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The basic concepts of topology, the theory of manifolds, and the theory of homotopy, which
are employed in the study of extended objects both in field theory and in the physics of the
condensed state, are presented. The physical systems (magnetic materials and nematics) are
described first. Their topological properties illustrate the general topological concepts which
are introduced later. Thus two goals are pursued. On the one hand, a detailed analysis of
examples completes the brief exposition of the general mathematical questions, while on the
other the physical systems automatically become objects of topological study. In particular,
the topological defects in the field of the order parameter of ordered systems are classified with
the help of homotopic groups.
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1. INTRODUCTION

In recent years, the ideas and methods of modern alge-
bra and topology have been increasingly permeating physics.
One of the main sources of this process of "mathematiza-
tion" of physics is the problem of the construction of a the-
ory of strong interactions. Attempts to solve this problem
have led to the idea that the strongly interacting particles—
the hadrons—consist of quarks and that the hadrons must be
regarded as particles of finite size, unlike the traditional de-
scription of elementary particles as point particles. As a re-
sult, there has arisen an area of physics which can be called
the physics of extended objects. The first examples of topo-
logical extended objects were kinks, solitons, and vortices,
which were studied in 1973 by Nilsen and Olesen in an abe-
lian Higgs model by analogy with vortices in a superconduc-
tor.

The next step was taken by 't Hooft and Polyakov in
1974. They found in the Giorgi-Glashow model a solution to
the classical field equations; this solution is now called the
't Hooft-Polyakov monopole. An even more important re-
sult was obtained in 1975. In a purely gauge nonabelian field
theory, similar to the standard electrodynamics without
charged particles, Belavin, Polyakov, Shvarts, and Tyupkin
discovered a quasiparticle which has finite dimensions in
both space and time. This quasiparticle was given the name
"instanton." Among all the numerous consequences of the
discovery of the't Hooft-Polyakov monopole and the instan-
ton, here we call attention to only one: the concept of the
topological quantum number or the topological invariant,
which is one of the most important concepts of topology, has
entered into physics.

At the same time (1975) Wu and Yang used the theory
of fiber bundles to study the Dirac monopole. They showed
that the condition for charge quantization is a purely topo-
logical property of the theory. In addition, Wu and Yang

demonstrated the force and elegance of fiber theory. With its
help a number of interesting results have now been obtained
in the theory of gauge fields.

In this paper, some basic concepts of topology, the the-
ory of manifolds, and homotopy theory, which are now used
in the study of extended objects both in field theory and in
the physics of the condensed state, are described.

The paper consists of the following sections. The phys-
ical systems (magnetic materials and nematic liquid crys-
tals), whose topological properties serve as an illustration of
the general topological concepts introduced later, are de-
scribed first. Then two goals are pursued. On the one hand,
the brief exposition of the general mathematical questions is
supplemented by a detailed analysis of examples, while on
the other the physical systems automatically become objects
of topological study. The overall goal is to give a general idea
of the mathematics which plays a significant role in the de-
velopment of new physical ideas. The relationship between
topology and physics has already been briefly mentioned
above and is considered in somewhat greater detail in the
conclusion. A brief commentary on the list of references,
which contain the details as well as additional references, is
also given in the conclusion.

2. PHYSICAL EXAMPLES

Before considering the mathematical questions we shall
examine some physical examples, to which we shall refer in
what follows. These examples are magnetic materials and
nematic liquid crystals. Depending on the specific model the
indicated systems can be described by a one, two- or three-
dimensional vector n, defined in a plane or in a three-dimen-
sional space. In the case of a magnetic material n is an ordi-
nary vector, while in the case of a nematic n is the director,
i.e., the directions n and — n are regarded as physically e-
quivalent (in a magnetic material n gives the direction of
magnetization, while in a nematic n indicates the predomi-
nant orientation of the long axes of prolate molecules, which
are the constituent elements of the nematic).

We shall study the following three n-field models (of
magnetic materials and nematics):
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1. Two-dimensional: n(p) = {n,(p), n2(p)}, p = {x,
y}.

2. Three-dimensional: n(r )={«,(r ) , n2(i), n3(r)},
r = {x,y,z}.

3. Planar: n(p) = {n,(p), «2(p) , «3(p)}, p = {x,y}.
In these models there can exist configurations of the

field n such that the field n cannot be transformed by a con-
tinuous deformation into a uniform distribution (i.e.,
n = n0 = const) over the entire space. Depending on the di-
mensionality of the model such configurations of the n-field
are associated with the presence in the distribution of the n-
field of singular (at which the field n is not determined) or
nonsingular points or lines, called hedgehogs, disclinations,
vortices, etc.

In nematics, under a microscope, disclinations look like
dark filaments, floating in the sample. Some are mobile,
while others appear to be fixed. The term "nematic," which
comes from the Greek word "nema" meaning thread, arose
precisely from observations of such a pattern. The term was
introduced by Friedel.

Figure 1 shows typical configurations of the director
field near a disclination line (the line is perpendicular to the
plane of the figure).

All types of disclinations shown in Fig. 1 exist in a two-
dimensional nematic, and the disclinations of the type
shown in Figs. 1 d-f are unstable in three-dimensional nema-
tics: they "flow into the third dimension." This process is
shown in Fig. 2 for the disclination illustrated in Fig. le.

A two-dimensional magnetic material does not have the
singularities illustrated in Figs. 1 a-c, since this would cause
the n-field to be discontinuous along a semi-infinite line, as
can be seen in Fig. 3. In a three-dimensional magnetic mate-
rial the remaining disclinations (Figs. 1 d-f) are unstable,
just as in a nematic.

If one full turn is made following a closed circuit around
a disclination line, the vector n turns through an angle irN,
where N is an integer; in addition, for the cases shown in
Figs. I a-c N is an odd number, while for the cases shown in
Figs. I d-f, N is an even number. The integer N is called the
Frank index. In a three-dimensional nematic only the dis-

FIG. 2.

clinations with an odd Frank index are stable, while in a
three-dimensional magnetic material there are no stable lin-
ear singularities at all.

An example of a point singularity (hedgehog) in a
three-dimensional nematic is shown in Fig. 4a. In a magnetic
material the radial distribution of n can be of two types
(Figs. 4band c).

Another important case is the nonsingular point vortex
in a planar nematic or magnetic material (Fig. 5a), as well as
the linear vortex or linear soliton in the three-dimensional
case (Fig. 5b). We recall that in magnetic materials substi-
tuting — n for n gives different types of vortices. The point
vortex in the planar model can be regarded as the cross sec-
tion of a linear soliton in the three-dimensional model. Such
vortices were first studied in the physics of liquid crystals,
but the special interest in such field configurations arose
after the appearance of the work of Belavin and Polyakov in
1975, concerning the study of a planar Heisenberg magnetic
material, which is also a representative of a wide class of
field-theory models with an interaction of the geometric
type. Belavin and Polyakov found exact ./V-vortex solutions
in the model which they studied. These solutions exhibit
many properties of instantons, found in gauge field theories.

The meaning of the term "instanton" (from the English
word instant) can be understood from Fig. 5a by replacing
one of the coordinates, for example y, by the time t: the Bela-
vin-Polyakov vortex has finite dimensions in both space and
time.

Some topological properties of the models described
above will be discussed below. We shall now proceed to the
mathematical introduction.

3. TOPOLOGY AND MAPPINGS

From the formal standpoint no preliminary informa-
tion is needed to begin the study of topology. In practice,
however, any course in topology presumes a knowledge of

FIG. 1. FIG. 3.
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FIG. 4.

Euclidean space and continuous functions or mappings. For
the example of the n -dimensional real Euclidean space, de-
noted by the symbol R" (R=Rl is the real line, R 2 is the
plane, and R 3 is the standard three-dimensional space), it is
easy to obtain an idea of the basic concepts of topology—
such as neighborhood, connectedness, compactness, and to-
pological equivalence. This is the introductory path to topol-
ogy proposed by Steenrod and Chinn in their book "First
Concepts of Topology."

The Euclidean space R" is a topological space. The con-
cept of a topological space, however, is much more abstract
and general than the familiar concept of Euclidean space.
The definition of a topological space includes axioms which
are based on the concept of a neighborhood of a point or an
open set. To understand the definition and basic properties
of topological spaces, one must regard a space as a set of
points, each of which has an open neighborhood, while con-
tinuous mappings of spaces must be regarded as mappings
under which points which are close to one another in one
space are mapped into points which are close to one another
in another space. The convenient examples of Euclidean
spaces also help in mastering this viewpoint.

One of the central concepts in modern geometry is the
concept of a manifold. A manifold is a topological space in
which every point has a neighborhood which is in one-to-one
correspondence with an open region of the Euclidean space.
The simplest example of a manifold is the Euclidean space
R". A simple, but nontrivial, example of a manifold is the n-
dimensional sphere, denoted by the symbol S", in the space
R"+ ' (S' is a circle; S2 is the ordinary sphere in R 3). Unlike
the Euclidean space, a single coordinate system cannot be
introduced for a sphere (see below). It should also be noted
that the definition of a manifold requires the concept of a
differentiable function. The book by Milnor and Wallace

FIG. 5.
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"Differential Topology," which, like the book by Steenrod
and Chinn mentioned above, is part of the popular series on
modern mathematics published by Mir, is a fully accessible
source of information on topological spaces, manifolds, ho-
motopy, etc. The reader who is not familiar with topology
can, if necessary, consult these books (see also the list of
references at the end of the paper).

In set theory the starting concepts are sets (or collec-
tions or families) and elements (or points) of the sets. The
notation xeA indicates that x is an element of the set ̂ 4. The
notation {xeA : P ( x ) } specifies the subset of all elements xeA
for which the assertion P(x) holds. For example, A = {x:
xeA}. The set which contains no elements, or the empty set,
is denoted by the symbol 0 (for example, 0 = {x: x^x}).
We also define the union AUS and the intersection A nB of
two sets A and B: A\JB = {x: xeA or (and) x&B} and
AC\B — {x-.xeA andxoB}. It is also said that the sets A andB
do not intersect, if,4 C\B = 0. The set,4 XB = {(x,y):xeA,
yeB}, where the pair (x, y) is an element of the set A XB, is
called the direct (Cartesian) product of the two sets A and B.

The symbol f:A->B(b =f(a) for a€A and beB) de-
notes a mapping (function) of the set ^4 into the set B.

For two mappings /: A —B and g: B — C we define the
composition g°f (or g f ) , which is the mapping of A into C:
( g ° f ) ( a ) = g ( f ( a ) ) f o i a € A .

A topology on a set X is defined as the family of subsets T
from X which satisfy the following conditions:

1.0 and X belong to T.
2. If U and £/' belong to T, then UC\ U'er.
3. The union of any family from r belongs to r. The

elements of the system r are called open sets in the topology
•T. The set X together with the topology r on it is called a
topological space.

For what follows it is sufficient to introduce the intu-
itively understandable concept of the usual topology on the
set of real numbers R. The usual topology is defined as the
family of all sets each of which has the property that if a
point is contained in a set, then some neighborhood around
the point is also contained in the set. An example of such a
family is any open subset A of the set of real numbers
R(ACR), i.e., the subset A in which for every point* there
exist numbers a and b such that a <x<b and the set {y.
a<y<b} (interval) is a subset of the set A.

Consider the set of real numbers R with the usual topol-
ogy and construct the direct product of « copies of the space
R. This yields an n -dimensional Euclidean space R", the
topology on which is defined as the product of the topologies
of the spaces/?. Examples of open sets in the space/?" are the
n -dimensional cubes, regarded as a direct product of open
intervals in/?.

A neighborhood of a point xeX is defined as any subset
of X which contains an open set containing x.

A topological space is said to be Hausdorffif any two
points in the space have nonintersecting neighborhoods.

Topological spaces are studied with the help of contin-
uous mappings, amongst which the one-to-one continuous
mappings are especially important. Such mappings are
called homeomorphisms. If/lY-> Fis a homeomorphism and

f ( X ) = y, then the spaces A'and yaresaidtobe//omeomor-
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phic or topologically equivalent. Thus topology is not con-
cerned with every topological space separately, but rather
with classes of spaces consisting of homeomorphic spaces.
Here the properties of all spaces homeomorphic to a given
space are of special interest. Such properties are called topo-
logical invariants.

A topological space X is said to be connected if the set X
is not the union of two nonintersecting sets. Connectedness
is a topological invariant.

We shall give several more definitions, in order to indi-
cate the class of topological spaces which are encountered in
physical applications.

A subset ,4 of a topological space X is said to be closed if
the complement X \A is open.

The closure A of a set A of a topological space X is the
smallest closed set containing^. For example, the segment
[0, 1 ] is the closure of the open interval (0,1).

A covering of a set X is a system of subsets in X whose
union coincides with all of X. A space is said to be compact if
every open covering of the space contains a finite subcover-
ing.

Heine-Borel-Lebesgue theorem. A subset of the real R"
and complex C" n-dimensional Euclidean spaces is compact
if and only if it is closed and bounded. For example, the
closed interval [0, 1 ] CR is compact.

A topological space is said to be locally compact if every
point in it has a neighborhood whose closure is compact.

The spaces R" andC" are locally compact (but they are
not compact). The sphere S" is compact.

It is often necessary to embed a given space into a com-
pact space. A well-known example is Riemann's sphere,
which is constructed from the Euclidean plane by adding to
it a point at infinity.

Single-point compactification of as topological space X
is the set X * obtained by adding to X one point denoted by
the symbol x:X* =XU{<x}.

The space X * is compact. The space X * is Hausdorff if
and only if X is Hausdorff and locally compact.

For what follows we can confine our attention to locally
compact Hausdorff spaces.

In physical applications, as a rule, one is concerned with
metric spaces, which are Hausdorff. However, the metric
can be defined by different methods, and often a metric does
not have to be introduced at all. The topology of a HausdorfT
space, i.e., the separability of any two points in the space, is
no less obvious than the distance between two points.

Nevertheless topological spaces and continuous map-
pings are too general for physical applications. In physics, a
coordinate description is used (the coordinate description
does not require the introduction of a metric), while map-
pings, as a rule, must be differentiable a definite number of
times (even if this is not mentioned). Hence, manifolds, i.e.,
spaces in which every point can be described by a set of
numbers or coordinates, are an appropriate class of topologi-
cal spaces for physical applications.

4. MANIFOLDS

We shall give a definiton of a manifold. A Hausdorff
space A1 is said to be an n -dimensional manifold if every point
of X has a neighborhood which is homeomorphic to some
open set of an n-dimensional Euclidean space F" (Fn = R"
orC").

The simplest examples of manifolds are the Euclidean
spaces R" and C".

In order to gain a better understanding of the properties
of manifolds, the definition given above must be made more
precise.

The atlas of an n-dimensional manifold M is a family of
open sets {£/,}, covering M, and homeomorphisms <Py:
U j ^ E j , where Ej is a region in F " , such that the mapping

/„ = ¥, . v?: Y, (ut n ut) - v, (ut n u,)
is a homeomorphism (Fig. 6).

The pair ( [/, , ̂  ) is called a chart.
The mapping / of an open set from F" into

Fm ( /U) = {/,(*', ..., x" ), ..., fm (*', .... jc" )}) is said to
be a mapping of class Cr , r = 1,2,..., oo , if /is continuously
differentiable r times (if all functions / are differentiable
with respect to each coordinate xj ) .

A differentiable manifold of class (7 is a manifold for
which all homeomorphisms /J, and (/, ) ~ ' =/•_,• are map-
pings of class Cr . If r = <x> , then the manifold is called a
differentiable or smooth manifold, or simply a manifold.

Let a chart (U,,<p,) of an ^-dimensional manifold M in
the vicinity of a point p&Ut CM be given. The Cartesian
coordinates of the point tp(p)xj = xt (cpl • ( / ? ) ) , x
= {x1, ..., x"}&F" are called the local coordinate system in
U, , and the set U,- is called a coordinate neighborhood.

In the case of a Euclidean space the local coordinates
are the standard Cartesian coordinates.

Let us examine a simple but nontrivial example of a
manifold — the sphere S" in R" + ' , defined by the equation

-h*$+1 = a2 (1)

FIG. 6.

The sphere is an example of a manifold on which it is impos-
sible to define coordinates globally, i.e., on the entire mani-
fold. However, if any point on the sphere is discarded, then it
is possible to establish a one-to-one correspondence between
the remaining points on the sphere S" and the Euclidean
space R" , i.e., it is possible to introduce local coordinates.
Local coordinates can be introduced with the help of the so-
called stereographic projection (Fig. 1). Let the discarded
point be the north pole of the sphere S" with the coordinates
XN = {0, . . . , 1 } . Every point of the set U_ = S" \ {XN } can
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FIG. 7.

be put into correspondence with the point J" = {£'
I"1 }eR" of the equatorial plane xn + l =0 with the help of a
ray emanating from the north pole and passing through the
given point of the sphere x and the point £ corresponding to
it in the equatorial plane. The relationship between the local
coordinates £N = {£ 'N,..., g "N} in U_ and the Cartesian co-
ordinates x = {x\ ..., x" + ' } of the sphere S" in R"+ ' is
given by the formula

(2)

The analogous formula for the stereographic projection
from the south pole is given by the formula

n, (3)

where gs = {gl
s,..., £J}— are local coordinates in the re-

gion U+ = S" \{xs}, where*,; = {0,.... - l}.
The regions U_ and U+ are coordinate neighborhoods

with the local coordinates £N and |"s, respectively.
The atlas {C/_, U+} covers the entire sphere 5". The

charts of this atlas are the pairs ( U _ , VN) and (U+, *VS),
where the mappings VN and *$ are defined by the corre-
sponding formulas (2) and (3). The homeomorphisms
*jv °*s~' and *s °*jv '. defined by the formulas

(4)

(5)

enable the transformation in the region U_ n U+ from the
local coordinates gs to the coordinates £N and vice versa.

So, the sphere S" with a discarded point is homeomor-
phic to the space R". Let us supplement R" with a point at
infinity. Then the stereographic projection establishes
a one-to-one correspondence between the points S" and
R" U{oo}. We shall denote the topological equivalents S"
and/?" U{oo}byS'" =R"(J{<x>}.

Let an w-dimensional manifold M and an H-dimension-
al manifold N of class C" be given.

The mapping /: M-+N is called a differentiable wa/>-
pingof class Ck (k^r), if for every chart (Uj,tpj) inAfand
every chart ( V t , *,) in N the mapping from tp,• ( U j ) into
*,. ( V t ) is a differentiable mapping (from Rm into R" ) of
class Ck. We shall call a mapping of class C°° a differentiable
mapping.

The homeomorphism /: M-+N is called a diffeomor-
phism if/and / ~' are differentiable; the manifolds M and N

are said to be diffeomorphic (or smoothly equivalent).
Examples of differentiable or smooth manifolds are

spheres. For convenience, a smooth manifold can be thought
of as the smooth surface of some object. It seems intuitively
clear that if two smooth manifolds are homeomorphic, then
they are also diffeomorphic or smoothly equivalent. This is
indeed so in the case of the ordinary sphere S 2 and, for exam-
ple, in the case of an ellipsoidal surface. However, Milnor
found examples of smooth manifolds which are homeomor-
phic but not diffeomorphic to the seven-dimensional sphere
S7. Roughly speaking, this has the following significance.
Milnor's seven-dimensional manifolds are just as smooth as
the sphere S1 and they "look" like S7—they are topologically
equivalent to it, but there do not exist smooth mappings
which map the indicated manifold into the sphere S7. Mil-
nor's discovery was an important event in mathematics, and
is not irrelevant to physics. Milnor's manifolds are fiber bun-
dles with the group SU (2) and the base space S 4. Instantons
in field theory were discovered precisely for SU(2) gauge
fields, defined on the space-time manifold in the form of a
four-dimensional sphere S4 (the compactified space R 4).

Here it is useful to say a few words about fiber bundles
or fiber spaces. A fiber bundle is a generalization of the direct
product of spaces. For example, the rectangle is the direct
product of two segments and the cylinder is the direct prod-
uct of the segment / and the circle Sl. Spaces such as the
rectangle and the cylinder are called trivial fiber bundles. In
the case of the cylinder the circle S is called the base space of
the fiber and the segment / is called the fiber. The simplest
example of a nontrivial fiber bundle is the Mobius band. Un-
like the cylinder or the rectangle the Mobius band is not a
direct product, but it is a direct product locally, i.e., the Mo-
bius band consists of rectangles sewn together by the topol-
ogy of the fiber bundle. For the Mobius band, like in the case
of the cylinder, the base space of the fibers is the circleS' and
the fibers are the segments /. The nontrivial topology of the
Mobius band arises as a result of the effect in the fiber of the
symmetry transformation of a segment relative to its center.
The point is that when the Mobius band is constructed by
gluing together strips of paper, the ends of the strips are
joined after they are twisted relative to one another by 180°.
This is precisely what distinguishes the Mobius band from
the cylinder. It is said that a group, called the structural
group of the bundle, operates in the band.

In general, we can make the following statements about
fiber bundles. A fiber bundle is a generalization of the direct
product of spaces, which in this terminology is called a triv-
ial bundle. The cross section in a nontrivial bundle is a natu-
ral generalization of the concept of a function (of a vector
field) to the case when the function cannot be defined in the
entire space, called the base space of the bundle. This situa-
tion can arise when the base space of the bundle (for exam-
ple, a sphere) does not permit the introduction of a single
coordinate system without singular points. In this case, the
sections are defined on overlapping neighborhoods, cover-
ing the base space (for a sphere, these are the southern and
northern hemispheres), and in the regions of overlapping
(on the equator, in the case of the sphere) the sections are
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sewn together by the topology of the fiber bundle. Once the
principal bundle is constructed, for example, much can be
learned about the general properties of the physical theory
even before the Lagrangian is constructed. For this it is suffi-
cient to study only the base space of the bundle (the space-
time manifold) and the structural group of the bundle (the
symmetry group of the physical theory).

5. TOPOLOGY OF n-FIELD MODELS

We shall now return to the n-field models discussed pre-
viously. The collection of unit vectors neR" + ' is an n-di-
mensional sphere S". If the directions n and — n are equiva-
lent, then the sphere is transformed into another manifold,
called a real projective space, which is denoted by the symbol
RP". RP" is the sphere 5"" whose antipodal points are
equivalent points. Another representation of RP " is the col-
lection of all straight lines passing through the origin in the
space /?" + ' .

Thus for the models under study we have the following
mappings:

1. a) Two-dimensional magnetic material n: R 2->S '.
b) Two-dimensional nematic n: R 2--RP '.

2. a) Three-dimensional magnetic material n: R 3->S2.
b) Three-dimensional nematic n: R 3-*RP2.

3. a) Planar magnetic material n: R 2^S2.
b) Planar nematic n:R2-+RP2.

It should be noted that the circle 5 ' and the projective
straight line/?/"' are topologically equivalent. This is evident
from the following construction. RP ' can be constructed by
joining the ends of a semicircle. The result is, once again, a
circle. However, taking into account the symmetry transfor-
mation, as was evident in the example of disclinations,
makes the magnetic material and nematic different.

In a greater number of dimensions the sphere S" and
RP" are topologically not equivalent. In particular, linear
singularities do not occur in a magnetic material at all.

The planar model of a nematic or a magnetic material is
an example of a nonsingular configuration of the field n. A
nonsingular vortex is obtained by giving at infinity a uniform
distribution of the field n: n->nn = const as |r Physi-
cally, this denotes the fact that the distribution of the field n
approaches the ground-state or vacuum state at infinity. The
indicated boundary conditions mathematically determine
the compactification of the plane./? 2, i.e., the attachment of a
point at infinity to it. Since /?2U{oo} = S2, the nonsingular
vortices in planar models give an example of mappings of the
sphere into a sphere or into RP2

n: S'--+ S- or n: S- -* HP-.

Fixing analogous boundary conditions in the three-di-
mensional case n^n() as oo transforms R 3 into the
sphere S3 and leads to the mappings

n: s3 -» S2 and n: S3 -+ RP2

for a magnetic material and a nematic, respectively. The sim-
plest nontrivial example of a field configuration for the map-
ping of S3 into 5"2 or RP2 is the nonsingular ring-shaped vor-
tex.

A more precise study of the mappings examined above
requires the use of homotopy theory.

6. BASIC CONCEPTS OF HOMOTOPY THEORY

A homotopy or deformation is a set of mappings
/, (0 < t < 1) of class Ck of the space Xinto the space 7. Two
mappings /: X-* Y and g: X-* Y are said to be homotopic if
there exists a homotopy /,: X-> Y such that /0 =/ and
f i = g- The set of homotopic mappings forms a homotopic
class of mappings of X into Y, and the set of all mappings of A'
into Y is thus divided into homotopic classes of mappings ofX
into 7.

The mapping /of a spaced into some point in the space
x0(f:X^x0) is called a constant mapping. The mapping of a
space X into itself is called the identity mapping and is de-
noted by the symbol 1 x: X^X.

Example. The mappings / (x) = x and g(x) = 0 from
R" into R" are homotopic. The homotopy is given by the
formula /, (x) = (1 — t)x, 0<?< 1, whence it follows that
/ 0=/and/ ,=g (/0= IK is the identity mapping, /,:
R" —0 is the constant mapping of R" into the origin of the
coordinates).

Let two spaces^ and Yand two mappings f:X->Yand
g: y—Xbe given. The spacesXand yaresaidtobe/iOAWOtop/-
cally equivalent if there exist mappings/and g such that the
compositions f°g and #°/are homotopic identity mappings
1Y and Irrespectively^}7, ( g ° f ) ( x ) = g ( f ( x ) ) , x e X ) .
We shall denote the homotopic equivalence of X and Fby
X~Y.

The space X is said to be contractable if the identity
mapping of X is homotopic to the constant mapping. As
demonstrated above, the space R" is contractable or homo-
topically equivalent to one point x0&R" :R" ~x0.

Any two mappings of an arbitrary space into a contrac-
table space are homotopic and therefore any mapping is ho-
motopic to a constant mapping. This quite obvious assertion
is important for the constructions given below.

A space is said to be simply connected if any closed con-
tour in this space can be contracted to a point.

Examples. The circle S ' is not simply connected. The
sphere S" for H > 2 is simply connected. The space RP2 or the
sphere S2 whose antipodal points are the same point are not
simply connected, since any contour connecting the antipo-
dal points on such a sphere is closed, but it cannot be con-
tracted to a point. This, in particular, is what distinguishes a
magnetic material from a nematic.

An important generalization of the concept of simple-
connectedness is n-connectedness, i.e., contractability to a
point of ^-dimensional closed surfaces that can be represent-
ed by n -dimensional spheres 5". A contractable space (such
as Rm ) is n -connected for all «.

Thus it is clear that the mappings of a sphere Sm into
some space X for all w>0 (the zero-dimensional sphere
S° = { - 1, 1}, i.e., the boundary of the interval [ - 1, 1])
characterize definite topological and homotopic properties
of the space X.

Let us examine the set of homotopic classes of mappings
[S m, X] of the sphere S m into the topological space X. If
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X = R1, then the set of mappings [S m, R1} is homotopic to
constant mappings or, in other words, a sphere of any dimen-
sion in a Euclidean space can be contracted into a point.

As a nontrivial example we shall examine the set of ho-
motopic classes of mappings [S ', S ' ] of a circle into a circle.
If the circle is represented by a curve |z| = 1 in the complex
plane, then an example of the mapping of the circle into itself
is the mapping z->z". Then every integer n corresponds to a
homotopic class of mappings from the set [S ', S '] or, in
other words, any mapping S ' ->S ' is homotopic to the map-
ping z->z" for some n. The number n conveniently charac-
terizes the homotopic class of mappings of a circle into a
circle for which the number « is the number of loops in the
winding of the first circle on the second circle (thread
-•spool), and in addition all possible windings with loops of
different length and form (no knots) belong to the same
class.

Thus there exists a one-to-one correspondence between
homotopic classes of mappings^ ' -»S' and the group of inte-
gers Z.

We recall the definition of a group. A set G is a group
if it contains the multiplication operation g-h^G for all g,
heG and a) the multiplication operation is associative
( f - ( g - h ) = ( f - g ) - h , where /, g, heG); b) there exists an
identity element e, for which e-g = g-e for any geG; and, c)
for all geG there exists an inverse element g~' such that
£'£"' =g~l'g = e.

A group is called abelian or commutative if g-h = h-g.
In this caseg-h is often written asg + h, the identity element
is denoted by the symbol 0, and the element inverse to g is
denoted by the symbol — g.

Examples. The set of all integers Z is an abelian group
with respect to addition. The set R \{0} is an abelian group
with respect to multiplication. The set Z2 = { — 1, 1} is an
abelian group with respect to multiplication.

For the example of the mapping S ' ̂ S ' it was shown
that the elements of the set [S', S' ] are in a one-to-one corre-
spondence with the elements of the group of integers Z. It
turns out that the set of homotopic classes of mappings [Sn,
X] of a sphere of arbitrary dimension n into the spaceXalso
corresponds to some group whose structure depends on the
dimension of the sphere 5" and the topology X. For this
reason, the special notation Trn (X), is introduced for the set
[S", X ] , and the sets irn (X) are called n-dimensional homo-
topic groups. For «>2 the groups irn (X) are abelian. In the
example studied aboveX = 5 ' and ir\(Sl) = Z. The latter
indicates that the group 77-, (S ') is isomorphic to the group of
integers. The group Trn (X) for n = 1 has a special name:
771 (X) is called the fundamental group of the space X.

The isomorphism irn (X) = 1 or irn (X) = 0 (in the
case of an abelian group) indicates that the group irn (X) is
trivial, i.e., it is isomorphic to the group consisting only of
the identity element. For any contractable space X
-rrn (X) — 1 for all n. As in the case of the mapping S ' ->S ',
for the mapping S" ->S" we have the isomorphism
TTn (S" ) = Z. Since any contour on the sphere S2 can be con-
tracted to a point, 77, (S2) = 1 and in general 77, (S" ) = 1 for

For homeomorphic spaces, homotopic groups are iso-
morphic. For example, 77, (RP ' ) = 77, (S ' ) = Z.

Homotopic groups are isomorphic also for homotopi-
cally equivalent spaces. For example,

= Z,

Ji, (/?3\*0) - nt (S*) = Z.

The group -rr^RP2) = Z2. The fact that the fundamen-
tal group of the projective space RP 2 consists of two elements
indicates the following: on a sphere whose antipodal points
are equivalent there exist only two classes of closed paths.
All closed contours which can be contracted to a point on the
ordinary sphere correspond to the identity element in the
group 77, (RP 2 ) . The nontrivial element corresponds to con-
tours connecting the antipodal points of a sphere. All such
contours are closed, and they cannot be contracted to a
point. They are homotopic to one another and they are ho-
motopic, for example, to some great semicircle. We also
point out that 77,- (RP2) = 77, (S2) for i> 1.

In spite of the clarity of the definition of homotopic
groups, their calculation is a very complicated problem, even
in the simplest cases. The homotopic groups of a large num-
ber of spaces have now been calculated.

7. CLASSIFICATION OF SINGULARITIES IN THE ORDER-
PARAMETER FIELD. HOMOTOPIC INVARIANTS

Ordered systems, such as magnetic materials, liquid
crystals, superfluid liquids, etc., are described in terms of an
order parameter. In the case of magnetic materials the order
parameter is a unit vector n and in the case of nematics the
order parameter is the director. The range of the order pa-
rameter, called the space of the order parameter, in these
cases is S2 and RP2, respectively. The definition domain is
the coordinate space R 3. The existence of point or linear
singularities in the order-parameter field alters the topology
of the coordinate space. In the case of a point singularity the
order parameter is not defined at some point, for example, at
the origin. From the topological viewpoint this indicates
that instead of R 3 we have R *\{0}~S2. In the case of a
linear singularity the line R is removed from R3: R:
R 3\R~S '. Thus the existence of linear and point singulari-
ties gives rise to mappings of the circle S' and the sphere S2

into the space of the order parameter M. Therefore the
groups 7T, (M) and ir^(M) characterize the topological sin-
gularities in the order-parameter field. If, for example,
77, (M) = 1, then any distribution of the order-parameter
field with a linear singularity can be transformed by means
of a continuous deformation or homotopy into a uniform
distribution. Such singularities are said to be topologically
unstable.

In the case of magnetic materials the order-parameter
space is M — S2 and 77, (S2) = 1 and, therefore, there are no
stable linear singularities in the field of the vector n (in a
three-dimensional magnetic material). In a two-dimension-
al magnetic material M = S' and instead of linear singulari-
ties we have point singularities, which are also characterized
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by the group TT,. Now, however, the group TT, (5') = Z, and
every integer N, described by one or another homotopic class
of mappings S' intoS', corresponds to a point singularity for
which the integer N is equal to the number of revolutions of
the vector n by 2ir for one full turn following a closed circuit
around the singularity (in terms of the director, this is a
disclination with an even Frank index).

In describing a point singularity in a three-dimensional
magnetic material we arrive at a mapping ofS2 into S2 and
the group ir2 (S

2) = Z. In general, the point singularity in an
(n + 1)-dimensional vector field of the unit vector n, de-
nned on the space R" + ' \x0~S" , is characterized by the
mapping of S" into S" (since the set of all (n + 1 ^dimen-
sional unit vectors is the sphere S" ) and by the group
•rrn (S

n) = Z. The integer TVeZ, with which each homotopic
class of mappings S" ->S" is associated, is called the degree
of the mapping of the vector field and is denoted by the sym-
bol deg n (r). The degree of the mapping indicates how many
times the vector n runs over the sphere S" in moving over the
region R" + ' \x0~S" . If deg n = 0, then the vector field has
no singularities and any nonuniform distribution of the vec-
tor field can be transformed by a continuous deformation
into the uniform distribution (n(r ) = n0 = const in the en-
tire space R"+ ' ). In the case when deg n = 1, we have, for
example, a radial distribution of the vector field (hedgehog)
with a singularity at the origin of coordinates. Such a distri-
bution cannot be transformed into a uniform distribution by
any continuous deformation, and in general with deg n ̂  1.
The degree of the mapping is a homotopic (and topological)
invariant, i.e., it remains constant under homotopic map-
pings Sn — 5" . We note that the definition of the degree of a
mapping can be generalized to the case of differentiable map-
pings of manifolds with the same dimensions.

In a two-dimensional nematic the order-parameter
space is M = RP ' = S ' and •JTI (RPl) = Z. The difference
from a magnetic material lies in the fact that the integer N,
characterizing some homotopic class of mappings of 5*' into
RP ', equals the number of revolutions of the vector n by an
angle IT for one full turn following a closed circuit around a
singular point, i.e., a two-dimensional nematic contains dis-
clinations with both even and odd Frank indices.

For a three-dimensional nematic M = RP2 and
77-, (RP2) = Z2, and hence we have one type of stable linear
singularity: disclinations with an odd Frank index. They can
be transformed into one another with the help of a homo-
topy, and topologically they are indistinguishable. Physical-
ly, disclinations differ with respect to their energy (the ener-
gy depends on the Frank index). Point singularities in a
three-dimensional nematic are the same as those in a mag-
netic material (up to the equivalence of the directions n and
-n).

In a planar magnetic material with the boundary condi-
tions n^n() as |r |^oo we have the mapping of
^ 2 U{oo}=5 2 into M = S2, characterized by the group
TT, (S ••) = Z. Thus nonsingular vortices in a planar magnetic
material, like point singularities in a three-dimensional mag-
netic material, are classified by integers or by the degree of
the mapping of S 2 into 5 2.

In the three-dimensional case with uniform boundary
conditions at infinity n -»n0 as r -» oo we arrive at the map-
ping /?3U{oo}=5"3 into S3, called the Hopf mapping, and
the group ir3(S

2). The group 7T3(S2) = Z, but this is more
difficult to prove than in the cases studied above. The integer
characterizing the mapping of S3 into S2 is called the Hopf
invariant. The simplest nontrivial configuration of the n field
is a nonsingular ring-shaped vortex for which the Hopf in-
variant equals unity. Everything said above remains equally
valid for nematics, for which one need only take into account
the equivalence of the directions n and — n.

8. CONCLUSIONS

In the preceding sections we described the basic con-
cepts of modern algebra and topology, which, in recent
years, have been introduced into physics. We demonstrated
the application of topological methods in the solution of
physical problems for the example of the classification of
singularities in the order-parameter field in magnetic mate-
rials and nematics. We must now emphasize once again what
we stated at the outset. The introduction of the language and
methods of topology into physics is linked with the develop-
ment of new ideas in physics. The most graphic (and very
important) consequence of the permeation of topology into
physics was probably the fact that physics has been enriched
not only with new methods but also new physical quantities,
examples of which are the topological invariants. In field
theory topological invariants are called topological quan-
tum numbers or topological charges. They obey definite con-
servation laws, and this makes them similar to quantities
such as the electric charge, spin, isospin, etc.

In ordered systems (magnetic materials, liquid crys-
tals, and superfluid liquids) the topological charge is an ob-
servable quantity (the physical meaning of the topological
charge corresponds to the graphic geometric interpreta-
tion). In elementary particle physics the situation is much
more complicated. Extended objects (vortices, monopoles,
instantons, etc.), which are carriers of topological quantum
numbers or topological charge, appear quite naturally in
classical field theories, but the assignment of quantum-me-
chanical properties to these objects encounters great diffi-
culties. At the present time there does not exist an unequivo-
cal physical interpretation of topological extended objects.
Some of them (for example, monopoles) are viewed as some
exotic elementary particles, and others serve as models for
hadrons. The instanton, for example, is an exact solution of
the Yang-Mills equations and from the mathematical view-
point has attractive properties. On the other hand, the in-
stanton describes the process of tunneling between quantum
mechanical vacuums of the Yang-Mills theory, which leads
to the breaking of some symmetries (for example, parity).
One of the consequences of instanton effects is the prediction
of a new heavy boson, called the axion.

The list of topological results in field theory is long and
continues to grow. Some, comparatively recent, results have
already had a significant effect on physical ideology, but
many topological results have yet to be interpreted in the
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quantum theory and their connection to observed quantities
has yet to be determined.

It is also important to note that everything discussed
above is only a part of the process of geometrization of phys-
ics, which has been going on in recent years, and in addition
it is a part which interacts actively with the other parts of this
process.

This process was started in the general theory of relativ-
ity, which gave a geometric interpretation of the gravita-
tional interaction. The modern viewpoint that the carriers of
interactions are geometric objects, the so-called gauge fields,
was formulated by Yang and Mills in 1954. Gauge fields, or
Yang-Mills fields, are analogous to the vector potential in
electrodynamics and hence it may be conjectured that the
Yang-Mills fields, like photons, should be carriers of some
interaction. This idea has been intensively developed, and in
1967 Weinberg and Salam independently constructed a the-
ory of weak and electromagnetic interactions, in which the
Yang-Mills "photons," called W * and Z° bosons, were as-
signed the role of carriers of weak interactions (such as the/3
decay of the neutron). The first experimental confirmation,
though indirect, of the Weinberg-Salam theory was obtained
in 1973. It remained to discover the gauge bosons directly.
This was done in 1983.

Extended objects are objects in gauge theories, such as
the Weinberg-Salam theory or the theory of strong interac-
tions, called chromodynamics, i.e., theories which to some
extent have been experimentally confirmed. The discovery
of nontrivial topological consequences in such theories indi-
cates both the rich content of gauge theories and, possibly,
the future development of the theory of elementary particles.

In conclusion, we shall indicate some publications
which could be useful in studying the questions touched
upon in this paper.

One of the best textbooks on general topology is the
book by Kelley,' though Refs. 2 and 3 could be more suitable
for an initial introduction to topology. A fully accessible ex-
position of the methods of differential geometry used in
physics is given in a recently published, but already popular
book, by Schutz.4 An excellent exposition of homotopy the-
ory can be found in the book by Dubrovin, Novikov, and
Fomenko,5 where many mathematical questions closely re-
lated to physics are also examined. Some information on
manifolds and homotopic groups can be obtained from the
review by OPshanetskii,6 which also contains additional ref-

erences. Volovik and Mineev7 have described in detail the
topological approach to the study of spatially nonuniform
states such as vortices and disclinations in ordered systems
(magnetic materials, nematics, superfluid He3, etc.). An in-
troduction to gauge theories can be found in Refs. 8 and 9.
Monopoles and instantons are described in a paper by Pra-
sad, a translation of which into Russian is given in Ref. 10.
Vortices or Belavin-Polyakov instantons are studied in de-
tail in a review by Perelomov.!'

The basic concepts of algebra and topology are given in
Ref. 12: 1. Sets and mappings. 2. Topological spaces and
continuous mappings. 3. Manifolds. 4. Topological groups
and Lie groups. 5. Tangent spaces of differentiable mani-
folds. 6. Homotopy theory (homotopic groups, degree of
mappings, Hopf invariant).
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