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A new quantization procedure based on the analogy between quantum theory and
nonequilibrium statistical mechanics is described. Stochastic quantization is particularly useful
for gauge theories, including lattice theories. Both the theoretical basis of the method and its
computer implementation are discussed. A detailed discussion is given of applications to
reduced Eguchi-Kawai models, which correspond to lattice quantum chromodynamics in the
limit of an infinite number of colors. The complex stochastic equation corresponding to
quantum theory in the ordinary Minkowski space is also examined. The equations are
discussed in curved field space, as are the difference equations that replace the stochastic
equation with a high degree of precision.
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1. INTRODUCTION

The language of quantum field theory is evolving by
adapting to new concepts arising in new problems. The oper-
ator language has become obsolete and has been replaced by
the functional language. Quantum processes are increasing-
ly described by a set of alternative classical processes, and
the alternative amplitudes are summed by functional inte-
gration.

A practical method of functional integration is pro-
vided by the Monte Carlo procedure which reduces to the
determination of an equilibrium sequence of alternative
probable states. The states are counted with allowance for
their weight: the more probable states are more frequent.

It is possible to consider a continuous analog of this
discrete process of counting of states by introducing a fifth
coordinate T, i.e., the stochastic or computer time. The tran-
sition from classical to quantum theory is then especially
general and simple. In particular, to quantize an arbitrary
Bose system (Fermi systems are somewhat more complicat-

ed, but can still be fitted into the scheme), it is sufficient to
add the stochastic time and introduce two new terms into the
equation of motion, namely, a random force and the force of
friction. The variance of the random force is proportional to
the Planck constant and is responsible for quantum fluctu-
ations. The force of friction is proportional to the derivative
of the corresponding dynamic variable with respect to the
stochastic time. This force is responsible for the conversion
of the "energy" supplied by the random force into "heat."

We shall use the thermodynamic analogy: in quantum
field theory, action plays the part of the energy of the four-
dimensional statistical system and Planck's constant plays
the part of temperature. The stochastic time then plays the
part of the physical time necessary to establish thermody-
namic equilibrium.

The stochastic equation is well-known in statistical me-
chanics. It is the so-called Langevin equation, describing the
kinetics of weakly-nonequilibrium systems. We emphasize
that, although, in statistical mechanics, the Langevin equa-
tion is not equivalent to the original dynamics (some of the
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degrees of freedom are simulated by random forces), the
state of thermodynamic equilibrium is nevertheless repro-
duced exactly by it. In particular, it can be shown that the
Langevin equation preserves detailed balancing between dif-
ferent states, i.e., the probabilities of mutual transitions
between any two states are in the ratio of their Boltzmann
factors. Hence, the probability distribution in the state of
thermodynamic equilibrium, if it is reached, is identical with
the Boltzmann distribution.

In quantum field theory, this means that the averages
calculated with the aid of the Langevin equation will be ex-
actly the same as the quantum averages calculated by func-
tional integration. The evaluation of averages with the aid of
the Langevin equation reduces simply to the averaging of the
corresponding variable over a large interval of stochastic
time. Equivalence to functional integration, i.e., averaging
over an ensemble of systems, signifies the ergodicity of the
motion described by the Langevin equation.

The foregoing discussion applies to the Euclidean var-
iant of quantum field theory, i.e., to purely imaginary time
t = ix4." When we pass to real time, the Feynman amplitude
exp(-action) becomes complex and can no longer be inter-
preted as the Boltzmann factor. The Monte Carlo method in
its literal form is then invalid because random numbers can-
not be counted with complex probability.

However, the Langevin equation, which implements
detailed balancing in a somewhat different form, does admit
of analytic continuation into Minkowski space. The random
force remains a real Gaussian quantity, but the force of fric-
tion becomes imaginary.

The equation is then complex, like the Schrodinger
equation, and is nonlinear. The corresponding dynamic vari-
able moves stochastically in the complex plane. Quantum
mechanics can thus be interpreted as the statistical mechan-
ics in complex space. Instead of the usual complex amplitude
of the real coordinate, we can then introduce a real positive
probability for the complex coordinate.

Interference effects will arise after averaging over sto-
chastic time. The corresponding integral will converge be-
cause of the oscillations in the complex integrand, and so will
the Feynman integral. It is expected that these oscillations
will not be as fast as in the Feynman case, so that it will be
possible to simulate them in numerical experiments.

The first such experiments have already been success-
fully performed in single-particle quantum mechanics. Of
course, this is not enough to enable us to say with confidence
that there is a more adequate scheme than that of the usual
Schrodinger equation. However, it is hoped that the complex
Langevin equation will enable us to see quantum mechanics
in a new light and to demonstrate by computer simulation all
its surprising properties which are not accessible to direct
observation.

As far as applications to Euclidean quantum field the-
ory are concerned, quite a lot has already been done, and this
will be the main concern of the present review. The applica-
tion of the Langevin equation to quantum field theory was
initiated by Nelson, Parisi, and Wu.1 In particular, Parisi
and Wu recognized that this was a way of avoiding the prob-

lem of having to fix the gauge in gauge theories.
Many papers using and developing the stochastic quan-

tization procedure have appeared since then. In many re-
spects, this procedure has been found to be more convenient
than the Monte Carlo method, and is capable of greater pre-
cision. It also enables us to prove various general relation-
ships more simply than in other quantization procedures.

In this review, we shall discuss the applications of sto-
chastic quantization to ordinary and gauge field theories
without fermions. The structure of our review is as follows.
The general scheme of stochastic quantization is introduced
and discussed in Sections 2-4, and the problems examined
above are discussed in greater detail.

Sections 5-8 are more technical in character. They con-
sider the stochastic perturbation theory and the problem of
defining the gauge. Stochastic perturbation theory is exam-
ined in its simplest form, namely, against the background of
the trivial classical vacuum. Section 14 briefly discusses per-
turbation theory against the background of the quantum
vacuum of reduced models with an infinite number of colors.

In Sections 9-11, we introduce and discuss reduced
models in both ordinary and gauge theories. These models
correspond to spatially homogeneous (to within unitary
transformations) matrix fields in the limit as the size of the
matrix tends to infinity. In this limit, reduced models repro-
duce the results of ordinary theories with inhomogeneous
fluctuating fields.

Reduction is examined in greater detail in Sections 12-
14, including computational aspects. Specific computational
schemes are introduced for continuous and lattice theories.
A brief discussion is given of stochastic perturbation theory
against the background of reduced models.

Finally, the situation is summarized, and the possibili-
ties for the future are discussed, in Section 15. The final sec-
tion also considers the complex Langevin equation together
with possible schemes lying outside the framework of quan-
tum field theory.

Some of the details missing from the main text can be
found in the appendices. Appendix A establishes the connec-
tion between the Langevin equation and the principle of de-
tailed balancing. Appendix B gives a derivation of the
Fokker-Planck equation, used to investigate the gauge prob-
lem. A derivation of the difference analog of the Langevin
equation, which preserves detailed balancing, is given in Ap-
pendix C. This leads to a numerical algorithm that differs
from the Metropolis algorithm. The reduction formulas are
proved in Appendix D.

In writing this review, we have drawn extensively on the
results published with M. A. Bershadskii and T. A.
Kozhamkulov in previous papers. 24~28'32 I am indebted to
them for their help and to V. A. Novikov for constructive
criticism. I also acknowledge useful discussions with V. A.
Kazakov, A. M. Polyakov, and Ya. G. Sinai.

2. QUANTUM MECHANICS AND STATISTICS

The idea of stochastic quantization is based on the ana-
logy between quantum theory and statistical mechanics. It is
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well-known that, if we introduce the replacement f-» — i/3,
the operator describing the evolution of the quantum-
mechanical system is replaced by the Bloch matrix of the
statistical system:

exp ( — itH) -» exp ( — $H),

*-»•-«?. (2.1)

Interference effects then vanish but, if we are interested in
statistical properties such as the energies of the ground and
first excited states, the magnetic moments, and so on, these
can be extracted directly from the Bloch matrix by allowing
/S-OO.

To describe interference effects, we must return to real
time by introducing the analytic continuation /? -»it. The ad-
vantage of the Bloch matrix as compared with the S matrix
from the computational point of view is that the matrix ele-
ments decrease and do not oscillate as in quantum mechan-
ics. This means that the sums over intermediate states con-
verge.

This applies, above all, to the functional integral for the
trace of the S matrix. The famous Feynman-Katz formula
was obtained forty years ago for this quantity. We reproduce
it here in the Euclidean variant for a scalar field <p:

tr exp ( — $H) = \Dq> exp ( — SB);

where

(2.2)

(2.3)

is the Euclidean action and x4 = — // is assumed real.
The following periodic boundary condition is implied:

cp (0, x) = tp (P, x). (2.4)

This condition has arisen because we have taken the
trace tr. A detailed derivation of (2.2) can be found, for
example, in the book of Slavnov and Faddeev.5

In contrast to ordinary action, which contains the dif-
ference between the kinetic energy \ (dtp 2/dr) and the poten-
tial energy U(<jp) + J(Vy>)2, the Euclidean action (2.3) con-
tains a sum of positive terms and is therefore positive
definite. The integral in (2.2) converges both for large fields
and for high field gradients. Of course, this does not remove
the problem of ultraviolet divergences. The functional inte-
gral must be defined as the limit of a multiple integral, say,
by dividing the space x into the cells of a hypercubic lattice.

The problem of ultraviolet divergences is that the pa-
rameters of the potential U(<p) must be varied as the lattice
constant a is reduced in order to ensure that observed quan-
tities remain finite. In particular, in the case of a scalar field,
the potential U is characterized by a bare mass m and bare
constant A0:

,
T

(2.5)

The required functions m0(a) and/i0(a) are given by
the renormalization group equation,6 which will not be dis-
cussed here. We confine ourselves to noting that, in the case
of a scalar field in four-dimensional space, it has not been

possible to find functions m0(a), A0(a) that would ensure
that the physical constant /lph remains finite for a->0. Evi-
dently,/lph = 0 always for a -»0 (the case of zero charge).

This concludes our brief excursion into the theory of
functional integration. We shall not need it again.

To proceed to stochastic quantization, let us examine in
detail the analogy with statistical mechanics. So far, we have
confined our attention to the quantum statistical mechanics
of the original three-dimensional system with Hamiltonian
H. The Bloch matrix (2.1) describes the quantum Gibbs
distribution for the original three-dimensional system. This
analogy lies on the surface.

However, there is another, less trivial, analogy. The
functional integral (2.2) may be looked upon as the parti-
tion function of a four-dimensional system with potential
energy SE. Actually, the Boltzmann distribution exp ( — U /
kT) is formally analogous to the distribution exp( — 5E) in
Euclidean field theory. The analogy can be strengthened by
isolating the factor A ~' from the Euclidean action, where A
is the coupling constant. In the case of a scalar field, it is then
sufficient to redefine op so that (p^ap /A,1/2. It then becomes
clear that classical field theory, obtained by solving the equa-
tion

-=0, (2.6)

corresponds to the state of static equilibrium of the analo-
gous four-dimensional system. Quantum fluctuations corre-
spond to thermal fluctuations due to interaction with the
thermostat. The coupling constant, and not the time, now
plays the part of temperature.

This treatment of Euclidean field theory is relativisti-
cally invariant, and is convenient in both analytic and nu-
merical calculations. The thermodynamics of black holes,
instantons, and the Monte Carlo method—in a word, all the
recent achievements of quantum field theory, are associated
with precisely this statistical approach.

3. THE LANGEVIN EQUATION

Stochastic quantization is also based on the four-dimen-
sional statistical treatment of quantum field theory. The
next natural step is to introduce into (2.6) an explicit ran-
dom force applied to the field by the thermostat, which
brings the field to the state of thermodynamic equilibrium.
The work done by the random force is converted into heat by
the forces of friction, which is also added to the classical
equation. The thermodynamic equilibrium is reached gradu-
ally, over a long period of "time." We emphasize that this is
not the physical time t = ix4, but a new independent vari-
able. Let us examine this important point in greater detail.

Consider the usual three-dimensional statistical sys-
tem, e.g., a gas in an external field. The corresponding Boltz-
mann distribution is

( ff
~~kr

where

=S-T+f f (? i 9*)-

(3.1)

(3.2)
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We can then eliminate the momenta/?, by Gaussian integra-
tion and obtain the effective distribution for the coordinates

(3.3)

The question is: how is this distribution realized in na-
ture? We observe a vessel containing a gas for a period of
time that is longer than the relaxation time, and measure,
say, the pressure, density, and so on. The averages deter-
mined in this way will be the same as if we were dealing with
an ensemble of vessels, weighted in accordance with the
Boltzmann distribution, and then taking the average not
over time but over the ensemble.

The achievement of classical workers in statistical
mechanism was that they were able to eliminate from the
discussion the complicated problem of the dynamics (tem-
poral evolution) of the system. If, nevertheless, we are to
take up the question of relaxation phenomena, we still need
not consider the complete dynamics.

The Langevin equation is approximately valid for small
deviations from thermodynamic equilibrium, i.e.,

where/ are random forces obeying the Gaussian distribu-
tion

(3.5)

The quantity T is proportional to the relaxation time, T in
(3.5) is the usual temperature, and k is Boltzmann's con-
stant.

The equivalence of the Boltzmann distribution (3.3)
and the Langevin equation (3.4) must be understood as be-
ing valid for the averages. The average evaluated over the
Boltzmann ensemble is identical with the time average eval-
uated over the Langevin equation.

The fact that these averages are equal can be written
down in terms of the probability distributions (this is the
ergodic theorem):

tribution

Z-' exp ( -^f- ) =6(q-q(t)),

where

7(0- 4-}•>"<«)

(3.6)

(3.7)

is the time average. The function q ( t ) in (3.6) is to be under-
stood as the solution of the Langevin equation.

A proof of the validity of the ergodic theorem (3.7) in
the case of the Langevin equation is given in Appendix A.
This appendix also gives the covariant generalization of the
Langevin equation which will be used below in lattice gauge
theories.

For a particle gas in a static gravitational field with met-
, this covariant Langevin equation assumes the form

(3.8)

where / (i) represents random forces with the Gaussian dis-

£~±- S /MO)

and ea (i) are tetrads corresponding to the metric

*.B=23 •«( (3.10)

4. STOCHASTIC QUANTIZATION IN FIELD THEORY

The analogy between Euclidean quantum field theory
and four-dimensional statistical mechanics leads directly to
the Langevin field equation

65 -/. (4.1)

We have assumed that the "relaxation time" is T=l
because the scale of the auxiliary variable r is arbitrary. The
derivative dU/dg of the potential energy will obviously be
identical with the variational derivative 6S/8<p. The sub-
script E will be omitted from the action S as long as we
confine our attention to the Euclidean variant of field the-
ory.

The analog of the ergodic theorem states [F(q>) is an
arbitrary functional of the field]:

= lim - (4.2)

The Langevin equation (4.1) enables us to view field
quantization from a new standpoint. It turns out that the
quantum theory equation differs from the classical equa-
tions only by the presence of two terms, i.e., the force of
friction and the random force.

The question is: are these the hidden parameters that
were the subject of so much argument among the creators of
quantum mechanics? The answer is: definitely not. The fact
is that we are dealing here not with hidden parameters but a
hidden variable, namely, the Langevin time r. In quantum
mechanics, a system can occupy simultaneously many alter-
native states but, in classical mechanics, it can occupy only
one. The special variable r is introduced in stochastic quanti-
zation to assist with the enumeration of alternative states.
For fixed r, we have a classical system, and quantum effects
arise after averaging over r. This averaging is equivalent to
the Feynman averaging with the weight exp( — S), but the
counting of states is performed nonrandomly.

The Feynman recipe prescribes that we must consider
an infinite set of classical states, each with weight exp( — 5).
Stochastic quantization provides the recipe for passing from
one state to another in such a way that the probability of the
appearance of each state is proportional to exp( — 5). The
difference between the two is that states of low probability do
not appear in stochastic quantization. In other words, sto-
chastic quantization reveals the uncertainty corresponding
to an infinite number of infinitesimal contributions to the
functional integral of Euclidean theory.

For example, in the classical limit, when S-> oo, equa-
tion (4.1) describes small fluctuations of the field around
the classical configuration <p = <pcl + Sip.
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Let us consider these fluctuations in greater detail. In
the linear approximation, the equation for the fluctuations is

where S" is the operator corresponding to the second vari-
ation of the action 5:

zero modes:

6<p (x) 6<p (») 6<p (y) (4.4)

Expanding 8<p and/over the complete orthonormal set
of eigenfunctions ^ of the operator 5", we obtain the corre-
sponding coefficients StpA:

6cp =

= dTexp( — -T).

(4.5)

(4.6)

It is clear that the random force leads to deviations from
equilibrium, i.e., from classical behavior. The force of fric-
tion results in delay. The deviation Sf is a superposition of a
large number of random forces at previous instants of time.

If we were to turn off the random force at a particular
instant of time, the system would relax to the classical state
(because all the /UA >0). If the force of friction were to be
turned off in precisely the same way, the delay would vanish,
and the deviation would be proportional to the instanta-
neous value of the random force.

We shall show that the Langevin equation correctly de-
scribes the correlations between fluctuations in the field <p.
These correlations can be readily found from (4.6):

i> ={ j

j d T jdT'e-^-^T'6(T-T')

0 0

(4.7)

It is clear that a finite limit is reached for nonzero modes as
f-> oo . This limit corresponds to the usual perturbation the-
ory in the functional integral:

<6cp (*) 6<p (j/)> 2 (y) tf =( (4.8)

For example, if <pc\ — const, the eigenfunctions ̂  (x) are
the plane waves exp(ikx). We then have/z* = k 2 + m2 and
(4.8) becomes the Green's function for a Klein-Gordon par-
ticle. This is examined in greater detail in the next section,
where a correspondence is found between stochastic and or-
dinary perturbation theories.

A nontrivial situation arises when there is a zero mode
as, for example, in gauge theories. The Green's function
(4.8) does not then exist, and this usually means that we
have to fix the gauge by adding to the action further terms
that fix the gauge, as well as ghost terms. However, as we
shall see below, this can be avoided in the Langevin equation.
In fact, the Langevin time plays the part of the gauge param-
eter. For a fixed time T, the propagator (4.7) is finite even for

(H* = 0). (4.9)

If we first fix the time, evaluate the propagators, and
then pass on to observable variables, we would expect that
the growing terms (4.9) would mutually cancel out in the
same way as terms depending on the gauge parameters are
found to cancel in the usual approach. This will be examined
in greater detail below.

Of course, these technical conveniences are not the
whole story. The Langevin equation has attracted the atten-
tion of researchers because it reveals new ways of going be-
yond perturbation theory. The first steps in this direction
have already been taken and will be discussed in this review.

5. SCALAR FIELD THEORY. DIAGRAM TECHNIQUE

Let us now consider the theory of the field <p 4. Action
now takes the form

S = j dD

and the Langevin equation becomes

+ (—A + m2) cp = — A,<p3

(5.1)

T]. (5.2)

The coefficient F determines the rate of relaxation of the
system (or the time scale). It must be taken into account in
the analysis of the renormalization group properties of the
Langevin equation. For convenience, we shall set F = 1
when we construct the perturbation theory. Equation (5.2)
is amenable to all the well-known methods of the physics of
nonequilibrium phenomena (see the book by Patashinskii
and Pokrovskii7).

We shall solve this equation by iteration in the coupling
constant A. We begin by defining the propagator of the
theory:

(dt + ™2- A) G ( « _ * ' ) = 6 (t-f), (5.3)

where G(t — t ') = Ofor t <t '.
The solution of this equation is

G(t- t', x)~Q(t- t') exp [-(p2 + m2) (t - t')]. (5.4)

Our strategy in developing perturbation theory will be as
follows. Equation (5.2) is inhomogeneous (the inhomoge-
neity will be represented by J = — A<p3 + rj). The solution
of (5.2) will be written in the form

t
y(x, t)= j G(t-t', x-y)J(y, t')dvdt'. (5.5)

o

However, this is essentially an integral equation because J
depends on the field <p. The zero-order term of the perturba-
tion theory is obtained by taking/0 = 77 instead of/. We then
have

*t *)= c(t-f, x-y)r)(t', y ) d f d y . (5-6)

We shall represent this term graphically. The propagator G
will be represented by a straight line and the random force
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rj(x, t) by a "cross." Thus:

<flo)(x,t> = K. (5.7)

The next order of perturbation theory is obtained by replac-
ing/with/U) [J(l} = - A(<pm)*] which can be expressed in
terms of the zero-order approximation to the field cp alone.
In general, we can write down the following set of equations:

(5.8)

<p<">(z, <)= G(t-t', x-y)JW(y, t')dydt'. (5.9)
o

It is readily seen that /(n) is expressed in terms of tp^ alone,
where s < n. Hence, by solving ( 5.9 ) for « = 0 and then sub-
stituting in (5.8) with/z = 1, wefind/(1). Substituting/' "in
( 5 .9 ) and solving the equation, we obtain <p ( ". Once we know
<p (0) and cp U), we can find /(2), and so on. This procedure is
conveniently written down in graphical form. Let

(5.10)

We then readily see that the solution of (5.8) and (5.9) takes
the form of the series

(5.11)(a)

The term (b) corresponds to first-order perturbation the-
ory, where

(5.12)

Similar graphical expressions can be written down for
all the J(n). For convenience, all the subsequent expressions
will be written in the ( p , t ) representation. In this represen-
tation, the propagator is given by (5.4). Occasionally, it is
more convenient to use the ( p , a) representation and,
whenever this is done, we shall say so. We note that, by writ-
ing the Langevin equation in the integral form given by
(5.5), we have imposed an initial condition on the field <p(x,
t). In particular, it is implied that <p(x, 0) = 0. The zero-
order approximation of the theory must be modified some-
what when nonzero initial conditions have to be employed.
Thus, suppose that we demand that £ (x, 0) = <& (x). Let us
then add to (5.7) the solution of (5.2) with / = 0, i.e., the
solution of the corresponding homogeneous equation, satis-
fying the initial conditions

(5.13)

The subsequent procedure used to construct the solution of
(5.2) will remain exactly the same as before. The additional
propagator will be denoted by a broken line, and the initial
conditions by a circle. We can then write for <p

+ ° 4-

+ 3-

V
+ 3 o 4- (5.14)

It is readily seen that, because of the presence of the factor
exp[ — ( p 2 + m2)t], the initial conditions are rapidly for-
gotten (in a time 5 l/m2), and the limit as t-> oo, in which
we are interested, will not depend on these conditions.

Let us now examine the behavior of the two-point corre-
lator. We shall show that it actually tends to its quantum-
mechanical average. However, to begin with, let us consider
averaging over the field rj (x, t ) . We shall express the solu-
tion of the Langevin equation in terms of r](x, t) (in the form
of a perturbation-theory series), and we shall do the same for
all polynomial functionals of <p. The random current rj (x, t)
is a Gaussian random variable, which means that Wick's
theorem applies, i.e., we must pair up the random currents in
all possible ways. This can be written graphically in the form

Since the fields 77 (x, t) correlate to a 5-function, we have, in
effect, a new distribution function

(5.15)

which, obviously, is identical with

< q > W ( p , 0 < P ( 0 ) ( - P , * ' )>• (5.16)

Let us now evaluate

<cp«" (p, t) <p(°> ( - p, t') >.

Since

<T| (x, t) ri to, t')) f 26 (p + q) 6 (t - t') (2n)«, (5.17)

we have
onin(f, t')

G(p,t-t)G(-p,t'—t)-2At

} (5.18)

As t = t '-. oo, the second term in (5.18) tends to zero and
the first gives the familiar expression for the free-particle
propagator.The two-point correlator of the field (p(x, t) is
conveniently represented graphically as follows:

+ 6
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This shows the terms up to the third order in A. The dia-
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grams have the same form as the usual Feynman diagram in
the cp 4 theory. However, the combinatorial coefficients in
stochastic perturbation theory are different from those in the
Feynman theory. The fact that, for t =• «, the sum of sto-
chastic diagrams is equal to the sum of the Feynman dia-
grams in each order can be proved by using nontrivial com-
binatorial identities.8 This proof will not be reproduced here
because the proof based on the kinetic equations and given in
Appendices A and B is much simpler and'physically clearer.
When the series (5.19) is evaluated, we naturally encounter
the problem of regularization and renormalization. Details
of this can be found in the book by Patashinski! and
Pokrovskii.7 We shall now give a brief account of the basic
ideas of renormalization.

The renormalization procedure consists of averaging
over small-scale fluctuations. Suppose that the maximum
momentum is A. All the integrations over loops in the dia-
grams are performed with respect to the momenta^, where
\p\<\. We shall also assume that the fields <p, 77 contain
only the Fourier components with momenta less than A. We
now subdivide the random force 77 (x, t) andtp (x, t) into two
parts, namely, a fast and a slow part. The fast part contains
only the Fourier harmonics with momenta in the interval
between A — 6A and A, and the slow part contains only the
Fourier harmonics with \p\ < A — SA. The average over the
small-scale fluctuations is none other than the average of all
the quantities in which we are interested, including the
Langevin equation itself, over the rapidly oscillating current
rf (x, t ) . We now require the effective equations for the slow-
ly-varying part of <p(x, t), i.e., <ps (x, t). The renormalizabi-
lity of the theory signifies that the effective equation for
q>s (x, t) has precisely the same form as the original Langevin
equation but, in general, with different constants (T, A de-
pend on the cutoff radius A). We shall represent the fast
oscillations in the current T/ f by a "small circle" but shall
use the previous notation for the slowly-varying part of the
current. When both the fast and slow components are taken
into account, expansion (5.14) assumes the form

\
*+... (5.20)

Averaging over the rapidly-oscillating current signifies
the usual mutual "closure" of the small circles. Terms in-
cluding an odd number of "small circles" automatically
yield zero (including (q>f) = 0). Let us now group these
terms in a special way. We are interested in diagrams with
one "cross" at the end. Their sum corresponds to the renor-
malized propagator

(5.21)

Relatively simple manipulation (which can be found,
for example, in Ref. 7) yield the usual formulas for mass and
charge renormalization.The kinetic coefficient is also renor-
malized and need not therefore be taken into account in sca-
lar field theory.

This concludes our analysis of the scalar field, which we
shall use mostly for illustrative purposes. We see that the
diagram technique, corresponding to iterations of the
Langevin equation in the coupling constant, differs from the
usual diagram technique, but leads to the same result in each
order. We have also verified that, in the massive case, correc-
tions due to the finite time r decrease exponentially.

6. STOCHASTIC QUANTIZATION OF MAXWELL'S
EQUATIONS

Let us now consider a purely electromagnetic field and
leave aside the problem of a consistent analysis of fermions
within the framework of stochastic quantization. In the ab-
sence of fermions, electrodynamics becomes a theory with-
out interaction:

= 1 }<*•„„)« d»*, (6.1)

where F^v is, as usual, [VM, V v ] =d^Av—dvA^. The
Langevin equation takes the usual form: the Maxwell equa-
tion is augmented by the random force and the force of fric-
tion:

As can be seen, the random force can now be interpreted as a
random vacuum current. This equation is actually two equa-
tions: one for the longitudinal and the other for the trans-
verse components of the field A^. It will be convenient to
transform to the Fourier components of the field A^. Separ-
ating out the longitudinal and transverse components, we
can transform (6.2) into two equations:

dtA =

(6.3)

(6.4)

This also separates out the two components of the random
force:

1 !»(*)•
(6.5)

We note that the random forces TJI and 77" may be looked
upon as independent. Actually,

<r,0 (k)

0, (6.6)

whereas
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(6.7)

(6.8)

As expected, the fields A J[ and A^ do not interact:

Let us now evaluate the two-point correlator of the field A .
Solving (6.6) and (6.4), we obtain

T)-L(p, T)dT, (6.9)

(6.10)

We can now readily find {A ^A i > and <^ \A \ > :

M i < p , t)A$(-p, t')y
mln ((, (')

= j dT«p[-p*(«+t'-2T)].2(«| l v—

(P, 0= lMP. T)dT.

exp[-p- 2

f , t').

(6.11)

(6.12)

{ A ^ A y ) tends to the well-known transverse propagator as
f — oo . The longitudinal field correlator increases with time.
This corresponds to the zero modes examined above. Fortu-
nately, the longitudinal component of A^ is not physically
meaningful; it is not gauge invariant. All the physically in-
teresting quantities are gauge invariant and can be expressed
in terms of AL . Hence, (6.4) can be discarded, and we can
confine our attention to the transverse component of the
field Ap , which satisfies (6.3). The complete two-point cor-
relator is

(6.13)

The dots at the end represent the term that tends to zero as
exp( — 2p2t). If we now wish to evaluate some gauge-invar-
iant quantity, we do not need to consider the dependence on
the correlator of the longitudinal components (and, corre-
spondingly, the time). This means that, for gauge-invariant
quantities, we can everywhere replace (A^AV) with

7. THE LANGEVIN EQUATION IN NON-ABELIAN GAUGE
THEORIES

We shall now consider U(JV) gauge theories. The func-
tional integral assumes the form

llL, Av];

(7.1)

(7.2)

(7.3)

where the fields A^, F^v are anti-Hermitian N XN matrices.
As can be seen, the Euclidean action S(A) is analogous

to energy in the Gibbs distribution and the bare constant g%
is analogous to temperature.

The Langevin equation can be written immediately by
analogy with statistical mechanics:

dAv- -j. 6S
 = /[ii (7.4)

Here, the Gaussian random current J£ is an anti-Hermitian
matrix like A, •.

The variable r will be referred to as intrinsic time in order to
distinguish it from the time / = ix4.

By analogy with statistical mechanics, we may suppose
that the averages (4>), calculated with the aid of the prob-
ability distribution

(7.6)

(7.7)

are identical with the averages over a long interval of intrin-
sic time along the trajectories of (7.4):

0=lim4- UT 0(4(1)).
iw- T J

(7.8)

This averaging over intrinsic time automatically leads to
averaging over random noise, i.e., fluctuations in the average
are inversely proportional to T112.

Thus, it is natural to suppose that

(0 > = 0. (7.9)

It is at this point that new possibilities inherent in the Lange-
vin equation are revealed. The point is that the usual prob-
ability distributions (7.7) are poorly defined. It is well-
known that the gauge invariance of this distribution
complicates the development of a perturbation theory. The
classical vacuum

Ae^ = S-i(x)dv,S(x), S* (x) S (x) =•-1 (7.10)

depends on the arbitrary unitary matrix S(x), i.e., it is de-
generate.

To construct a perturbation theory, we must fix the
gauge by the well-known Faddeev-Popov procedure. This
procedure is defined only for small field fluctuations, and the
well-known Gribov ambiguities arise for large fields.9 All
the perturbation-theory terms are correctly reproduced by
the Faddeev-Popov procedure, but the nonperturbative ef-
fects are distorted.

On the other hand, the Langevin equation is nondegen-
erate. It is invariant only under the ordinary r-independent
gauge transformations

^n (x, T) -»- S'1 (x) [d* + A» (x, T)] 5 (*), (7.11)

/d (x, T) -+• S-1 (x) Jp (x, T) S (x). (7.12)
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Hence, the dynamics, i.e., the dependence on r of the solu-
tion of the Cauchy problem

A l~ fl\ — A f~\ /7 i i \n. n ^2-, \JJ — si n \X) ( I . I j )

does not contain ambiguities. The initial conditions (7.13)
are equivalent to fixing the gauge.

Of course, the physical gauge problem does not vanish,
but the mathematical aspects become simpler. Analysis of
the Langevin equation in the gauge theory shows that the
vector potential fills uniformly the entire gauge orbit in the
course of intrinsic time, i.e., on average, fields differing by a
gauge transformation are encountered equally frequently.
This occurs after a long enough intrinsic time so that the
initial conditions are "forgotten." Gauge-invariant variables
then tend to their averages corresponding to the Gibbs-
Yang-Mills distribution.

8. FIXING THE GAUGE

As noted above, the gauge need not be fixed in the
Langevin equation of the gauge theory. The terms that grow
with T mutually cancel out in each perturbation-theory or-
der for any gauge-invariant quantity.

However, the Langevin equation can be transformed10

so that these terms will vanish. This transformation of the
Langevin equation is equivalent to fixing the gauge. It will
now be described because it is convenient in practical calcu-
lations.

We note that, to evaluate the average {4>(A)} of a
gauge-invariant functional, we can replace the current A
with gauge-transformed A M, with the time-dependent trans-
formation matrix M(x, T) . Of course, this field satisfies a
different equation because the Langevin equation is not in-
variant under such transformations.

It is readily verified that the transformation adds the
following additional term to the equation:

flT
+

where

(8.1)

(8.2)

The quantity a is arbitrary. For example, we can take it in the
form

a=±dvB\ (8.3)

When a = 1 in (8,,1), the terms df.dvB
v cancel out in the

linear approximation.
Substituting for a in (8.1) in the form given by (8.3),

we have

(8.4)

It is clear that the linear part of (8.4) is nondegenerate:
AT)

(8.5)

At first sight, this exhausts the problem of fixing the gauge.
This viewpoint has often been advanced in the literature.10

There is, however, a subtle detail that is often ignored.

The point is that a depends on B^ and thus on the random
force Jp in accordance with (8.4). Hence, the matrix M,
defined by (8.2),

M = Texp j a (T)d t , (8.6)
o

will also depend on J^ .
But this means that, in contrast to J^ , we find that ATM is

not a random Gaussian quantity. For example, the correla-
tor

= (M-1J» (x, T) MM-VV (y, T) M), (8.7)

will, in general, contain additional terms due to the pairing
of M and /M . Nevertheless, it may be shown (see Appendix
B) that, on the right-hand side of (8.4), we can replace the
random force K^ with the usual random Gaussian quantity
Jp , correlated to a 5-function. In general, this leads to the
new equation

-^L + -S-fD|i9vBv] + [DvFuv] = V (8.8)

However, the averages of gauge-invariant quantities, evalu-
ated with the aid of this, will be precisely the same as for
(8.4).

We now turn to studying the stochastic equation writ-
ten in the form of ( 8 . 8 ) . The parameter a will be considered
to be arbitrary for the moment. When a = a> , equation
(8.8) is gauge invariant. Gauge in variance is destroyed only
by the initial conditions imposed on the field B^ . If, on the
other hand, a ̂  oo , then gauge invariance is destroyed expli-
citly. The parameter a essentially fixes the gauge and is anal-
ogous to the a -parameter in the Feynman gauge. The pertur-
bation theory can be constructed for (8.8) in the usual way
(it is precisely analogous to the perturbation theory for q> 4) .
The propagation function for (8.8) has the form

G^(p, t, t')

(8-9)

In addition to the usual Yang-Mills vertexes
b

a K /P

(8.10)

(8.11)
the term (8.8) leads to the additional vertex

4-0^=4)
p/

n~> = 5 f (t^i-g^P,)0"0- (8-12)
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The perturbation-theory series for the field B^ is If we evaluate ( 8. 1 7 ) , we find that

\ -x +... (8.13)

Evaluation of the averages gives rise to a new propagation
function [cf. (5.15)]:

^x, t)Bv(y, *')>-f- (t'-t, q)

, T ' )>dgdTdT '
o o

X <

(8.14)

The projectors onto the transverse and longitudinal compo-
nents are denoted by P^anAP^, respectively. When
a -> oo , the expression given by ( 8. 14) yields

(Bv.(x, t ) B v ( y , t'))

f, t'). (8.15)

For a = 1, we have the simplest form, namely,

<£„(*, t)Bv(y, t'))

-T-6lw-Jr{exp[-p*|*-«'l]-«p [-p«(t + *')]}. (8.16)

The dependence on a disappears when the gauge-invariant
quantities are evaluated. Ghost-type fields need not then be
introduced. It is convenient to set a = 1 in numerical calcu-
lations

The problem of regularization arises in the stochastic
approach, as it does in ordinary field theory. A frequency
cutoff equivalent to the momentum cutoff in <p 4 theory is
inappropriate in gauge theories. As usual, it is reasonable to
employ a gauge-invariant regularization, i.e., dimensional
regularization.

We shall now reproduce the results of calculations of
the Wilson average (to within the fourth order in g). The
Wilson average is defined as the P-exponential of the vector
potential along a closed contour C (see Ref. 11):

W (C) =. tr P exp

(8.17)

The renormalizability of the Wilson average was demon-
strated by Dotsenko and Vergeles12 for the usual Yang-Mills
theory. In our case, the Wilson average depends on the
"fictitious" time. As r-. oo,

W(c)=Zn

(8.19)

(8.20)

We have introduced a new notation for the «th term of the
series in the sum (8.19). The theory of loop functionals of
this type is investigated in detail in the review article of
Ref. 13.

To calculate W(C, t), we must substitute into (8.19)
the value of/4,, expressed in terms of random currents with
the aid of (8.19). The quantum-mechanical average (...) is
replaced by the average over the random field J^. The result

where the effective three-tail is defined by

-f

(8.21)

(8.22)

It can be shown that

where C2 is the eigenvalue of the Casimir operator for the
group SU(AO and E is the space dimension defect
(D = 4 — e). The expression in parentheses is none other
than the well-known expression for the renormalized
charge, i.e., only the charge needs to be averaged in order to
remove the divergences from W(C,t). This means that the
kinetic coefficient is not renormalized:

r (e) = r (0) + o (?).
We can set it equal to unity right from the outset and then
ignore it. This is precisely how it has been treated so far.

9. LARGE N MATRIX THEORIES

Let us begin by considering a \J(N) gauge theory.
When JV-» oo, the U(Ar) and SU(AO theories become equi-
valent. Actually, SU(AO fields and U(AO fields differ from
one another by one Abelian field component:

TV2

W (C, t)->-W (C). (8.18) ((.', (9.1)
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where Ta are the SU(AO generators. We have two noninter-
acting theories: the SU(AO gauge theory and the free electro-
magnetic field. If the theory contains quarks, then photons
and gluons will interact. We then have the well-known zero-
charge situation, i.e, the interaction between gluons and
photons is suppressed by the cutoff radius. On the other
hand, the interaction between gluons and photons is also
suppressed according to \/N.

To investigate the behavior of the U(N) gauge theory
for large N, it is convenient to reformulate the diagram tech-
nique. We shall need to separate the color indices explicitly.
The gluon-field propagator can be written in the form

(x) Ak
v
l (y)) ) f t ( (AaVL (x) iftvM)

,(x — y), (9.2)

where G" are the U(N) generators. We have used the result
2a (G°YJX (Gb)kl = 8"&k. We note that such a simple rela-
tionship is not available for SU(7V) [for this group, we have
Za (T°)iJ( T")k' = S"^ - (\/N)S'J6kl ]. It is now clear that
the gluon-field propagator can be represented graphically by
two lines, with the color index propagating along each:

-v. (9.3)

Similarly, we can redefine the quark and ghost propagators
and vertices:

Ct](x)C*l(y)

(9.4)

JL
(9.5)

This reformulation of the Feynman diagrams was proposed
in the pioneering work by't Hooft.14 In this notation, we can
readily estimate the order of any Feynman diagram in N. It is
none other than the number of index cycles in the diagram.
For a singlet quantity, normalized to a constant for N-> oo,
e.g., for the Wilson average, the Feynman diagram is propor-
tional to

N2-w-L (g*N)k, (9.6)

where k = J V3 + Vt, V^ is the number of three-tails, V4 is the
number of four-tails, H is the number of handles on the sur-
face spanning the diagram, and L is the number of holes in
this surface. The holes are related to quark loops.

Thus, only plane (without handles) diagrams without
internal quark loops remain when N = oo. The effective cou-
pling constant for N— oo is A = Ng2 and not g2, i.e., as
N-> oo, the charge g should tend to zero so that the product
Ng2 remains finite.

Precisely the same considerations can be used in the
theory of the Hermitian matrix field with action

(9.7)

where <t> is assumed to be an N XN Hermitian matrix. This
theory will be useful later as a convenient example illustrat-
ing the idea of reduction. In the matrix model, the propaga-
tor is represented by the two lines [see (9.3) ]

and the vertex by [see (9.5) ]

JL.nr

(9.8)

(9.9)

In the gauge theory, the diagram is proportional to

~N2-*H-L(g*Nf'mt+V4. (9.10)

The formula for the order of a diagram in the theory of the
Hermitian matrix field is obtained from (9.6) by simply set-
ting L = 0 and K3 = 0. Hence, the diagram is proportional to

• N 2-2H (9.11)

Again, as in the theory of gauge fields, we see that the princi-
pal contribution is provided by planar graphs, and the effec-
tive coupling constant is

X = ~g~N. (9.12)

We shall show in the next section how the methods of
stochastic quantization can be used to obtain reduced mod-
els for N-> oo, which reproduce the diagrams of the orginal
(not reduced) theories for N-> oo.

10. REDUCED HERMITIAN FIELD

We shall now illustrate the method of reduction by tak-
ing a Hermitian field as an example. The action is then given
by (9.7), and the Langevin equation can be written in the
form

d,<J>u=(n— m^<S>ij—jj- (Q>3)tj + i\ijt (10.1)

where 77,-, is a random Gaussian matrix field:

(r\tl (x, t) T]fc, (y, t')) = 26(,6ttfi (x - y) 6 (t - t'). (10.2)

The theory of the Hermitian matrix field is invariant under
global U(JV) transformations and a change in the sign of the
field 4>:

CD • -cD. (10.3)

We shall consider the traces of the 2A>point correlators [the
(2k + 1)-point correlators are obviously equal to zero]

, t). . .0 (*,„, t)). (10.4)

The perturbation theory developed in the last few sections is
suitable for (10.1). Substituting the expression for the field
(<!>),., in (10.4) in the form of a series, we see from the per-
turbation theory that the correlators of the trace of the prod-
uct of random matrices (10.4) is expressed exclusively in
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terms of the correlators of the traces of the product of ran-
dom matrices 77^. The matrix field 77^ (x, t) constitutes white
noise. The basic idea of reduction is that we do not necessar-
ily use white noise to evaluate the correlator

(a:,, (xn,tn)) (10.5)

for N-» oo, but can use some other specially constructed ran-
dom quantity. For example, the same white-noise effect can
be achieved by introducing for each component 77^ the single
harmonic

where rjv is a random Gaussian quantity correlated to a 8-
function, and thep, (the so-called frozen momenta) are ran-
dom vectors, distributed uniformly in momentum space. For
the ultraviolet cutoff, the range of the momenta can be con-
fined to the Brillouin zone, i.e., a cube of side 2ir\:

It is readily verified that, if we average (10.5) over the ran-
dom force rjij (/), and then average over momenta with the
weight d W ( p ) , we obtain the same result for N-* oo as
would be obtained by averaging 77,, (x, t) over white noise.
This is proved in detail in Appendix D. In particular,

As N-> oo , the first term is the only dominant one, and gives
the correct answer. Similarly, it may be shown (see Appen-
dix D) that the leading order in 1/JVis obtained by evaluat-
ing <tr 77 ( x l t t , ) ... (xn , tn ) } with the aid of ( 10.6), and gives
the correct answer.

The random current ( 10.6) enables us to dispose of the
coordinate in an explicit manner in ( 10. 1 ). Let us substitute
the following ansatz for the field in ( 10. 1 ) :

<S>,,(x, 0=«p[i(p,-p,)*l«i,(0. (10.9)

It is then readily seen that 4>,y (t) satisfies the equation

(10.10)

It may seem surprising that the Fourier harmonics do
not multiply in the nonlinear equation since, usually, nonlin-
earity leads to the interaction between different harmonics.
This "paradox" can be explained by the special form of the
equation and the ansatz ( 10.9) . The ansatz can be written as
the unitary transformation

(x) = P = di&g (P, (10.11)

The factors exp(iPx) cancel out, so that the harmonics do
not, in fact, interact.

Formula ( 10. 1 1 ) has a clear physical meaning. Instead

of the momentum operator P in Hilbert space, we use the
diagonal matrix P in the space of internal symmetry of the
system. In mathematical language, we represent a transla-
tion algebra in the Cartan subalgebra of the group U (oo) . Of
course, this is valid only in the limit as N-* oo.

However, let us return to the reduced Langevin equa-
tion (10.10). The propagation function for this equation is

This can be represented graphically by the two lines

' = '
J Pf

(10.13)

As usual, the solution of (10.10) is given by the sum of a
series of tree diagrams

=x + (10.14)

The two-point correlator of the fields 4>,7 (t) is

X[exp{-[p,-p,]» (*-*')}
— exp{ — [pt — Pt]l(t + t')}]. (10.15)

When t = t' -> oo, the expression given by (10.15) is propor-
tional to the usual quantum-mechanical propagator. They
differ only by a factor. The original average (6.4) can be
expressed with the aid of the relation

trexp[i(p,-p,)z,]

... exp [i (p,-p>) *„] <q>,, (*,) ... (p*, (<„)>. (10.16)

Integration with respect to the momenta p, in (10.16) will
now be denoted by (...}/>. As t-» oo, the expression (<pv ( t ) . . .
<pki(t)) tends to the average of a theory whose action is read-
ily guessed:

_ ^ ^

a
(10.17)

This is, in fact, the action of the reduced model. We can now
formulate the recipe for evaluating the averages

<p (10.18)

without using the stochastic equation (10.10). We fix the set
of momenta p, (this is called the freezing of momenta).
Next, we consider the theory with the action given by
(10.17). Free energy in the reduced theory is obtained as

^r«d (-0 = - In Zrei(J),

where / is the external matrix current and

(10.19)
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(10.20)

The average ( 10. 16) is then written in the form

,, t) ...<fkt(xn, f)>

(10.21)

In actual fact, when N-> oo , we need not explicitly integrate
with respect to the momenta. Since the momenta p, are uni-
formly distributed in a cube of side 2-rr\, we can initially
impose a distribution on them, and then freeze it, i.e., this
essentially means that we are evaluating the integral by the
Monte Carlo method.

Let us now examine the connection between the usual
Feynman diagrams and the diagrams of the reduced model
(10.17). The reduced-model propagator is identical with the
limit of (10.15) asf-oo

=25= (10.22)

The "double line" (propagator) carries the momentum
= Pi — P . In the vertex

= Pi-Pi

the momentum is then automatically conserved:

ki + k2 = k3 + kt. (10.23)

Suppose the diagram contains k lines. When k^N, we may
suppose that all the momenta are uncorrelated, i.e., averag-
ing over the random momenta { ... )f in the reduced model is
none other than integration over the internal momenta of the
diagram. When k ~ N or K > N, we clearly obtain an incor-
rect result because the momenta carried by the lines are
highly correlated, and we cannot assume that integration
over them takes place independently. For finite N, the left-
hand side of (10.21) reproduces correctly the diagrams in
which the number of internal lines is much less than N. Since
we are interested in the case N-* oo , the expression given by
(10.21) remains valid. We note that the additional factor
( A)D in ( 10.22) is required in order to achieve the correct
normalization of the integral with respect top.

11. REDUCED GAUGE FIELDS

A reduced gauge theory can be constructed in an analo-
gous manner. We start with the Langevin equation in the
form given by (7.4). We then substitute [see ( 10.9) ]

( 1 1 . 1 )

where we have introduced the diagonal momentum matrix

With this change of variables, the covariant derivative is
transformed into a commutator:

(11.3)

, (11.4)

Dl>Fin-+Dv.FVLV. (11.5)

We can now formulate the stochastic equation for the field
4,(0:

(11-6)

In the reduced theory, action is uniquely given by

Equation ( 1 1.6) is invariant under the reduced gauge trans-
formation

A» (t) -> 5 (A». + ip,,) S+ - ipn = SA^S* + S [ipuS*]

(11.8)

with arbitrary but {-independent unitary matrix 5.
Let us now examine in greater detail the gauge stochas-

tic equation ( 1 1 .6) . It can be verified (see, for example, Ref.
4) that direct iteration of this equation in the coupling con-
stant gives, in the limit as N-* oo , the same perturbation-
theory terms as the usual Langevin equation (7.4) in the
case of the gauge-invariant traces, for example, the Wilson
average W(C). In the limit as ?-» oo, this procedure repro-
duces the results of the Faddeev-Popov diagram technique.

We note, however, that the limits t-> <x> and A^-* oo do
not commute (this question is examined in detail by Al-
faro8 ) . Actually, if these limits were to commute, the depen-
dence on the frozen momenta />M would vanish altogether
because these momenta can be transformed by the shift
Ap — B^ — ip from (11.6) to the initial conditions
Blt(0)=iplt.

The phenomena occurring in the reduced models for
Ar— oo are similar to those occurring in quantum mechanics
as we pass from matrices of finite size to operators in Hilbert
space [here, the Hilbert spacers inscribed into the SU( oo )
manifold, so that the operator P is represented by a diagonal
matrix ] .

We recall that, for example, for matrices of finite size,
the commutator [ pq] is a traceless matrix, whereas, for the
coordinate and momentum operators, this commutator is
proportional to the unit operator.

We shall now show more specifically how the limit
lim,^ „ linijv^ „ is reached, and why the frozen momenta do
not vanish.

For fixed N, t, the hazardous terms that do not decrease
with t are due to the zero modes discussed above. Let us
separate out the zero modes by introducing the change of
variables
A ^ (t) = 5 (t) B» (t) S> (t) + S ( t ) \ i P f a S * ( t ) ] ,

S + ( t ) : S ( 0 ) = 1.
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It is readily verified that the equation for
additional term:

where a is related to S1 by

ds -So."ar-ia-
We choose

now has an

(11.10)

(11.11)

A^—AH, (11.12)
where A £ is the solution of the classical equations, and we
construct the quasiclassical expansion in the neighborhood
of this solution (in the simplest case, A £ =0).

As in the case of the Langevin field equation, the linear
part of the above equation is then nondegenerate because the
zero modes vanish.

Having taken the initial conditions in the form

and integrating with respect to the constant g, we have dis-
posed of the growing terms. Clearly, they are all collected in
the matrix

adt. (11.13)

This matrix cancels out in gauge-invariant quantities,
which proves the existence of the limit as t -» oo. On the other
hand, the dependence of p^ is now clear because these quan-
tities cannot be removed from the equation by a transforma-
tion.

A detailed account of how <tr Ffi2v) can be evaluated
by this method can be found in Alfaro's paper.8 Without
going into technical details, the essential point is that the
contributions of zero modes that grow with t contain the
correction terms t /N, which do not cancel out in observed
quantities for finite N, but do vanish in the limit as N— oo at
constant t.

Thus, if we take the correct limit (first, N-* oo, and then
t-> oo), the Langevin equation can be written in the gauge
theory in a very simple form:

(11.14)

(11.15)

dt

In this form of the equation, the frozen momenta are
introduced through the initial conditions and influence the
solution for f-» oo because of the zero modes.

This limiting procedure will be less surprising if we re-
call that, for finite N, the reduced theory contains a finite
number of freedom (NxN matrix independent of x) and
cannot therefore be a serious contender for a quantum-field
theory.

We note that more complicated reduced gauge equa-
tions have been examined in the literature4'8''8 by introduc-
ing some particular limitations on the matrix A^ in order to
prevent the possibility of the removal of momenta by the

shift Ap -*Ap — 1?^. We shall not reproduce these equations
because, when the limits are correctly taken, these limita-
tions can be avoided.

12. NUMERICAL METHODS IN THE CONTINUOUS CASE

Most calculations involving reduced models have been
performed within the framework of lattice regularization.
However, before we proceed with these calculations, we
must say a few words about the alternative method which, so
far, has not been implemented, but can, in principle, be car-
ried out.

The procedure we have in mind here is the Gaussian
regularization of the reduced Langevin equation.The point
is that, for fixed frozen momenta/?, and fixed N, the ultravio-
let divergences do not in general arise, since there is no inte-
gration with respect to momenta in the Feynman diagrams.
These integrations effectively arise as a result of the summa-
tion of color indices, as discussed above in the example of the
scalar fields. The typical sum is:

a, b

l-exp[-2(pa-pft)2i |

exp[ig(s— y)} M 9(

where

a, b

The term (l/N)S( q) provides a contribution ~t/N which
vanishes in the limit as N-* oo . The second term in ( 12.2)
has a finite limit independent of q ifpa andpb are uniformly
distributed in an infinite volume.

If we cut off the distribution over the momenta pa by
placing them inside a unit cube or unit sphere, the density
p ( q ) will decrease for large q, so that there will be no propa-
gator singularities for x-*y. Obviously, this also applies to
the other ultraviolet divergences.

They all arise because of the sums over the color indices,
and vanish if the probability distribution for the momenta/>0

is cut off, so that, on average, the sums converge.
The simplest distribution is Gaussian:

In this case,/? is also Gaussian:

' <«> T-T 5

-I
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(12.4)

The numerical realization of the Gaussian quantities pa^ is
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exceedingly simple. The four components />,,;>2,;>3,/>4 must
be divided into pairs:

A ( - 2 In E)>/» exp (2ntT)'),+ ip

Pas -f iP<,4 = A ( - 2 In £')1/2 exp (2nii\'),

where £, £ ', 77, 77' are random numbers that are uniformly
distributed between 0 and 1.

Having specified/?^ , we can solve numerically the Lan-
gevin equation, e.g., in the nonsingular form (11.10). The
precision can be improved by using higher-order difference
schemes ( see Appendix C ) . The main problem arising in this
procedure is related to the fro/en momenta. As mentioned
above, all the normalized matrix traces are independent of
the realizations of the random quantities/?^ in the limit as
N= oo. We have here the so-called self-averaging, well-
known in solid state physics (where the part of frozen vari-
ables is played by the coordinates and spins of impurity
atoms).

However, a large number of degrees of freedom is neces-
sary for self-averaging to occur with sufficient precision. For
finite N, the corrections due to fluctuations in averages such
as ( 1 2. 1 ) are of the order ofl/N, i.e., of the same order as the
corrections due to diagonal terms. To take these corrections
down to, say, the 1 % level, we must take N~ 100. The corre-
sponding matrices will have 104 elements, which is just
about the limit of the capability of modern computers. Rela-
tively few results (see Ref. 1 5 ) have therefore been obtained
by the method of frozen momenta.

13. REDUCED LATTICE GAUGE THEORIES

An interesting alternative to frozen momenta has been
found in lattice gauge theories, for which the corrections
decrease as N~~2 and not N~l. This is the so-called TEK
model (Twisted Eguchi-Kawai model; see Ref. 17).

We shall start with the usual Eguchi-Kawai model,16

describing the high-temperature phase of lattice gauge the-
ories. Like TEK, this model was obtained with the aid of
loop equations ( see the review paper of Ref. 13). However,
the conclusion based on the Langevin equation8 seems phy-
sically clearer and enables us to advance further by including
the terms discarded in the Langevin equation and using the
stochastic perturbation theory (see Ref. 25 and below).

First, we must derive the Langevin equation in the lat-
tice gauge theory. It is shown in Appendix A (see also Ref.
4) that, in curved space of the fields, the Langevin equation
has the form

•= /"> (13.1)

where e"a (<p) are tetrads in the space of the fields, which have
the usual properties

pipba.— fMb o<ia<l a M 1 9 >Ka.K — ° , eaep — Sag' \*3-4/

As far as the random forces/" are concerned, they have
a Gaussian distribution because, in flat space,

(13.3)

In the case of the N XN unitary matrices U,, in which
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we are interested here, and which are assigned to the edges of
the lattice,2 the parameters <pa can be taken to
be, say, the components of the anti-Hermitian matrix
R = (U— \)(U+ — I)"1. For the moment, we shall not
specify <pa further because, in general, the equation is covar-
iant.

In group space, the part of the tetrads e"a is played by the
quantities

^^trfr-tf-'^-), (13.4)

where 7° are the group generators.
It is readily verified that the e" are invariant for left

shifts U-*AU, A= const, but for right shifts U^UB,
B = const, the e"a are subjected to the linear transformation

6 = " tr

which conserves the metric

(13.5)

" 'yTT^fr)- (1 3 '6>
Consequently, the volume element (Haar measure) is

(dU) = g1/2 dcp = (det e) drp. (13.7)

To obtain the Langevin equation (13.1) in a convenient
form, we use a locally flat coordinate system, i.e., we take U
in the form

(7 = C/o (1 -M S<p0 Ta)i (13.8)

where <pa are infinitesimal functions ofe. In this coordinate
system, e"a = 8"a and (3.1) is trivial:

fa |
at idt -= /"• (13.9)

All that remains is to express dU /dt in terms of d<pa /dt, and
then substitute <p = 0:

<"•>»>

This equation could have been guessed as the only equation
that is invariant (covariant) under the left (right) shift, and
transforms into the usual equation as £/-> 1 .

It is convenient to look upon the action 5 as a function
of the independent variables U,U + . Using the completeness
condition

(13.11)

(13.12)

we can then transform (13.10) to the matrix form

at

where

is an anti-Hermitian random Gaussian matrix and

(13.13)

The equation we have obtained is valid in all theories
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with U(AO matrices, namely, chiral, lattice gauge, and so
on, theories.

In lattice gauge theories, the action is

S= -
D

\x(VfJJJJJk + H.c.), (13.14)

where Ut, U2, U3, U4 correspond to the edges of a plaquette
and the sum is evaluated over all the plaquettes on the lattice.
This expression is bilinear in U, U +. The current J is readily
found:

/0>=_pWS
a

(13.15)

It is implied here that the variable J7, is varied. The sum is
evaluated over all plaquettes of edge 1 [the number of such
plaquettes is 2(D — 1), where D is the dimension of the
space].

It is readily verified that the current / is gauge-invar-
iant, i.e., it transforms like

r(l) ^ C~l /^") C / 1 "2 1 £\J —*-oi J >> i f (13.lo)

where the matrices t/are subjected to the gauge transforma-
tions

UK^Sj;liUkSi (*=1. 2, 3,4), S0 = Sk. (13.17)

We must now apply the reduction procedure to the ma-
trix Langevin equation. It will be convenient to write U, and
U ^ ( x ) , where x corresponds to a finite point on an edge and
H= ±1, ±2 ±D describes its direction. Similarly,
jrcn ( j ( n wilj be written as 3-^ (X) and j^ (x),

Exactly as above, the random white noise & can be
simulated with the aid of the frozen momenta p^:

(13.18)

All correlators of the form

N-* (tr . ..&(x*)) (13.19)

will be correctly reproduced as N-* oo. But, on the other
hand, (13.18) is a gauge transformation. Hence, the frozen
momenta can be removed by introducing corresponding
transformation of the fields

U H {Xf ^= € * "'rr pG ^ (ljt£\j)

yv
where x — p is the origin of an edge and x its end. The equa-
tion for Wp is independent of the frozen momenta:

at (13.21)

(13.22)

As above, it is, in principle, possible to introduce frozen
momenta through the initial conditions at t = 0. However, it
was noted by Okawa and Gonzalves-Arroyo17 that there was
another method that was much more effective and attrac-
tive.

In particular, we note that, prior to reduction, the fol-
lowing field transformation could be made in the lattice
theory:

U,-^Z,Ui, (13.23)

where Z, are the elements of the center ZN of the groups
SU(7V), i.e.,

„ liZnini \ . .Z, = exp | N J , m — integer. (13.24)

The product of matrices over a plaquette will then also ac-
quire a phase factor:

(U, U2 U, Ut) -* (U, U, U, Ut) Z (D). (13.25)

We can therefore introduce the phase factor Z(D) into
the action (13.14), without altering the essence of the the-
ory. The Bianchi identity

I |Z(D) = 1, (13.26)
cube

is a criterion for whether a phase factor Z(D) specified in
advance can be removed by a field transformation, the prod-
uct in (13.26) being evaluated over all the faces of the ele-
mentary cube (taking their orientation into account).

Since each face appears together with another face of
oppostie orientation, we can take, for example,

2nin (13.27)
-

u<v — '

and independent of the plaquette coordinate.
If we now perform the reduction, i.e., replace the matri-

ces U(N) with constants, the four matrices of a plaquette
will no longer be independent because opposite edges are
obtained from one another by a parallel translation and a
change of orientation

"*' (13.28)

However, this means that the phase factor Z(D) cannot be
removed after reduction by a transformation of the matrices
{/!, U2. In other words, there is a whole family of reduced
models with arbitrary phase factors Z(D) satisfying the
Bianchi identity. The original EK model corresponds to
ZMV = 1.

Which choice of ZMV is correct? Careful analysis has
shown10 that the best properties are obtained by solving
(13.21) with

n = N1'* — integer . (13.29)

When this is so, the reduced model reproduces both the
strong coupling expansion (series in powers of /?) and the
Faddeev-Popov perturbation theory (series in powers of
0-1).

Perturbation theory is reproduced in a very nontrivial
manner.18 The part of the momenta/^, is played by the pa-
rameters of the degenerate vacuum of the TEK model, i.e.,
the solutions of its classical equations

rrCl rTCl i
U (,(vv —

ClrrCl (13.30)

It then turns out that not only is the limit of infinite volume
reproduced in the limit of infinite TV, but the lattice system of
finite size Z, is reproduced for finite N = L2. Details of this
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beautiful construction can be found in Ref. 19.
Numerical calculations,20 obtained for TEK with the

Langevin equation (13.21), are in good agreement with, and
in some respects better than, the Monte Carlo calculations21

(see also Refs. 22 and 23).

14. STOCHASTIC PERTURBATION THEORY

The Langevin equation presents us with new ways of
advancing beyond perturbation theory. In particular, the
zero-order approximation can be taken to be not the classical
solution but the stochastic solution corresponding to the re-
duced model. In the zero-order approximation, this proce-
dure takes into account important group-compactness ef-
fects which we believe are responsible for quark
confinement. As N-> <x>, the zero-order approximation be-
comes exact, so that all the corrections tend to zero. We may
therefore expect that the stochastic perturbation theory will
be successful for finite N, including the N = 3 case in which
we are interested.

We shall not go into the technical details of the stochas-
tic perturbation theory and will confine ourselves to a few
words about the strategy of this approach:-The idea is to
divide the random force into two terms, the first of which
corresponds to the reduced model. It is well-known that the
sum of independent Gaussian random quantities is itself a
Gaussian, whose variance is equal to the sum of the var-
iances, so that the second term in the random force may be
looked upon as an independent Gaussian quantity with vari-
ance equal to the variance difference between the exact and
reduced models. All the correlators of this component of the
random force are then correctly reproduced because there
are no cross terms (both terms are Gaussian).

Now that the right-hand part of the Langevin equation
is written as the sum of a leading term and a perturbation, it
is quite clear how the perturbation theory is to be construct-
ed. The field must be represented by a superposition of a
main term and a perturbation, and the left-hand side must be
expanded into a sum of terms of different order. In the lead-
ing order, we obtain the linearized equation, and the higher-
order terms are expressed in terms of the Green's function of
the linearized equation. The result is a generalized diagram
technique.25

15. PROBLEMS AND PROSPECTS

Each time we manage to look at the fundamentals of the
theory in a new way, we expect some interesting applica-
tions. Stochastic quantization has now been available for a
few years, and applications to lattice gauge theories have
been found during that time. What else can be expected of
this approach?

1. First, let us compare this method with the well-
known Monte Carlo technique in the Metropolis variant.2 In
principle, the two methods give the same result, namely, a
random sequence of states satisfying the principle of detailed
balancing, which reproduces, on average, the Feynman dis-
tribution of probabilities exp(-action) of Euclidean theory.

However, the realizations of detailed balancing are dif-
ferent, so that the two methods augment rather than dupli-

cate one another. The main difference is that, in the Metro-
polis method, the states are not always accepted2': the system
may be stuck in a particular state for an arbitrarily long time,
if states of low transition probability are being offered. This
phenomenon is particularly hazardous in the quasiclassical
region when the states can be separated by a barrier. One
way of combating this is to vary the interval A0> of variation
of the field <p per step. It is advantageous to choose the inter-
val A<p large in the quantum region and small in the classical
region.

On the contrary, in the method of stochastic quantiza-
tion, the states are always accepted. From each state we con-
tinue in one step to a neighboring state which differs by the
amount A£>, which is calculated and not specified as an entry
parameter. This is a great advantage, especially in the quasi-
classical region. In particular, in contrast to the Metropolis
method, stochastic quantization leads directly to perturba-
tion theory. As far as instantons and other subbarrier transi-
tions are concerned, they are difficult to detect by numerical
methods in cases when they introduce small corrections.
However, when they are dominant, as, for example, in the
creation of chiral spinors, they can be reproduced in any
method by suitably choosing the boundary conditions.

Until recently, the Langevin equation was considered
to suffer from the defect that an exact difference scheme
could not be devised for it: when the derivatives are replaced
literally by finite differences, the precision is low because the
random force is discontinuous. However, this difficulty can
be overcome. Appendix C (see also Refs. 26 and 28) pre-
sents difference schemes for the Langevin equations.

Thus, as in the Metropolis method, it is possible to use
finite (although small) steps but, in contrast to this method,
to accept new states each time.

This explains the greater efficiency of the Langevin
equation, noted in the literature.20

2. The Langevin equation is usually written in Euclid-
ean space, in which it is real. However, generalization and
numerical implementation of the Langevin equation to the
Minkowski space is exceedingly important. Actually, when
this is done, it is possible to simulate processes in real time,
including the phenomenon of interference.

For example, consider the scalar field theory. When we
change the variables so that x4 = — it, T = /£, the Langevin
equation

(t! (x, T) TI (*', T ' ) > = 261 (x - x ) 6 (T - T') (15.2)

becomes the complex equation

(15-4)

(T, (r, f, £ )T | ( r ' , f , £') >

= 263 (r - r') 6 (t - t') 6 (£ - £')•

For the integrals with respect to g to converge in pertur-
bation theory, we must make the Feynman replacement
m2->m2 — ie. It is not difficult to see that f plays the same
part as the intrinsic time in the scalar particle propagator.

As far as the white noise 77 is concerned, it remains unal-
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tered because the factors ± / cancel out.
A remarkable property of the complex Langevin equa-

tion ( 15.3) is that it describes interference-type phenomena
that are inaccessible to the conventional Monte Carlo meth-
od. In fact, the Metropolis algorithm does not enable us to
generate states with complex probability exp(iS). Equation
(15.3) obviates this difficulty because the white noise re-
mains as the usual Gaussian noise with positive probability.
The complex unit factor in front of the term dtp /d£ is, in fact,
responsible for interference phenomena. This can be verified
by linearizing the equation near the classical solution.

While, previously, the deviations 6<p from the classical
solution were due to the addition of a large number of contri-
butions due to the real terms corresponding to the proper
modes fa of the linearized equation, the sum

t jt ) t d£'exp[- a (?-

(15.5)

is now complex. Moreover, while the deviations were then
restricted by convergence, i.e., the old values of the random
force 77 (g ' > f ) were "forgotten", this now occurs as a result
of interference between old and new terms.

It would be interesting to analyze, in terms of the com-
plex Langevin equation, the oscillations in K-meson beams,
the interference of photons, and other quantum-mechanical
phenomena. In principle, it should be possible to deduce
them, but it is not clear how this can be done.

3. The Langevin equation offers us a new possibility of
generalizing quantum field theory so that it can be "derived"
in some approximation from more fundamental laws. Of
course, here we enter the world of fantasy but, after the ad-
vances made in quantum field theory during the last few
years, this fantasy may serve as a stimulus to the creation of
realistic models.

The basic immutable law of quantum theory is the prin-
ciple of superposition, according to which each process is
characterized by a complex amplitude that is the sum of the
amplitudes of the alternative histories of the process.

On the other hand, in nature, linear processes are usual-
ly idealizations, and actual phenomena are nonlinear. Is this
the case in quantum theory? What if quantum theory is a
linearization of the equations of some more fundamental
theory, acting over differences of the order of the Planck
length?

We shall never know unless we try to construct at least a
rough model of this type of theory. If fact, the Langevin
equation presents us with a natural basis for this. In particu-
lar, we may suppose that this equation is an approximation
to a nonlinear dynamic system in which T (or f in Minkow-
ski space) plays the part of time.

This system should involve two types of variable, name-
ly, variables such as 77, which tend to white noise over large
scales, and variables such as <p, which become fields.

The fields <p are then not small, so that the equation in
terms of them is nonlinear, while the fields 77 are small, so
that the equation for <p can be linearized in 77. Schematically,

(15.6)

(15.7)

The coefficient B(cp} in front of 77 in the above equation can
be removed by transforming the fields <p, r\. Of course, the
essential point is that this should lead to a set of equations
such as (3.4), i.e., A (<p) should be a gradient of some func-
tional S(<p).

The dynamic mechanism responsible for white noise is
the most complicated aspect of this construction. In the sec-
ond equation, the variable 77 must be a random variable over
small scales, so that there are no correlations at large scales.
This is readily achieved in the case of ergodicity, i.e., the
solutions of the equation for 77 at constant q> (which varies
much more slowly) are distributed with a certain probability
distribution.

The Gaussian density

AW exp — j Crf

can arise naturally as in the central limit theorem of prob-
ability theory. For this, it is sufficient to have symmetry that
excludes terms linear in 77. Terms involving gradients and
time derivatives of 77 will be significant only at ultrasmall
scales, since they are of a higher order in 77.

These hypotheses become less strange when we recall
how white noise is generated by a computer. This can only be
done with a dynamic system, but one using discrete time.
The Gaussian numbers are expressed in terms of uniformly
distributed random numbers, produced recurrently using
formulas of the form

£„+, = {a?,, + b], (15.8)

where {...} represents the fractional part. A linear expres-
sion has been chosen in order to economize on machine time.
Stochastic behavior in a nonlinear equation can be generated
just as simply. This question has been examined in many
publications in the course of the last few years,30 but we shall
not discuss them here.

A further, nontrivial point is the averaging over the
Langevin time T (or f). The scale T (which is arbitrary!) is
usually chosen in the Langevin equation to be of the same
order as the scale of physical time. However, this may not be
appropriate to the matter at hand. In order to elucidate why
observable quantities in quantum field theory correspond to
averages over T, we must assume that the true scale of r (the
relaxation time) is exceedingly small. It is possible that this
is the Planck scale. We emphasize that, so long as we are
interested in averages, the scale T is arbitrary, so that there is
no conflict between the computer time and the Planck relax-
ation time.

It has not been our aim to construct a realistic model of
a nonlinear system that would generalize, say, quantum
gravity, at Planck scales. Our goal was much more modest,
namely, to draw the attention of researchers to the Langevin
equation which offers new prospects in quantum field
theory.

In conclusion, a few words about the literature devoted
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to stochastic quantization. Our list of references does not
claim to be exhaustive, especially since the subject is under-
going rapid development. A more complete reference list
can be found in Ref. 31, which also discusses the quantiza-
tion of spinor fields.

APPENDICES

A. The Langevin equation and the Boltzmann distribution

Consider a transition from the state q, — q^t) to
q\ = qt,(t + St) in time St. Since the random force has the
Gaussian distribution (3.5), the transition probability is
proportional to

Substituting from (3.4)

f In n'\ P gi~gi I dU (A.2)

and transforming to the variable q\ (the Jacobian is a con-
stant for St->0), we find that

dW(g^q')

Now consider the ratio
q')/dq'

AW(q'-+q)/Aq (A.4)

i.e., the ratio of direct and inverse transition probabilities.
In the leading order in q' —q~8t, we have only the

cross term in/f and we find that

AW (q -» q')llq' _ f 1 ., . dU
-

(A.5)

This is the essence of the situation. The probability ratio
is equal to the ratio of the Boltzmann factors. This is the so-
called principle of detailed balancing, which guarantees that
the ergodic theory is valid.

In fact, consider the change in the number dAr( q) of
particles with coordinates in the range qt + dqt in a time St.
Taking into account the arrival and departure of particles,
we have

(q) AW (q' -»• q) AN (q')

-AW(q-+ q') AN (q). (A.6)

This is the well-known transport equation. It is clear from
the transport equation that the equilibrium distribution of
the particle number is related to the transition probabilities

q->q") by the equation of detailed balancing
AW(q-»q') _ A N ( q ' )
AW (q' -»q)~ AN (?) ' (A.7)

When the probability distribution is known a priori, the
transition probabilities must be taken on the basis of detailed

balance. We can then be sure that the asymptotic distribu-
tion will be "as ordered."

It is interesting to note that there are not one but many
solutions for the transition probabilities corresponding to
the same equilibrium distribution. This is clear from (A.7)
because only the antisymmetric part in the exponent of
dW( q^-q") is bounded. The symmetric part cancels out in
the equation of detailed balancing.

The last remark is related to the covariant generaliza-
tion of the Langevin equation and the Boltzmann distribu-
tion. Let us suppose that we have a gas in curved space with
Riemann metric. It is convenient to work with the tetrads

£aB = S e a ( i ) e , ( i ) . (A.8)

(A. 1) We also introduce the reciprocal tetrads ea (/') such that

Instead of q,<( t ) , we shall write x^, which is more familiar in
the theory of gravitation. We recall that the "time" t is unre-
lated to x4.

It is clear from the derivation of the equation of detailed
balancing that the exponential in (A.5) will again converge
to U(x') — U(x) because of the orthogonality relation
(A.9).

At first sight, it would appear that the ea (i) are arbi-
trary in the Langevin equation. However, a more careful
analysis reveals that the Jacobian of the transformation from
/ to*

det Sfj (A. l l )

gives the correct volume element in dW(x-^x'), i.e.,

AV = (det ̂ p)1/2 A*x (A. 12)

but only when these tetrads are related to the metric (A.8).
Thus, we have derived the covariant Langevin equa-

tion, namely, the limit of (A. 10) when St = 0:

At (A.13)

(A.14)

B. Investigation of the Fokker-Planck equation

Consider the stochastic differential equation

T - - + C, (?) = /„ (B.I)

where/ are random forces with a Gaussian distribution,
which are correlated to a 5-function. If Ct(q) is the partial
derivative of some function U with respect to the iih coordi-
nate [C,- ( q) = dU/dqj ], we have the usual Langevin equa-
tion (3.4). We shall now find the equation for the probability
distribution

(B.2)
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where^ ( f ) is the solution of (B.I) . For simplicity, we con-
fine our attention to the case of one degree of freedom. Dif-
ferentiating P(x, t) with respect to time, and using (B. 1 ), we
obtain

(B.3)

We have replaced all the derivatives d /dq ( t ) with the deriva-
tive — d /dx because the 5-function depends on the differ-
ence x — q(t). We must now express ( f 8 [ x ~ q(t)]) in
terms of known quantities. Since/, is white noise, we can use
Wick's theorem

(B.4)

This is a somewhat unusual form of Wick's theorem.
However, the validity of (B.4) can be readily verified direct-
ly, e.g., by expanding the functional Finto a power series in/.
We can then write

The variational derivative of q(t) with respect to the random
force/ ( / ' ) is (l/T)0(f- t ' ) + 0(t - t ' ) . In the standard
regularization procedure (in the sense of the Fourier expan-
sion), this expression is equal to ( 1/T)0(0) = \T for t = t '.
This normalization is the same, as will be seen below, as the
normalization of / obtained in Appendix A on the basis of
detailed balancing. As a result, we have the following equa-
tion (so far, for a single variable)

This equation is readily generalized to a system with a
finite or infinite number of variables:

(B.6)

where

~S £[-&+'. < « > ] .
The original stochastic equation given by (B.I) can

then be written in the form

(B.7)

where

The operators L and L + are conjugates.
We now consider the special case where C, ( q) = dU /

dq, [this corresponds to the usual Langevin equation
(3.4)]. It is convenient to substitute P( q, t) — exp( — U/
2)P( q, t) in (B. 6). The function P( q, t) then satisfies the

equation

T, dP-= -HP(q, t), (B.8)

where

_ _ _ .i dqt T 2 dqi '

and H is a self-adjoint positive-definite operator. Equation
(B.8) is similar to the Schrodinger equation. The effective
potential energy is

The quantity P( q, t) can be expanded into a series in terms
of the eigenfunctions of the operator H:

P(q, 0 = S CB«-X"'<Pn (?), (B.9)

where the <pn satisfy the equation H<pn =An<pn. Only the
zero-order eigenvalue survives as t-* oo:

P (9, t) — ̂  <Po (9) exp ( — -g-).

It is possible to produce an explicit expression for the zero
mode:

(B.10)

In principle, there can be other zero modes satisfying the
equations

<?<Po + 0, Q+Q<(0 = 0.

For a finite number of degrees of freedom, quantum mechan-
ics shows that the vacuum is nondegenerate, which means
that the zero mode <p0 = exp( — C//2) is unique. We have
thus shown that, in the case of a finite number of degrees of
freedom, the limit of the probability distribution function for
t-> oo is identical with the Boltzmann distribution
exp( — U).

Vacuum can be degenerate for an infinite number of
degrees of freedom and this is, in fact, the case in gauge the-
ories. The limit of the distribution function is then found to
depend on the initial conditions. This is precisely as expected
since the integration measure (distribution function) in
gauge theories depends explicitly on the chosen gauge.

Let us now examine in greater detail the properties of
stochastic quantization in gauge theories.

It is reasonable in gauge theories to consider the aver-
ages not of arbitrary functionals but only of the gauge-invar-
iant quantities 4> [a ]:

G°O==Of (B. l l )

where G" are the generators of gauge transformations:

Ga(x)=
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The average of a gauge-invariant functional can be written in
the form

We have explicitly shown the dependence of the distribution
function on time by "solving" the Fokker-Planck equation
for P(A, t); the quantity P(A, 0) is the initial probability
distribution. The effect of the operator L + can be "trans-
ferred" to the functional 4>(^4 ) by integrating by parts:

<0> (t) = P (4,0)e-« DA. (B.13)

We now use the fact that <t> [A ) is a gauge-invariant quantity,
so that

= \ [

This means that, instead of the usual Langevin equation
(7.4), we can write

dAy
dt

In terms of the original notation, we then have

(B.15)

(B.16)

This equation is of the same form as (8.1) except that J^ is a
random current with a Gaussian distribution, correlated to a
<5-function, whereas the field correlator K^ has a nontrivial
form [see (8.2)].

Equations (8.1) and (B. 16) are different, but the aver-
ages of the gauge-invariant quantities evaluated with them
are identical. We thus encounter a situation that is familiar
in the quantum theory of gauge fields: there is an infinite
number of different integration measures in the functional
integral (corresponding to different ways of fixing the
gauge), but the averages of the gauge-invariant quantities
are equal.

C. Difference Langevin equation

It was shown in Appendix A that the differential Lange-
vin equation follows from detailed balancing in the leading
order in the time step A?. The question is: is it possible to find
the higher-order difference equations from the relation for
detailed balancing?

To begin with, we shall seek the difference Langevin
equation in an implicit form:

cp' _ cp _ MF (cp', cp) = T],

<P = <pn; <p' = fpn+i; (C.I)
where rj is the Gaussian noise with variance 2Af and F(<p',
^) is an unknown function which we shall assume to be sym-
metric under the interchange of the arguments.

The Gaussian distribution

(C.2)

can be treated as the transition probability dW( <p-*<p') by
expressing rj in terms of q>' using (C. 1):

Thus,

Detailed balancing (A. 5) (in our notation)
sumes the form

A(pF (cp',cp) = -AS (cp) + A0> (cp', cp),

<D(<p , «p') = In (1- At -!£-),

where

) = 5(cp')-5(cp),
AO (cp', cp) = O (cp', cp) - cD (<p, cp').

(C.3)

(C.4)

now as-

(C.5)

(C.6)

(C.7)

The right-hand side of (C.5 ) can be rewritten in the form of
the integral

~ t i Aq> — <p—(p, = cp + A,-^, cp.-=-^-5^-

Cancelling A^>, we then obtain
i

d*F
)]• (C.9)

This equation can be iterated in Ar and A^>. It must be re-
membered in these iterations that A<p~ ( Af ) l / 2 because the
variance of the random force is ~ A/.

In the first order in A? and, correspondingly, in the sec-
ond order in A<p, we find that [terms ~Af cancel out in
(C.9)]

F (q>, cp') =-S' (?) - ~-

To the same degree of precision, we have

S'" (9) + 0 ((At)*). (C. 10)

cp')). (C.ll)

The discrete Langevin equation (C.I) can now be re-
duced to the equation for A#> with fixed <p:

We now introduce the four successive iterations:
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Fh = -dkS (cp) + O ((At)2). (C.20)

A<p4 = Acp, --£- [5' (cp) + 5' (9 + Acp2)

By construction, A^4 satisfies the Langevin equation to
within (A/)2~(A0>)2Af~(A0?)4, inclusive. It is not diffi-
cult to construct higher-order schemes by iterating the de-
tailed balancing equation (C.9).

We note that the usual Runge-Kutta scheme cannot be
used for the stochastic equation because it presupposes the
existence of a certain number of derivatives of the right-hand
side of the equation.

The above equations can be readily generalized to an
arbitrary number of degrees of freedom cp ' and the field
cp' (x). It is sufficient to replace the derivatives in (C.9) with
the corresponding partial (functional, in the case of fields)
derivatives, and the logarithm with the trace of the loga-
rithm of a matrix (operator, in the case of a field). In parti-
cular, the equations in (C.13) remain unaffected when
5'( cp) is understood to be SS /Sep.

Generalization to a curved <p-space is somewhat less
trivial. In this case, instead of (C.I), we must write the fol-
lowing covariant equation

P', <p) = n\ (C.14)

(C.15)A'q> = JdqX»«i(q>) ,

where e'a (<p) are tetrads, if is a Gaussian random variable
with variance 2 Af, and F' is the symmetric function of <p', <p
which is being sought. The integral in (C.15) is evaluated
over a geodesic between q> and cp'.

Equation (C.5) transforms to

A'cpF' (cp, <p') = S(<p)-S (cp') + O (q>', cp) - (D (cp, <p'),

(C.16)

The equation can be reduced to a form convenient for itera-
tions by differentiating with respect to cpa and multiplying
by — e°. Since

(C.18)

the term Fk (cp ', cp) is found to appear. Taking the other
terms onto the right-hand side, we find that
[ d l = E f ( c p ) d / d c P t , d ' i = e f ( c p ' ) d / d c p ' t }

— A* (6— btdF)-j\d,dkF
l. (C.19)

To within terms ~ Af ~ ( Af )2 inclusive, all that remains is
the first row

Differentiating (C.I9), we obtain the equation for the deri-
vative d, F k =Fji

F ? = ••" djdtS — F b —1— &*(DO]F b • (f 21 ^,1 v lv H" ,t I T I »« \ ^"** * /

Taking the term —F\k into the left-hand side, we find
in the leading order

1 (C.22)

where the terms containing [dk d, ] have the highest order of
small quantities. In (C.20), we find that

.., (C.23)

. (C.24)

The geometric interpretation of this formula is that the geo-
desic between cp and <p ' contains the midpoint cp, which is
equally distant from cp and cp ' and is the covariant analog of
(<p + <p")/2. The symmetry between cp and cp ' means that,
with this choice of cp, the next correction begins with ( A^?)2,
as in the flat case (C. 10) . In principle, this correction is not
difficult to calculate but we shall not do so here.

D. Reduced white noise

Averaging over the traces of a product of random forces
using the ansatz (10.6) leads to the same results as averaging
with ordinary white noise to within terms of the order of
I/TV.

As an example, consider the normalized two-point
correlator

t)r\(V, T)> = 2 -ST

* , }

= 2 -j}r <ex? I* (Pi- Pi) (*-.</)! l" (0 (D.I)

The momenta/?, are uniformly distributed in a cube of size
27rA(A=l). Consider the terms with i^j in (D.I):

A"
<trT|(*,

X ( x - y ) ] + f f ]

For the four-point correlator of random forces, we have

f , )T) (y , t t ) r \ ( z ,

= S ̂
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down with the aid of the Wick theorem:

S lp
i, ;', ft, I

— x) + pk(z-y)

+ Pi (to — z) eo)]}

« (f

By evaluating this expression, we obtain

(D.4)

ijl
(2n.\)

^-[exp {i [pj (a: — w + z — (/)]

(to — z)}exp[ip;(i/ — a:)]]

i, i, h, I

x S

+ i/?, (a: — CD)} exp [ipk (z — (/)]]

(D.5)

The (5-functions appear, as usual, as a result of integration
with respect to the momenta. When the indices of the mo-
menta in the exponential are different, we obtain the leading
contribution to the expression for the average. When, on the
other hand, some of the indices are equal, the resulting terms
are of the order of \/N. A similar discussion can be given for
the average of an arbitrary ( even ) number of random forces.

"This will be examined in greater detail below.
2 The problem of acceptance of offered states is solved with the aid of a

random number generator.
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