
bled, in exactly the same way as in the region of applicability
of the Landau theory for PTs. As for the heat capacity and its
first derivative with respect to the temperature, they turn out
to be finite in the double CP, and only the second derivative
of C with respect to T diverges (proportionally to t ~2a ).

The most complete experimental information about the
behavior of various physical quantities in the area near the
double CP is available at the present time only for Rochelle
salt crystals, in which fluctuation effects are small and the
Landau theory can be used up to PT points.7b A discussion
of corresponding experimental data is presented in the re-
port of A. A. Volkov et al.

An increase of the width of the critical (fluctuation)
region near the double CP could have been expected for liq-
uid binary solutions; however, the careful experimental in-
vestigations of the properties of these systems (see the report
of I. L. FabelinskiT et al.) indicate rather the opposite: as the
double CP is approached the fluctuation region becomes
narrower, and the values of the "critical exponents" corre-
spond better and better to the predictions of the Landau the-
ory for PTs.

There are no reasons, generally speaking, to expect a
similar broad fluctuation region for the transitions "nema-
tic-smectic A" in liquid crystals as in binary liquid solutions.
However, in these solutions the experimental values of the

exponents y and v not only are closer to the values which
follow from the fluctuation theory, but actually even exceed
these values.4

In view of the mentioned discrepancies, further experi-
mental studies of systems with a double CP are especially
interesting.
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I. L. Fabelinskii, S. V. Krivokhizha, and L. L. Chaikov.
Experimental studies of solutions with a "double" critical
point. The report presents the results of experimental studies
on the temperature dependences of the correlation radius rk

of concentration fluctuations and of shear viscosity tj& in a
solution of guaiacol-glycerin with small amounts of water,
that has a "double" critical point.

When expressed in the coordinates C, T, Cw, where C is
the concentration of glycerin, Tis the temperature, Cw is the
water concentration in glycerin, the phase diagram of the
solution constitutes a surface in the form of a dome with
layers. The section of the dome by a plane parallel to the C, T
plane forms a region inside which the solution is stratified.
Such a flat phase diagram has the upper (UCPS) and lower
(LCPS) critical points of stratification. Thus, the dome has

two lines of critical points, which intersect in the extremum
point of the dome, forming the "double" critical point
(DCP) for C= 47.05% by volume, T=62.7°C,
C=2.08% (by volume).1

Usually the behavior of a correlation radius in the criti-
cal region is described by the expression

„ _ ,-v i\)rk = TQ£ , \.11

where e = (T — Tc )/Tc, Tc is the critical temperature, r0 is
a constant, v is the critical exponent for rk.

In our experiments the correlation radius was deter-
mined from the measured values of the width T of the central
polarized Rayleigh line in the spectra of scattered light. The
values F and rk are related by the formula2"5:

0.070 -
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FIG. 1. (a) Dependence of the effective index of vis-
cosity V on the stratification region width AT; the
curve is drawn through the averaged UCPS and LCPS
values of V. (b) Dependence of the effective value of v
on the stratification region width AT; the curve repre-
sents the values of vobtained from Fig. la (from v(x))
as v = V/Xy, where X^ = 0.063; X—the values of v
obtained from the temperature dependences rk ( T ) .

572 Sov. Phys. Usp. 29 (6), June 1986 Meetings and Conferences 572



tnE(LCPS)
i i

Inn-

FIG. 2. Temperature dependences of the correlation radius
in solutions. 1—Ar= 39.70 °C, 2—AT= 32.67 °C, 3—
AT= 7.84°C, 4—AT= 1.32°C, 5—solution with a special
point. The slope corresponding to v = 0.63 and v = 1 is
shown by the straight lines.

ln£,(UCPS)

-5 -7 -7 -6 -5 -3

,027

(2)
where FB , D B , and Fc , Dc are the regular and critical parts
of the line width F and of the diffusion coefficient D; q is the
wave vector of the Fourier-component of fluctuations under
investigation, De = kT/6Tn]srk,

(x) = - - [ (z3— ar') arctgar]; (3)

k is the Boltzmann constant. The value of FB was deter-
mined from3:

=0,657 exp (4)

where 17̂  is the critical part of viscosity, X^ is the "critical
exponent" of viscosity. From the formulas (2)-(4) it fol-
lows that in order to find rk from F it is necessary to know
the temperature dependence of rjs.

The viscosity TJS was measured by a Hoeppler viscosi-
meter with an accuracy of 0.2% in a dry solution
(Cw = 0.45% by volume), in the solutions with Cw = 1.3
and 2.07% (by volume), that still were not forming areas of
stratification, in solutions with DCPs and, finally, the mea-
surements were done for solutions with Cw > 2.08% (by
volume), having the stratification regions with the widths
T= 3.24; 5.8; 8.75; 25.87 and 40.05 °C; i.e., at a different
distance from DCP along the Cw axis. The shape of the
?7S ( T ) curve for the "dry" solution was such that it was
possible to find graphically the regular part of the viscosity
for other solutions.

The results of viscosity measurements were approxi-
mated by a formula from the theory of interacting modes3"6:

where <?D is a constant having the dimension A ,
R<> = ( ID fk ) *'. V = X^ v is the effective exponent of viscos-
ity.

The above approximation takes into account the inter-
action of fluctuations having significant rk, and the velocity
gradient arising during viscosity measurements.7 The de-

pendence of the effective exponent V on the width of the
stratification region ATMs given in Fig. la. The value of X^
when AT-» oo is X^ = V( <x |v( oo) = 0.063, and this corre-
sponds to a regular critical point with v = 0.625.

The measurements of F were carried out by the method
of self-trapping of scattered light in solutions with the strati-
fication width AJ = 39.70 °C, 32.67 °C, 7.84 °C, 1.32 °C and
in a solution with a "special point," i.e., in a solution which is
close to stratification but is not stratified. The dependences
rk (T) obtained from our measurements with the help of for-
mulas (2)-(4) are given in Fig. 2. The rk was determined in
the same solution from measurements of the scattering indi-
catrix.8 The obtained values of rk were close to our data. The
dependences of rk for solutions with stratification regions
were approximated by the formula (1). Figure Ib gives the
effective values of the "critical exponent" ve, determined by
using the same approximation, and the values of the same
exponent found from measurements of the viscosity ve = V /
X^. From the figure it follows that for A2"= 0, i.e., near
DCP, v= 1.03 ±0.06.

The temperature dependence of the correlation radius
in a solution with a "special" point was approximated by the
expression that follows from Landau's theory9:

rK = r0 (a + e2 + pV)-0,6;

It was found that /•„ = 5.09 A, a = 4.13 X 10~5, & = 371.
From the theoretical predictions10"12 it follows that

near DCP the effective value is ve = 2v = 1.25, and this
means that near DCP critical phenomena are described by
the fluctuation theory.

From the results of our measurements, it follows that
near DCP ve = 1.03 ± 0.06, and this corresponds better to
Landau's theory.
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A. A. Volkov, G. V. Kozlov, E. B. Kryukova, and A. A.
Sobyanin. New results on the dynamics ofRochelle salt crys-
tals (a system with a "double" critical point). Rochelle salt
crystals (RS) occupy a special place among other ferroelec-
tics because of a number of unique properties. First of all, the
ferroelectric phase exists in them only for a narrow tempera-
ture interval between two Curie points T, = 255 K and
T2 = 297 K.' At the points T, and T2 one can observe sharp
anomalies of dielectric permittivity, however, in none of the
three phases does the behavior follow the Curie-Weiss law
(£~\T—Tc\~

l), which is followed well by other ferroelec-
trics. Also unusual (three orders of magnitude below "nor-
mal" values) are the magnitudes of jumps in heat capacity at
the Curie points and the character of heat capacity tempera-
ture dependence in the ferroelectric phase,2 The anomalies
of elastic, piezoelectric and optical properties of the crystal
are sharply different from the "usual" anomalies. The most
surprising, however, are the special features of the ferroelec-
tric dynamics of the crystal. A study of the soft mode done by
the method of backward-wave submillimeter-spectrosco-
py,3~5 has shown that the temperature dependence of the
critical relaxation frequency l/2wr of Rochelle salt is com-
pletely different from the linear dependence observed in all
other crystals with relaxation dynamics. It was found that in
the low-temperature phase the temperature dependence fol-
lows a cubic low

* ^ /7* fr\z (1)

where T0 coincides not with the Curie point Tlt but with the
center of the ferroelectric phase T0~(Tl + T2)/2.

Such unusual static and dynamic properties of RS crys-
tals cannot be explained within the framework of the tradi-
tional approach, which utilizes the expansion of the thermo-
dynamic potential of the system in a power series of the
polarization P

(2)

separately near each of the phase transitions being consid-
ered. Central for the development of a new approach were
the above-mentioned results on the ferroelectric dynamics of
RS 3~5 which demonstrated the essentially nonlinear behav-
ior of the coefficient^ (T) ~ \/1irr in RS. It is this behavior
and the fact that the temperature singled out in dynamic
experiments is not the critical (71,), but the average tem-
perature T0~ (Tl + T2)/2, has led us to abandon the usual
assumption of a linear temperature dependence of the coeffi-
cient A and to start searching for other forms of approximat-
ing it.

For this purpose we have analyzed the data available in
the literature on the temperature dependence of the static
dielectric susceptibility % = (e — l)/4Tr and have discov-

ered that in a very broad temperature interval (80 < T< 330
K), including both phase transitions, the data can be de-
scribed by the expression (Fig. 1)

4- =/!=- 0.04962 + 8,76212

— 10.50 J3 +24,501*, (3)

where t = (T — T0) T0, and T0 = 275 K corresponds to the
minimum of A ( T ) . In this expansion that does not contain a
linear term the major contribution to A (T) near T0 is given
by the term quadratic in the temperature, and with a large
deviation from Tn the higher order terms begin to play a
larger role. It is interesting to note that an indication of a
parabolic character of the temperature dependence of the
coefficient.^ in the ferroelectric phase was also obtained for-
ty years ago from studies of dielectric susceptibility jcl of a
clamped RS crystal (i.e., in the absence of a piezoeffect).6 It
was shown that the dependence l/%cl does not have singu-
larities at the points Tl and T2 and becomes zero (as well as
the frequency of the soft mode (1)) at T0~(Tl +T2)/2.
Unfortunately, neither these experimental results nor the di-
rect indication10 of a nonmonotonic dependence of the coef-
ficient A in RS have attracted proper attention subsequently.

Using a thermodynamic potential with a parabolic de-
pendence of A ( T ) , we were able to obtain a unified quantita-
tive description of the temperature behavior of piezocon-
stants and piezomodules, elastic pliancy and elastic
modulus, spontaneous polarization and specific heat (Fig.
2), and also of other properties ofRochelle salt and the ef-
fects of hydrostatic pressure on them. Explanations were
also given of the results of experiments on Mandel'shtam-
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FIG. 1. Temperature dependences of the inverse dielectric susceptibility
of the free (1) and clamped (2) RS crystals. The light and dark circles
correspond, respectively, to the data from Refs. 1 and 9, the lines are a
result of approximation.
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