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The problems along the road to achieving an extreme compression of plasma in high-current
channels are analyzed. The present ideas regarding the physical nature of the equilibrium of a
plasma in a pinch system are outlined. The problem of the macroscopic stability of a
relativistic pinch is discussed. Solving this problem requires deriving a relativistic two-fluid
electromagnetic hydrodynamics. The dynamics of the contraction of pinches, in whose
terminal stage radiation plays a particularly important role, is analyzed. The system can
radiate off more energy than it acquires by heat evolution, and if it does the result should be a
collapse. The practical significance of achieving electromagnetic collapse goes beyond the
fusion problem, and involves such fields as the collective acceleration of charges, the
production of "cumulative" jets, and the development of intense sources of induced radiation
over a broad spectral range, from microwaves to y rays. For physicists, pinches represent a
unique opportunity for producing and studying in the laboratory matter in an extreme state
such as nature furnishes only deep in the interiors of stars.

CONTENTS

1. Introduction 506
2. Physical nature of the equilibrium of a relativistic Z-pinch 508

2.1. Subsystems of ions and electrons. 2.2. Equilibrium equations; their general
properties; confinement conditions. 2.3. The approximation of Boltzmann statistics.
2.4. Equilibrium near the collapse boundary; electrically neutralized discharge.

3. Correlation properties of charges in plasma flows 514
3.1 Field of a charged current-carrying filament. 3.2. Interaction of charges in plas-
ma flows. 3.3. Possibility of superconductivity.

4. Problem of the stability of pinch systems 516
4.1. Two-fluid hydrodynamics of a charged plasma. 4.2. Hydromagnetic stability of
pinches. 4.3. Analysis of the stability of a pinch in two-fluid electromagnetic hydro-
dynamics. 4.4. Macroscopic description of the stability of pinches.

5. Dynamics of the contraction of a pinch system 521
5.1. Adiabatic approximation. 5.2. Radiation from pinch systems. 5.3. Radiative
contraction. 5.4. Acceleration of charges by pinches.

6. Conclusion 526
References. .526

1. INTRODUCTION

The physics of high energy densities has an interesting
history and presents broad opportunities for studying nature
and for various practical applications. Progress toward the
achievement of extreme energy densities is inseparably
linked with the technology of producing strong fields and
ultrahigh pressures.

The recent developments in the physics of high energy
densities have their origin back in Kapitsa's now classic
work1 on the development of pulsed strong magnetic fields.
Progress in the development of the explosive method for
concentrating energy ("cumulation") stems from studies by
Sakharov.2 In the 1970s, progress was stimulated in the tech-
nology of high pressures, in the megabar range,3 when Ash-
croft4 pointed out the possibility of achieving a metastable
state of metallic hydrogen with a high superconducting tran-
sition temperature. The concentration of energy is crucial to

directions which are presently being pursued to achieve con-
trolled thermonuclear fusion. Curiously, the application of
intense laser beams to plasmas produces ultrastrong mag-
netic fields.5

In nature, high densities of matter occur in the interiors
of planets and stars as the result of gravitational compres-
sion of massive bodies. The Newtonian gravitational poten-
tial satisfies the same equation as is satisfied by the scalar
potential of an electric field. Would it be possible to use elec-
tromagnetic forces instead of gravitational forces and there-
by reduce the scale dimensions required for producing ultra-
dense matter and to achieve extreme compression in the
laboratory? The ratio of the gravitational force acting
between two protons to the force of their electrostatic inter-
action is very small, FV/FA= — G(mH/eH)2

= -0.8XlO-36[eH =4.8-10-10esu,mH = 1.66-l(r24g,
G = 6.67-10~8 cmV(g-s)]. Consequently, if the electro-
magnetic interaction were used to compress matter, the
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amount of matter which would be required in order to reach
the pressures produced by gravitation at, say, the center of
the sun would be only something of the order of 10~3 g (in
comparison with mass of the sun, m& = 2-1033 g).

In a state of such extreme compression, the energy of
the system per charge would be of the order of the rest mass
of the electron. This energy is considerably greater than the
binding energy of the outer electrons in atoms. During
strong compression, the atomic bonds of electrons with nu-
clei are broken, and the matter is a fully ionized plasma,
generally not neutral. If the plasma is charged, the net
charges will clearly repel each other by virtue of their elec-
trostatic forces, and it would not be possible to achieve com-
pression of the plasma as a whole by means of electrostatic
forces alone.

We would be dealing with a different situation if the
charges of one sign were in motion with respect to the
charges of the other sign in the plasma. If the average (drift)
velocity of the electrons with respect to the subsystem of ions
is nonzero, a current will flow through the plasma, and a
magnetic field will arise. The interaction of parallel currents
through the magnetic field which they produce is an attrac-
tion. The magnetic attraction of moving charges may prove
stronger than the electrostatic repulsion even if the plasma
contains a net charge. The ultimate result is that the collec-
tive interaction of the charges of the plasma will be a mutual
attraction. These forces will cause the plasma channel of the
current to contract (a pinch effect) to the point that the
pressure becomes high enough to establish an equilibrium
between forces.

Studies of self-contracting streams of charged particles,
begun by Bennett6 and revived by Budker,7 have now been
taken up extensively in connection with the problem of con-
trolled fusion. The reason is that the problems along the road
to achieving pronounced electromagnetic self-contraction
are similar in many respects to the problems of controlled
fusion. There is accordingly the opportunity to work from a
limited amount of material to analyze certain aspects of the
problem of developing fusion reactors.

Back in the very infancy of fusion research, Kurchatov
gave a now famous lecture8 reporting significant progress
toward the compression and heating of a plasma in a high-
current pinch. The earliest experiments revealed an emission
of neutrons.9 It appeared at the time that the problem would
be simply one of satisfying the conditions for equilibrium of
plasma column in the magnetic field produced by a current
flowing through the plasma itself, at values of the linear
charge density TV and of the current / corresponding to the
temperature required for a reaction. The magnetic field
would prevent the plasma from expanding in the radial di-
rection and would thereby allow the hot plasma to exist for
the time necessary. In actuality, the discharge of a high cur-
rent is always a rapidly evolving process, having little in
common with a state of equilibrium.

The theory of the evolution of a pinch began in a study
by Leontovich and Osovets, who studied the dynamics of the
contraction of a discharge channel, allowing for the inertia
of ions. At a high current, the force of the magnetic compres-
sion is initially considerably higher than the plasma pres-

sure. The magnetic force compresses the discharge, and the
pressure rises. At a certain time, the plasma pressure be-
comes equal to the pressure exerted by the magnetic field of
the current. By this time, however, the charges have ac-
quired a significant kinetic energy in the radial direction,
and the contraction of the current channel continues iner-
tially in the direction opposite the resultant force until the
radial velocity vanishes. At this turning point, the plasma
pressure exceeds the field pressure, and the system begins to
expand. If the current is maintained for a considerable
length of time in the circuit, the system will exhibit oscilla-
tions, and it is not obvious at the outset that the system will
ultimately arrive at a state of equilibrium.

The problem of confining hot plasmas stimulated re-
search on equilibrium plasma configurations10 and their sta-
bility." The transition from Z-pinches to systems with a
more complicated geometry12 forced the development of
general methods for studying the stability of a plasma in a
magnetic field. An energy principle for studying the magne-
tohydrodynamic (MHD) stability of plasmas was devel-
oped.13 It was applied successfully to various complicated
systems.14-16

Analysis of the balance between the radiated energy and
the heat evolved in the plasma by the current became a cru-
cial step forward toward an understanding of the physics of
pinch systems. This analysis was carried out in 1957 by
Pease17 and Braginskii.18 It turned out that if the current
exceeds a certain critical value (the Pease-Braginskii cur-
rent) the current channel will contract without bound. The
important conclusion was reached that if the current is high
enough the plasma will become a collapsing plasma.l9'20

In the 1960s there was a transition from nonrelativistic
to relativistic velocities in the streams of charged particles.
There were rapid developments in the physics and technolo-
gy of intense relativistic electron beams.21'22 A relativistic
electron beam containing positive ions is a self-contracting
(pinch) system. At a relativistic drift velocity, however, this
system cannot be regarded as a common, electrically neu-
tral, conducting fluid characterized by a hydrodynamic flow
velocity which is the same over the entire system. A descrip-
tion of the plasma of relativistic pinch systems thus requires
going beyond classical MHD, discarding the assumption of
quasineutrality, and carrying out a self-consistent calcula-
tion of the charge density and electric field on the basis of the
Poisson equation. As a result, a new branch of research was
founded and developed: the physics of charged plasmas.23

The 1968 discovery24 in research on pinches of the for-
mation in a low-inductance vacuum spark of so-called plas-
ma points or micropinches, in which the state of matter ap-
proaches that in the interior of stars,25 made a large
impression. Micropinches exhibit all the characteristics of a
highly compressed plasma: a burst of x-ray emission, high
electron and ion temperatures, multiply charged ions, the
production of directed streams of accelerated charges, neu-
tron emission, explosive nature of electron emission, and
emission of hard x rays at an intensity which falls off slowly
with increasing x-ray energy (in a power-law, rather than
exponential, fashion).

All these phenomena are observed in a wide variety of
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high-current devices: direct current discharges,9'26 Filip-
pov27 and Mather28 plasma foci, the electrical explosion of
wires,29'30 and low-inductance vacuum diodes.31'32 The im-
plication is that the events which occur in a plasma com-
pressed greatly by a current are of a common nature—a na-
ture which, unfortunately, cannot yet be regarded as finally
resolved. High-current electric discharges have been under
study since before the turn of the century,33 and over the
entire history of this research not one of the phenomena list-
ed above was predicted beforehand. An electric discharge
has proved to be "very inconvenient" to describe theoretical-
ly, while experimentally it is an extremely interesting phe-
nomenon.

The properties of pinch systems which are of the great-
est physical interest are manifested in the stage of maximum
compression and heating of the plasma. In the stage of the
emission of neutrons and accelerated charges the plasma
density is already so high that the scale time for relaxation
through Coulomb collisions in each of the subsystems (elec-
trons and ions) is much shorter than the scale time for the
existence of the compressed state, as estimated from the du-
ration of the x-ray emission. Under such conditions a system
should rapidly reach equilibrium, and its evolution will be a
slow change in the equilibrium state.

Today we are seeing a reexamination of the established
ideas regarding the nature of the pinch effect and regarding
the role which pinches play in the fusion problem.34 In the
stage of the maximum compression and heating, the change
in the state of a plasma focus frequently occurs in a com-
pletely regular way, and there are no MHD instabilities.35'36

It appears that the properties of the plasma in the state of
maximum compression are only slightly affected by the par-
ticular history of the development of the current channel by
the complex processes by which the current shell is
formed37'38 and by the particular features of the motion of
the shell toward the discharge axis.39^*3 Naturally a concen-
tration of energy has to of course occur.

It is thus time to return to the original approach to the
theory of pinches, i.e., to studying the physical nature of the
plasma equilibrium in the channel of an intense current, but
at a modern level, with allowance for; the changes in the un-
derstanding of equilibrium configurations.44 In this direc-
tion, for the very first time in research on high-current dis-
charges, the theoreticians have the opportunity not only to
construct a systematic and natural explanation of the entire
set of events accompanying a pinch effect but also to predict
the possibility of reaching as state of a hot, condensed plas-
ma: a plasma compressed by collective-interaction forces to
the point of a quantum degeneracy of electrons.45 For the
first time, theory has outstripped experiment: A degeneracy
of electrons during the contraction of a current channel has
not yet been directly observed. The actual realization of a
contraction of a pinch to the state of condensed matter is a
most interesting problem in experimental plasma physics.

The electromagnetic self-contraction of charged-parti-
cle beams opens up some new opportunities for reaching ex-
treme states of superdense matter.34'44 A well-conceived
program to achieve electromagnetic collapse will make it

possible to increase the maximum energy concentration at-
tainable by several orders of magnitude. The practical im-
portance of this field of research goes beyond the problem of
controlled fusion reactions. Studies of electromagnetic col-
lapse are pertinent to a broad spectrum of problems: the
transport of energy over large distances by intense relativis-
tic electron beams, collective acceleration of charges,46"51

the development of intense new sources of electromagnetic
radiation over a broad spectral range,22 including free-elec-
tron lasers, x-ray lasers,52 and even y-ray lasers.53 Advanc-
ing toward progressively higher energy densities opens up
some new opportunities for physical research and technical
applications which can hardly be completely foreseen today.
In addition to the practical applications, the production of
extremely high pressures, ultrastrong fields, and huge con-
centrations of energy in the laboratory is of much general
scientific interest.

2. PHYSICAL NATURE OF THE EQUILIBRIUM OF A
RELATIVISTIC Z-PINCH
2.1. Subsystems of ions and electrons

A self-compression of a plasma by electromagnetic
forces can occur only if a current is flowing. The direction of
the current becomes a special direction, and in the simplest
geometry a pinch may be thought of as a cylindrically sym-
metric system which is uniform in the direction along the
current and in the azimuthal direction. When a current is
flowing, the drift velocity v0 (the velocity of the relative mo-
tion of the electron and ion subsystems) is nonzero. Depend-
ing on the magnitude of the drift velocity, either a directed
beam of particles (in the case v0 %> Au, where AD is the disper-
sion of the velocities of the charges) or simply a plasma with
a current (in the case y0< Ai>) may be a pinch system.

In order to avoid making any assumptions with respect
to a model and thus to study the properties of pinch systems
to the fullest extent possible, we will focus on those cases in
which the plasma can be regarded as a set of two subsystems
(electrons and ions), which are interacting with each other
to a slight extent through collisions. In contrast, we do not
assume that the interaction of the subsystem through the
electromagnetic field produced by the charges themselves
(the collective-interaction field) is slight. A situation of this
sort occurs when the drift velocity is either very high or very
low in comparison with the velocity spread of the charges. In
the case y0>Af the relaxation to equilibrium separately in
the electron subsystem and in the ion subsystem occurs
much more rapidly than the overall plasma can reach equi-
librium through electron-ion collisions. The reason is the
rapid decrease in the Coulomb cross section with increasing
relative velocity of the colliding charges. In the opposite lim-
it of a low drift velocity, v0 <^ An, a current flow causes a slight
deviation of the plasma as a whole from its equilibrium state.
In this case both the electrons and the ions can again be
regarded as nearly equilibrium subsystems. Because of the
significant difference in the masses, the rate of electron-ion
collisions is much smaller than the rate of electron-electron
collisions or that of ion-ion collisions.55

Under the conditions we are considering each subsys-
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tern is at thermal equilibrium in the field of the collective-
interaction forces. The electromagnetic field of the collective
interaction serves as an external field with respect to both the
electrons and the ions during the formation of the equilibri-
um structure of the plasma. The plasma as a whole, on the
other hand, is not in a state of thermal equilibrium, since the
subsystems of electrons and ions are moving with respect to
each other at a velocity v0. The particular case of a complete
equilibrium v0 = 0, is of no interest in research on electro-
magnetic collapse.

A description of a pinch system as a set of two thermo-
dynamically equilibrium subsystems is good in the stage of
the maximum compression of the plasma, as long as experi-
ments show that the relaxation times are short in compari-
son with the duration of the x-ray burst,32 and instabilities
do not have time to affect the structure of the current chan-
nel at its regions of maximum contraction.35'36

The existence of thermal equilibrium in each of the sub-
systems eliminates arbitrariness in the choice of a distribu-
tion function. In the comoving frames of reference K 'a, the
charge distribution functions f'a depend only on the total
energy (Sec. 4 in Ref. 5 6 ) : f ' a = F(E'a/Ta). The nature of
the function Fis determined by the statistics of the charges:

F (x) = F± (x) = [exp (.4a --- x) ± I]-1. (1)

The plus sign is used for fermions, and the minus sign for
bosons; E 'a and TA are the total energy and temperature of
the charges of species a in frame of reference K 'a; and a, here
and everywhere below, takes on the values i.e., for ions and
electrons, respectively. The scalar^a is related to the chemi-
cal potential of the corresponding subsystem: Aa = — /j,a /
Ta. It can be expressed in terms of the temperature and the
number of particles through a normalization condition (Sec.
55 in Ref. 56). The limiting case^4a > 1 corresponds to clas-
sical Boltzmann statistics, and in this case we have
F± (x)~Aae-x,Aa = eA".

To calculate the charge and current densities we need to
know the electron and ion distribution functions not in dif-
ferent frames of reference but in the same frame of reference
K (the laboratory frame). Making use of the relativistic in-
variance of the distribution function,57 we can find /„ in
frame K by simply expressing the energy E'a in terms of the
energy Ea and the generalized momentum Pa by means of
the equations of a Lorentz transformation: E'a
= Ya(Ea -P«v0a, whereya = [1 - (vL/c2)2} - | / 2 isthe

relativistic factor, and vQa is the velocity of frame K 'a with
respect to K. The total energy of a charge of species a in the
electromagnetic field op. A is5" Ea = eacp + ea [P — (ea/
c)A] , where£„ (p) = (m2

ac
4 + C 2 p 2 ) ' / 2 , and c is the velocity

of light.
Since the electrons and ions of a plasma are thermody-

namically equilibrium subsystems, their state is determined
completely by the numbers of particles Na (per unit length
of the pinch); the temperatures Ta; and the velocities
uQa = pa c of the subsystems. The state of a pinch system is
described by the six parameters

a = i, e, (2)

where one of the two parameters f)a can be made equal to
zero through an appropriate choice of frame of reference. To
the extent to which the electron and ion subsystems are close
to a state of complete thermal equilibrium, the temperatures
Ta and the velocities v^ do not depend on the spatial co-
ordinates.

One hears the objection59 that a spatial homogeneity of
the temperatures and velocities would amount to, so to say,
additional conditions with respect to the complete system of
equations describing the pinch system, so that the set of pos-
sible equilibrium configurations is restricted by this homo-
geneity. Actually, the spatial homogeneity of the tempera-
tures and velocities does not represent additional conditions
with respect to the equations describing a pinch system. We
are dealing here with a system under conditions such that the
uniformity of the parameters over the cross section follows
from the equations themselves. The homogeneity of the ve-
locities follows from the Navier-Stokes equations, and that
of the temperatures follows from the heat transfer equations.
Consequently, no restriction of any sort is imposed on the set
of possible equilibrium configurations. One could in princi-
ple write and solve a complete system of equations including
the Navier-Stokes equations and the heat transfer equations
for both subsystems. Clearly, however, the solutions of these
equations will be close to equilibrium solutions to the extent
that the relaxation times within the subsystems are short.
The thermodynamic limit has the further advantage that it
allows us to obtain the necessary information on the proper-
ties of the system essentially without carrying out any calcu-
lations.

On the other hand, what one must guard against is an
overly extensive use of the conditions of the spatial homo-
geneity of the parameters Ta and v0a, if only under the guise
of choosing a model.60 Even if this approach is justified in the
stage of maximum compression of a pinch, in the initial stage
of the formation and motion of the current shell there is no
basis of any sort for such an assumption.

Under conditions such that the plasma can be repre-
sented as a set of subsystems which are separately in thermal
equilibrium, the problem of the structure of the current
channel splits in two. The first problem is that of studying all
possible equilibrium distributions of the field and of the
charge densities at fixed but initially unknown values of the
parameters in (2). In the general case of a charged plasma,
this problem reduces to one of studying a system of coupled
equations of electrostatics and magnetostatics. In the sim-
plest geometry, the solutions of this system describe all pos-
sible configurations of a cylindrically symmetric plasma of a
pinch system which are mechanically in equilibrium, for
fixed values of the current I=I,aea Na v0a, the charge per
unit length of the plasma, Q=~LaeaNa, and the tempera-
tures re and Ti.

The second part of the problem is to determine the val-
ues of the parameters in (2) for a specific system which in-
cludes the plasma itself of the discharge channel, the medi-
um surrounding this channel, and the external circuit, on
whose parameters the current depends. Both the instanta-
neous values of the parameters in (2) and their time evolu-

509 Sov. Phys. Usp. 29 (6), June 1986 B. E. MeTerovich 509



tion are determined in each case by the individual features of
the apparatus used to produce and study the discharge. The
first part of the problem—that of studying the physical na-
ture of the equilibrium of the plasma in the channel of a high
current—is a universal problem. Changes in the state of the
current channel which occur slowly in comparison with the
relaxation times of the subsystems should be smooth transi-
tions through states of mechanical equilibrium of the plasma
of the pinch system. For this reason, a study of the equilibri-
um structures of self-contracting charged-particle beams is a
universal approach to the study of the dynamics of both rela-
tivistic beams and simply of plasmas with a high current in
the stage of a pronounced contraction of the discharge chan-
nel.

2.2. Equilibrium equations; their general properties;
confinement conditions

In the steady state, the field potentials tp and A satisfy
the equations of electrostatics and magnetostatics,

d2A 4ji . 52<p . / T \
~dxr~ c~ -1' ' d z * = ~*"lp. \*>

The current density J and the charge density p are expressed
in the standard way by means of the charge distribution
functions in the laboratory frame found above. To study
equilibrium structures it is convenient to switch from g> and
A to the functions Ua,Ua = ea (<p - Pa A), Ba = v0a /c. In
the case of a cylindrically symmetric plasma, the Ua are the
potentials of forces which are acting on the charges of the
subsystem a. The equilibrium distributions of the potentials
Ua (r) and of the densities na (r) are described by the equa-
tions

g r / V \

where ga is the g-factor; for electrons we have ge = 2. The
function Fis given by expression (1), while the scalar Aa in
(1) is related to the number of particles per unit length of the
channel Na, by the normalization condition

= 2n j n a ( r ) r d r . (6)

These equations are derived in detail in Refs. 44 and 61.
From the condition that the field and the charge densities
must be finite on the axis we find dUa (0)/dr = 0.

As a first step in the study of a system, one assumes that
the external fields are small in comparison with the fields
generated by the charge and current of the pinch itself.

If the drift velocity is nonrelativistic, the equilibrium of
the pinch is studied by the equations of magnetostatics
alone.10>62 The fact that the Debye length rD is small in com-
parison with the radius of the plasma column, r0, makes it
possible in this case to determine correctly the structure of
the plasma and the field in the region with rD <^r0, i.e., every-
where except at the periphery of the pinch. Equations (4)
and (5), on the other hand, make it possible to calculate
correctly the field throughout space, including at the periph-
ery of the pinch. At first glance this might appear to be a

rather minor detail in the case y0<c, but actually the field at
the periphery of the discharge determines whether charges
are drawn into the discharge or repelled from it. By describ-
ing correctly the field at the periphery of the current chan-
nel, the equations make it possible to find the plasma con-
finement conditions.

Integrating Eqs. (4), and noting that the total current
and the charge of the system are finite, we find rU'a = 2Ea,

(7)

from which we conclude that far from the axis the potentials
Ua increase logarithmically: Ua = 2Ea In r, r-> oo. (For a
real current with a channel of length / and radius /-„,/> r0, the
logarithmic growth of the potentials occurs in the intermedi-
ate region />/•>/•„.) By virtue of the meaning of the poten-
tials Ua, the factors Ea in (7) are the energies of the interac-
tion of a charge of species a with the field set up by all the
other charges. If Ea > 0, the interaction is an attraction,
while if Ea < 0 it is a repulsion.

The four parameters Na ,/3a can evidently be chosen in
such a way that they simultaneously satisfy the two inequal-
ities £] > 0, E£ > 0. In this case, the collective interaction is
an attraction for both ions and electrons. In particular, if the
ions are a whole are at rest (/?, = 0,/?e = P) in the laborato-
ry frame, these inequalities can be thought of as restrictions
on the number of ions:

NK > ZN{ > Ar
e (1 — p2), (8)

where Z is the ion charge. We see that in the presence of a
current the condition/?2 > 0 holds, and for N{ there is a range
of values for which both ions and electrons at the periphery
are attracted toward the central part of the discharge.

As they move in the logarithmically increasing poten-
tial, charges having a large total energy penetrate a large
distance. However, there are few such charges, and regard-
less of the degree of compression at the discharge axis the
remote charges have a Boltzmann distribution. For the
charge densities we find from Eqs. (4) and (5) a power-law
decay along the radius: na ~ r ~2K a, r -> oo, Ka = Ea /TaL,
where Tal = Ta /ya is the effective temperature in the
transverse direction in the laboratory frame. (We recall that
the temperatures Ta are determined in the comoving frames
of reference K 'a.) From the conditions that the total current
and the charge must be finite we conclude that the integrals
in (6) converge; here the charge densities must fall off more
rapily than r~2. We thus have confinement conditions for
the electrons and the ions45:

a = i, e. (9)

With @.=Q,pe=p we have E, = Ze2(Ne - ZN{) and
Ee = e2[ZNi - (1 -/#2)JVe.Theenergyofthecollectiveat-
traction must exceed the energy of the thermal dispersal of
the charges in the radial direction. These physically trans-
parent conditions for the confinement of charges of both
subsystems hold for any value of/9, including the limit /?< 1,
where the equilibrium of the pinch can be studied by the
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equations of classical MHD.10'62 Confinement conditions
(9) cannot be derived, however, without taking the electro-
static field of the charge separation into account completely.

2.3. The approximation of Boltzmann statistics

The approximation of the classical statistics of ideal
gases is used to describe plasmas which have not yet reached
the extreme compressed state. In the limit of Boltzmann sta-
tistics, Eqs. (4) and (5) become45

dr •= — 2ea 2 "T~*.l~MB)'

dr.

Making use of gauge invariance, we can write the boundary
conditions as

AU,

The parameters in (2) appear explicitly in Eqs. (10).
The most important property of Eqs. ( 10) is gauge in-

variance. From these equations we can find only the relative
distribution of the field (and of the charge densities) along
the radius; the value of the discharge radius itself is not de-
termined by Eqs. (10). Solutions of Eqs. (10) are
Ua = Ua (r/r0), where r0, the discharge radius, is an arbi-
trary scaling parameter. The physical reason for the gauge
invariance is that at fixed values of the parameters in ( 2 )
both the gas pressure pa = na Tal and the field pressure
pf = (H2^ + E2

r)/&ir are inversely proportional to the
square of the pinch radius.

A detailed study44 of Eqs. (10) shows that equilibrium
can occur only if the parameters in (2) satisfy the rela-
tion44.63.64

( S + S ( 1 1 )

The physical meaning of this relation is clear. The energy of
the magnetic compression of a unit length of the current
channel, (1/2) (7 Vc2) = ( 1/2 ) ( 2a ea Na Sa )2, at equilibri-
um — on the left of this equation — must be exactly balanced
by the energy of the space charge,

and the total energy of the thermal expansion.
Balance condition (11) generalizes the well-known

Bennett equilibrium condition6 to the case of an arbitrary
relativistic drift velocity. Relativistic beams are not electri-
cally neutral, and at/?~ 1 the energy of the space charge may
constitute a significant fraction of the energy of the magnetic
compression. From the conditions for confinement of ions,
Ej > T { L , and from the attraction condition for electrons,
Ee > 0, we find inequalities which place lower and upper
bounds on the space charge per unit length of the plasma
column, Q:

T^n^V 02)

Balance condition (11) can be rewritten as

Using the inequality on the right in (12), we see that in the
limit of a nonrelativistic drift velocity ̂  41 the energy of the
space charge becomes negligibly small, and Eq. (11) be-
comes the Bennett relation

(13)

We will assume that the ions as a whole are at rest in the
laboratory frame K: I3{ = 0, /?e = /?. Of the five parameters
JVe, JV;, Tei, Ti,/3, characterizing the state of the pinch sys-
tem at equilibrium, only four, say Na and Tai, are indepen-
dent in the approximation of Boltzmann statistics. The fifth
parameter, /?, and, correspondingly, the current / = eNe/3c
are determined unambiguously in terms of Na, Tal by bal-
ance condition (11):

i— i
— -"cr T 1 — r* a±) — c

(14)

In the approximation of Boltzmann statistics, the set of equi-
librium configurations which satisfy Eqs. (10) is a four-pa-
rameter set. Five parameters must satisfy one exact equa-
tion, (11)—the balance condition—and two inequalities,
(9)—the confinement conditions. In general, numerical
methods would have to be used to integrate Eqs. (10). This
question is taken up in Refs. 63 and 65-67.

Equations (10) are invariant under the interchange of
electrons and ions. As a consequence of this symmetry there
exist distributions of the charges in the field such that the
radial profiles of the properties are the same for the two spe-
cies of particles. If the parameters in (2) satisfy the equali-
ties E{/T{ =2,Ee/TeL =2. [in this case, balance condition
(11) is satisfied identically], system (10) degenerates into a
single equation and can be integrated analytically. The de-
gerate solution was found by Bennett6:

t f f= £ i n | l + f-r-

where r0 is an arbitrary scaling parameter with the meaning
of the radius of the plasma column. The Bennett solution is a
three-parameter solution since the five original parameters
must satisfy two equalities.

A "model" assumption which has been adopted in cer-
tain studies in order to solve the equations analytically is the
assumption that the radial profiles of the electron and ion
densities differ by only a constant factor68: n( =fne,
= const. The role of the ions is thereby reduced to simply

one of causing a partial charge neutralization. This assump-
tion will clearly narrow the region of parameters and will
make it possible to find only degenerate solutions.

Let us reinterpret the properties of equilibrium configu-
rations in the approximation of Boltzmann statistics for the
particular example of the dependence of the pinch radius on
the current. It is found that at fixed values of the numbers of
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particles and of the temperatures equilibrium is possible
only at the unique value of the current in (14), while the
pinch radius can be arbitrary. Actually, of course, the radius
of the discharge channel cannot be completely arbitrary. In
order to reach an understanding of how the discharge radius
nevertheless depends on the current, we consider which as-
sumptions are violated at very large and very small values of
the radius r0.

A real discharge channel has a finite length /. Clearly,
the condition r0 <^ / holds, for otherwise the approximation of
an infinite plasma column, uniform along the current, would
be incorrect. As the pinch radius increases, an increasingly
important role is played by the structural features of the
particular apparatus, the image fields near metal walls, and
the external fields used to confine the plasma. At large radii
/•0 the external fields are no longer negligibly weak in com-
parison with the pinch field. Consequently, Eqs. (10), which
incorporate the field of only the collective interaction, are
valid only to the extent that the external factors are unim-
portant for plasma confinement. We denote by d a dimen-
sion of the plasma channel which is characteristic of the giv-
en apparatus at a low current, when confinement is achieved
without the help of the magnetic field of the current. The
condition for the applicability of Eqs. (10) at large radii is
then r0<^d. If r0 is not small in comparison with d, external
factors may also contribute substantially to the plasma con-
finement, so that equilibrium will be possible at values of the
current below 7cr in (14). At / (Icr, however, the equilibrium
configurations are no longer described by Eqs. (10), which
take into account only the field of the collective interaction
and which ignore other factors which are capable of confin-
ing the plasma. Consequently, under the condition / < 7cr we
enter a region of parameter values, r0~d, in which not only
the field of the collective interaction but also external factors
play a role in shaping the equilibrium structure.

We now assume that, at fixed values of Na and Ta, the
current exceeds 7cr in (14). In this case the magnetic energy
of the compression is so high that the energy of the space
charge and that of the thermal motion of the particles are
insufficient to counter the magnetic energy. Eqs. (10) have
no solutions in the case />/cr, but this circumstance is a
consequence of the use of Boltzmann statistics to describe
the electron subsystem. If we replace (10) by the more gen-
eral equations (4) and (5), we find that equilibrium is possi-
ble even in the case />/cr, but the equilibrium configura-
tions in this case are of such a nature that the plasma turns
out to be very highly compressed: to the point of electron
degeneracy. When an electron gas is compressed to degener-
acy, an additional exchange repulsion of electrons arises by
virtue of the Pauli principle and increases the pressure of the
electrons. It is this pressure of the Fermi gas of electrons
which balances the excess energy of the magnetic compres-
sion at 7 > 7cr. The plasma is compressed to the point of elec-
tron degeneracy; the radius of the plasma column is of the
order of or even less than the atomic radius a. Equilibrium
configurations with 7>/cr form a complete five-parameter
family in the space of the parameters Na ,Ta,[). The proper-
ties of equilibrium configurations in the case of compression

FIG. 1. Equilibrium pinch radius as a function of the current at fixed
values of the parameters Na and Tai . Here /cr is that value of the current,
given in ( 14), at which the balance described by ( 1 1 ) is reached among
the energy of the magnetic compression, the electrostatic repulsion and
the thermal dispersal of the particles in the approximation of Boltzmann
statistics. The solid vertical line corresponds to solutions of Eqs. ( 10) in
their range of applicability. The dashed lines show the function /•„(/)
schematically at I <!„ and/>/cr [see (15) and (\6);d/a= 10s].

to the point of electron degeneracy are described in Refs. 44,
45, 63, 67, and 69.

The conditions for the applicability of Eqs. (10) for
describing the equilibrium of a self-contracting beam of
charged particles are therefore

Here r0 is the radius of the plasma column, a is the radius at
which the electron degeneracy is important, and d is the ra-
dius which the plasma column would have in the given appa-
ratus in the absence of a compression of the current by the
magnetic field. The pinch radius is shown schematically as a
function of the current in Fig. 1. The solid vertical line corre-
sponds to solutions of Eqs. ( 10) in their region of applicabil-
ity, a^r0^d, while the dashed lines show r0(I) at r~d and
at r~a (for fixed values ofNa ,TaL ) . Under these conditions
we have / < ICT and / > 7cr , respectively.

At the current / = 7cr there is a transition from confine-
ment of the plasma by the external factors to a confinement
due to a Fermi exchange interaction of electrons and a com-
pression to the point of degeneracy. The value of the current
in (14), 7 = 7cr, is the boundary for electromagnetic col-
lapse from the standpoint of the force equilibrium of the
pinch system.

2.4. Equilibrium near the collapse boundary; electrically
neutralized discharge

The behavior of the pinch radius r0 as a function of the
parameters of the pinch system near the collapse boundary,
with |7 — 7cr | •£!,.,, is amenable to analytic study.44 In the
case 7 < 7cr this behavior is conveniently studied on the ex-
ample of an electron beam whose charge is completely neu-
tralized by ions: ZN-, = NC=N. This case is also of indepen-
dent interest. Charge neutralization usually results from the
buildup of ions in the potential well of the negative charge of
an electron beam.70
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If the ions as a whole are at rest, the ion subsystem in an
electrically neutral current channel can never be in a state of
thermal equilibrium when subject to solely the forces of a
collective interaction. A thermal equilibrium, the ion tem-
perature is uniform over the beam cross section. If Tt =^0,
and if ZNe = Nit condition (9), for ion confinement, does
not hold. This conclusion means that the collective interac-
tion forces by themselves are insufficient for a steady-state
current flow in the case ZN{ = Ne. There is a further need
for a contribution from the interaction of charges with the
surrounding medium.

In general, thermal equilibrium within the subsystems
for specific devices is achieved only to some degree of accu-
racy. Accordingly, it is worthwhile to analyze pinch systems
in the case in which the state of the electrons or ions deviates
from thermodynamic equilibrium. Kovalenko et a/.72 have
studied the quasiequilibrium states of a self-contracting elec-
tron-ion beam under conditions such that a few charges of
one species are not confined and escape from the system. The
region of parameter values consistent with such quasiequili-
brium states is naturally wider than that determined by the
balance condition (11). Here we will consider a slightly dif-
ferent situation: that in which the number of particles is con-
served, while the energy of the ion subsystem is lost in colli-
sions with atoms of the surrounding gas.

As a strong current flows through a plasma, the dis-
charge channel is strongly compressed by magnetic forces
which are acting on electrons. Despite the neutrality of the
channel as a whole, a pronounced electric polarization arises
in the plasma. The magnetic compression force compresses
the electrons to a greater extent than the ions—to the extent
that the electric field which results from the charge separa-
tion offsets the compressional force. If the ions as a whole are
immobile, the potential U-t is equal to the scalar potential of
the field. In the case of a strong current the polarization is so
strong that only a small fraction of the total number of ions
has a total energy above the limiting value of the potential,
UM = U{ ( oo ) [we are assuming U{ (0) = 0]. We therefore
have Ux > T{, and even a slight radial decrease in the ion
temperature due to a transfer of energy from ions to atoms of
the surrounding medium in collisions will be sufficient to
cause a rapid decrease in the ion density along the radius.71

The function T, (r) can be expanded in a power series in r:

-T r'(0)

We then find equations of the type in (10), with the one
difference that U{/T^ is replaced by (U(/Tio) + ( f / d 2 ) in
the exponential functions. Here d = (2T2

0/Ux |77(0)|)1/2

is a scale dimension of the region in which the ion density
falls off because of cooling in collisions with surrounding
atoms. By virtue of the inequality £/„ > rio, the temperature
itself falls off only negligibly over distances of the order of
d—justifying the expansion of the temperature in powers of
the radius.

In the case of a strong current, with ZN( = JVe, the ion
subsystem is in a state of local thermal equilibrium (a nearly
complete equilibrium), so that the interaction of ions with
the surrounding medium can be taken into account in a

study of the structure by means of simply a single phenomen-
ological parameter d. The interaction of the ions with the
surrounding medium leads to a decrease in the ion density in
proportion to exp ( — r*/d2) and thus a confinement of the
ions. The energy balance under these conditions is achieved
at currents / < /cr, and it becomes possible to study the prop-
erties of the pinch as the collapse boundary is approached
from below, with (/cr//) — 1 < 1.

It turns out44'7' that in the limit /—/cr — 0 the electrons
and some of the ions, N± <N{ = N/Z, are localized near the
axis in a region r~r0, considerably smaller than d: r0^d.
This central region turns out to be negatively charged, and
its charge, Q = eeNe + e, N{, is precisely that which confines
ions compressed to a radius r0: \e^Q \ = T{. The rest of the

N ~ions, whose numberis N-, are at distances r ~ d from the
£j

axis and produce a positively charged shell. The deviation of
the current from 7cr can be characterized by the dimension-
less parameter A = e2(/cr — I2)/T2c2, e{ = e. In the limit
/->/cr — 0, the radius r0 of the compressed core decreases
sharply44: r0~d exp( — 7rA~' / 2) or

dexp 1 — /-/„-(>. (15)

This expression describes the dependence of the discharge
radius on the current, r0(I), as the boundary of electromag-
netic collapse is approached. The radius of the region
through which the electrons move decreases very sharply
(Fig. 1). Expression (15) continues to apply until degener-
acy must be taken into account.

The dependence of the discharge radius on the current
beyond the collapse boundary was found in Ref. 44. We de-
note by a the radius of the condensed plasma. The typical
value of a depends on the parameters of the pinch system in
(2). This dependence is given in Ref. 44. As moderately rela-
tivistic energies, /3~l, I~IA = 17 kA, we have the esti-
mates n~(mc/fi)3, N~mc2/e2, and from the relation
N~na2 we find a in order of magnitude: a ~ (e2/fic) I l 2 f i 2 /
me~ 10~9 cm, /3~ 1, /~/A. As we approach the collapse
boundary from the high-current side, 7->/cr + 0, the dis-
charge radius r0 increases rapidly44:

/ (16)

Expressions (15) and (16) give an idea of the current
dependence of the equilibrium pinch radius near the bound-
ary for electromagnetic collapse. This behavior is shown in
Fig. 1. The solid vertical line / = /cr, a < r0 < d, corresponds
to an intermediate region of a transition from a diffuse plas-
ma, which cannot be confined without the help of external
factors, to a plasma which is extremely compressed by the
dominant magnetic forces. This intermediate region is de-
scribed by classical equations (10), which give gauge-invar-
iant solutions at a fixed value of the current in (14).

This has been a summary of our present understanding
of the dynamic nature of the plasma equilibrium in a straight
pinch system. The equilibrium is analyzed with the help of
the entire apparatus of electrostatics and magnetostatics, as
is required for relativistic fluxes of charges. For pinch sys-
tems with a nonrelativistic drift velocity (which are usually
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studied by MHD in the approximation of quasineutrality),
the general analysis which has been carried out has also
yielded some new results. In particular, the confinement
conditions in (19) cannot be found in ordinary MHD. We
see why Bennett equilibrium condition (13) and the corre-
sponding gauge-invariant equilibrium configurations corre-
spond to the boundary for electromagnetic collapse, i.e., to
the transition from a diffuse plasma (in the formation of
whose structure instrumental factors play a role) to an ex-
tremely compressed plasma, for which the excess magnetic
pressure is balanced by the pressure of the Fermi gas of elec-
trons.

This analysis of the equilibrium is a solid basis for
studying the stability and dynamics of highly compressed
pinch systems.

3. CORRELATION PROPERTIES OF CHARGES IN PLASMA
FLOWS
3.1. Field of a charged current-carrying filament

The electrostatic field which is produced in an equilibri-
um plasma by test objects is known to fall off rapidly with
distance, becoming very weak at distances large in compari-
son with the Debye-Hiickel radius.73 On the other hand, the
magnetic field penetrates freely into a plasma in a state of
thermal equilibrium. This situation changes if the plasma is
moved away from the state of thermal equilibrium, e.g., if a
current flows through it. When a current flows, the electrons
as a whole are in motion with respect to the ions, and even if
there is equilibrium in each of the subsystems the plasma as a
whole will not be an equilibrium system.

The introduction of a test charge or current in the plas-
ma disrupts the balance offerees. In the absence of thermal
equilibrium, the electrostatic and magnetostatic perturba-
tions are interrelated and are described by a common system
of equations. Because of the relatively free penetration of the
magnetic field into the plasma, the perturbations introduced
by the test objects acquire a long-range component in addi-
tion to the short-range part, which described Debye screen-
ing.

Let us assume that there is a thin filament at the axis of a
plasma stream. If the charge and current of the filament are
small, the field in the plasma can be found by means of lin-
earized equations (4) and (5). This perturbation does not
disrupt the symmetry of the initial equilibrium state. This
problem was solved analytically in Ref. 61 for a Bennett den-
sity profile n*(r) = (Na/Trr^)X[l + (r2/r

2
0]-2, and the

structure of the field of the filament was analyzed in various
cases of physical interest. In general, the field is a linear com-
bination of four linearly independent functions, with coeffi-
cients which are chosen to suit the boundary conditions.
There are four boundary conditions: The electric and mag-
netic fields near the filament (r-»0) correspond to the
charge and current of the filament, while outside the plasma
(r-> oo) they correspond to the total charge and current of
the overall system.

Bennett equilibrium configurations constitute a three-
parameter family. The initial parameters adopted in Ref. 61
were/?,Gc = e^NeY/Tc, G, = e\N-JT^. An interesting case

is that of a high plasma density, Gf ,Gi > 1, in which the De-
bye length rD is small in comparison with the pinch radius ra:
r0/

rD ~ (Ge + GI ) 1 /2^> 1. The quantity P (the ratio of the
drift velocity to the velocity of light is a convenient measure
of the deviation of the state of the plasma from a thermody-
namically equilibrium state because of the current. Under
the conditions Ge, G{ > 1, the field near the filament is the
sum of two parts. One part—a component which falls off
exponentially—stems from Debye screening, while the other
is an oscillatory function which falls off slowly over distance.
With fl~\, both the screening length and the oscillation
period are of the order of the Debye length near the filament.
The amplitudes for the decreasing and oscillating functions
are comparable to magnitude at /3~ 1. With decreasing /?,
the index of the decreasing component remains of the order
of the Debye length, while the oscillation period of the long-
range component increases in proportion to r0 //?. The oscil-
lation amplitude falls off. In the limit/?-»0, the decreasing
component remains, and it describes a Debye screening of
electrostatic perturbations, while the oscillatory component
becomes a logarithm corresponding to free penetration of
the magnetic field of the current of the filament into the
equilibrium plasma.

By analyzing the perturbations introduced in a plasma
stream by a test filament, we can determine the nature of the
stratification of high-current discharges into a set of narrow
current channels. This phenomenon is observed both in in-
tense beams of relativistic electrons74 and in plasma-focus
devices.52'75'78 Various aspects of the stratification of a dis-
charge into channels have been studied theoretically.79"81

Let us imagine that the excess magnetic compressional
force and the rapid radiative cooling have caused a small
part of plasma stream to contract into a thin filament at the
axis. The field produced by this filament will determine the
correlation properties of the charges of the plasma with re-
spect to the given filament. The field of the filament is an
oscillatory function of the radius. As they move in this field
and give off energy by radiation, charges may be captured by
the filament onto trajectories which are finite along the radi-
us. This process can lead to a stratification of the plasma into
concentric tubes whose spatial positions are the minima of
the potential set up by the filament. These tubular structures
may in turn decay into distinct filaments, in such a way that
the mutual energy of their correlation interaction is mini-
mized. We will return to this question of the stratification of
a current channel into distinct filaments when we take up the
problem of the stability of the pinch.

3.2. Interaction of charges in plasma flows

A current in the plasma is not the only factor which
would cause deviations from Debye-Hiickel screening. Even
if the test charge is moving, the field which it produces falls
off in a power-law rather than exponential fashion in the
plasma.82"87 There is no Debye screening in a turbulent plas-
ma88 or even in the equilibrium plasma in a quantizing mag-
netic field.89

The field of test objects of finite size and of individual
charges in a plasma with a current was found by Ignatov and
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Rukhadze89 in the limit in which the drift velocity v0 is low in
comparison with the thermal velocities vTa : v0 < vTa . The
field in the opposite limit, v0 > uTo ( the beam situation ) , was
found in Ref. 90.

The field of objects of finite length in a plasma flow
depends not only on r but also on z, and it does not corre-
spond to the symmetry of the original state of the system.
Here it becomes necessary to solve the complete problem of
the flow of streams of charged particles around the test ob-
ject. For nonrelativistic velocities, v0 cc c, there is time for the
electromagnetic field to adjust to slow variations of the
charge and current. The displacement currents can thus be
ignored in Maxwell's equations, and we can solve the equa-
tions of electrostatics and magnetostatics, (3), supplement-
ed with the equations of two-fluid MHD for ideal electron
and ion fluids.

A test object with the charge distribution p ( r ) , moving
at a velocity v, with respect to the electron subsystem, dis-
torts the initial distribution of the charge density. In a frame
of reference moving with the test object there is a steady-
state flow of two streams of charged particles around this
object: an electron stream with a velocity vc0 = — v, and an
ion stream with vio = — v, — v(1. If the size of the object, an,
is small in comparison with ra, the radius of the plasma flow
a() 4 r(}, the perturbations will be local :a0<^k ~ ' < r(), where k
is the wave vector of the field generated in the plasma by the
test object. The locality condition &r0> 1 can be used to rep-
resent the Fourier component of the perturbation of the sca-
lar field potential in the form £>(k) = 4irp(k)/k 2 f ( k ) ,
where £ ( k ) is the static dielectric permittivity. An expres-
sion for this component is given in Ref. 90. The field away
from the test object is determined by the zeros o f f ( k ) . At a
low drift velocity, f( l<sn (5,, is the sound velocity), the cor-
responding dispersion relation is90 k4 + (k2/r\)) — (/?2/
rfrl ) = 0, where /•„ is the Debye length of the particles of
species a and is defined as the ratio of the sound velocity to

the frequency of the plasma waves, r& 2 = ̂  r~ 2. In the case
a

13 = vt)/c4, 1, this equation has two purely imaginary roots,
k 2

 i2 = — r0, and two real roots, k\A = /3 2/( r\ + r\ ) . The
imaginary roots provide exponential solutions; the one
which decays describes Debye screening. The real roots pro-
vide perturbations which fall off slowly and which oscillate
in space with a period (r\ + r] ) "2c/y0. The situation here is
precisely the same as in the case of a test filament. The oscil-
lating perturbations stem from the relatively free penetra-
tion of the magnetic field into the plasma in the case/9< 1.

If the drift velocity is large in comparison with the
sound velocity, v0^>sa , the following expression is found for
the Fourier component of the scalar potential of the field set
up by an individual electron90:

3.3. Possibility of superconductivity

This analysis of the physical nature of the equilibrium
of streams of charged particles shows that if the current in
the plasma exceeds the value in (14) the excess force of mag-
netic compression can be balanced only by the pressure of
the Fermi gas of electrons upon compression to a state of
condensed matter. If the system radiates off more energy
than it acquires, the temperature rise will be limited, and a
collapse will be promoted. And in the compressed state, the
radiative cooling causes the electron temperature to fall off.

For a degenerate electron gas the sound velocity in (17)
can be expressed in terms of the Fermi velocity: si = i>F/3.
The energy of the binary interaction of electrons at the Fermi
surface (y, = y F ) is described at large distances by
U = eecp(0) = 4ire2rl( I — Scos2^), where % is the angle
between the vector k and the direction of the velocity v,. This
interaction is anisotropic: a repulsion along the direction in
which the charges are moving and an attraction in the trans-
verse direction. Any arbitrarily weak attraction of fermions
at large distances will involve a lowering of the temperature
at which the spectrum of elementary excitations changes,9'
and the system goes into a superconducting state. The inter-
action of electrons under consideration here is of the nature
of an exchange of plasmons. A plasmon superconductivity
mechanism has been studied by Pashitski! with reference to
degenerate semiconductors.

The analysis of the electron vertex function in Ref. 90
(by a method which has been used to study pairing with
nonvanishing angular momenta93) showed that as the elec-
tron temperature decreases a plasma compressed to the
point of degeneracy by magnetic forces can indeed become
unstable with respect to Cooper pairing. At the most favor-
able densities, nc, ~ I024 — I025 cm~3 (where the value of the
Coulomb parameter is e2/-fiv¥ ~ I ) , the transition tempera-
ture is expected to be of the order of I02 K. At low densities
T^~IO~'3EP, where EF = meyF/2 is the Fermi energy,
while at high densities Tc falls off exponentially with in-
creasing density: Tc~Ef exp( — 9/wF/e2), e2/fivv < I, in
accordance with the early result found by Abrikosov.94 Fig-
ure 2 is a schematic plot of Tc as a function of ne (E F

= (3772)2 /3(/S2/2mc)«2/3).
Today, energy densities of the order of I023 cm~ 3 have

been reached in pinch systems. 3<K9!'~97 There have been re-

(17)

This expression differs from that corresponding to ordinary
Debye screening, cp ( k ) = 47ree ( k

 2 + r~ 2 ) ~ ' .

FIG. 2. Schematic plot of the transition temperature Tc as a function of
the electron density (or of the Fermi energy). If the excess magnetic force
due to the radiative collapse has the effect that the plasma in the pinch is
compressed to the point of electron degeneracy, then during the subse-
quent cooling of the electrons in the course of the emission of radiation
there may be a transition to a superconducting state. The maximum value,
Tc ~ I02 K, corresponds to a density of I024-I0" cm"3.
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ports of densities of98 1024 cm"3 and even102 1025 cm"3.
These figures are well above those in a solid, but it is not yet
clear whether radiative cooling of electrons is occurring, and
if so, to what temperature. On the other hand, the possibility
is not ruled out that before the superconducting transition
occurs as a system cools down it may go into some other
phase which prevents superconductivity, e.g., a phase with a
charge density wave. The estimates of Ref. 90 actually pro-
vide a lower boundary on the region of stability of the normal
phase, and not the temperature of an actual superconducting
transition. The approach of Ref. 90 should be thought of as a
formulation of this complex procedure, not its solution.
However, the question of possible superconductivity in a
pinch system is exceedingly interesting, and further research
is necessary, both experimental and theoretical.

4. PROBLEM OF THE STABILITY OF PINCH SYSTEMS
4.1. Two-fluid hydrodynamics of a charged plasma

The pinch effect is a rapidly evolving process for a labo-
ratory observer. The duration of the radiation burst from
high-current discharges such as the vacuum spark,24-3 li99'100

the plasma focus,l01-104 and exploding wires29'30 ranges from
microseconds (for microwave emission) to a fraction of a
nanosecond (for hard x rays). This fast evolution of a pinch
system from the standpoint of our everyday world is never-
theless a slow process on the scale of the time over which the
system itself forms: the relaxation times in the subsystems
and the scale times for traversal of distances of the order of
the radius of the system by the charges. This circumstance
has made it possible to carry out a detailed analysis of the
equilibrium of a plasma with a strong current in the field of
collective-interaction forces. The actual realization of an
equilibrium configuration depends strongly on its stability.
During rapid Coulomb relaxation within the electron and
ion subsystems, it is natural to use a hydrodynamic descrip-
tion of the change in the state of the pinch system. Since
electron-ion collisions are of minor importance, we arrive at
the approximation of two-fluid hydrodynamics.

Two-fluid hydrodynamics allows for the difference
between the velocities of the electron and ion subsystems due
to the current. If, on the other hand, the drift velocity is
comparable to the velocity of light, the approximation of
quasineutrality must be completely abandoned, and the ap-
paratus of the two-fluid hydrodynamics of a charged plasma
operates in its full glory.

At a low drift velocity, it is customary to use the simpler
equations of classical MHD, where the plasma is treated as a
continuous, neutral conducting fluid, and the relative mo-
tion of the electron and ion subsystems is ignored. The range
of applicability of this approximation has been discussed by
Kadomtsev.l05 If we are to be able to ignore the relative mo-
tion of the subsystems, the drift velocity must be small in
comparison with the hydrodynamic flow velocity of the
plasma. If we can ignore electron-ion collisions and also the
inertia of electrons, we conclude from the Euler equation
that the magnetic field is frozen in the electron fluid. Since
we are ignoring drift, we find that the magnetic field is frozen
in the plasma.105

In those cases in which it is not possible to ignore the
relative motion of the subsystems, it becomes necessary to
use the two-fluid hydrodynamics of a charged plasma, occa-
sionally even if the drift velocity is low. In a study of equilib-
rium configurations, for example, the plasma flow velocity is
zero in general, while the drift velocity is fundamentally dif-
ferent from zero if a current is flowing. Consequently, ordi-
nary MHD does not give a complete description of the equi-
librium of a plasma with a current. In the problem of the
dynamics of a pinch system with a macroscopic motion of
the plasma, on the other hand, the MHD description may
prove to be sufficient.

4.2. Hydromagnetic stability of pinches

An approach to the problem of the stability of pinch
systems was formulated by Buneman.106 That approach is
not helpful, however, because of both some serious math-
ematical difficulties and the impossibility of simultaneously
incorporating the entire set of events characteristic of the
pinch effect. The kinetic approach to the problem of stability
is usually taken in the approximation of a collisionless plas-
ma 23.8o,io7,io8 j^js approximation works better in the early
stage of the discharge, while the mean free path is greater
than the thickness of the current shell. An important disad-
vantage of the collisionless approach is the model nature of
the calculations, because of the arbitrariness in the choice of
the distribution function. In the absence of collisions, the
charge distribution is an arbitrary function of the integrals of
motion.

In the stage of pronounced contraction of the pinch, the
relaxation times are significantly shorter than the duration
of the emission of the system, and it becomes possible to
switch from a kinetic description of the plasma to a hydrody-
namic description. The study of the stability of a plasma in a
magnetic field in general and of nonrelativistic pinch sys-
tems in particular on the basis of the MHD equations has
been pursued to the greatest extent.'' An MHD analysis of
the stability of a cylindrical column of a fully ionized plasma
with a longitudinal current, distributed uniformly over the
cross section, was first carried out by Trubnikov.109 It was
found that an instability with respect to axisymmetric per-
turbations which are periodic along the current direction
occurs in this system, with the consequence that constric-
tions can form. In a series of studies, Leontovich and Sha-
franov showed110""2 that instabilities in which the plasma
column coils up or acquires constrictions can be countered
by stabilizing facilities such as conducting walls and longitu-
dinal magnetic fields.

The transition from cylindrical discharges to toroidal
systems and systems with a more complex magnetic field
configuration12 forced the development of general methods
for determining global stability criteria. An energy principle
for studying the stability of a plasma in MHD was developed
in 1955 and finally formulated in a paper by Bernstein et al.13

If we apply this energy principle to a cylindrical pinch, we
find the following stability condition11 for stability with re-
spect to azimuthally symmetric perturbations (m = 0):
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(18)

Here 7 is the adiabatic index, and/9 = S-irp/H2 is the ratio of
the plasma pressure to the pressure of the magnetic field of
the current. For electrons, the index is 7 = 5/3.

Outside the plasma the magnetic field of a straight cur-
rent falls off with radius in proportion to r~', while the plas-
ma density and the pressure fall off more rapidly than r~2.
These conclusions follow from confinement conditions (9).
Consequently, (3 will vanish outside the plasma, and we find
from the stability criterion that the pressure and the density
should fall off no more rapidly than r~2r = r~lo/3 with dis-
tance from the axis. One example of an equilibrium configu-
ration is the Bennett distribution, according to which the
pressure and the density of the plasma fall off in proportion
to r~4. Since we have 4>2y= 10/3, a Bennett plasma is
hydrodynamically unstable according to criterion (18).
Azimuthally symmetric perturbations are excited spontan-
eously in such a plasma; these are radial contraction waves,
whose growth can give rise to necks, constrictions, and stria-
tions. At one point, the effort to avoid the formation of con-
strictions in the plasma column served as one of the reasons
for giving preference to the more complex toroidal geometry
of a plasma. A study of the phenomena in the Z-pinch
showed, however, that a plasma column which is severely
distorted by constrictions may provide a neutron yield
greater than that of a system constructed especially to avoid
constrictions.34 There have been reports that in experiments
with dense pinches there are no MHD instabilities. The plas-
ma turns out to be stable with respect to azimuthally sym-
metric (m = 0) perturbations35 throughout the duration of
the discharge.36 The general reexamination of the approach
to the fusion problem as a whole which has recently been
undertaken cannot pass over the question of the stability of
pinches.

We first note that the rapid decay of the density (e.g.,
the Bennett decay n ~ r~4) with distance from the discharge
axis quickly goes beyond the accuracy of the quasineutral
theory. The theory becomes inapplicable with increasing
distance from the discharge axis since the decrease in the
density is accompanied by an increase in the Debye length of
the plasma. An analysis based on two-fluid hydrodynamics
without the quasineutrality condition shows that there are
equilibrium configurations for which the charge density of
one sign can fall off over radius in proportion to r ~K, where
K is any number greater than 2. Equilibrium structures,
however, are designed in such a way that if the exponent for
the ions satisfies K{ < 4 the exponent for the electrons must
satisfy Ke > 4, and vice versa. Is it sufficient that the density
of the ions alone or that of the electrons alone fall off more
slowly than r ~2r with radius? If the answer is yes, then there
would be a region of hydromagnetic stability of a plasma
column with respect to constrictions: 2 < K < 2y = 10/3.

Again there is the question of the range of applicability
of the MHD approximation, in this case in the problem of
the stability of pinch systems. What effects do we lose sight
of when we ignore the relative motion of the electrons and
ions associated with the current flow? In the linearized equa-

tions describing small oscillations, the plasma flow velocity
is treated as a small quantity, and it is not clear in compari-
son with just what are we ignoring the drift velocity.

It is clear from these comments that there is a need for a
complete analysis of the stability of pinch systems on the
basis of the equations of the two-fluid MHD of a charged
plasma.

4.3. Analysis of the stability of a pinch in two-fluid
electromagnetic hydrodynamics

In the general case (with /? = y,,/c ~ 1, and with a high
current/—/,, = mec

3/e = 17 kA), the electrons appear as a
gas of relativistic particles. There is accordingly, much prac-
tical interest in studying the stability on the basis of the equa-
tions of relativistic electromagnetic hydrodynamics. Such a
study has not yet been carried out for pinch systems, and it
will have to cope with some serious difficulties. An attempt
to derive equations of relativistic electromagnetic hydrodyn-
amics by the apparatus of the general theory of relativity was
undertaken by Solov'ev.'14 So far, however, the research on
the stability of pinches has been based on a nonrelativistic
theory. The two-fluid hydrodynamics of a charged plasma
was used to describe nonrelativistic pinch systems in Refs.
61,64, 90, and 115-117.

Under the condition i>0<c we can ignore retardation
effects, and we can assume that the field changes instanta-
neously to correspond to slow variations in the charge and
current distributions. In this approximation the field poten-
tials again satisfy Eqs. (3). To ignore the derivatives of the
field potentials with respect to time implies ignoring radi-
ation. The ineffectiveness of electron-ion collisions allows
us to eliminate from consideration the basic cause of dissipa-
tion in a nonrelativistic plasma: its electrical resistance. If
the mean free paths of the charges, la (with respect to colli-
sions of electrons with electrons and of ions with ions), are
short in comparison with the radius of the plasma column, r0

la < r0, the viscosity and the thermal conductivity can also be
ignored. These effects arise in a higher-order approximation
in the parameters /„ //•„ < 1. Slow variations in the state of the
current channel can thus be dealt with in the approximation
of the hydrodynamics of two ideal charged fluids: electrons
and ions.

If we are to be able to treat the electrons and ions as
isolated subsystems which interact with each other only
through the field of a collective interaction, we must ensure
that the length of the discharge channel / and the character-
istic frequency <a satisfy the conditions v0/va <^/<y0/vei,
va > co > vei, where va is the rate of collisions of the charges
of species a with each other, and vei is the rate at which
electrons collide with ions. In the case of a long current
channel, I^>v0/vc[, electron-ion collisions would lead to a
stopping of the electrons over a distance of the order of vn/
vei. In the absence of an electric field to sustain the current,
the drift velocity would vanish over this distance, and the
energy would be converted into heat. If, instead, an external
electric field is applied, the drift velocity and the field distri-
bution over distance will change in such a way that the accel-
erating force compensates for the friction force between elec-
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trons and ions. If, on the other hand, the length of the
current channel is so large that the condition />f0/vei<5
holds (where S is the fraction of the energy which is trans-
ferred to an electron-ion collision), then the electron and
ion temperatures will become equal over a distance v0/vei 8
after the establishment of a steady drift velocity. In this case,
a Druyvesteyn-Davydov distribution118"122 will be estab-
lished over a distance />i>0/vei<5. The plasma becomes heat-
ed to the extent that the electron velocity dispersion becomes
comparable to the drift velocity. If the mean free path of the
charges remains short, the flow of such a plasma can be de-
scribed by the equations of ordinary hydrodynamics, and the
electrical conductivity plays an important role.

General methods for studying stability have not been
developed in two-fluid hydrodynamics, and most of the
work has focused on small oscillations. For a system which is
uniform along the current direction and also in the azi-
muthal direction, perturbations of the type fa ~exp
X [i(<at — kz — mq>) ] are considered. We will not write out
the equations here or reproduce the calculations, but we do
wish to examine the physical side of the matter in more detail
and to discuss the results. The detailed calculations can be
found in Refs. 116 and 117.

An important aspect of a pinch is the strong magnetic
field of the current itself. In cylindrical geometry, the mag-
netic lines offeree run in the azimuthal direction. The asym-
metry of the motion along and across the lines offeree of the
magnetic field of the current must be taken into account at
the very outset. As long as the system can be described by
classical mechanics, the asymmetry of the motion in the
magnetic field will not affect the properties of the unper-
turbed state, since each of the subsystems is in thermody-
namic equilibrium (see the footnote on p. 175 in the Russian
original of Ref. 56). Small oscillations, however, move a sub-
system away from its equilibrium state, and the effect of the
magnetic field on the motion of the elements of the fluid
becomes important in a study of stability.

In the case of a low current, the magnetic field is also
weak, and the asymmetry disappears. As the current is in-
creased, however, the motion in the r, z plane (perpendicular
to the magnetic field) becomes "frozen." The charges are
magnetically restrained in the case of a strong current, and
their motion in the r, z plane can be ignored. This comment
applies primarily to the electrons. For the field, it is a matter
of being frozen into the plasma, while for the electrons it is a
matter of the magnetic restraint by the strong magnetic field
of the current.

In general, the oscillations of a pinch are interrelated
oscillations of the densities, pressures, and velocities of the
charged fluids and of the electromagnetic field. The oscilla-
tions are studied in various limiting cases which are amena-
ble to analytic study.

4.3.1. Oscillations of the azimuthal current

For perturbations which are uniform in the azimuthal
direction ( m = 0 ) , oscillations of the azimuthal compo-
nents of the velocity (vf ) and of the field (Av ) are not cou-
pled to oscillations in other properties. These are oscillations

of the azimuthal current of the pinch, similar to the torsional
oscillations of a string. In the ordinary MHD of an ideal
plasma, there is no such motion at all (vv = 0). It arises in
the case at hand as a result of the relative motion of the
subsystems.

The spectrum of these oscillations can be calculated
analytically for short waves (fcr0>l) and long waves
(kr0<£ 1). Since the short waves are localized, we can seek

the r dependence in the form123 exp{ — /' q(r)dr}. If the

ions as a whole are at rest in the laboratory frame, the spec-
trum of oscillations in the azimuthal current is found to be

where <»e is the electron plasma frequency. The phase veloc-
ity of these waves is always higher than the drift velocity,
while the group velocity can be either positive or negative.

In the limit of long waves, kr0^ 1, we are dealing with
oscillations of the current channel as a whole. A particular
feature of these oscillations is that the oscillations of the
charges and the field are spatially separated. The charges are
localized in the pinch, /• 5 r0, while the field makes its great-
est contribution from the region r0^r< l/k. The field gives
the system a sort of elasticity. The electron component un-
dergoes torsional oscillations as a system which is elastic as a
whole. The oscillation spectrum in the case kr0 <^ 1 depends
only on the total number (Na ) of particles per unit length:
o) = kv0(l + 2AelNc/mcc

2), kr0^\. Here A = ln(l/
kr0) > 1 is a logarithmic factor. The group velocity and phase
velocity of the long-wave oscillations of the azimuthal cur-
rent agree within logarithmic accuracy.

On the whole, the oscillations of the azimuthal current
which are not found in ordinary MHD do not lead to an
instability of the system for either short or long waves. Long-
wave oscillations in two-fluid hydrodynamics are generally
stable.116-117 This is true of all types of oscillations: of both
the azimuthal current and other properties.

4.3.2. Stratification of a current channel into tubes and
filaments

Let us consider oscillations in properties which are not
related to vv or Av in the case m = 0. We assume that the
oscillations are uniform along the current (k = 0), so that
all quantities depend on r alone. Such perturbations do not
disrupt the symmetry of the original equilibrium state, and
we are dealing with the same situation as in a study of the
field of a test filament placed on the current axis. The field of
the filament and the oscillations which we are now consider-
ing satisfy the same equations.

In the short-wave limit (qr0^> 1 ) the spectrum is115

(19)

where rD is the Debye length, /3 = v0/c, a, and <ue are the ion
and electron plasma frequencies, and (I is the electron Lar-
mor frequency. Here we have the ratio (fle/coe )2~I/3/IA,
so that at a low current, /5/?/A where /A = mec

3/e =17
kA is the Alfven current, in the region (lie/
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&> e ) 2 5 /?2 <^ (rD A0)2 we find from (19) a spectrum of sound
waves co = qs, where co = qs, s1 = cufr^. At 7^ > Te the
sound velocity is of the order of the ion thermal velocity,
while for Te > T{ it increases by a factor of (7"e /T{)'

/2. At a
high current, 7>/?/A, where/32 is lower than n2/«2,a gap
appears to the wave spectrum: co = (co2

0 + <?252)'/2, where
co2

0 = <y2[(n2/«2) — P2], ne/«e>/?- This situation is
radically different from ordinary MHD, where the radial
oscillations under these conditions reduce to ion acoustic
waves, co2 = q2[s2 + (H2/4irpQ)}.

The spectrum (19) indicates that the system is unstable
with respect to oscillations with a wave number q satisfying
the condition r0^

l^q<qCT, where qcr = (/?2 — H2/
cal)]/2rD\ if /3>Cle/coe, i.e., at currents 7S£7A. At
/? > fle Aoe, at wavelengths q < qQr, the oscillation frequency
becomes imaginary: co = +ico\r-D(q2,T—q2y/2. Since we
are assuming that the perturbations are localized, the con-
clusion regarding an instability holds at <?crr0>l. For a
Boltzmann plasma this condition would give us e2Nffi

2 > T,
where T = max (Te,T{). The quantity e2Ne/3

2 is the energy
of the magnetic compression per particle. Consequently, if
this energy of magnetic compression is considerably greater
than the thermal energy, the pinch system will clearly be
unstable.

In the case e2N^I32 ~T the boundary wavelength <?cr ~ '
is of the order of the pinch radius, qcrr0~ 1. In this region the
approximation of locality does not apply. Long-wave oscilla-
tions (qr0<^ 1), on the other hand, which represent a motion
of the elements of the pinch as a whole, do not drive instabili-
ties. '16 For this instability there is accordingly a threshold in
the region qr0~ 1. This instability induces cylindrically sym-
metric excitations with a wavelength A. ~ rD //?, i.e., with the
same scale dimension as that of the oscillations of the field
from a test filament discussed in Subsection 3.1. The beam
should decay into concentric tubes nested within each other
and separated from each other by distances of the order of
rD/0.

These perturbations are associated with oscillations of
the plasma in the radial direction: ur ^0. Since this is a mo-
tion across the magnetic field of the current, however, these
oscillations will become frozen with increasing current be-
cause of the increasing magnetic restraint of the electrons by
the magnetic field of the current. With increasing current,
the term (fle/we )

2~/?7/7A increases, and the instability
disappears at ne/o»e >/?. The suppression of an instability
by the magnetic field of the current in the plasma is charac-
teristic only of completely symmetric oscillations (& = 0,
m = 0). Form 7^0, we do not have this symmetry. Instabili-
ties with m > 0, k = 0 would lead to a coiling of the column
(m = 1) and a decay into filaments (m>2).

We turn now to two-dimensional perturbations. We as-
sume k = 0 but m^=0. There is an important difference
between the cases m = 0 and m ̂ 0 because of the possibility
of magnetic restraint of the electrons. With increasing cur-
rent, the magnetic field HV increases, with the result that
perturbations of the velocities vr and v2 decreases in propor-
tion to <y/l\, while vv does not change. This asymmetry is
seen in its full glory as we go from m = 0 to m > 0.

For m = 0 a rotation through an arbitrary angle <p
brings the system back into itself. Consequently, motion in
the azimuthal direction in the case m = 0 does not change
the state of the system, and oscillations which are azimuthal-
ly symmetric and uniform along the current are associated
with motion only in the r, z plane, which is affected by the
magnetic restraint on the electrons. With increasing current,
the amplitudes of the oscillations in the r, z plane decrease,
the degrees of freedom transverse with respect to the mag-
netic field "become frozen," and the result is a suppression
of the instability. The oscillations with m^Q, on the other
hand, are associated both with motion in the r, z plane and
with azimuthal motion. The magnetic field of the current
does not affect the azimuthal motion, so that with m ̂ 0 one
degree of freedom—the motion in the azimuthal direction—
does not become frozen as the current is increased, and the
instability is no longer suppressed as the current is raised.

At k = 0, m^=Q, the wave spectrum is described
by"6'"7

1 , (20)

where Q 2 = q2 + ( m 2/r2 ) . The derivation of ( 20 ) made use
of the approximation of locality, Qr0^> 1, and also the in-
equalities / << / A //? and P <^ 1 . With m = 0 and also at a very
low current ( f l ^ / t a ^ l expression (20) becomes (19). The
magnetization of the electrons is determined by the factor
ne/<u. At fle/<y> 1, the last term in (20) is negligibly small,
and we find

Qe»co, (21)

We see that with m ̂  0 the instability is not suppressed as the
current is raised. At a high current the plasma should imme-
diately decay into jets, skipping the stage of stratification
into concentric tubes. At a low current/ </?7A , stratification
of the pinch into tubes is possible if the threshold for the
m = 0 instability is lower than that for w> 1 instabilities.

To study the behavior of the system near the instability
threshold and thereby to determine the stability criterion,
we need to abandon the approximation of locality. For m ~ 1
the threshold is in the region qra ~ 1 . A pinch system at
7>/?7A was studied near the stability threshold on the basis
of an analogy with the Schrodinger equation. The stability of
the system with respect to the types of excitation considered
is determined by the value of the parameter g = e2Ne/3

2/
T= (1/3 /I A ) X (mec

2/T)— the ratio of the magnetic-com-
pression energy to the thermal energy of the system. For
each given plasma density profile, calculations are carried
out to find the corresponding monotonic sequence of
numbers gltg 2, g^ . . . , which increase with increasing index
m in proportion to m2:gm ~m2. If the parameter g turns out
to be larger than any of the numbers in this sequence, say
g>gfm' . then oscillations proportional to e ~ ""**" are excit-
ed spontaneously in the system. If, on the other hand, we
haveg<gm, , oscillations with m^-m* cannot be excited in
the system. Consequently, atg<g, and at currents 7>/?/A

the pinch system is stable. l16'117 This is the criterion for the
stability of the pinch system with respect to perturbations
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withfc = 0,m/0. Under the condition (mcc
2/T)PI /I A > 1,

oscillations with wave numbers m <m* will arise spontan-
eously in the system:

/A '
(22)

The current channel can decay into m* distinct filaments,
each carrying a current Im ~/A 7Y/?mec

2. The dependence
of the number of these filaments on the discharge parameters
in (22) has been confirmed experimentally.78 Segalov et a/.78

studied the break up of the current into distinct channels
through a densitometer analysis of x-ray photographs. They
points out that the number of channels is established in ac-
cordance with a balance between the magnetic and gas pres-
sures.

A complex internal structure of the channel of a pinch
can also be seen in the damage inflicted on electrodes and
special screen-targets74"77 placed in the path of the charged-
particle streams. Nardi etal.11 achieved a high spatial resolu-
tion. The nature of the damage to the targets is evidence that
the distinct current channels condense into very thin fila-
ments, in which the current is 103-104 times higher than in
the diffuse background.77 The great variety of tracks left on
the targets—ranging from extremely small point defects
~0.5 jitm in size to craters ~300 /zm in size—is evidence
that the interaction of the current filaments is complicated
and that these filaments decay and form clusters. On the
photographs of Ref. 77 one can see both isolated spots and
craters in the form of concentric rings.

The maximum instability growth rate is (Imw)m a x

= co,P, where co, is the ion plasma frequency, and/3 = y0/c
is the ratio of the drift velocity to the velocity of light. If/7 is
small, and the state of the pinch is changing relatively rapid-
ly, an instability need not necessarily occur.

In ordinary MHD, in the approximation of an ideal
plasma, there is no breakup of the current channel into fila-
ments. In order to explain79"81 the filaments observed ex-
perimentally74"7* on the basis of MHD it is necessary to take
into account dissipative processes which drive thermal insta-
bilities. In two-fluid hydrodynamics, on the other hand, this
effect arises even in the absence of dissipation, i.e., even if the
higher-order terms in the expansions in the parameters /a /
/"0<1 are ignored.

For a Bennett profile the parameter g is equal to 2, and
the first two terms in thegm series are 1.48 and 4.62. Bennett
configurations are accordingly unstable with respect to a
displacement of the column as a whole (k = 0, m = 1), but
they are stable with respect to decay into filaments. With
k ^=0, the symmetry of the system is disrupted, but the oscil-
lation spectrum should contain an acoustic branch, which
converts into a static displacement in the limit k->0. This
Goldstone mode corresponds to a smooth coiling of the
pinch in a manner reminiscent of the oscillations of a
stretched string.172

A study of perturbations which are not uniform along
the current (k ^0) in two-fluid electromagnetic hydrodyna-
mics is of considerable interest. In ordinary MHD, such per-
turbations lead to sausage instabilities. Perturbations with
k 7^0, m =0 were studied in the approximation of two-fluid

electromagnetic gas dynamics by Solov'ev."3'124 It was
found that in the two-fluid theory the stability conditions
differ from the hydromagnetic conditions (18). For plasma
streams with a parabolic current distribution over the cross
section, an instability capable of giving rise to constrictions
arises after a threshold is reached, when there is a sufficiently
large number (N) of charges per unit length of the cylinder.
For a hydrogen plasma in the model of incompressible
fluids, the stability condition reduces to the inequality113

4.4. Macroscopic description of the stability of pinches

The situation regarding the stability of pinches in two-
fluid electromagnetic hydrodynamics differs from that in or-
dinary MHD. Just which of these two types of hydrodyna-
mics should we apply to a pinch system? To answer this
question we recall how one makes the transition from the
kinetics to macroscopic equations. A detailed derivation of
macroscopic transport equations from the kinetic equations
is given in the review by Braginskii.125

If the system as a whole is in a state of local thermal
equilibrium, one finds the equations of ordinary MHD from
the kinetic equations. In a state of local thermal equilibrium,
the electron subsystem is in equilibrium with the ion subsys-
tem, so this case is the limit of a drift velocity which is small
in comparison with the velocity spread of the charges.

The transition to two-fluid hydrodynamics occurs in
the opposite limit: y0> Ay. A high drift velocity has the con-
sequence that the Coulomb cross sections for the electron-
ion collisions become negligibly small in comparison with
the electron-electron and ion-ion cross sections. Even before
we make the transition to the macroscopic equations, we
make use of the inequality y0>Ay, which allows us to treat
the electron and ion subsystems as if they did not interact
with each other by collisions. In the next step, if each subsys-
tem can be assumed to be locally in equilibrium, we make the
transition to the macroscopic equations and obtain two-fluid
hydrodynamics.

Consequently, if the drift velocity in a given system is
small in comparison with the velocity dispersion of the
charges, y0<Ay, the macroscopic description of the pinch
reduces to ordinary MHD. In the opposite limit, y0> Ay, we
are dealing with two-fluid electromagnetic hydrodynamics.

It is not a simple matter to measure the parameter v0,
which is the drift velocity. It is a simpler matter to measure
the total current / = eNe v0. On the other hand, the tempera-
tures of the charges and thus the thermal velocities Ay are
measured experimentally. Since the nature of the instabili-
ties is different in ordinary hydrodynamics and two-fluid
hydrodynamics, we can conclude that y0 and Ay have mutual
effects on each other. If constrictions are observed, we are
dealing with the case v0 < Ay, while if the current channel
breaks up into filaments we are dealing with the case y0 > Ay.

A question which remains open is how we are to de-
scribe a pinch system with y0 ~ Ay at the macroscopic level in
the case in which the mean free path of the charges is small in
comparison with the scale dimensions.
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5. DYNAMICS OF THE CONTRACTION OF A PINCH SYSTEM
5.1. Adiabatic approximation

The list of questions pertinent to the dynamics of pinch
systems is quite lengthy. Breakdown of the gas,38 the forma-
tion of37 and motion of a current shell39"42 toward the axis,
the entrainment of neutral gas'26 the decay of the current
shell into distinct glowing fibers,74"78'127"133 and the explo-
sive nature of the electron emission134"135 fall far short of'
exhausting the complete list of phenomena which determine
the evolution of pinch systems. From the standpoint of elec-
tromagnetic collapse we are interested in a pinch in the stage
of pronounced compression. Since the relaxation times are
considerably shorter than the x-ray burst, it is natural to use
the approximation of hydrodynamics. For systems with a
high drift velocity, a two-fluid approach becomes necessary.
For relativistic streams it is necessary to use the equations of
relativistic electromagnetic two-fluid hydrodynamics. The
work in this direction136'137 is still in a formative stage.
Quasisteady compressional plasma flows are presently being
studied138"145 in which the motion of the plasma is driven by
the pressure exerted by the magnetic field. As a rule, the
calculations use the simpler equations of ordinary hydro-
dynamics. The difference in the descriptions of steady-state
compressional flows by the equations of ordinary and two-
fluid MHD was analyzed by Morozov.144 The difference is
that Ohm's law in the ordinary hydrodynamics of an ideally
conducting plasma ( c r = o o ) is written E + ( l / c ) [ v H ]
= 0, while in two-fluid hydrodynamics it is written
E + (l ,c) [veH] = 0. Ordinary MHD ignores the Hall ef-
fect,144 because of the relaxation ve = v— (j/en )• Neverthe-
less, the approximation of ordinary hydrodynamics is valid
for studying the dynamics of a pinch system if the drift veloc-
ity is low in comparison with the hydrodynamic flow veloc-
ity of the plasma.

If there is no dissipation of energy, the compression of
the current channel by magnetic forces is an adiabatic pro-
cess. If we ignore Joule heating, the radiative energy loss, the
energy released in fusion reactions, the thermal conductiv-
ity, and other energy-exchange processes, the heat transfer
equation reduces to the conservation of entropy. In ordinary
hydrodynamics, the entropy of an element of the fluid as a
whole is conserved. In two-fluid hydrodynamics, with a
slight friction between the electron and ion subsystems, the
entropy of each subsystem is conserved.

Conservation of entropy has the consequence that the
temperature increases during the compression. In the ap-
proximation of Boltzmann statistics, the part of the entropy
per unit length of the pinch which depends on r0 and T is
S = N In r^ T3'2, where TV is the number of particles per unit
length. UN remains constant in the course of the compres-
sion, wehaver2r3 /2 = const (y = 5/3). Along with the in-
crease in the temperature, there are increases in the pressure
in the plasma and in that current /cr in (14) at which the
magnetic pressure becomes balanced by the pressure of the
plasma and by the electrostatic energy. If we assume that the
discharge current remains constant in the course of the com-
pression, we find that the ratio ///cr decreases. In the plane
of rn/d and / //cr (Fig. 3), the state of the system is imaged
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FIG. 3. Dashed lines AA ' schematically shows the change in the state of a
pinch system which is undergoing adiabatic oscillations near its equilibri-
um position. The solid line shows the equilibrium radius of the discharge
as a function of the current (the same as in Fig. 1).

by a dashed line which starts at point A and moves toward
decreasing values of both coordinates. The solid line in Fig. 3
is a plot of the equilibrium radius r0 as a function of the
current / (the same as in Fig. 1, but in the plane of r^d and
///cr). The dashed line intersects the equilibrium curve at
point B. Point B selects from all configurations in mechani-
cal equilibrium the one for which entropy is conserved, i.e.,
for which the internal energy does not change.

In the course of an adiabatic compression, the system
acquires a kinetic energy of radial motion along region AS,
and it moves past point B by inertia. In region BA ' the system
continues to contract opposing the direction of the resultant
force, since now the gas-kinetics pressure outweighs the
force of the magnetic compression. After its kinetic energy
has been exhausted, the system stops at the turning point A '
and then starts to expand. Under adiabatic conditions, the
system would continue to execute radial oscillations
between points A and A ' around the equilibrium position B
(Fig. 3).

In 1982, Felber146 reproduced Kulikovskifs 1957
study147 which yielded an analytic self-similar solution of
the MHD equations of an ideally conducting plasma de-
scribing the adiabatic oscillations of a current channel. In
the solutions of this type, the contraction velocity is propor-
tional to the radius: v = pdr0(t)/dt, wherep = r/r0(t) is the
self-similar variable. The assumption of a uniform deforma-
tion makes it possible to satisfy the continuity equations, the
conservation of entropy, and the freezing-in of the magnetic
fluid for the density, the temperature, and the magnetic field,
treated as arbitrary functions of the self-similar variable p.
Of these three functions, two are determined after substitu-
tion into the equation of motion. One remains arbitrary. It is
thus possible to see the evolution of the pinch under adiaba-
tic conditions without any assumptions regarding its spatial
structure. Because of the separation of variables, the self-
similar dynamics of the pinch does not depend on its spatial
structure, which is determined by the choice of an arbitrary
function. In Felber's study this arbitrary function was cho-
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FIG. 4. Felber's self-similar solution146 describing the oscil-
lations of a pinch about its equilibrium state. The solid lines
show the instantaneous distributions of the density (a) and
of the magnetic field (b) along the radius. They differ from
the Bennett equilibrium distributions, shown by the dashed
lines.

3 f

sen in such a way that the temperature was uniform over the
cross section. In that case the plasma density «Flbr and the
magnetic field in the pinch, //Flbr,

2/

T[i_(i + PV-

differ from the corresponding Bennett distributions

( Fig. 4 ) . Although the temperature is uniform over the cross
section, this self-similar solution is not a thermodynamic-
equilibrium solution: Its parameters vary in time. A measure
of the deviation from thermal equilibrium is the deviation of
the drift velocity from a constant value over the radius
(Fig. 5).

The possibility of constructing a self-similar solu-
tion146'147 will facilitate a future numerical analysis of the
dynamics of pinch systems in more complicated cases. In
particular, the presence of an arbitrary function59'147 makes
it possible to incorporate bremsstrahlung, which leads to ra-
diative collapse in the case of a strong current173 (more on
this below). Velikovich and Liberman are presently study-
ing self-similar solutions of the equations of ideal MHD for
the cylindrically symmetric problem in the classes of both
subsonic and supersonic flows.174

Under adiabatic conditions, the oscillations of a pinch
are undamped. The actual evolution of a system depends on
dissipative factors: processes which supply energy to the sys-
tem and by which it is removed from the system, by radi-
ation, heat conduction, and other mechanisms. The heat
transfer equations generally do not reduce to conservation of
entropy. One should solve the more general equation

FIG. 5. Plasma executing adiabatic oscillations'46 and which is not in a
slowly evolving equilibrium state. A measure of the deviation from equi-
librium is the variation of the drift velocity along the radius (the solid
line). For a Bennett distribution, this velocity would be constant:
va = const.

(23)

where IV is the power of the heat evolution per unit length of
the pinch, and & is the rate at which energy is removed from
the system, again per unit length. If the incoming energy is
balanced by the outgoing energy, it follows that entropy is
conserved. In two-fluid hydrodynamics it is necessary to
solve equations of this sort for both subsystems, with
allowance for the heat exchange between them.

5.2. Radiation from pinch systems

Back in 1956 Budker7 pointed out the need to take into
account the radiation caused by the exertion of forces on
electrons by the field of the collective interaction. At high
currents these forces increase rapidly in the course of the
compression of the plasma.

Electromagnetic emission is usually the primary source
of information about the processes which occur in the plas-
ma of an electric discharge. The emission process itself has
little effect on the motion of the radiating charge along its
path. For the same reason, electromagnetic radiation is ig-
nored in first approximation in a study of the plasma struc-
ture. In a pinch system, in contrast, the emission intensity
increases rapidly in the course of the compression, and it
begins to have a strong effect on the energy balance. The
emission becomes not simply a passive consequence of pro-
cesses which are occurring in the current channel but instead
itself plays a governing role in the evolution of the pinch
system.

It has usually been assumed that the primary emission
mechanism is the bremsstrahlung in collisions of electrons
with ions. Kogan and Migdal148 calculated the bremsstrah-
lung intensity. While the number of particles per unit length
of the pinch does not change in the course of the compres-
sion, the intensity of the collisional radiation is proportional
to148 Tl/2/ij,, y0<^Ay. During adiabatic compression we
have r£ !T3/2 = const, and with decreasing radius the intensi-
ty of the bremsstrahlung increases in proportion to r0~

8/3. If
the drift velocity is high, y0> Ay, the relative velocities of the
electrons and ions in collisions (of the order of v0) are con-
siderably higher than the thermal velocities. The brems-
strahlung intensity turns out to be significantly lower than in
the case u0< Ai>. If the discharge radius r0 or the electron
Larmor radius rH in the magnetic field of the current is
shorter than the mean free path of the electrons with respect
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to collisions with ions, /ei, the collisional radiation becomes
less effective than the collisionless radiation.149 If r0 ̂  rH (I/
I A <vTc/c, where vTc is the electron thermal velocity), the
emission by electrons which is caused by acceleration in the
field of the collective interaction which prevents a radial dis-
persal of the charges is predominant. In the opposite limit,
r0 > /-H, the synchrotron radiation of electrons in the magnet-
ic field of the current is predominant. The scale energy of the
emitted photons in the case of the synchrotron radiation is

.,, „ ch I ,
/zco ~ M2v2 ~ j— v,

>~0 ' A

where y = ( 1 — /32)~1/2 is the relativistic factor, and
/? = v0/c. In the case of compression to the point of degener-
acy (the maximum possible degree of compression at the
given current), we have the estimate"7

where a = e2/fic = 1/137 is the fine-structure constant. In
the state of maximum compression, with &ymax

~a'/:mec
2/52}/4(///A )2,thephotonenergyincreasesinpro-

portion to the square of the current. With/?— 1, Y~ II /~/A
the energy &ymax is 50 keV: a tenth of the rest energy of an
electron. As we go to currents 7>/A or values y> 1, the
photon energy increases very rapidly and goes into the y ray
region. If it were possible to show by independent experi-
ments that upon the appearance of hard x radiation a pinch
was compressed to the point of electron degeneracy, one
could confidently assert that the hard x radiation appears in
quantum transitions of electrons between Landau levels in
the magnetic field of the current.69 The energy levels are
separated by great distances at the maximum compression of
the pinch.

The intensity of the emission from a pinch can be calcu-
lated most simply in the case in which the emitted photons
escape freely from the plasma without any significant ab-
sorption by other charges. How does the transparency of a
pinch plasma depend on the current? At very strong currents
the plasma is transparent to the radiation, so that the fre-
quency K> ~ Jl increases more rapidly than the electron plas-
ma frequency with increasing current. At (&>/<ye )

2~ (fl/
<ye )

2~/?///A > 1 we have a region of transparency.
At a very low current, the plasma is again transparent.

At 7</?/A , the skin depth for the field penetration into the
plasma, 8~c/(cocr~) 1 /2(cr~<?2«/mea> is the electrical con-
ductivity at the frequency at), is considerably larger than the
pinch radius r0: (<5/r0)-~/A/?//> 1. In the limiting cases
7</A/? and 7>/A//5 the intensity of the emission from a
pinch can thus be calculated as simply the sum of the events
of emission by individual electrons. In the intermediate re-
gion, /A/?S/S/A//?, the plasma is not transparent to its
own emission, and in this region it emits as a blackbody.

5.3. Radiative contraction

The balance between the energy evolved in the plasma
by the strong current and that radiated off was studied in
1957 by Pease17 and BraginskiT.18 This question was later
taken up by several other investigators.19-32'98'"7'150'152

The evolution of a pinch system is governed by energy
exchange as well as the equalization of mechanical forces. If
the heat evolution exceeds the outward removal of energy,
the current channel will expand; in the opposite case, the
channel will contract. If Joule heating is the primary mecha-
nism for heat evolution, and if bremsstrahlung in electron-
ion collisions may be regarded as the predominant mecha-
nism for the removal of energy, we can equate the two and
find the temperature at which there is an energy balance:
rcr -2/3L 1/2 MeV, where L, the Coulomb logarithm, is a
numerical factor of the order of ten. If we substitute this
value of the temperature into Bennett condition (13) for
mechanical equilibrium, we can find the current at which
there is a balance of both forces and energies in the pinch
system. This value of the current is independent of the num-
ber of particles ( N s ) , the drift velocity, and the radius /•„; for
hydrogen, its numerical value is/PB ;s 1.7 MA. The current
at which the radiation removes precisely the amount of ener-
gy as is dissipated in the form of heat in the system is called
the "Pease-Braginskii current." If the current in the pinch is
higher than the Pease-Braginskii current, / > 7PB, the system
will continuously lose energy and will contract without
bound. The contraction of a system due to radiative energy
loss is called "radiative collapse."

If the system is initially not in a state of mechanical
equilibrium, its evolution will be determined by both factors:
the compression by the excess magnetic forces and energy
exchange. When the heat transfer is unimportant, we find
adiabatic oscillations of the pinch around its equilibrium po-
sition (Fig. 3); an example is the self-similar solution of
Refs. 146 and 147. In general, on the other hand, one should
solve the heat transfer equation (23) instead of assuming
entropy conservation. From the standpoint of collapse, we
are interested in the case ̂  > W, in which the radiative loss
is dominant. In this case the system loses energy; the oscilla-
tions around the equilibrium position become damped; and
the equilibrium radius of the pinch decreases.173 If on the
otherhand condition & < W holds, the system will instead
expand.

We thus find the following picture of the dynamic com-
pression of the plasma system. At some time which we arbi-
trarily take as the initial time, the state of the system is
imaged by point A in Fig. 3 (or Fig. 6), which doesnotlieon
the force-equilibrium line. If conditions (8) hold, the system
is self-contracting. If the system is to be able to contract to a
great extent, inequalities (9) must hold with some margin.
During compression, the temperatures rise, and as soon as
Te or Tt exceeds the value corresponding to the confinement
energy Ea the compression process is disrupted. When the
system loses more energy by radiation than is dissipated in it
as heat, the temperature increase is bounded; the effect is to
promote a collapse.

Let us assume that the conditions at the initial time are
such that dissipative processes can be ignored altogether,
and the initial stage is an adiabatic process. If, already in the
adiabatic stage, one of the temperatures exceeds the corre-
sponding confinement energy, the compression will cease
even before it reaches the equilibrium line, and then the plas-
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ma will flow out in the radial direction. The situation is dif-
ferent if inequalities (9) hold with an ample margin. In this
case the magnetic forces compress the system so strongly
that mechanisms for a dissipation of the current into heat
and radiative losses come into play, and the confinement
conditions are not yet disrupted. Depending on the current,
there are two possibilities here.

If the current is below the Pease-Braginskii current,
7< 7PB, the deviation from adiabatic behavior occurs in the
direction of an even greater heating of the plasma. The tem-
perature ultimately exceeds the confinement energy, and the
compression gives way to an expansion. This situation corre-
sponds to the line AC'in Fig. 6.

When the current exceeds the Pease-Braginski! current,
/> 7PB, the dominant removal of energy by radiation causes
cooling of the plasma. The radiative cooling initially slows
the temperature rise during the compression (in comparison
with an adiabatic process), and then the heating comes to a
complete halt. If the conditions for confinement are satisfied
in the stage of maximum heating, they will not be violated
during a subsequent compression. The radiation will reduce
the energy of the radial oscillations of the system. The com-
pression process, combined with the radiative cooling pro-
ceeds until the quantum properties of electrons come into
play. In Fig. 6, this process corresponds to the line AD (with
the downward arrow).

Two successive stages in the contraction of a micro-
pinch are observed experimentally.97'98'152"155 In the first
stage, constrictions form with the parameter values
*•„- 1CT2 cm, ne ~ 1020-1021 cm"3, and Tc -50 eV. After
20-30 ns, an intense pulse of x-ray emission occurs, at a time
corresponding, within experimental error, to the time of the
second contraction, characterized by the parameter values
/•„ $ IQ-4 cm, ne ~ 1024 cm"3 and Tc ~ 1 keV. If the radiative
collapse continues after the second contraction, at a radial
velocity ~ 106 cm/s the collapse from r0 = 10~4 cm to the

D
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-6

c

0 1 !/!„

FIG. 6. The deviations from an adiabatic situation increase as the contrac-
tion proceeds. When dissipative processes are taken into account, it is
concluded that the system not only executes oscillations but also either
expands or contracts, depending on the current. Specifically, for 7</PB
the pinch expands, while for />/P B radiation causes the system to lose
energy, resulting in a contraction. The oscillations around the equilibrium
line decay. The behavior of the system in the course of the radiative col-
lapse is shown schematically by line AD.

point of electron degeneracy will occur in 10 10 s—beyond
the resolving time of the apparatus. For this reason, it would
still be premature to assert flatly that the x-ray burst, the
emission spectrum of multiply charged ions, the collectively
accelerated charges, etc., appear when the plasma is com-
pressed to a condensed state.

The very fact that in the experiments the second con-
traction is stronger than the first lends credence to the pic-
ture of radiative contraction drawn above. These results con-
stitute experimental proof that the conditions for radiative
collapse are realized in a micropinch. If, after the second
contraction, the confinement conditions are not disrupted,
the collapse should continue to the point of electron degener-
acy. After this point is reached, the system will cool off by
radiation, and the radiation burst will decay. This decay of
the burst of x-ray emission of a micropinch corresponds to
the process of radiative cooling.32

The Pease-Braginskii current is affected by a variety of
factors. In particular, the radiative loss turns out to be con-
siderably greater if the system contains heavy ions which
emit well.152 Numerical calculations151'156 show that a xe-
non admixture of only a few percent will greatly shift the
energy balance and reduce the Pease-Braginskii current. The
streams of accelerated electrons and ions which form in the
pinch systems also carry off a significant fraction of the ener-
gy of this system31 and thereby promote a collapse. It is an
exceedingly complicated problem to calculate exactly the
Pease-Braginskii current for a specific system. The difficul-
ties are aggravated by the circumstance that the plasma is
optically dense at precisely those currents in which we are
primarily interested: 7A/?;S7^7A//9. Estimates32'117 based
on trapping of the radiation and a possibly induced nature of
the emission of photons from a thin surface layer of the plas-
ma show that the Pease-Braginskii current is in the range of
several tens of kiloamperes, i.e., lower than in experiments
with micropinches in vacuum diodes, not to mention the
plasma focus.

One difficulty on the way to realization of a profound
electromagnetic collapse is that the ion subsystem gives up
energy more slowly than does the electron subsystem. Be-
cause of the large difference between the masses, the ions
also radiate more weakly, and the exchange of energy with
electrons is suppressed. Consequently, if the ions are protons
or deuterons, there will be no other energy-removal mecha-
nisms, and the adiabatic nature of the contraction of the ion
subsystem will prevent a collapse. If the ions are instead ions
of heavy elements, with a complex internal electron struc-
ture, there will be yet another mechanism for the removal of
energy from ions: line emission.152 During the contraction
and heating, electron shells of heavy ions will be excited.
Transitions of electrons will then occur to lower-lying ener-
gy states, accompanied by emission of line radiation. This
radiation carries off a significant fraction of the energy of the
ion subsystem and promotes a collapse. Here we are seeing a
difference between plasma-focus systems and low-induc-
tance vacuum diodes. In a focus system, one uses deuterium,
while in a vacuum spark one uses the ions of the anode mate-
rial. The line emission in the latter case may be more than
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one hundred times greater than the bremsstrahlung. The
Pease-Braginskii current is lowered, and a collapse becomes
possible at a current of the order of 100 kA.152

In 1979, Winterberg53 suggested producing an ultra-
dense electron-positron plasma by placing electron and posi-
tron storage rings in a common magnetic field. The electrons
and positrons which are moving opposite to each other form
a common ring, which is compressed by radiative collapse to
a very small radius. Winterberg showed53 that if we go to an
ultrarelativistic drift velocity y= [I — (Vg/c2) ] ~ l / 2> 1 the
radiative loss will exceed the increase in the energy of ther-
mal motion in collisions if the inequality I>9IAL/4y2

holds, where L is the Coulomb logarithm, and / A = 17 kA is
the Alfven current. At ultrarelativistic drift velocities, the
radiative collapse may therefore occur at a low current. As-
suming 9L /4~ 102, i.e., r0~ 1 with 7 = 102, we find that the
minimum current for collapse is 170 A, and at 7 = 3- 103(a
typical value for storage rings) we would have 7min =0.17
A.

5.4. Acceleration of charges by pinches

In 1960 Plyutto157 observed that a high-current spark is
a source of fast charged particles. Results obtained on the
energy and angular distributions of neutrons provided evi-
dence that directed streams of deuterons form in pinch sys-
tems.9'158 Observations revealed electrons accelerated to en-
ergies exceeding the source voltage by one or two orders of
magnitude.158 How do the strong electric fields capable of
accelerating charges to this extent arise?

The answer to this question was found a long time ago.
The magnetic field which compresses the plasma in the
pinch effect acts as a cylindrical piston converging on the
axis. For the charges in the plasma this piston is a moving
magnetic wall, in collisions with which the charges acquire
energy. Until the charge acquires a high energy, a collision
with the magnetic wall terminates with a reflection of the
charge back toward the axis. After a large number of reflec-
tions, the energy of the charge can ultimately exceed the
energy height of the magnetic wall, and the latter becomes
transparent to the given charge. The accelerated particle will
escape from the compression region. The distributions of the
accelerated charges in emission angle and energy depend on
the geometry of the magnetic field which is compressing the
plasma. In the direction along the axis of the discharge, the
charges can escape freely, while in the radial direction the
energy height of the magnetic wall is of the order of
£w ~<?27Ve£

2 In(///•„) = wec
2(/y5//A ) In(//r0), where //

/•„ is the ratio of the length of the discharge to the radius in
the zone of maximum compression. If the logarithm is not
very large, In (//;•„) — 3 — 4,wehave£w ~ 1007/3 eV, where/
is the current in amperes, and /? = un/c is the ratio of the
drift velocity to the velocity of light. The energy E^ is the
maximum energy to which the charges can be accelerated by
the cylindrical magnetic pistons. The charge acceleration
process is shown schematically in Fig. 7.

If the mean free path of a charge is large in comparison
with the size of the compression region, the acceleration pro-
cess will play out in its pure form. The charges will be reflect-

FIG. 7. Magnetic field of the current which is compressing the discharge.
It is a cylindrical piston which is convering on the axis. This magnetic field
is a moving magnetic wall in collisions with which the charges acquire
energy and are accelerated. The motion of the charges in the course of the
acceleration is shown schematically here.

ed from the converging magnetic wall until their motion be-
comes parallel to the current or their energy exceeds a
limiting value for the given direction. If the mean free path of
the charges is instead small in comparison with the compres-
sion region, the energy acquired in collisions with the mag-
netic wall is expended on heating the plasma. Only the
charges of high energy (runaway charges) will be capable of
escaping from the compression region.

Although this description of the acceleration of charges
in terms of collisions with a magnetic wall or piston is gra-
phic, it is not rigorously correct. Everything said above
could be reformulated in terms of an induction electric field,
whose component EI arises as a result of motion of the mag-
netic field Hv in the radial direction. It can be shown rigor-
ously158 that the energy acquired by a charge in collisions
with a magnetic wall is precisely equal to the energy acquired
in motion in an electric field which arises as a result of mo-
tion of a magnetic field. In adiabatic self-similar oscillations
of a pinch, the induction electric field is146

Ez(r,t)=- (2I/c2r0)rlyR(r/ra), where R ( p ) = [\
— ( 1 + p2)e~p ] 1 / 2 is a structure factor, and r u ( t ) is the

plasma radius, which oscillates with time. The energy ac-
quired by a charge as it traverses the length of the pinch, /,
can be estimated to be£'~»jec

2(///A )('r0/c )///•„. At the ra-
tio r0/c~ 10~4 and at a current of 150 kA, the ratio of the
length of the plasma to the radius would have to be / /r0 ~ 103

for acceleration to an energy of 500 keV.
In the early research on pinches8-9'128'158 it seemed un-

likely that the discharge channel could contract to a fraction
of a millimeter and still be contracting at a high velocity. In
1925 Kapitsa found that overvoltages arise during a sudden
discharge: electric fields exceeding the potential difference
of the source.160 In 1958 Trubnikov161 explained the accel-
eration of ions in terms of fields which result from the rup-
ture of a current channel as a result of the onset of sausage
instabilities. Fukai and Clothiaux162 studied the acceleration
of charges as a result of the cutoff of a current with reference
to the micropinch in a vacuum diode.

In 1975, Cilliers, Datla and Griem" pointed out that
the current is actually not cut off. There is a slight decrease
in the current (by up to 30%) at the time at which the dis-
charge is a source of accelerated charges.

The discovery of the micropinch24 and subsequent stud-
ies of it31'32'95-100'153'154 showed that the radius of the current
channel does not exceed a few microns at the stage of maxi-
mum contraction. The time resolution and spatial resolution
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of even the latest diagnostic equipment cannot keep up with
the evolution of the pinch at radii in the submicron region. In
a plasma focus one also observes a complex internal struc-
ture: discrete, highly contracted current channels.75"77'130

The formation of a micropinch region has recently been ob-
served in a Z-pinch also.155 The fact that the current is not
cut off completely and also the fact that the contraction oc-
curs at least down to micron radii (if not for the entire chan-
nel, at least for some of its filaments) force a reexamination
of the mechanism of the acceleration of charges by an induc-
tion electric field which arises as the magnetic field of the
current contracts to the axis.

The overall picture of emission phenomena in a pinch
can be explained in a natural and elegant manner in terms of
electromagnetic collapse. As a plasma is compressed to a
very small radius in the course of electromagnetic collapse,
charges are accelerated by the magnetic field which is con-
verging on the axis. At the same time, there is a heating of the
charges, which leads to the appearance of fusion neutrons.
The fusion origin of the neutrons is almost entirely beyond
doubt. Their source is the plasma channel itself, not exclu-
sively (or even predominantly) collisions of accelerated
deuterons with the cathode. For a quarter of a century there
has been a dispute over whether the deuterons participating
in the reaction 2D + 2D -»3He + n have commensurable en-
ergies (the case of a reactor) or whether the energy of the
nuclei of one group is significantly lower than that of another
(the beam-target case).163 The acceleration of deuterons
along the axis of the filament means that we are actually
dealing with a "moving reactor." In other words, the deuter-
ons participating in the nuclear reactions are heated to a
great extent and at the same time in motion as a whole. The
mechanisms which lead to the special conditions for nuclear
fusion reactions in a dense plasma focus have been analyzed
by Witalis.164'165

A significant fraction of the x-ray emission which arises
in the course of the collapse comes from electrons subject to
the electromagnetic field of a collective interaction. At a
high current, this interaction reduces to synchrotron radi-
ation from electrons in the magnetic field of the pinch itself.
During the contraction of the filament, the distances
between Landau levels increase, and as the channel becomes
more highly compressed the photons emitted from it become
harder. Upon compression to the point of electron degener-
acy, the energy of the emitted photons reaches the region of
hard x rays. Experimentally, the harder photons are emitted
from a spatial region which is smaller than that from which
low-energy photons are emitted.52-166 The source of the
harder radiation is in a sense submerged in a region which is
emitting softer photons. This picture agrees with the mecha-
nism which has been discussed for the x-ray emission, ac-
cording to which the energy of the x rays increases in the
course of the compression.

6. CONCLUSION

At the present diagnostic level we cannot tell whether
the radiative collapse comes to a halt after the second con-
traction of the pinch, at micron or submicron dimensions, or

the process continues to the point of electron degeneracy.
There is the point of view that the pinch plasma may go into a
turbulent state as instabilities develop. Questions of turbu-
lence and anomalous dissipative phenomena are being stud-
ied intensely.167-168 Several pinch experiments exhibit stabil-
ity throughout the evolution of the highly compressed
state.35'36 So far, we see no fundamental reason why a pinch
cannot be compressed to the state of condensed matter.
However, as we move to progressively smaller radii we may
run into some obstacles of which we are presently unaware.
Our task is to identify and overcome the obstacles to com-
pression at each step. We will then ultimately be able to
achieve electromagnetic collapse to the point of electron de-
generacy in a pinch system. What we need most for success
in this effort are a refinement of the conventional methods of
plasma diagnostics and the development of fundamentally
new methods169 which are capable of measuring small radii
of discharge channels in subnanosecond times. Ya. B. Zel-
'dovich has offered the interesting suggestion of determining
the radius of a collapsing pinch from the scattering of a laser
beam.

The achievement of electromagnetic collapse will bring
us substantially closer to a solution of the fusion problem.
However, the fusion problem does to exhaust the practical
significance of the achievement of collapse. There are a wide
variety of applications: to the collective acceleration of
heavy ions, the production of intense coherent jets of
charged and neutral matter, and the development of intense
sources of induced radiation over a broad spectrum, from
microwaves and visible light to hard x rays and y rays. An
understanding of the processes which occur in directed
beams of charged particles will make it easier to solve the
problem of transmitting energy over large distances by rela-
tivistic electron beams, will make it possible to construct
better sources of heavy ions,170 and will make it possible to
develop x-ray sources which operate on the principle of free-
electron lasers.171

Beyond its practical applications, the achievement of
collapse is also general scientific importance. This is a
unique possibility for producing and studying matter in a
state which occurs in nature if at all, then only in the deep
interiors of stars. The problem of electromagnetic collapse
combines various fields of modern physics: from plasma
physics to solid state physics and from emission phenomena
to quantum electrodynamics. We have already traveled a
long road, but we still have a long way to go. Our purpose in
this paper has been to call the attention of physicists in var-
ious fields to the problem of electromagnetic collapse.

I wish to thank Ya. B. ZeFdovich for interest in this
problem and for suggesting this review. I also thank L. P.
Pitaevskii, A. F. Andreev, and E. D. Korop for discussions
of these questions.
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