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The MHD theory of the equilibrium and stability of the plasma in a stellarator is set forth.
Various ways to develop magnetic configurations of the stellarator type are examined. The
basic characteristics of the devices presently in operation are reported. The method of
averaging over the rapidly varying spatial variable is described. This method is used to study
the plasma equilibrium and also the stability with respect to current-driven kink modes and
ballooning modes. The limiting plasma pressure, determined jointly by the conditions for
plasma equilibrium and stability, is discussed. Methods for raising this limit are described. The
present state of the theory of the MHD equilibrium and stability of plasmas in stellarators is
summarized. The basic problems for further development of this theory are outlined.
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1. INTRODUCTION
Significant progress has recently been made in research

being carried out with the ultimate goal of achieving con-
trolled thermonuclear reactions with magnetic confinement.
The basic thrust of this research has been in tokamaks,
which have yielded the most impressive experimental results
and for which we have reached the best understanding of the
physics underlying the events which occur in the plasma.
Nevertheless, there is still the possibility that final success in
the solution of the cbntrolled-fusion problem may be
reached by a different approach. One of these approaches is
the stellarator: a closed magnetic confinement system in
which a plasma is confined by fields produced by currents
flowing in external conductors. The basic advantages of the
stellarator are that it does not require excitation of currents
in the plasma and that it can operate in a steady state.

The stellarator program has made significant progress
in the last few years. In fact, the progress on both the experi-
mental and theoretical fronts has been so significant that
stellarator systems are already receiving serious attention as
one version of a fusion reactor.

The magnetic confinement system used to confine a hot
plasma must obviously keep the plasma at equilibrium (and
must do so in such a way that the equilibrium is stable with
respect to small perturbations) and must keep the losses of
particles and of energy at acceptably low levels. The loss
from a confinement system is determined by the rates of dif-

fusion and thermal conductivity; the analysis of these pro-
cesses is the subject of the theory of transport processes. We
will not be discussing that subject in the present paper; we
direct the interested reader to, for example, one of the recent
reviews.' We restrict the present paper to the first two prob-
lems: the theory of MHD equilibrium and stability of a plas-
ma. For each of these problems, we attempt to determine the
present state of aifairs and to identify the most important
questions at this point.

We will be discussing only stellarators1' with a circular
plane magnetic axis. We will not consider systems with
three-dimensional axes, such as the ASPERATOR,2 the
DRAKON,3 and the HELIAX,4 which are extremely inter-
esting but have not been studied adequately, either theoreti-
cally or experimentally. In §2 we discuss methods for pro-
ducing stellarator magnetic configurations, and we list the
basic parameters of such configurations.

One factor which has delayed the development of a the-
ory for plasma confinement in stellarators is the fact that
these systems are not axisymmetric, so that the problems are
three-dimensional. It is accordingly important to develop
methods, both analytic and numerical, capable of dealing
with the particular features of plasma confinement in three-
dimensional magnetic fields. In §3 we outline the basic ap-
proaches to research on various aspects of MHD confine-
ment of plasmas in stellarators.

It had earlier been assumed that the joint satisfaction of
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the conditions for equilibrium and stability of a stellarator
plasma would limit the value of/3= 8irp/B2—the ratio of
the plasma pressure, averaged over the cross section, to the
pressure of the magnetic field—to something less than 1 %
(a magnetic confinement system of the stellarator type
would be of practical interest as a possible prototype fusion
reactor only if a reasonably dense plasma with/?~ 5% could
be stably confined in it). However, a recent theoretical work
has refuted that opinion and has demonstrated that a plasma
with/?~ 10% can be stably confined in a system with practi-
cally feasible parameter values. Questions pertaining to the
determination of the limiting plasma pressure are discussed
in §4 (equilibrium) and §6 (stability).

There has been essentially no experimental work on the
confinement of a high-4? plasma in a stellarator. The results
set forth in these sections are therefore of interest primarily
for predicting future experiments and for choosing the best
magnetic configurations for confinement systems of the fu-
ture (including reactors). On the other hand, many experi-
ments have been carried out on the current-driven kink
modes which are responsible for the presence of a longitudi-
nal current in the plasma; this current has recently become
the basic approach for producing and heating the plasma.
The theortical research on the current-driven kink modes in
a stellarator is the subject of §5 of this review. In the same
section we will discuss several experimental results obtained
from various devices but only to illustrate the basic theoreti-
cal positions, since a review of the theoretical work is not a
basic purpose of this review. A detailed discussion of the
experiments which have been carried out in devices of the
stellarator type can be found in, for example, the reviews in
Refs. 5 and 6 and a recently published monograph.7

In the Conclusion we summarize the present state of the
theory of the MHD equilibrium and stability of a plasma in a
stellarator, and we outline the basic directions for further
development of this theory.

A few words are in order regarding the bibliography at
the end of this paper, for which we make no claim of com-
pleteness. We have attempted to reflect in this review pri-
marily those studies which have yielded results of funda-
mental importance or studies which are of interest from the
methodological standpoint. The choice of the latter studies
is of course colored by the particular tastes of the authors.

2. MAGNETIC CONFIGURATIONS OF STELLARATORS

The stellarator magnetic confinement system was first
proposed back in 1951 by Spitzer,8 who showed that if a
toroidal solenoid is twisted into a figure-eight the resulting
magnetic configuration will have nested magnetic surfaces
with a nonzero rotational transform (which cancels, on the
average, the drift of particles due to the nonuniformity of the
magnetic field). Koenig9 proposed yet another way to pro-
duce a vacuum rotational transform. In devices of this type,
which we will call the "classical stellarator," the longitudi-
nal magnetic field is produced by a solenoid winding, while
the rotational transform is produced by a current flowing in
HO pairs of helical conductors wound on the surface of a
torus. The currents in adjacent conductors are equal in mag-
nitude and opposite in sign (Fig. 1).

Coils producing
longitudinal field

Helical conductors

FIG. 1. A stellarator (schematic drawing).

To get a better understanding of the basic properties of
the magnetic configuration which is produced in a stellara-
tor, we first consider the graphic case of a straight stellara-
tor, i.e., a system with helical symmetry. In this case the
irrotational magnetic fields can be described by a scalar po-
tential <I>M , which depends in a cylindrical coordinate sys-
tem (r,<p,z) on only two variables, namely, r and a> = <p
— Ns/n0. We also assume that the expression for $M con-

tains only a single harmonic of <a:

where s = z/R0, R0 = L /2-ir, L is the length of the system,
B0 is the static longitudinal field, N is the total number of
periods of the helical field, en0 is a constant, In0 is the modi-
fied Bessel function of index n0, and a = N/R0n0. Strictly
speaking, the magnetic field produced by the current flowing
in n0 pairs of helical conductors («0 is a "multipolarity" )
contains an infinite set of harmonics. Far from the current-
carrying conductors, however, the approximation of a single
harmonic is often competely justified.

Since the magnetic field is helically symmetric in this
approximation, the system of equations of a line of force,

has the exact integral

A, o cos

— --B0a.a^ = const, (2.3)

where Az and Av are components of the vector potential
(B = curl A); the prime means differentiation with respect
to r; and av is the mean radius of the magnetic surface (Fig.
2 shows schematic intersections with a z = const plane of the
magnetic surfaces for stellarators with n0= I , 2, and 3).
There are two types of magnetic surfaces: those which close
around the magnetic axis of the sytem and those which close
around the helical conductors. The surface which separates
these two families is the "separatrix." The n0 = 1 case is a
somewhat special case in that with «0 = 1 the magnetic axis
of the system is a three-dimensional curve. At «„ > 1, there is
an elliptical singular point at the origin in a z = const cross
section, and the z axis is the magnetic axis of the system.
Furthermore, there are «0 hyperbolic points, which form n0

helical axes: edges of the separatrix which lie opposite the
helical conductors through which the current is flowing in
the direction opposite the direction of the longitudinal mag-
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FIG. 2. Intersections of the magnetic surfaces with a
2 = const plane for systems with helical symmetry and with
na= 1,2, and 3.

netic field. In order to determine unambiguously the behav-
ior of a line of force on a magnetic surface it is necessary to
find the second integral of system (2.2). This integral can be
expressed in quadrature,10 but the equations found as a re-
sult are extremely complicated. Morozov and Solov'ev10

have accordingly suggested using an approximate method,
an averaging method, to find a second integral. The averag-
ing method of Ref. 1 1 is actually a convenient change of
variables which causes all the quantities in system (2.2) to
become the sums of two parts: r — av + f, tp = (<p ) + <p.
Here the tilde marks a quantity which oscillates rapidly
along a line offeree, while the angle brackets denote an aver-
age over the period of the rapidly alternating magnetic field.
Here we have ( r ) , (<p) =0. The oscillating terms are found
through a direct integration over the rapidly varying spatial
variable, and the problem is thereby reduced to one of find-
ing the average quantities from a system of equations which
incorporates terms found by taking an average of the even
powers of the oscillating quantitites. In particular, the aver-
aging method makes it a simple matter to find the equation
of a line offeree within terms of order up to e* inclusively. In
this case we find

cos

= Ts — en (2.4)

In the case x ̂  1 we find from (2.5 )

where r* is the rotational transform (divided by ITT) of the
lines of force which lie on the surface with the average radius
av:

(2.5)

2.6)

It can be seen from (2.6) that only fields with n0 = 1 and 2
produce a nonzero angle of the rotational transform at the
magnetic axis, and this angle increases monotonically with
distance from this axis. For systems with n0 = 1 and n0 = 2
it is possible to produce a magnetic configuration with a
nearly constant angle of the rotational transform, if the con-
dition ngaa[im < 1 holds, where alim is the mean radius of the
limiting magnetic surface.

The asymptotic averaging method used above is not ap-
plicable near the separatrix, there the rotational transform
approaches N/n0, which is the number of pitches of the heli-
cal windings along z, and it is not possible to separate the

quantities in system (2.2) into slowly varying and rapidly
oscillating parts. For this reason, although the averaging
method is formally valid, at av <am (am is the mean radius
of the separatrix) a good agreement is observed at values up
to10 av 5am/2, as is shown by a comparison of the value of
T* found from (2.5) with the results of numerical calcula-
tions based on the exact equations. In cases of practical inter-
est, toroidal effects, various perturbations, etc., will disrupt
the helical symmetry, with the further consequence that the
separatrix becomes split.12"14 The inner "branch" of the se-
paratrix bounds the region of surfaces which are closed
around the magnetic axis,2' while the outer branch bounds
the region of magnetic surfaces which are closed around the
current-carrying conductors. Between these branches there
is a subfamily of magnetic surfaces which are formed at the
position of the previous separatrix and which envelop both
the helical currents and the magnetic axis and thereby pro-
duce a natural diverter layer (Fig. 3).

A magnetic configuration characteristic of a classical
stellarator can also be produced in a confinement system
which is simpler from the engineering standpoint and which
has been called the "torsatron."15 In a torsatron, the mag-
netic surfaces are produced by means of n0 helical conduc-
tors in which the currents are flowing in the same direction;
these conductors replace both the solenoidal winding pro-
ducing the longitudinal magnetic field and the 2n0 helical
conductors which produce the rotational transform and the
shear (i.e., the crossing of the magnetic lines of force) in the
conventional stellarator. Since the currents are flowing in
the same direction in the toroidal geometry, a magnetic field
appears perpendicular to the plane of the torus. This field is
usually cancelled by a system of annular conductors.

Yet another cancellation method is to wind the current-
carrying conductors in a special way on the surface of the '
torus,16'17 so that the vertical magnetic field vanishes at the
axis of the system without an auxiliary cancellation system.
Gourdon et al.l6 call this confinement system the "ultimate
torsatron" because of the extreme simplicity of the current
system.

We have looked at several systems in which the vacuum
magnetic surfaces are produced by helical currents. There
are, on the other hand, several other ways to produce analo-
gous configurations, in particular, by using a set of discrete
magnet coils of special shape. This approach was first sug-
gested by Popov and Popryadukhin,18 who suggested pro-
ducing helical magnetic fields by means of a solenoid whose
turns are "cranked up" with distance along the geometric
axis of this system and have the shape similar to that of the
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Helical conductors

FIG. 3. Splitting of the separatrix in a torsatron in the case
of disruption of the helical symmetry by finite toroidal
effects.63 I—Magnetic surfaces which are closed around
the magnetic axis of the system; II—transition region;
III—magnetic surfaces which are closed around the cur-
rent-carrying conductors.

Internal branch
of separatrix

magnetic surfaces which are required (coils of elliptical
shape are required for producing an n0 = 2 field; triangular
coils for an «0 = 3 field; etc.). Since the efficiency at which
the rotational transform is produced in a system of this sort
has turned out to be too low, it has been suggested18'19 that T*
be increased by using an auxiliary solenoidal winding to
weaken the longitudinal magnetic field.

More effective from the standpoint of maximizing the
rotational transform is the approach of replacing the plane
conductors by three-dimensional current rings20 twisted, for
example, into a shape with r = r0, z = d cos n^p (Fig. 4),
where the constant d is a measure of the level of the modula-
tion. At «0>2 we find a configuration with a nearly plane
magnetic axis. If we use a coil with a more complex modula-
tion, e. g., z = 2jdj cosjngtp, and choose the harmonic am-
plitudes dj appropriately, we can produce an extremely wide
range of magnetic configurations, in particular, some with a
rotational transform significantly larger than can be
achieved in the case of the single harmonicy = 1 (Ref. 21).

All the large experimental devices in operation today in
which the magnetic configurations have plane axes use heli-
cal conductors, while the systems using module coils are not
yet out of the design stage (there is the widespread belief that
systems consisting of separate coils will be better for future
reactors, so that malfunctioning parts can be replaced with-
out dismantling the entire apparatus).

A circumstance which has contributed to progress in
the stellarator program is that all the large experimental de-
vices in operation today use markedly different magnetic
configurations. This approach has made it possible to exam-
ine a large number of possibilities and to determine the basic
physics underlying the behavior of the plasma confined in
systems with different properties. For reference we list here
the parameters of the largest devices in operation today.

One way to achieve a topologically stable vacuum mag-
netic configuration3' is embodied in the W-VIIA device (in
West Germany,22 with «0 = 2, r*<0.55, N = 5, R0 = 200
cm, ap = 9.0 cm, where ap is the mean plasma radius). The
rotational transform T* ̂  n/m remains essentially constant
over the cross section of the plasma column (the integers m
and n characterize the periodicity of the most probable per-

turbations along the minor and major circumferences of the
torus).10'23 The same principle is embodied in the JIPP-T2
device (in Japan,24 with R0 = 91 cm, ap = 14 cm, n0 = 1,
Ar=4,andr* = 0.14).

Another principle underlies the development of sys-
tems with a large shear ("shear" means a crossing of lines of
force in such a manner that the inclination of a line of force
changes at a transition from one magnetic surface to an-
other). Although the number of possible resonances is large,
the dimensions of the resulting magnetic islands can be kept
quite small.

It is widely believed that a zero angle of the rotational
transform at the axis would be undesirable, since this cir-
cumstance would lead to a splitting of the magnetic axis be-
cause of toroidal effects and to the appearance of magnetic
islands. Accordingly, the n0 = 3 Uragan-3 torsatron with a
diverter [Physicotechnical Institute, Khar'kov, USSR,25

with «0 = 3, TV =9, r*(0)<0.25, r*(ap) =0.6, R0 = 100
cm, and ap = 15 cm] has provision for producing a nonzero
rotational transform at the axis of the system by means of a
transverse external field.

In the n0 = 2 L-2 stellarator [ Institute of General Phys-
ics, Moscow,26 with «0 = 2, N= 14, RQ = 100 cm, ap

= 11.5 cm, r*(0) =0.2, andr*(ap) =0.78] the angle of
the rotational transform at the axis is not zero, and there is a
moderate rotational transform at the edge: r* < 1. The He-
liotron-E (Kyoto University, Japan)27 is the largest device
presently in operation. This is a system of the torsatron type
with an auxiliary solenoidal winding which makes it possible

c
I

FIG. 4. Module coils which produce (a) n0 = 2 and (b) n0 = 3 helical
fields.
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to change the angle of the rotational transform by a factor of
(1 + /!,), where h lies in the interval - 0.3<A,<0.3. The
chamber of the Heliotron-E has a nearly rectangular cross
section and rotates with a pitch equal to that of the helical
winding. The Heliotron-E has a very large angle of the rota-
tional transform [r*(0)=0.5, r*(a p )=2 .5 at ht=0,
R0 = 220 cm, ap -15x30 cm, N= 19, and n0 = 2], main-
taining the traditional thrust of the research carried out at
Kyoto University, dating back to the Heliotron D and DM
devices.28 (A magnetic confinement system of the heliotron
type had been proposed and studied by Uo29 before torsa-
trons were developed.15)

In the following sections of this review we will examine
several examples which will make it possible to estimate the
parameters of the equilibrium plasma which can be confined
without driving MHD instabilities in the systems of the
types considered.

3. THEORETICAL METHODS FOR STUDYING PLASMAS IN
STELLARATORS

The need to study the equilibrium and stability of a plas-
ma confined in a three-dimensional (three spatial dimen-
sions) magnetic field has led to the development of several
specific methods. Historically the first asymptotic method
proposed for studying the equilibrium and stability of the
plasma in a stellarator was the method of the so-called stel-
larator approximation, developed by a group of theoreti-
cians at Princeton University.30"33 The stellarator approxi-
mation is based on an expansion in several small parameters:
e = |Bst \/B0, which is the ratio of the amplitudes of the heli-
cal components of the magnetic field to the toroidal compo-
nent; rn0/N, where T is the total angle of the rotational trans-
form, and na/N is the ratio of the multipolarity to the total
number of periods of the helical field; 6 = ap/R0, which is
the toroidal ratio; BJ /B0, is the ratio of the magnetic field
produced by the currents flowing through the plasma to the
longitudinal magnetic field; and 13, the ratio of the plasma
pressure to the magnetic pressure. The procedure used here
is extremely similar to the averaging method. The set of
small parameters of the stellarator approximation was also
used in Refs. 34—37, where the longitudinal coordinate was
eliminated through a special change of variables. These
methods have both been used to study the equilibrium of a
plasma and its stability in the linear approximation.

A more general problem was solved in Refs. 38-40, and
a system of average equations was derived which reduced the
problem to one of studying the axisymmetric case (so that it
automatically becomes possible to call upon the entire ar-
senal of methods which had been developed previously for
studying tokamaks). That system of equations can be used
to solve a variety of problems, e. g., problems involving equi-
librium, stability, and nonlinear processes. Strictly speaking,
the advantage of this method over other methods stems from
the circumstance that a universal system of average MHD
equations is in place, ready to be used to solve specific prob-
lems. There is a convenient method for generalizing the re-
sults found previously for tokamaks to the case of a stellara-
tor. A similar method was used in Refs. 41 and 42.

As we have already mentioned, the averaging meth-
od10'11 is a special change of variables. We can see the essence
of this method as it pertains to the case at hand. The stellara-
tor is a magnetic confinement system in which the plasma is
confined by means of a strong, axisymmetric magnetic field
and a weak magnetic field which varies rapidly along a line
of force (Fig. 5). It is thus natural to assume that all quanti-
ties characterizing the plasma can be written as the sum of
two parts, e.g., X= (X) +X, whereof is an arbitraryquanti-
ty to be determined from the MHD equations, and (X) =0.
The angle brackets mean an average over the toroidal vari-
able along which the system is periodic.41 Making a similar
change in the unknown functions, we then find that the num-
ber of equations is doubled, but the oscillatory terms can in
principle be calculated in any order in E through a direct
integration over the rapidly oscillating spatial variable.
Average quantities, on the other hand, are found from a sys-
tem of equations which incorporates terms which rise upon
averaging of the squares or higher even powers of the oscil-
lating quantities. The system of average MHD equations is
as follows (for convenience, we are omitting the symbols
denoting averages)38^10:

P TE- = - VP + 4- IJB] + 4 [»[BVXp]],

rot(B —B*)*) = -J, divB = 0, r o t E = — — -

= B T +B e x

¥* =

, fl
h = -s—, • ' , Bst =

(3.1)

Si'

FIG. 5. Variation of the strength of the magnetic field along a line offeree
in a tokamak (a) and in a stellarator (b) .
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where TV, (/ = 0, 1, 2,...) are integers satisfying Nt+l > Nt;
and we are assuming 7V0> 1 and d&M/ds$>d&M/d<p. If <bM

is helically symmetric, i.e., if

the quantity B * is expressed in terms of the stellarator angle
of the rotational transform,

where/o, p, and v are the plasma density, pressure, and veloc-
ity; E is the electric field; y0 is the adiabatic index; J, a\\ , and
0-j are the current density and the longitudinal and trans-
verse conductivities; R is the major radius of the torus; and
R0 is the radius of the geometric axis of the torus. We denote
by B the resultant magnetic field, where BT is the vacuum,
axisymmetric, longitudinal magnetic field (BT =B0/h,
where.B0 = const) ; Bex is the sum of the axisymmetric exter-
nal fields (e.g., the multipole magnetic field used to correct
the magnetic axis of the system); EJ is the magnetic field
produced by the currents flowing through the plasma (in
particular, by the ohmic-heating current and the diamagne-
tic currents); and, finally, B* is the "effective" magnetic
field5' characterizing the average effect of the helical compo-
nents of the magnetic field on the plasma. The quantity ** in
(3. 1 ) is the poloidal flux of the effective magnetic field, di-
vided by 2ir (in the absence of the fields Bex and By, the
equality ** = const determines the equation of the average
magnetic surface in vacuum).

In writing the average equations we have, for definite-
ness, used the quasitoroidal coordinate system r, <p, s (Fig.
6), in which the square of an arc element is given by the
following expression:

(dZ)2 = (dr)2 + (r dcp)2 + (R ds)2, (3.2)

where s is the angular coordinate along the major circumfer-
ence of the torus, r and <p are polar coordinates in the
s = const plane, R = hR0, h = 1 + kr cos <p, and k — \/R0 is
the curvature of the geometric axis of the system. There are
two important points to be noted. In deriving (3.1) we used
the approximation of small toroidal effects only in deriving
the average corrections to Ohm's law, in order to shorten the
extremely lengthy procedure of calculating these correc-
tions. The other average equations hold in an arbitrary order
in the toroidal effects. Finally, to put the equations in a more
compact form we have ignored terms of the order of e2 in

FIG. 6. Quasitorioidal coordinate system.

348 Sov. Phys. Usp. 29 (4), April 1986

comparison with unity where this step would lead to a simple
renormalization of average quantities. We recall that the
averaging method is only a convenient change of variables.
In those cases in which it is necessary to find a complete
(three-dimensional description of some process, it is suffi-
cient to add to the solution of average equations (3.1) an
expression for the rapidly alternating part. An explicit
expression for this part is available.38 However, for a wide
range of problems, including, in particular, many involved
in research on the equilibrium and stability of plasmas in
stellarators, as we will see below, taking into account the
rapidly alternating part is superfluous. Consequently, we
will not reproduce here the expressions for the rapidly alter-
nating parts; those expressions are lengthy and not graphic.
We also note that the system of average equations applies to
those cases in which all quantities vary slowly along a line of
force of the average field. Since the rapidly alternating field
Bst may in general contain several harmonics with different
periods along s (jBst ~2, exp(jNjS), the condition for the
applicability of the average equations is written in form

\N,-Nt\} for

where X is an arbitrary quantity, and d /dl is the derivative
along a line of force of the average magnetic field:
<?/<?/ =|B ~'(BV).

The use of the system of average equations thus sub-
stantially simplifies the problem, which reduces to a study of
the axisymmetric case. For axisymmetric systems — toka-
maks — many programs have now been developed for nu-
merically solving problems which arise in the study of equi-
librium and stability. Since problems of this type are
generally extremely laborious, requiring much computer
time, it is customary to replace the complete system of vector
MHD equations by a simpler system of scalar equations,
which is constructed with the help of a set of small param-
eters. The basic parameter is \BL \/B0, the ratio of the trans-
verse components of the magnetic field to the longitudinal
magnetic field. In this model there are no stable magneto-
sonic waves with phase velocities y A = B^/ ( 4irp ) ' ' 2 , and the
limitations on the time step are accordingly relaxed. The
system of simplified nonlinear equations was first used to
describe a cylindrical axisymmetric plasma column by Ka-
domtsev and Pogutse.43 Several later studies (see, e.g., Refs.
44—46 and the bibliograhies there) have incorporated finite-
pressure effects and toroidal effects.

A simplified system of equations analogous to the Ka-
domtsev-Pogutse equations for a tokamak, which is valid in
first order in the toroidal effects and which is convenient in
particular for numerical calculations and a nonlinear analy-
sis of stability in a stellarator, was used in Refs. 41 and 42. A
system of simplified average equations incorporating finite-
pressure and toroidal effects more accurately than in Refs.
41 and 42 was derived in Ref. 40 (see the Appendix). The
finite-pressure and toroidal effects are important in, for ex-
ample, an analysis of the "self-stabilization" of a plasma and
the effects of the toroidal nature of the system on equilibrium
and stability. .

All the approaches outlined above have made use of an
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expansion in the square amplitude of the helical field. There
is yet another method, first proposed by Mercier47'48 and
used in several studies,49"52 which uses an expansion in pow-
ers of av, the distance from the magnetic axis. This proce-
dure makes it possible to separate variables in the system of
differential equations which arises. In a study of the plasma
in a toroidal stellarator there are actually two independent
expansion parameters, kav and n0aav (the second expan-
sion parameter is unrelated to the curvature, stemming en-
tirely from the period of the helical field). The series which
arise in the expansion in the parameter N^pta^ converge
quite well, so that the procedure can be used even in the case
n0aav > 1 [the formal reason for this circumstance is that
one is forced to expand terms ~/n0 (naaav ), where/n0 is the
modified Bessel function; for example, an error of the order
of 1 % is achieved when the Bessel function I2 (x) at x = 2 is
approximated by only the first three terms of the series].
Certain difficulties arise when this method is used because it
is necessary to know the exact shape of the magnetic axis;
this shape depends on the structure of the vacuum magnetic
fields, the plasma pressure, the boundary conditions, and so
forth.

So far, we have been discussing the use of several
asymptotic methods to study plasmas in stellarators. In re-
cent years, progress in computation technology has made it
possible also to carry out some direct three-dimensional cal-
culations. There are several three-dimensional numerical
codes53"55 which can be used to study the equilibrium and
stability of a plasma in a stellarator. All are based on a mini-
mization of the potential-energy functional

a first variation of which leads to the equilibrium equations

If the energy functional has a local minimum under corre-
sponding boundary conditions, the given equilibrium is sta-
ble.

Despite the increasing power of modern computers, the
three-dimensional calculations remain an extremely compli-
cated and subtle problem, frequently lying at the limit of the
capabilities of modern computers. It becomes necessary to
reach a judicious compromise between the use of direct
methods (i.e., three-dimensional numerical methods) and
the use of asymptotic methods. One of the main problems
which arise when asymptotic methods are used is the ques-
tions of the accuracy of these methods. For example, in the
derivation of average MHD equations we have retained only
the terms which arise when an average is taken of the squares
of the oscillating quantities (i.e., the terms which are dis-
carded are of the order off4 and higher). The high accuracy
of the asymptotic method is demonstrated by the analysis of
Ref. 56, where a numerical study was made of the equilibri-
um of a plasma in a stellarator by means of both the average
MHD equations and the complete (unaveraged) three-di-
mensional system of equations of single-fluid hydrodyna-

mics. It was demonstrated that the results are almost identi-
cal.

4. PLASMA EQUILIBRIUM

The system of average MHD equations in (3. 1 ) makes
it a straightforward matter to derive a scalar equation for the
equilibrium of a plasma in a stellarator, written as a nonlin-
ear equation for the total poloidal flux *P ( for convenience,
divided by 27T-)57-58:

ad (V — ¥*) s= L(V—V*)

V)(-*!LFC<e) + RB;)], (4.1)

where the prime means a derivative with respect to the argu-
ment.

In the absence of helical fields (** = 0), Eq. (4.1) be-
comes the Grad-Shafranov equation59-60 for a tokamak; in
the limit of vanishingly small toroidal effects, it becomes the
equation of Greene and Johnson.61 The expressions for the
fields and the currents are

Jx = [V (F OF) - e.] R-*.

Equation (4.1) can be written in a slightly different form,
which is more convenient for analyzing the equilibrium in
the case of a current-free stellarator. Replacing the function
FCV) by a new function, equal to the 5th component of the
current density, averaged over a magnetic surface,

dS0 (V) JtdS0(V),
const

where S^CP) is the cross-sectional area of the magnetic sur-
face, we can rewrite the equilibrium equation as

I __-
' R-1 V fl0B0fl-i

B*R 4n
e

(4.2)

where the superior bar means an average over a magnetic
surface,

d

V—const

so that all the average quantities are functions of ̂  only. For
a current-free stellarator we would have Js = 0, and from
(4.2) we immediately see one possibility for reducing the
effect of pressure on the distortions of the magnetic surfaces.
In first order in the toroidal effects we have
R2-R/ R-1 =R2-R2,,_and if we formally set
(R2-R2

0)B0 =R2(B?-Bf), we find that the right side
of (4.2) vanishes. In other words, the plasma pressure does
not affect the shape of the magnetic surfaces in this approxi-
mation. The limiting pressure in a stellarator can therefore
be increased by choosing the helical harmonics in a special
way. This approach has been proposed for a future modifica-
tion of the Wandelstein VII stellarator.62 In our opinion,
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however, this approach is not adequate, since it results in a
degradation of the stability and a significant complication of
the topology of the magnetic surfaces.

In studies of the equilibrium and stability of plasmas
(particularly by analytic methods) it is frequently conven-
ient to use a coordinate system with straightened lines of
force, xl = {a, •&, s}, where a is an arbitrary function of the
magnetic surface, and i? and s are cyclic angular coordinates,
which change by 2rr when the magnetic axis and the major
axis of the torus, respectively, are circumvented. Here we
have B l = 0, and the ratio of the contravariant components
of the magnetic field, B 2/B 3, does not depend on •& OTS. Be-
low, the superscript will refer to the contravariant, and the
subscript to the covariant, component of a vector. For defi-
niteness, we are using a as an analog of the minor radius of
the torus.

The expression for the square of an arc element in this
new curvilinear coordinate system is
(dZ)2 = gu (da)2 + 2g12 da dd + g22 (dO)2:+ g33 (ds)2.

Straightforward calculations using system (3.1) lead to
the following expressions for the magnetic field and the cur-
rent density40:

* = -;-S (a, fl), /'(a)

+ j S' dfl, /' (a)-cp'

(4.3)

where g = Det gik ; %> ̂  I> and J are respectively the azi-
muthal and toroidal fluxes and currents, reckoned from the
magnetic axis, and divided by 2ir, for convenience
(/= -F',x'= -*'); and ̂ 74>' = r is the total angle of
the rotational transform.

The magnetic fluxes and the currents are related by

?7*) = /'«D'-/'x', (4.4)

(4.5)

(4.6)

Here and below, the wavy superior bar means the part which
depends on i?, while the prime means differentiation with
respect to a. Equation (4.6) is an analogy of Eq. (4.2) in a
coordinate system with straightened lines of force.

There are several different methods for analyzing Eqs.
(4.1) and (4.6); correspondingly, the maximum permissible
pressure has been determined in several different ways. The
first method is to solve (numerically, for the most part) Eq.
(4.1) [or (4.2), (4.6)] directly for certain given profiles of
the pressure, p(W), and of the current and to find explicit
expressions for the magnetic surfaces. In this approach, the
limiting pressure /3equil is often understood as that value of/5

at which the selected procedure for finding a solution is dis-
rupted. In general, this disruption occurs because of the ap-
pearance of multivalued solutions for *P, i.e., because of the
appearance of an internal separatrix (magnetic islands) or
of an external separatrix. The maximum permissible plasma
pressure may exceed this value slightly. This assertion re-
quires some clarification. The appearance of an internal se-
paratrix (or of magnetic islands) stems from the presence of
dipole diamagnetic currents Js ~ (p'/r) cos q>, which elimi-
nate the charge separation caused by the toroidal drift of
particles. As a result, the total poloidal field decreases on the
inner side of the plasma column and increases on the outer
side. At a sufficiently high plasma pressure, /?~r2<5, the
magnetic field produced by the diamagnetic currents may be
comparable in magnitude to the poloidal component of the
average magnetic field. This circumstance will in turn cause
the formation of an additional axis and of magnetic islands
near a null point of the poloidal field. Significantly, their
shape depends strongly on the functions r(a) and
p(a) (Fig. 7). In stellarators with a large shear
(S = d In r/d l n a a = a ~1), the appearance of an internal
substructure of magnetic islands of this type inside the separ-
atrix due to the helical fields may not, in general, lead to a
catostrophic degradation of the plasma confinement in such
a system.

A second method for analyzing the equilibrium equa-
tion is to expand the function *?(/•, <p) in a Fourier series in
the poloidal azimuth and to reduce the partial differential
equation to a system of ordinary differential equations for
the amplitudes of the various harmonics. Calculations show
that it is usually sufficient to restrict the analysis to a few
(usually, two or three) harmonics. In this formulation, the
method is equivalent to describing the magnetic surfaces by
means of functions which characterize £(a), the displace-
ment of the centers of the magnetic surfaces; a (a), their
ellipticity; //(a), their triangularity; etc. The parameters
characterizing the displacement and distortion of the mag-
netic surfaces (a, J"', etc.) and a/R0—a parameter charac-
terizing the toroidal effects—are generally independent,
since the former are determined by the plasma pressure and
the strength of the currents flowing through the plasma, in
addition to the toroidal effects.6' A parameter characterizing
the distortion of the magnetic surfaces due to the finite-pres-
sure effects is y9 = fi /T2S; in order of magnitude we have
£'~70,a'~74,etc.

We begin with the case of low pressures, 7,9 <^ 1, which
lead to only a displacement of magnitude g of the vacuum
magnetic surfaces along the major radius (i.e., we are setting
a,/j-=0). We assume that g is also quite small, and we take it
into account only in the linear approximation. (A situation
of this sort may hold if, for example, the scalar potential <I>M

contains a single helical harmonic, and the displacement of
the vacuum magnetic surfaces is determined by toroidal ef-
fects; another possibility is the case in which, in addition to
the fundamental harmonic, with a multipolarity n0, there are
harmonics with «„ + 1 which are small in comparison with
the fundamental.) In this case it is a straighforward matter
to deive from (4.5) and (4.6) a linear equation for the dis-
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"Inner"
separatrix

FIG. 7. Qualitative effects of a change in the structure of
the magnetic surfaces at (}~T28 (a) in a tokamak with
r'/r<0 and (b) in an n0 = 2 stellarator with

placement of the centers of the magnetic surfaces3

IT (T*'a»)'

(4.7)

Here r = r* + r1 is the total angle of the rotational trans-
form, T* is the angle of the rotational transform which stems
from the helical magnetic field, r1 is that produced by the
currents flowing through the plasma, and ̂  * is the displace-
ment of the centers of the magnetic surfaces in vacuum. For
a current-free plasma (T = T*), it is convenient to seek a
solution of Eq. (4.7) in the form £ = |p + £ * , i.e., to sepa-
rate the displacement of the centers of the magnetic surfaces
into two parts, one of which, J" * , corresponds to the displace-
ment of the centers of the magnetic surfaces in vacuum,
while the other part, £p , is related to the plasma pressure in
the system and satisfies the following equation, which was
first derived by Greene, Johnson, and Weimer33:

(4.8)= 8nR0p'a?B-*.

The numerical calculations of Refs. 33 and 34 showed that as
the plasma pressure approaches a critical value /?cr the equi-
librium is disrupted, and we find £p -> oo .

In several particular cases, Eq. (4.8) can be solved ana-
lytically. It can be seen from these solutions and also, inci-
dentally, from a general analysis of the linear equation for
J"p , that in a case with descending pressure profiles there is
always a set of values of 0(0) for which £p (0) becomes infi-
nite [the number of these values is determined by the num-
ber of zeros of the solution of the homogeneous version of
Eq. (4.8) in the interval 0<a <ap in the given interval of
0(0)]. The solution of the homogeneous version of the
equation, on the other hand, can have zeros only under the
condition a2p'B*' >0 (and this condition holds automati-
cally in the case of descending pressure profiles, since in a
straight stellarator the field averaged over a magnetic sur-
face falls off with distance from the axis of the system; i.e., a
straight stellarator has a maximum "average B" or a mag-
netic hump.

However, it is easy to see from (4.8) that the term
~B*'£; becomes important at g/ap~l (since we have
B *'/Bffl~} ~£24,\), and this situation goes beyond the ap-
plicability of the linear equation.

Let us compare the limiting equilibrium pressure /?cqujl ,
at which the magnetic axis of the system is displaced a. dis-

tance equal to the transverse dimension of the plasma col-
umn, with that found from Eq. (4.8) without consideration
of the effects stemming from the presence in the system of a
magnetic hump and a min/?cr, at which |"p (0) becomes infi-
nite. For shear-free systems we have39 jSequil//?cr -xSNr*/
«0<1; i.e., the effects of the maximum "average B" in the
system are unimportant even in the linear approximation in
this case. For a stellarator with a large magnetic shear, /?cr

can often be smaller than /?equil. In this case, we need to
analyze the system of nonlinear equations.

Completing the analysis of the linear equation for J", we
consider the effect of the ohmic-heating current on the equi-
librium. It can be seen from (4.7) thatwith/> = Oand£* = 0
the displacement increases with increasing r7, reaching a
limit with £' ~a/R0. Accordingly, in the case of small toroi-
dal effects the ohmic-heating current cannot by itself lead to
a significant displacement of the centers of the magnetic sur-
faces. The first term on the right side of (4.7) becomes larger
than the third term even at a rather low pressure, /? ~ T2S2. In
this case, an increase in the ohmic-heating current leads pri-
marily to a change in the magnitude and profile of the angle
of the rotational transform. The rotational transform of the
original vacuum configuration combines with the additional
transform produced by the longitudinal current. If the cur-
rent is directed is such a way that the resultant angle of the
rotational transform increases, there will be the further ef-
fect of a decrease in the displacement of the centers of the
magnetic surfaces.

We showed above that incorporating the term ~B*'in
the linear equation for the displacement of the centers of the
magnetic surfaces is an attempt at an unwarranted accuracy.
In order to deal with this term correctly it is also necessay to
take into account the other small nonlinear terms of the
same order. A system of nonlinear differential equations re-
taining terms up to y# inclusively (in addition to the dis-
placement it was necessary to take into account the small
ellipticity ~Y\ which arises from finite-pressure effects)
was derived in Refs. 40, 64, and 65. We will not reproduce
this extremely lengthy system of equations here; we simply
note that incorporating the nonlinear terms has the conse-
quence that the singularity in the limit /9-»/?cr which we
mentioned disappears, and the displacement £p (Fig. 8)
turns out to be an increasing but bounded function of the
pressure (a bounded smooth solution is also found for the
ellipticity in this case). This circumstance can be given a
simple physical explanation. As we have already shown, the
solution of the linear equation for £p becomes infinite at
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FIG. 8. a: Displacement of the magnetic axis as a function of the param-
eter P. Solid line—solution of the nonlinear system of equations; dashed
line—solution of the linear equation for £p. b: Nature of the solutions of
the linear equation for £p corresponding to the branches with the same
labels in part a.

p'B *' > 0, i.e., when the magnetic configuration has a maxi-
mum "average B." The displacement of the centers of the
magnetic surfaces due to the finite/?, however (§6), leads to
a decrease in the magnetic hump and even to the formation
of a magnetic well. It would be surprising if £ were to become
infinite, since the plasma column would go through a posi-
tion of stable equilibrium (with a minimum "average B").

In general, the limiting equilibrium values yffequil are
found on the basis of the definition (which is also slightly
arbitrary) of the limiting pressure as being that pressure at
which, because of distortions of the magnetic configuration,
only a reasonably permissible part of the working volume of
the plasma is lost, e.g.,64 £(ap/2) <ap/2.

Although /7equii is somewhat ambiguous, all the calcula-
tions which have been carried out for it yield a value of the
same order of magnitude:

where the coefficient C~ 1 varies slightly with the plasma
parameters and the pressure profile.

If the perpendicular field produced by the diamagnetic
currents is cancelled to the maximum extent possible by
means of feedback, the limiting equilibrium pressure can be
raised to a level three or four times that in64 (4.9). It must be
recalled, however, that a complete cancellation of the fields
produced by the diamagnetic currents will degrade the sta-
bility (more on this below), and the limiting pressure per-
mitted by the stability conditions may be smaller than/9equil.

We also note that, according to the analytic calcula-
tions, the angle of the rotational transform T depends on the
displacement £ with an accuracy to terms of order £ 2 (in the
case/s =0)6S:

T (a) = T* (1 — -^-) +-£- (3T*' -far*"). (4.10)

It also follows from this that by varying the displacement g,
e.g., with the help of an external perpendicular field, we can

alter the dependence of the angle of the rotational transform
on the average radius within certain limits.

The results outlined above were obtained analytically
for the most part and are extremely general in applicability.
It should be noted that more-detailed numerical calcula-
tions, incorporating the particular geometry and parameters
of the systems, have been carried out in recent years in order
to analyze the behavior of the plasma in various devices,
either existing or planned.56'66'67 Some of these results per-
taining to the equilibrium are discussed below.

One of the most curious results of Ref. 56 was the sur-
prisingly good agreement between the results found from the
system of average equations in (3.1) and through the solu-
tion of the exact three-dimensional equations. Figure 9
shows the displacement of the magnetic axis (divided by the
average plasma radius ap ) as a function of the plasma pres-
sure at the magnetic axis, yS(0) [the parameters adopted for
the system here were those corresponding to the ATF stel-
larator presently under construction in the US: «0 = 2,
#=12, r*(0)=0.3, 7-*(ap) = cm, and
ap = 48 cm] . The calculations were carried out both on the
basis of the average equations [under the condition /s =0or
under the condition that r ( a ) remains constant, i.e., that the
flux is conserved] and also with the help of two three-dimen-
sional codes, described in Refs. 54 and 55, which use the
approximation of constant flux. We see that all these calcu-
lations agree well with each other (the calculations were
carried out with a fixed boundary ) . It also follows from these
calculations that we need to take into account the nonlinear
effects, which lead to a limitation on the displacement at
large values of /?, in accordance with the analytic calcula-
tions (Fig. 8). Even more surprising was the agreement
btween the approximate and the exact theories in the calcu-
lated values of the magnetic well, which is a characteristic
which is very sensitive to variations of the magnetic
field.56'67

As mentioned above, the T profile changes with increas-
ing pressure in a current-free stellarator. The behavior is
illlustrated in Fig. 10, which shows profiles of r ( a ) calculat-
ed for several values of /? for the parameters of the ATF

(f(0)
Up

qs

0,1

02 DA 0.6

FIG. 9. Displacement of the magnetic axis as a function of the plasma
pressure.56 1—Calculated from the average equations under the condition
J, = 0; 2—calculated from the average equations under the condition of
flux conservation; 3,4—calculated from the two three-dimensional codes
described in Refs. 54 and 55, respectively.
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FIG. 10. Angle of the rotational transform as a function of the average
radius. 1—/?(0) = 2.0%; 2—4.3%; 3—10.3%; 4—23.9% (Ref. 67).

stellarator.67 By choosing appropriate external fields one
can change the shape of the magnetic surface in such a way
that the r ( a ) profile remains essentially constant with in-
creasing P. It was shown in Ref. 67 that in order to maintain
a roughly constant r(a) profile (and, in particular, a con-
stant value of T at the magnetic axis) with increasing/? it is
necessary to raise the external quadrupole field in order to
transform the average magnetic surfaces from a circular
shape (at /? = 0) to a bean shape.

In concluding this section of the paper, we wish to stress
that the analysis of the equilibrium problem in recent years
has shown that in stellarators with reasonable parameter
values [S = 1/6 — 1/10, r*(ap) S 1 ] it is possible to achieve
values /?(0) ~ 10-20%, i.e., values equal to or even larger
than those in tokamaks.

One of the problems which has not received adequate
study so far is the analysis of the equilibrium in the case in
which the plasma boundary coincides with the vacuum se-
paratrix. Since the rotational transform at the separatrix in
the case with finite toroidal effects is substantially smaller
than the limiting value in the case of helical symmetry (this
value is N/n0), it may be productive to use the averaging
method to describe the entire plasma volume bounded by the
separatrix (although it is quite possible that small terms of
order higher than s2 will have to be taken into account in
order to obtain results which are correct not only qualita-
tively but also quantitatively). The ultimate answer will of
course have to await a comparison of the results found ana-
lytically with those found by the three-dimensional numeri-
cal codes.

5. CURRENT-DRIVEN KINK MODES

Two types of instabilities present the greatest danger in
a stellarator, as in a tokamak. One type, the interchange of
ballooning modes (ideal and dissipative), draw on the ther-
mal energy of the plasma as their source of energy. These are
the instabilities which can place an upper limit on the value
of P in a stellarator. The following section of this review is
devoted to an analysis of the present state of the theory for
these modes.

At this point we consider the second type of instability,
which is driven in a low-pressure plasma, at /?<r2<5 (this

condition is typical of most of the recent experiments), by
the longitudinal current which is used to produce and heat
the plasma. Several of the manifestations of this instability
are reminiscent of the instabilities which occur in tokamaks.
Our basic goal will therefore be to call attention to the dis-
tinctive features of the current-driven instabilitities in a stel-
larator. We will be extremely brief in discussing cases which
are similar to those in tokamaks; we refer the interested read-
er to the extremely extensive literature on these questions
(see the reviews in Refs. 68-72, for example).

5.1. Linear theory

We restrict the discussion below to modes with small
wave numbers, n,m4,N(n and m are the longitudinal and
poloidal wave numbers, respectively), which we can accord-
ingly analyze with the help of the average equations.

In the limit of ideal conductivity, the stability condition
can be found by analyzing the equilibrium equation. Here an
instability will correspond to the appearance of an additional
equilibrium state with a perturbed magnetic field, which sat-
isfies the same boundary conditions.

We first consider the stability of a plasma in a straight
stellarator, i.e., we ignore the curvature of the system, but we
assume that the longitudinal wave number can take on only
integer values (i.e., we are considering a cylinder with iden-
tified ends). Writing the perturbation in the form
X~X(a)e?m*-ins (m and n are integers; m^O; and X is
some arbitrary perturbed quantity ) , and using the system of
average equations ( 3. 1 ) , we easily find a linear small-oscilla-
tion equation:

— (m2— I)v2a+(a3t*')'v

where we have chosen as the variable the radial displacement
of an element of the plasma, |\, and where v = r — n/m. In
deriving (5.1) we made several simplifying assumptions: We
omitted terms describing finite-pressure effects, and for sim-
plicity we ignored terms ~e2 in comparison with unity and
terms ~n2a2/Rl in comparison with m2(R0 = L /In,
where L is the length of the plasma column).

In the small-oscillation equation found for a plasma in a
stellarator in Ref. 30, there are no terms corresponding to
the last two terms, which provide the limiting transition as
r*-»0 in the equation for a straight current column.73 The
method for studying Eq. (5.1) is quite simple. As was shown
in Ref. 74, a necessary and sufficient condition for stability is
that the solution of Eq. (5.1) not vanish in the region with
v>0.

We first consider a shear-free stellarator (i.e., r*' = 0).
If the current density falls off monotonically with increasing
radius, and if the current is directed in such a way that an
increase in the current is accompanied by an increase in the
total angle of the rotational transform, the spectrum of
MHD waves in such systems is extremely similar to that of
the MHD modes characteristic of a tokamak. The most dan-
gerous perturbation is the m = 1 perturbation, for which the
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negative stabilizing term on the right side of (5.1) vanishes.
The satisfaction of the condition r = n in the vacuum region
outside the plasma unavoidably drives the m = 1 kink mode.
The stability of m>2 modes depends strongly on the radial
profile of the current density and on the boundary condi-
tions. If the current profile is sufficiently sharp, the plasma
column may be stable with respect to these modes under the
sole condition r ( a p ) < 1, even in the absence of a conducting
wall, which has a strong stabilizing effect on the plasma. If
the conducting wall coincides with the plasma boundary,
surface modes cannot grow, but the satisfaction of the condi-
tion r(as) = 1 inside the plasma column in the case that
as < flp unavoidably leads to an instability of the so-called
internal kink mode with m = 1, n = 1. The growth rate of
this mode is smaller by a factor of about (as/R0)

2 than the
growth rate for the kink instability of a plasma with a free
boundary. Incorporation of the finite toroidal effects in the
limit of vanishing low pressure can lead to stabilization of
the internal kink mode, as in tokamaks,75'76 regardless of the
value of r at the magnetic axis. The curvature of the torus has
no substantial effect on the kink modes of a plasma with a
free boundary.

We have been discussing the stability of a plasma with
respect to current-driven kink modes in ideal MHD. How-
ever, if there is a singular point with v(as) = 0 in the plasma,
but the condition for the stability of the ideal current-driven
kink modes is satisfied, it becomes necessary to carry out a
further analysis of the stability, taking the finite conductiv-
ity into account. Here there is the possibility of the onset of a
slower dissipative instability (the so-called tearing mode),
which leads to a splitting of the resonant magnetic surfaces
and to the formation of magnetic islands. The condition for
stability with respect to tearing modes is written as follows32:

A' <0,
where

da

and £0 -> 0 is the difference between the logarithmic deriva-
tives of the radial component of the perturbed magnetic field
¥, = av|",, which satisfies the equation

1 = °' (5.2)

from which terms ~ain2/R2
3, unimportant in this case,

have been omitted. The tearing-mode instability and the in-
stability of a plasma with a free boundary are actually two
limiting cases of the same instability.77 While the magnetic
islands arise inside the plasma in the former case, in the latter
case the islands form in the vacuum region and cause a defor-
mation of the surface of the plasma column. As in the case of
ideal MHD modes, a steepening of the current density pro-
file improves the stability with respect to tearing modes. In
principle, as was pointed out in Ref. 78, it is possible to
choose an optimum current profile, with flattened regions
near the most dangerous resonances with r(as) = n/m,
which will be stable with respect to all modes. For example, a

to all modes even in the absence of a conducting wall, was
found in Ref. 79. The presence of the stellarator angle of the
rotational transform r* reduces the limiting values of q at the
edge. At T* = 0.3, a stable current profile with q(ap ) = 1.6
has been found. A current profile of this type may arise auto-
matically, since the onset of the tearing modes in the nonlin-
ear stage leads to a saturation of the growth of the magnetic
islands and to an equalization of the current density along
the magnetic surfaces over their cross section.

We turn now to the stability of the current-driven kink
modes in a stellarator with a large shear. We approximate T*
by a very simple function, a quadratic polynomial:
r*=r*(0) +&T*a2/a2

p. We see from (5.1) that with a
large shear, i.e., under the condition &T*^>n2ap/m

2R I , the
second term in expression (5.1) for G0 is larger than the two
last terms, which can therefore be ignored.

Figure 11 shows stability diagrams for the current-driv-
en kink modes in a stellarator with a large magnetic shear81

S-*<flp)=aT*7T*|f l_a,~1.55.
As before, the most dangerous perturbation is the

m = 1 kink mode, which is always unstable in a stellarator

current density profile with q(ap ) =2.2 = r is the
safety factor) at r* = 0, a profile which is stable with respect

t'fa)

FIG. 11. a: Stability diagram of current-driven kink modes in a stellarator
with ohmic heating. Here r* = rsl [0.2 + 0 . 7 ( a 2 / a 2

p - ) ] , T J

= TJ ( o p ) [ 2 — (<z2/ap)] (there is a conducting wall at a| = 1.5ap).The
modes with m = 1—3, n = 1—2, are shown. The regions in which the
plasma is unstable according to ideal MHD are hatched with solid straight
lines; the regions in which the tearing modes are unstable are shown by
hatching with dashed lines, b: The same as in part a, but for the m = 1,
n = 1 mode. In region I, the condition v(c) > 0 holds at a > as (modes of
this type are characteristic of only a stellarator with shear). In region II,
the condition v (a) > 0 holds at a < a, (this case corresponds to an internal
kink mode in a tokamak). In region III, there are no singular points inside
the plasma column. The dotted line shows the stabiltiy boundaries at
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with shear if there is a region with v(a <as) >0 inside the
plasma column; here v ( a ) is a decreasing function of the
minor radius (Fig. 11). In contrast with the case discussed
earlier, the growth rate for the internal kink mode turns out
to be equal in order of magnitude to the growth rate for the
model with a free boundary because of the presence of a
positive shear (S* = ar*'/r*>0) due to the stellarator mag-
netic field, T*. For the kink modes with m > 1, the presence
of a stellarator angle of rotational transform T* which is non-
uniform along the radius also results in an increase in the
growth rates. In particular, as can be seen from Fig. 1 la, an
increase in r51 at a constant r(0) has the consequence that
the plasma is unstable in ideal MHD, beginning at some r5'.
The internal kink modes in a stellarator with shear are thus
more unsable than in a tokamak.

Under the condition r*(ap ) > r1 (<zp ), an instability of
another type (which we will call an "external mode" can
occur. For this instability we have v ( a > a s ) > 0 (with
m = 1, n = 1, it is region 1 in Fig. 1 Ib) . The numerical cal-
culations of Refs. 80 and 81 show that in this case the stabil-
ity conditions depend strongly on the distribution of the
plasma parameters over the cross section of the column and
on the boundary conditions. A sufficient condition for the
stability of the external modes according to ideal MHD was
derived in Ref. 81. It turns out that the stability condition is
satisfied best when the resonant surface lies near the bound-
ary of the plasma column. If the resonant magnetic surface
lies sufficiently close to the boundary of the plasma column,
the m = 1 tearing mode may also be stable (Fig. 11).

In addition to the situations described above, there
could be a situation in which an instability could occur if
there were no singular point in the plasma. At small values of
T* such modes are analogous to kink modes with a free
boundary of a staight current column. In a stellarator with a
large shear, however, the ideal MHD modes, which have no
singular points, may be unstable even if there is a conducting
wall at the boundary of the plasma column81 (Fig. l ib) .

It follows from the discussion above that a stellarator
angle of the rotational transform which is nonuniform over
the cross section of the plasma column plays a double role.
On the one hand, the growth rates for the internal modes
increase, and several types of unstable waves not seen in a
tokamak appear. On the other hand, with increasing T* there
is a contracting of the current inteval in which the plasma is
unstable. When T* exceeds a certain value (Fig. 11), a given
mode becomes stabilized.

There is yet another purely stellarator effect, which oc-
curs if the ohmic-heating current is directed in such a way
that an increase in this current is accompanied by a decrease
in the total angle of the rotational transform. If in this case
there is inside the plasma column a magnetic surface on
which the condition r(as) = 0 holds, this is a necessary and
sufficient condition for the onset of the m = 1, n = 0 insta-
bility, as can be shown in a straightforward way with the
help of (5.1). This instability was apparently observed in
experiments in the Uragan-2 device at Khar'kov.82

5.2. Nonlinear development of tearing modes

We have been discussing the stability of tearing modes

in the linear approximation. In a plasma with a finite con-
ductivity, the onset of these instabilities leads to a splitting of
the magnetic surfaces and to a growth of the magetic islands
which form around a new magnetic axes. The presence of a
well-developed island structure in a system leads in turn to
an increase in the transport coefficients because of the rapid
equalization of the plasma parameters over the cross section
of an island, which occurs along the magnetic surfaces which
form around the new axis.

There are several circumstances which facilitate a
qualitative analysis (and, frequently, a quantitative analy-
sis) of the nonlinear dynamics of current-driven modes in a
stellarator. First, as in the equilibrium case, the use of the
average equations38 makes it possible to reduce the problem
to an axisymmetric problem. Second, since we are dealing
with a plasma of vanishingly low pressure, which has no
effect on the dynamics of the instability, the only difference
between tokamaks and a stellarator with a current in this
approximation is that the poloidal flux ¥ is now the sum of
*VJ, the magnetic flux produced by the longitudinal current,
and **, the flux of the "effective" magnetic field7' (Refs. 40,
83, and 84). For this reason, many of the results derived
previously for the case with T* =0 also give a qualitatively
correct description of the processes which occur in a stellara-
tor.

Rutherford85 has shown, in a study of an approximate
quasilinear system of equations, that when the width of a
magnetic island, W, exceeds a scale thickness for the tearing
mode, as/T

l
0

/3(T0 = ta/t A is a measure of the ratio of the
skintime/CT = 47rap<7/c2totheAlfventimeZA =a p /D A ,and
yA =B0/[4irf>]</2, i.e., under the condition W>a,/Tl

0
/},

nonlinear terms retard the growth of the islands. A transi-
tion occurs from a linear, exponential development of the
instability, with growth rate y~t ~3/5; ̂ 2/5, to a power-law
development, and the thickness of an island increases linear-
ly over time, with the slower, resistive, scale time ta.

Next we find an equation which can be used to describe
the dynamics of the growth of the islands and to estimate
their thickness.86 As was shown by the calculations in Ref.
86, the limiting dimensions of a magnetic island depend
strongly on the particular model chosen for the conductiv-
ity. With a = const, either saturation does not occur at all,
or the dimensions of an island are comparable to those of the
plasma column. In the case of steady-state model with //
a = const, there is a substantial decrease in the limiting
thickness of a magnetic island. For conductivity profiles
which decay with a scale length ~<zp, the steady-state equa-
tion for the limiting thickness of a magnetic island is written
in the form87

da da

The quantity Wm^ falls off rapidly with increasing mode
index m. The limiting dimensions of the magnetic islands
depend on the shape of the current, falling off for peaked
profiles. Finally, we note that finite-Larmor-radius effects
have the consequence that a quasisteady perturbation ac-
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quires a real frequency,88 while the width of an island is, as
before, determined by the profiles of the current density and
the conductivity. Oscillations of this sort have been observed
experimentally in tokamaks.89

The coments above also apply to stellarators. Analysis
of condition (5.3) for the particular case of a stellarator
shows22 that a stellarator angle of rotational transform
which is constant over radius improves the stability and re-
duces the dimensions of the magnetic islands. In experi-
ments on the W-VIIA stellarator it was demonstrated that
under the condition r* (a) = const > 0.14 there is a substan-
tial improvement in the stability of the plasma column. The
disruptive instability is not seen even at r = 0.8 at the edge of
the plasma column. A similar conclusion, that the stellara-
tor field plays a stabilizing role, was reached from the results
of experiments on the JIPP-T2 (Ref. 90), where it was
shown that the disruptive instability does not occur if the
stellarator fields are sufficiently strong.

The disruptive instability in a tokamak is a complicated
nonlinear phenomenon which is not yet completely under-
stood. As a rule, the disruption is related to the presence of
large islands with m = 2, spanning a significant fraction of
the discharge. It is also assumed91"93 that a disruption is
caused by the growth of the m = 2, n = 1 mode and the non-
linear interaction of this mode with other modes, in particu-
lar, the m = 3, n = 2 mode. When magnetic islands overlap,
an ergodic region appears between the surfaces with T= 1/2
and 2/3, where the temperature is equalized.

If we assume a similar mechanism for the onset of the
disruptive instability, the role played by the stellarator angle
of rotational transform r* becomes clear. With increasing
T*, the magnetic surface with r = 1/2 either moves out of the
region inside the conducting wall or, in contrast, goes to the
edge of the plasma column, where the current-density gradi-
ent is small, and the m = 2, n = 1 mode turns out to be stabi-
lized.

5.3. Sawtooth oscillations in a stellarator

With increasing longitudinal current in a tokamak, if
the angle of rotational transform in the cental region is
greater than unity, one observes an interesting physical ef-
fect: so-called periodic sawtooth oscillations of the x-ray
emission. At the center of the plasma column, the intensity
of the x-ray emission initially rises slowly and then drops
abruptly (the periodicity of the process is usually a few milli-
seconds). Outside the surface wth r ( a p ) = 1 the phase of
the oscillation changes by 2ir; i.e., the intensity of the x-ray
emission initially rises rapidly and then decays slowly.94

Kandomtsev95 has carried out a qualitative analysis
which explains the sawtooth oscillations. The onset of an
instability of the m = 1, « = 1 mode causes a displacement
of the central region and thus the excitation of a helical cur-
rent near the surface a = as. As a result of the decay of this
current due to the finite conductivity, the lines offeree inside
as begin to reclose with lines of force outside this surface;
this reclosure proceeds until the entire region inside this sur-
face is reclosed with the exterior, and the value of r becomes
less than 1 everywhere. Estimates show that an effective
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mixing of the plasma parameters occurs in the region
a < V2as. Ohmic heating then renews the decrease in the re-
sistance in the central part of the plasma column; the current
rises again, and the process is accordingly periodic. Subse-
quent numerical calculations96-97 have confirmed the valid-
ity of this model. Discrepancies arise only in calculations of
the total duration of the process. Since the model is not self-
consistent, the value of as in a numerical simulation is usual-
ly taken from experiment.

Experiments on current heating of plasmas carried out
in various stellarators have also revealed sawtooth oscilla-
tions.26'98 As was recently demonstrated by Wakatani etal."
(who carried out calculations for the parameters of the He-
liotron-E—a system with a large magnetic shear), the inter-
nal disruption in a stellarator is a process which is similar in
many ways to the process which occurs in a tokamak. The
only distinction stems from the specific chracteristics of the
m = \,n = \ internal mode, whose growth rate in a stellara-
tor with shear is much larger than in a tokamak. As the
calculations of Ref. 99 showed, however, nonlinear effects
cause a saturation of this mode and thus a reclosure. Unfor-
tunately, there has not yet been a study of how the stellarator
angle of rotational transfer affects the quantitative charac-
teristics of the sawtooth oscillations such as their duration
and amplitude.

6. STABILITY OF A FINITE-p PLASMA

We have been discussing the stability of current-driven
kink modes. Since the stellarator retains its confining prop-
erties in the absence of an ohmic current (in fact, these prop-
erties generally improve), however, we are presently seeing a
trend toward operation without a current. We wish to stress
that it is in operation without a current where we can see the
advantages of the stellarator as a fundamentally steady-state
system. Under these conditions the primary danger is posed
by instabilities which stem from the finite pressure and the
curvature of the lines offeree. These instabilities can impose
limits on the plasma pressure in a stellarator. In this section
we examine the basic factors which lead to limitations on the
pressure and methods for raising the limiting pressure.

As a rule, a distinction is made between modes which
are localized near rational magnetic surfaces and at large-
scale modes in an analysis of the plasma stability in a toroidal
confinement system. The localized modes can be studied
analytically, through the derivation of stability conditions
expressed in terms of the characteristics of the equilibrium
state at the given magnetic surface. The nonlocal modes de-
pend strongly on the distribution of parameters over the en-
tire plasma volume, and they are usually studied by numeri-
cal methods.

6.1. Localized modes in an ideally conducting plasma

In this subsection we consider perturbations which are
of small scale along the direction perpendicular to the equi-
librium magnetic field, i.e., which satisfy the inequality

[B0V In XJ > [B0V In X0]> (6.1)
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and which are nearly constant along B0, i.e., for which we
have

| [B0V In XJ | > (B0V In XJ, (6.2)

where the subscripts 1 and 0 specify the perturbed and equi-
librium values, respectively.

The condition for the stability of a straight, cylindrical
plasma column with respect to flute perturbations (the Suy-
dam criterion) is written as100

^-^f>a (6.3)

The condition for the stability of modes with n > 1 in a
straight stellarator in the case of a single kink harmonic (i.e.,
if toroidal effects are ignored) is30

The appearance of an additional destabilizing term (which,
under the condition N /«„ > T, is considerably larger than the
first) stems from the circumstance that, as we have already
mentioned, a straight stellarator has a maximum "average
B." Even in a stellarator with a large magnetic shear, the
limiting pressure at which the plasma is still stable, found
from (6.4), is extremely low (for the L-2 stellarator of the
Institute of General Physics, Moscow, for example, with
T* = 0.2 + 0.5a2/a2

p and N/n0 = 7, we have£max -1%).
Study of plasmas in closed magnetic confinement sys-

tems is complicated by the circumstance that the equilibri-
um quantities generally depend on i? and s [in the case of a
straight cylinder which is axisymmetric, perturbations of the
typeX~X(a)exp(imd — ins) with different values of m and
n are independent ]. If the parameter characterizing the cou-
pling of harmonics is small, however, the problem can be
solved by a method of successive approximations, limited to
a finite number of harmonics. For a tokamak a correspond-
ing parameter is 7^ = /3 /r28. Analytic calculations on the
stability of a plasma confined in a tokamak with circular
magnetic surfaces with respect to perturbations with m > 1
were carried out for the case/?<^r2<5 in Ref. 101, where the
fundamental harmonic with m > 1 was taken into account
along with the two adjacent harmonics with m + 1. The fol-
lowing condition was found

(6.5)

In the same paper Shafranov and Yurchenko showed
that condition (6.5) can also be derived from the so-called
Mercier condition102: a condition for the stability of a toroi-
dal plasma column of arbitrary cross section with respect to
small-scale flute perturbations. It follows from (6.5) that a
plasma is stable even if the shear is zero (r' = 0), provided
that the sole condition T < 1 holds. In this case the ballooning
effect which arises because a perturbation on the outer side
of the torus is larger than on the inner side, and which makes
a contribution to the stability condition which is quadratic in
/?, is completely cancelled by the deepening of the magnetic
well due to the displacement of the magnetic surfaces caused
by the fields produced by the diamagnetic currents.

In principle, the condition for the stability of a plasma

in a stellarator could be derived by making use of a geome-
try-independent Mercier condition; this approach would re-
quire examining the three-dimensional equilibrium. There
is, however, a circumstance which makes it possible to sim-
plify the analysis. It has been shown103'104 that for a system
with helical fields there is, in addition to a coupling of har-
monics along the minor azimuthal direction t?, a coupling of
harmonics along s, with a parameter ys = n0P /N8. Under
the condition ./V> «0r we have y# > ys, so that in the case
/? 5 T2S, of practical importance, the ballooning effect at lo-
cal corrugations of the helical magnetic field can be ignored
(because of the repeated alternation of regions with favor-
able and unfavorable curvature, whose net contribution to
the stabiltiy criterion turns out to be negligibly small). Con-
sequently, to derive a condition for the stability of a plasma
in a stellarator one can work from the system of average
equations and study it by a slightly modified version of the
method developed previously for a tokamak. As a result, we
find the following stability condition38 for

8np'
Qt>o, (6.6)

203T
RO [ (£*a2T*)' -I'
2ar L a J

2t—T*
2T (6.7)

Let us determine the meaning of each of the terms in (6.7).
The first destabilizing term occurs because a stellarator has a
maximum "average B" if we ignore toroidal effects. The sec-
ond term is negative if r*' > 0. Since J" increases with increas-
ing pressure, the second term is also an increasing function
of the pressure, causing an improvement in the stability con-
ditions. The mechanism for this sort of self-stabilization can
be explained as follows. The displacement of the magnetic
surfaces caused by the fields produced by the diamagnetic
currents occurs in the direction of increasing major radius.
In systems with an angle of rotational transform which in-
creases with increasing radius, a line of force passes more
rapidly through the region with unfavorble curvature on the
outer side of the torus and is delayed on the inner side. Be-
cause of the condition g/ap < 1, however, the sum of the first
and second terms can be negative only if thre is a sufficiently
large magnetic corrugation, i.e., only if Arr*^"<l (a more
detailed estimate will be given below).

The third term stems from the structure of the magnetic
surfaces in vacuum and may be either positive or negative. In
particular, by displacing the magnetic axis of the system (by
means of a vertical magnetic field, for example) or by alter-
ing the pattern in which the current-carrying helical conduc-
tors are wound around the surface of the torus, one can im-
prove the stability conditions. The last two terms are small in
comparison with the first under the condition N^>n0r and
have essentially no effect on the stability of the plasma in the
system. They are retained solely to allow the correct limit in
the Shafranov-Yurchenko criterion101 asr*->0. This condi-
tion, incidentally, does not impose a restriction on the limit-
ing pressure under the single condition T <\. For a certain
choice of stellarator parameters, the stability condition in
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(6.6) also imposes no restriction on the limiting permissible
plasma pressure.

We first consider the case of a plasma without a current
(TS=T*). It can be seen from (6.7) that in a system without
shear (r*' = 0) there is self-stabilization in this approxima-
tion, and the imposition of a uniform vertical external field
50i does not give rise to a magnetic well [ since in this case
we have £ *' = (B01 RO/BOT* )' = 0) ]. A well could be pro-
duced only by a term related to a nonuniform displacement
£ *' of the vacuum magnetic surfaces. In analyzing the stabil-
ity of such systems, it is necessary to take the fine stucture of
the field into account accurately. As an example illustrating
these arguments, we consider a system of helical windings
which are wound on the surface of a torus with a minor
radius r0 in accordance with

J» S .T-, ?Q , . f- Q .

If we then use Eq. (4.8) to eliminate £p from (6.7), condi-
tion (6.6) for a plasma with a free boundary can be rewritten
as

(6.9)

where the coefficients Mp and Np depend on the parameters
of the magnetic field and the pressure profile, / ( a ) =p(a)/

^_ Zf a / •" / * 4\» -,3
(aT*'V> l~^T a ) a ~

+ 3 (O at* da—

a = ap. (6-10>

For^systems with a large shear (S~ 1) the term proportional
to CL is slightly more complicated. For such systems, how-
ever, this term is not very important, and we will not bother
to refine it.

The roots of the equation R M (/?0) = 0, if they exist,
determine two values/? ̂  and/3 s

(2\between which the plas-
ma is unstable. At 00 < 0 s

(,l> (the first zone) and /?„> /? s
<2)

(the second zone) the plasma is stable. If, on the other hand,
the parameters of the system are such that the condition
Mp <2Afp/2 holds, the first and second stability zones merge,
and the plasma turns out to be stable at all values of/? (Fig.
12).

In a system without shear, the stability condition does
not impose a restriction on the limiting permissible pressure
if

4/VT*
(6.11)

It can be seen from (6.11) that the stability depends ex-
tremely strongly on the magnitude and sign of the ampli-
tudes of the satellite harmonics which arise upon a small
deviation of the winding pattern from a helix <p = Ns/n0.

Second

/
stability
zone

FIG. 12. See the text proper for an explanation.

For systems with a large shear, Ar*>r*(0) with
p=p(0)(l — a V c 2 ) andr* = AT*a2/a2, the condition un-
der which there is no limitation on the pressure becomes8'

(6.12)

where EL =Boi/B0.
It should be recalled, however, that condition (6.6) was

derived in the linear approximation in £ and is valid, general-
ly speaking, only if/S<^r25. For a more rigorous solution of
the question of the limiting pressure, we need to take into
account the terms of the next higher order in£. This analysis
(including terms up to |"'3 inclusively) was carried out in
Ref. 65, where it was shown that under the conditions
r7 = 0, r* + r*(0) + Ar*a2/a2, Ar*>r*(0) the nonlinear
terms lead to an additional stabilization, in particular, at the
edge of the plasma column, where the most destabilizing
term is ~B *'. Under the condition AT* = 0, the nonlinear
terms also lead to a stabilization, in agreement with the re-
sults found by Mikhaflovskii and Shafranov,107 who ob-
served a self-stabilization in stellarators with a zero shear in
the cubic approximation in p. It can therefore be assumed
that the nonlinear terms have essentially no effect on condi-
tions (6.11)-(6.12).

We recall that the Mercier condition is not a sufficient
condition for the stability of modes with « > 1 in all cases.
The stability condition for a tokamak, (6.5) is known108-'09

(see also the review in Ref. 10) to be only a necessary condi-
tion, since the so-called ballooning perturbations are more
dangerous. The stability for ballooning perturbations in-
cludes a destabilizing term ~S/?2.

For a stellarator the condition for the stability of bal-
looning modes is58'"'

The last term was derived under the assumption \S \ < 1 and
is generally small in comparison with R M. For a current-free
stellarator with a value of 0 which is not very large, the
quantity S is usually positive, in contrast with the situation
in tokamaks. At large values of /3, this quantity can be made
positive by means of external fields, as was shown in Ref. 67,
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among other places. Condition (6.13) is less stringent than
(6.6), which should accordingly be used to determine the
limiting pressure.

We have been discussing for the most part the stability
of a plasma at a zero ohmic-heating current. A longitudinal
current leads to a degradation of the plasma stability, be-
cause with decreasing value of S—a measure of the shear—
there is a simultaneous decrease in the depth of the magnetic
well.39 The situation is illustrated in Figs. 13 snd 14, which
show how the magnitude of the ohmic-heating current af-
fects the stability of a plasma with a fixed pressure.

6.2. Condition for the stability of dissipative modes

When a plasma is stable in ideal hydrodynamics, the
incorporation of a small but nonzero resistance can give rise
to new types of unstable oscillations."2'113 Resistive flute
modes are not stablized by shear, but they may be stable if
the average-magnetic-well effect outweights the ballooning
effect. The condition for the stability of modes of this sort in
a stellarator is39'40 (/?-»r2<5)

(6.14)

where £1 is given by (6.7). Since the condition g' < 0 gener-
ally holds, the second term plays a destabilizing role in a
plasma without a current. Analysis39 of (6.14) shows that
the self-stabilization which stems from the shear for the dis-
sipative flute instabilities can occur only in the central part
of the plasma column. There is the hope, however, that the
growth of resistive modes will not lead to a limitation on the
pressure, because of their small-scale nature, although trans-
port processes may be affected.

6.3. Limiting pressure in a stellarator

We have been discussing the stability of local modes. In
principle, the sufficient condition for stability with respect to
arbitrary perturbations according to ideal MHD may hold
in a stellarator without an ohmic-heating current (for a to-
kamak, a stability condition of this sort would be of no inter-
est, since it could be satisfied only if there were a current-

FIG. 13. Effect of the ohmic-heating current on the stability of the plasma
at a fixed pressure 0 = 0(0) [1 - (a2/al ],0(0) =0.005. 1—r1 =0;
2—0.1; 3—0.2; 4—0.3; 5—0.4. T* = 0.2 + 0.7 (a* /a l ) , 6 = 0.115.

FIG. 14. Effect of the ohmic-heating current on the depth of the magnetic
well at a fixed pressure0 = 0(0) [ 1 - a2/*) ],0(0) = 0.005. 3—r'= 0;
2—0.1; 1—0.4. T* = 0.2 + 0.7(a2/O, 6 = 0.115.

carrying conductor at the axis of the system). The sufficient
condition turns out to be more stringent than condition
(6.14) for resistive flute modes, and for a stellarator without
shear50 it reduces to the requirement that a vacuum magnet-
ic well be produced throughout the region occupied by the
plasma (in this case the limiting pressure turns out to be
proportional to the depth of this well). Since the self-stabilit-
zation associated with shear can produce a magnetic well
only in the central part of the plasma column, and the possi-
bility of producing a vacuum magnetic well near the separa-
trix, at S1 * ~ 1, appears to us to be extremely problematical, it
will generally not be possible to satisfy the sufficient condi-
tion for stability in a stellarator with a large shear through-
out the region occupied by the plasma. This condition turns
out to be extremely severe. Numerical calculations56'"4

demonstrate that large-scale instabilities are stopped in sys-
tems with shear at a rather low value of NT* and at
r* (a p )< l .

It may appear that the restrictions imposed on the limit-
ing pressure jointly by the conditions for stability of ideal
MHD modes and the conditions for equilibrium are ex-
tremely stringent. Actually, since we have r*~N~6~l, sys-
tems with a small toroidal ratio S are favorable from the
equlibrium standpoint [see (4.9)], while from the stand-
point of stability with respect to local modes [see (6.11) and
(6.12) ], in contrast, we would prefer systems with values of
NT* which are not very large, i.e., "steep" tori.

Fortunately, a compromise solution [S~' = 6 — 10,7V/
H0 = 5-7, T*(ap) 5 1] turns out to be completely satisfac-
tory and raises the hope that it will be possible to achieve a
stable plasma with /?£ 10% in a stellarator without a cur-
rent. This value could evidently be increased slightly by
means of a transverse external field, which would partially
cancel the displacement of the magnetic surfaces due to the
finite /?, keeping the displacement of the plasma to a level
sufficient to produce in the system the magnetic well which
satisfies the stability condition.

7. CONCLUSION

The appearance of new methods for studying the plas-
mas confined in three-dimensional magnetic fields and the
refinement of the old methods have resulted in a rapid devel-
opment of the theory of the MHD equilibrium and stability
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of plasmas in stellarators. Many of the new results have been
obtained through the use of an averaging method. Although
the derivation of results from the average equations is based
on the method developed earlier for tokamaks, the physical
processes which are described by the similar methods fre-
quently turn out to be different. Among the purely "stellara-
tor" effects are the self-stabilization of the plasma due to the
shear and the effects which stem from the presence of a mag-
netic hill. The spectrum of current-drive kink modes in a
stellarator has several distinctive features. The theory of cur-
rent-driven kink modes in a stellarator as it exists today gives
a qualitatively correct description of the basic manifesta-
tions of the MHD activity of the plasma column. We see no
fundamental difficulty along the road to a quantitative de-
scription of the processes which occur in the plasma.

We would like to conclude this review with a list of the
basic theoretical problems which are still to be solved. One is
to study the equilibrium and stability of a plasma in the case
in which the plasma boundary is close to or coincides with
the vacuum separatrix. This is an extremely important prob-
lem, particularly because calculations show that the condi-
tions for the stability of a plasma with a free boundary are
quite different from those in the case in which there is a
conducting wall.

We have repeatedly cited the results of reseach on the
stability of small-scale modes. The situation with regard to
research on large-scale modes is not as satisfactory; graphic
analytic stability conditions cannot be derived for large-
scale modes. Furthermore, the number of adjustable param-
eters characterizing a stellarator is considerably larger than
the corresponding number for a tokamak (this circumstance
can, generally speaking, ultimately lead to an optimum
choice of plasma parameters). Consequently, an explana-
tion of the entire set of physcial factors determining the sta-
bility of large-sclae oscillations will require a really major
effort.

Among the foremost theoretical problems are those of
studying the nonlinear stage of instabilities and, in particu-
lar, resistive ballooning modes, for which the stability condi-
tion may not hold.

We believe that it is extremely important to seek mag-
netic configurations in which the parameters of the plasma
column can be improved (e.g., the limiting value of/9 can be
increased). Here we have looked at systems in which the
cross sections of the average magnetic surfaces are approxi-
mately circular. It seems quite likely that we should also
study magnet systems for which the cross sections of the
average magnetic surfaces are not circular (ellipses prolate
in the vertical direction, D-shaped surfaces, etc.). Configu-
rations of this sort can be produced by using helical current-
carrying conductors on a torid of the appropriate shape and
by using a transverse magnetic field which contains harmon-
ics higher than the dipole harmonic.

In summary, it can be asserted that the number of fun-
damentally unresolved problems remaining in the theory of
plasma confinement in stellarators is perhaps no greater
than the number of such problems remaining in the theory
for the equilibrium and stability of tokamaks. The stellarator

work lags behind the tokamak work somewhat only in the
specific calculations carried out for various particular cases.
There is the hope, however, that even this gap will be bridged
in the very near future.

We wish to thank O. P. Pogutse and E. I. Yurchenko for
much useful advice and for a rewarding discussion.

APPENDIX. SIMPLIFIED AVERAGE EQUATIONS

The basic small parameter used below is Ap = IBJ/5,,:
the ratio of the transverse components of the average mag-
netic field to the longitudinal magnetic field. In the system of
equations below we retain terms ~ A{; inclusively and also
small terms of second order in the toroidal effects.

We assume that the plasma pressure is quite high, i.e.,
/?~ Ap , in which case we have JL ~/y ~ Ap . We furthermore
assume B */B0, S ~ Ap .

The perturbations of most interest for stability theory
are known to be those which vary only slightly along lines of
force of the average magnetic field. For such perturbations
we have d /dz ~ Ap V1 , where V1 = V — es d /dsR . The maxi-
mum growth rate for these instabilities is ~S/tA ~ A p / f A ,
i.e., tAd/dt~hp. Finally, we restrict the discussion to the
case of a plasma with a high conductivity, i.e., t A/ta <^Ap.

The procedure for deriving simplified equations from
the system of average MHD equations is esentially the same
as the derivation of the corresponding equations for toka-
maks. 43'44 We will accordingly omit the straightforward cal-
culations and write the system of simplified equations in the
following form40:

- R - * V ± - + [ V p , BTJ BT]}

At
j_ _a_ i_
R ds P + 4itfl

div [ -

(A.1)

The magnetic and electric fields, the current density, and the
transverse components of the velocity are written in terms of
these variables as follows:
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Jj. = rotA, A = -^p-

B — - -

B2

We thus find a system of eight equations for the eight func-
tions/?,/>, U, *, 4>, K, x, and vs. We need to note here that vs

does not appear in the other equations of this system, and in
those cases in which a detailed study of the longitudinal mo-
tion is not necessary this equation can be omitted. We also
note that in all the equations of the system (A. 1) except the
last the function K appears in such a manner that it need be
known only in lowest order, and we can usually set
K = — Mrp/B o.

The system (A.I) simplifies substantially for the case of
a low-pressure plasma. In this case we have U = — Oc. Fin-
ally, if, for simplicity, we set p = const and ignore toroidal
effects, we find the system of equations

4na,,

Ap_
dt = 0, / = A (¥ — (A.2)

Here the function / describes the profile of the longitudinal
current. In the limit 5*-*0, **^0, the system (A.2) be-
comes the system of equations first derived by Kadomtsev
and Pogutse.43 The term which explicity contains the pres-
sure drops out of the system (A.2) in the limit B * — 0. The
reason is that a straight stellarator is a magnetic confinement
system with a maximum "average B" (a magnetic hump),
which has a very strong destabilizing effect even at small
values of/3. It can be seen from (A.2) that the only distinc-
tion between a straight, current-carrying plasma column
and a stellarator with a current in the limit of a vanishingly
low pressure is that the poloidal flux ¥ = ** + VJ is now
the sum of XPJ, the magnetic flux produced by the longitudi-
nal current, and the known function

= — B0

which is the flux of the "effective" magnetic field.

"We will be using the term "stellarator" to mean a magnetic confinement
system in which a system of nested magnetic surfaces in vacuum is pro-
duced either by helical conductors carrying a current or by some other
external conductors which have an equivalent effect.

2llt turns out that the rotational transform at the internal branch of the
separatrix is r*<JV/n0 (so that the averaging method can be used to
describe essentially the entire structure of closed magnetic surfaces all
the way to the separatrix).

•"The basic principles of the confinement of a finite-/? plasma will be dis-
cussed below.

4)In the derivation of the average equations, one makes use of the approxi-
mation of a strong magnetic field (e2 < 1), so that the results found by
averaging over the period of the rapidly varying field along the axis and
along a line offeree become equivalent.

5)We have combined several terms containing averages of the squares of
the components of the rapidly alternating field B", by introducing the
vector B*, which, like the real field, satisfies the equation div B* = 0.

6'Even in the absence of a plasma, the centers of the magnetic surfaces may
be displaced from the geometric axis of the torus. The magnitude of this
displacement may be determined by toroidal effects, by the pattern in
which the current-carrying conductors are wound around the surface of
the torus, by the strength of the vertical external magnetic field, etc.

"See also the Appendix.
"'Condition (6.12) follows from the conditions RM >0 at the edge of a

plasma column with a free boundary, where the condition R M > 0 is most
difficult to satisfy.
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