands is
determined by the average number of valences-electrons per
atom for the particular material under consideration. The
perturbations that characterize the difference between the
crystal lattice and a simple cubic lattice transform the hypo-
thetical spectrum into a real spectrum.

Although the "parent phase" is a metal, all quasicubic
crystals are dielectrics (or semimetals). This means that the
distortion of a simple cubic structure is always such that the
initial Fermi surface becomes "covered" by a dielectric gap.
The only exception, i.e., metallic polonium, supports this
rule, because polonium is stable in a simple cubic modifica-
tion.

The concept of a "parent phase" was for the first time
used by Abrikosov and FaPkovskii4 in 1962 when they were
developing a theory of electronic spectra of semimetals from
the group of bismuth. However, at that time the spectrum of
the "parent phase " itself was not known. This led Abrikosov
and Fal'kovskiT to make an assumption about the symmetry
of the initial irreducible representation for electronic energy
levels responsible for the formation of semimetallic proper-
ties of crystals from group V. It was later found that this
assumption leads to a theoretical contradiction (the Lut-
tinger theorem is not satisfied5) and does not allow a de-
scription of all available experimental data. An attempt to
remove this contradiction with the Luttinger theorem by
taking into account the Fermi-liquid effects5 had failed.6

The origin of the spectra of semimetals from the bismuth
group of IV-VI group semiconductors and alloys based on
them and of selenium and tellurium crystals has become
completely clear only after the "parent phase" spectrum
common to all these materials was constructed systematical-
ly from the atomic/>-orbitals. As a result of this construction
it was found that it is not sufficient to have one irreducible
representation of the "parent phase" for a complete descrip-
tion of real spectra.2

Let us illustrate this on the example of the semiconduc-
tor material PbTe. The difference of its lattice geometry (of
the NaCl type) from a simple cubic lattice is characterized
by the ionicity potential Aion (r) that has different values for
the sub-lattices of lead and tellurium. Aion (r) has the trans-
lational symmetry of a face-centered cubic-sublattice of the
original cubic lattice. In the inverse /c-space there appears
the new transfer vector q = (TT/&) (111) (a is the period of
the simple cubic lattice). This is why the ionicity mixes the
Bloch states of the "parent phase" n, k, a) and n, k + q, a)
(the index n = x, y, z refers to /?-bands, a is the spin). As a
result the spectrum

is formed where |"n k + q = — gn,k and rjnk + q = rjnk are the

FIG. 1.

congruent and noncongruent parts of the parent phase spec-
trum enk = gn_k + T)n,k.

When the matrix element of the ionicity AB>k exceeds
rjn k , the spectrum (1) corresponds to a dielectric. For all
three noninteracting /"-bands, the Fermi surface of the par-
ent phase £„ k = 0 consists of three pairs of corrugated sur-
faces (Fig. 1). The ideal congruency of this surface is per-
turbed by the mixing of different energy bands and by the
overlap integrals in the remote coordination spheres that
contribute to the correction rjn k . It is obvious that the band
mixing is the most significant near the intersection points
(and lines) of Fermi-surfaces. It is exactly at these points
which are called the L-points of a Brillouin zone that the
smallest forbidden energy gap between bands is formed. The
reason for this is the triple degeneracy of the original spec-
trum of a non-symmetric nature. Because of the ionicity, the
opposite Z,-points related by an inversion transformation be-
come equivalent. The corresponding levels are split and
form the even L + and odd L ~ levels (Fig. 2). The subse-
quent splitting (see Fig. 2) is caused by the mixing of bands
by the crystal field and the spin-orbital interaction. The de-
tailed theory developed in Ref. 2 made possible the descrip-
tion of the dispersion of six near bands with only five param-
eters, while a standard symmetry approach based on the
kp-method leads in this case to 18 independent parameters.7

The formulated model not only allows the description
of the spectrum near the symmetrical points in binary com-
pounds of elements of the IV-VI groups and alloys based on

FIG. 2.
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them8 and the calculation ofg-factors,9 but also gives a qual-
itatively correct description of energy bands for wide energy
intervals [ formula (1) ]. For these reasons it became possi-
ble to study analytically the deep localized states caused by
impurities and defects,10 to understand the phenomenon of
long-term relaxation,11 dielectric properties12"14 and struc-
tural phase transitions.

In summary, we have developed a unified theory giving
a practically complete description of the physical properties
of a large group of real materials-the quasicubic crystals.
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L. A. Fal'kovskil. The origin of electron spectra of group
V semimetals. It is well known that the lattice of group V
semimetals can be obtained from a simple cubic lattice by a
small shift of atoms. This fact was already used1 for the cal-
culation of the carrier spectrum in bismuth, in which carri-
ers occupy the small neighborhoods around the symmetical
points of a Brillouin zone.

Here we suggest to consider group IV-VI semiconduc-
tors2 and group V semimetals3 within the framework of a
single theory that makes it possible to determine the electron
structure throughout the entire Brillouin zone and to calcu-
late various other properties. The substance of the method
can be presented in the following way. Of the five valence
electrons in group V metals, two are in the deep s-states, and
three are in the/?-states with higher energy. The overlapping
of nearest neighbor wave functions transforms theses-states
into energy bands of the following type

= i0 cos kxa + E! (cos kya + cos kza), (D

where £0sr3.5 eV, £,~ — 1.1 eV, and a is the period of a
simple cube. Two other bands can be obtained from this
expression by cyclical permutation of the indices x ->y-+z. It

is important that the hybridization of these three bands oc-
curs only as a result of the overlapping of wave functions of
more distant neighbors and is described by energies of the
order of 17 ~ 0.2 eV. Thus the/»-bands turn out to be quasi-
one-dimensional. If one takes into account that three valence
/^-electrons can fill these bands only half-way, one can see
that the state under consideration is unstable to such small
atomic shifts for which a Brillouin zone decreases by a factor
of 2 and becomes completely filled. The so-called Peierls
transition with period-doubling will occur. In semimetals
such transitions actually happen as the result of a small shift
u of alternating atomic layers in the direction perpendicular
to the third order axis C3. In IV-VI group semiconductors
the role of the shift is played by a chemical difference
between metal and chalcogenide atoms that stabilizes the
cubic lattice. A factor that, together with hybridization of?;,
prevents the Peierls transition from occurring is the spin-
orbital interaction A which is greatest for heavy atoms. For
example, for bismuth the intensity of this interaction is char-
acterized, according to atomic calculations, by the value A/
3 = 0.53 eV, and for its neighbor in the periodic table, polo-
nium, the only metal in nature with a simple cubic lattice, by

XV K

FIG. 1. Energy band structure of bismuth.
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