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The fundamental mechanisms of a metal-dielectric transition are examined. The multiband
theory of the metal-dielectric transition is reviewed, as based on realistic models of the band
structure of a set of oxides and sulfides of the 3d-metals in which the transition is accompanied
by structural and magnetic phase transitions. In the multiband case new phases arise that were
absent in the simplest single-band theories, yet at the same time are known experimentally.
The metal-dielectric transition is studied in the Shubin-Vonsovskii model. It is shown that
allowance for screening of the long-range Coulomb interaction leads to a first-order transition.
We describe the concept of the metallic order parameter, which is proportional near the
transition point to the density of states at the Fermi level. The theory enables one to explain
qualitatively many experimental data, mainly thermodynamic, on the oxides of vanadium and
titanium and the sulfides of 3d-metals having a metal-dielectric transition. The pathways are
discussed of further development of the theory for fuller description of all physical properties
of the materials being studied. Cases are analyzed in which localized magnetic moments exist
and are manifested alongside the band states.
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1. INTRODUCTION

The study of metal-dielectric transitions has broken
down the classification traditional in solid-state physics of
materials into metals and dielectrics in terms of the type of
electronic spectrum and the filling of the bands of collecti-
vized electrons.1 " Many examples appeared around the
middle sixties that violate the described classification. The
materials that underwent a metal-dielectric transition
turned out to be anomalous. That is, they had the properties
of metals under certain external conditions (temperature,
pressure, etc.) and of dielectrics under others.3'4 As a rule,
the transition between these two states is accompanied by a
sharp change in the electric conductivity (up to a factor of
10l° in the oxides of vanadium) and in other physical prop-
erties, and has the character of a first-order transition. The

metal-dielectric transition (MDT) is also related to the met-
al-semiconductor and the semimetal-semiconductor transi-
tions. Most generally one adopts the definition of a MDT as
a transition with a change in the type of conduction.

What has given rise to the steadily growing interest (for
already two decades) in the MDT problem? First, the unu-
sual combination and interconnection of electric, magnetic,
elastic, and optical properties compels one to employ a com-
plex approach including both theoretical and various experi-
mental methods, if even for a qualitative understanding of
the MDT phenomenon in each concrete material. Seocnd,
the set of exotic properties renders MDT studies practically
important (see Ref. 5). Third, the transformation of a metal
into a dielectric impedes the onset of superconductivity with
decreasing temperature. Since the MDT is observed in
"poor" metals, the hope exists that the study of MDT's will
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favor the solution of the problem of high-temperature super-
conductivity.6'7

Evidently, at ultrahigh pressures any substance be-
comes a metal, since the wave functions of the electrons on
adjacent atoms will overlap sufficiently at small enough in-
teratomic distances. Striking examples of MDT's under
pressure are the metallic phases of typical dielectrics, such as
xenon, sulfur, and Nad obtained in the Institute of High-
Pressure Physics of the Academy of Sciences of the USSR
(see, e.g., the Materials of the 2nd All-Union Conference on
MDT's8).

Another example of MDT's is the Anderson transition
in disordered systems, involving localization of electrons at
the mobility threshold.9 One usually studies an MDT of this
type experimentally in doped semiconductors as a concen-
tration-dependent transition at a sufficiently low fixed tem-
perature.10-"

A third example of a MDT is offered by studying a
Peierls transition in quasi-one-dimensional systems,12 in-
volving formation of charge-density waves (CDW's) or
spin-density waves (SDW's).

Finally, there is a large class of compounds (mainly
oxides and sulfides of transition metals) where an MDT is
induced by relatively small changes of temperature (~ 102

K) and pressure ( ~ 10-100 kbar). Here the MDT in these
substances can be accompanied by structural and magnetic
phase transitions. Among compounds of the 4f-metals the
MDT is often a transition with change of valency, as has
been discussed in the review of Ref. 13. Our topic of discus-
sion is the narrow-band compounds of the 3d-metals.

As we see it, one can distinguish three stages in the his-
tory of the study of MDT's. The first was fundamentally
characterized by the accumulation of experimental data,
and ended in the middle sixties. At this time MDT's were
discovered in the oxides of vanadium and titanium and the
sulfides of nickel and a number of other compounds. In this
period Mott expressed some important qualitative ideas on
the nature of the metal-dielectric transition (see, e.g., Refs.
14-16). Around this time such mechanisms of MDT's were
already known as the Peierls transition, Wigner crystalliza-
tion, and MDT's caused by antiferromagnetic ordering.17

The second stage is characterized by the study of var-
ious mechanisms of MDT's. It developed in many ways un-
der the influence of the ideas and methods of the theory of
superconductivity, especially its field-theoretical formula-
tion.I8J9 This includes the theory of an exciton dielectric20'21

and the theory of the transition of a narrow-band metal with
a special form of Fermi surface into the dielectric state.22-23

At this same time Hubbard proposed a rather simple model
describing an MDT, based on Coulomb correlations.24'25

These studies formulated the conditions necessary for a met-
al to convert into a dielectric. However, the treatment was
conducted within the framework of very simple models of
the electronic spectrum whose applicability to compounds
of the transition metals aroused serious doubts.

And finally, definite progress was attained in the past
ten years in describing MDT's in concrete substances or
classes of substances. These advances involve, on the one

hand, the extension of the ideas of the theory of an exciton
dielectric to more realistic models of the electronic spectrum
of concrete substances, often resting on numerical calcula-
tions of the band structure. On the other hand, they involve
the further development of the treatment of the Hubbard
model (including internodal Coulomb and electron-phonon
interactions and impurities) by the methods of continual
integration26 and the diagram technique for the Hubbard
operators.27

To describe these advances, along with the unsolved
problems of the theory of MDT's, is the theme of this review.

A large number of original studies, conference materi-
als,3'4-8'14 and reviews5'15-28"32 have been devoted to the prob-
lem of MDT's in compounds of the 3d-metals. However,
most of the reviews were written long ago and are somewhat
outdated, while a recent monograph32 is restricted to a nar-
row class of materials—the monosulfides of the 3d-metals.
At the same time, a number of interesting experimental data
has recently appeared, and new compounds have been syn-
thesized possessing MDT's. The analysis of these data on the
basis of the existing theories is also an aim of this review.

The fundamental distinction of a metal from a dielectric
involves the differing response to an external weak electro-
magnetic field. The multielectron criteria of whether a sub-
stance is a metal or a dielectric have been treated in Refs. 2,
33, and 34. At the same time, no unambiguous answer cur-
rently exists to the question of the order parameter in an
MDT.

From the single-electron standpoint a dielectric differs
from a metal by the gap in the spectrum. However, the gap is
not a thermodynamic parameter and hence cannot be an
order parameter.4 At the same time, for transitions involving
lattice distortion or magnetic ordering, the order parameter
is the displacement of atoms or the magnetic moment. In the
theories of CDW's and SDW's, the dielectric gap is propor-
tional to them and hence formally acts as the order param-
eter. On the other hand, in a purely electronic MDT, e.g., in
the Hubbard model, the dielectric gap cannot be per se the
order parameter. The thorough theoretical treatment pre-
sented in Sec. 5 of this review shows that in this case one
must consider the metallic phase to be ordered: the so-called
metallic order parameter arises in the transition from the
dielectric to the metallic phase.

Thus, for an MDT arising from the formation of
CDW's and SDW's, the theory is restricted to calculating
the electronic spectrum and its modification with variation
of temperature, pressure, defect concentration, etc. The the-
ory of such an MDT is close to the theories of other elec-
tronic phase transitions: the theories of superconductivi-
ty,7'18'19 of the band theory of magnetism,35-36 and the theory
of an exciton dielectric.7-28-37-38

At the same time, for substances in which the transition
is accompanied by structural or magnetic phase transitions,
the theory of MDT's must include the corresponding aspects
of the theory of structural and magnetic phase transitions.35

Moreover, in the MDT models involving formation of
CDW's and SDW's, incommensurable phases39 can arise
under certain conditions, and they are being intensively
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studied in other fields of solid-state physics.40 However, the
discussion of incommensurable phases lies outside the theme
of this review.

A considerable majority of the transitions being dis-
cussed are first-order transitions, and critical fluctuational
phenomena41 apparently are not manifested; at least we
know of no such examples (although the possibility of exis-
tence of a broad fluctuational region has been discussed the-
oretically in Refs. 42 and 43).

Owing to the brevity of this review, we have not adopted
the aim of tracing in detail the history of the study of MDT's:
one can find the information on the early studies in the cited
reviews.14-16'28-3' We point out also the book of Ref. 44 part
of which is devoted to materials having MDT's. Hence the
reference list makes no claim to completeness, and the refer-
ences to the experimental results are given mainly for the
recent studies.

2. FUNDAMENTAL MECHANISMS OF THE METAL-
DIELECTRIC TRANSITION

2.1. Metal-dielectric transition in the Hubbard model

The Hamiltonian of the Hubbard model24 includes the
Coulomb repulsion U of electrons by a single atomic s-orbi-
tal and the hopping (tunneling) of the electrons between
atoms with the transport integral t (f — f ) :

f, a
- s .
f¥=f, a

( 1 )

Here n"t = a£ atcr, ata is the Fermi operator for annihilation
of an electron at the node f having the spin projection a (in
the Wannier representation ) , E is the energy of the atomic
one-electron level, and p is the chemical potential. The at-
tractiveness of the Hubbard model lies in the fact that it
includes two opposite limiting cases.

The band limit exists when (7< W. In this case the Ham-
iltonian of ( 1 ) describes free electrons having the spectrum

t (k) =S t (h)exp (zkh),
u

(2)

as calculated in the strong-coupling method. These electrons
form an electron gas with a definite Fermi surface, metallic
conductivity, and a temperature-independent Pauli para-
magnetic susceptibility Xo- Usually one restricts the treat-
ment to taking account of only the Z nearest neighbors in
calculating f (k ) . Then we have t\Z = W, where W is the
half-width of the band.

The atomic limit corresponds to W ̂  U. Each atom has
four states (for a nondegenerate model): the "hole" |0) — a
vacuum state without electrons having the energy £0 = 0,
two single-electron states \a) = a£ |0) with the spin projec-
tions a = T and a = I and the energy e and the "pair"
1 2) = afta,~J" |0) — a two-electron state with spin 0 and ener-
gy IE + U. Such a system of isolated atoms is a dielectric
with a paramagnetic susceptibility that obeys the Curie law
X = C/T, where the quantity C depends on the mean num-
ber of electrons per atom

k, o

Both of these limits and also the intermediate cases are ob-
tained by varying the single dimensionless coupling constant
A = U/2 W from zero to infinity. When A < 1, one can take
account of the Coulomb interaction by the same methods as
in the theory of a nonideal Fermi gas.18 In particular, the
Hartree-Fock corrections to the spectrum reduce to an ines-
sential shift in the chemical potential. At the same time, the
simplified form of the Coulomb interaction does not allow
one to describe fully all the characteristic properties of met-
als. For example, the collective oscillations of the density of
particles have a zero-sound spectrum, rather than a plasma
spectrum.45 This is a consequence of the <5-function form of
the potential.46

In the opposite limit one can also have a perturbation
theory in terms of A — 1 ̂  1; various approximate solutions
have been discussed in Refs. 47-51 and in the earlier papers
cited there. For the homopolar casep = 1, the main result of
the perturbation theory in terms of A. — 1 reduces to the ap-
pearance of an effective exchange interaction of the Heisen-
berg type. This leads to antiferromagnetic ordering with the
Neel temperature TN ~t 2/U. The single-particle transitions
with energies e and £ + f/are smeared out into narrow Hub-
bard bands16 separated by the gap Eg=Eg( U, W) < U, the
Fermi level lies inside the dielectric gap, and the system re-
mains a dielectric with the susceptibility^- = C/(T+ TN).
The fundamental point is the difference of the statistics of
the quasiparticles in the Hubbard band and in the band of
electrons as calculated by any standard method of one-elec-
tron band theory. The total number of states in the band is
two (per atom), and one in the Hubbard band. The spin-free
character of the quasiparticles in the atomic limit has been
noted in a number of studies (see, e.g., Ref. 52).

In the exact solution of the one-dimensional Hubbard
model53 and in the limit T = 0, no phase transition was
found: when the number of electrons equals the number of
nodes and when A ^0, the system always remains antiferro-
dielectric. As regards the three-dimensional case, it is intu-
itively clear that the metal-dielectric transition (in any case,
at not too low a temperature) must occur in the region A ~ 1,
where perturbation theory is inapplicable. Just as in the the-
ory of second-order phase transitions, one can escape the
framework of perturbation theory into some particular var-
iant of the self-consistent-field method.25-27'54-58 A detailed
analysis of the results obtained in this way is given in Sec. 5.

It can be shown that the restriction to only s-electrons
strongly narrows the field of applicability of the Hubbard
model, since an MDT in a system of s-electrons could occur
only in systems of the type of solid hydrogen or helium.

In compounds with d-electrons, owing to orbital degen-
eracy, the number of possible states reaches 210 = 1024.
However, owing to splitting of the d-levels in the crystal
field, a situation can occur in which one d-level with an ener-
gy ~£f is split rather far from the remaining d-levels. This is
equivalent to the Hubbard model (see, e.g., the structure of
the bands of VO2 and V2O3 proposed by Goodenough59).

In systems of cubic symmetry the crystal field splits the
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d-levels into groups of e- and t-states, in which respectively 4
and 6 electrons can lie. The situation with a half-filled band
in compounds of the type of NiO and NiS2-e

2 or VO-t3
2g has

been studied in Ref. 25. The authors were able to find a spec-
trum of one-particle excitations with a gap at the Fermi sur-
face and to determine the conditions for transition to the
metallic state.

In the general case in which the mean number of elec-
trons per atom in n, according to Pauling's principle of elec-
troneutrality,60 one can restrict the treatment to the three
terms £ „ , £ „ _ , , and En + , corresponding to the ground
states of the configurations d", d" ~ ' , and d" + '. In the
atomic limit the spectrum of one-particle excitations con-
sists of two d-resonances fi _ = £ „ _ _ , — En, fl+ — En+l

— En, whose collectivization can be calculated by perturba-
tion theory. In the atomic limit the width of the correspond-
ing Hubbard bands is small in comparison with the spacing
between them fl+ — H_; the lower band is filled while the
upper band is empty. That is, in its electrical properties such
a model is equivalent to the nondegenerate Hubbard model.
At the same time the magnetic properties can differ strongly,
since the spins Sn, Sn_l, and Sn + , can take on different
values. Qualitative agreement with the Hubbard model oc-
curs when Sn = 1/2, and Sn±i = 0.

2.2. Metal-dielectric transition with formation of an atomic or
magnetic superstructure

A transition of this type, which is an analog of a Peierls
transition in a one-dimensional system, and which involves
formation of an exciton dielectric, arises every time that the
electron and hole bands of a semiconductor having a small
forbidden band21 or a semimetal with a small overlap of
bands20 are congruent. If here the extrema of the electron
and hole bands are separated by the wave vector Q, the con-
densate of electron-hole pairs (a^i<7a2tl + Qa') arising from
interband interaction leads to appearance of a superstruc-
ture (whose period is determined by the vector Q) and is
accompanied by CDW's in the case of singlet pairing
(cr = + cr') and SDW's in the case of triplet pairing
(a = — cr'). The studies on the theory of an exciton dielec-
tric and the problems involving the theory of superconduc-
tivity and structural phase transitions are reviewed in Refs.
7, 28, 37, and 38.

The single-band version of an exciton dielectric treated
in Refs. 22 and 23 is more applicable for describing MDT's
in narrow-band compounds. It was shown in these studies
that, if the energy of the band electrons for all wave vectors k
satisfies the so-called nesting condition

e (k + Q) = - e (k), (3)

then the metallic state with a half-filled band (for the case in
which 2Q coincides with one of the reciprocal-lattice vec-
tors) is unstable, and the transition to a dielectric phase is
accompanied by appearance of an intraband electron-hole
condensate.

Instability with respect to formation of CDW's is deter-
mined by the condition of appearance of a purely imaginary
pole in the dielectric permittivity e(Q, co). Since the renor-

malization of the phonon frequencies is determined by the
same graphs of perturbation theory that are summed in cal-
culating £(Q, co), then a purely imaginary pole simulta-
neously arises in the phonon Green's function.23 That is, the
formation of CDW's is accompanied by a structural transi-
tion with formation of a superstructure.

Analogously the instability with respect to SDW's is
determined by the condition of appearance of a purely imagi-
nary pole in the magnetic susceptibility and is accompanied
by the appearance of a magnetic superstructure with the
wave vector Q. The model of a MDT involving antiferro-
magnetic ordering was first treated by Slater.17 One of the
first studies on SDW's was that of Overhauser.61 The theory
of SDW's is also applied to describe antiferromagnetism in
chromium and other band antiferromagnetics, as has been
reflected in a recent review.62

The condition (3) physically implies the presence of
planar regions of the Fermi surface, and it arises for spectra
calculated, e.g., in the strong-coupling method, for a certain
lattice symmetry and a certain electron concentration. For
the one-dimensional case f (k) = — W cos ka, this condi-
tion arises at any concentration and leads to the well-known
Peierls instability.12 In the strong-coupling method, condi-
tion (3) can hold only for alternate lattices, which are subdi-
vided into two equivalent sublattices, such that each node of
the A-sublattice is surrounded only by nearest neighbors
from the B-sublattices, and vice versa. In particular, they
include the three-dimensional simple cubic and bcc lattices,
where the condition (3) is satisfied for a half-filled band.
The Fermi surface for the spectrum in a simple cubic lattice

e (k) = e x- (cos&.ea + cosAyz + cosfcza) —u. PF = 6|£|

(4)

for/3 = 1, when/z =£, has the form of a cube. The nesting
condition is also satisfied for a bcc lattice with p = 1:

= 8\t\.

The order parameters are the relative displacement of
the atoms of the sublattices, which is proportional to the
singlet gap As for CDW's, and the magnetization of the sub-
lattice R, which is proportional to the triplet gap A, for
SDW's. The equation for the gap coincides in form with the
well-known Bardeen-Cooper-Schrieffer (BCS) equation
from the theory of superconductivity19 and it yields for
T=0

(f = s, t). (5)

Here N(Q) is the density of states at the Fermi level, gs and
gt are the singlet and triplet coupling constants, and the co-
efficient 2 in front of W corresponds to a rectangular density
of states.

The modification of the spectrum (4) involving,
e.g., taking account of hopping of an electron to non-nearest
adjacent nodes, substantially affects the results, and is espe-
cially important for a bcc lattice, where the difference in
distances between the first and second neighbors is small.
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The band of electrons (2) is split after doubling of the
period into two subzones:

FIG. 1. Stabilization of the metallic phase taking into account hopping
between non-nearest neighbors, a—Generalized susceptibility ;c(q, 0) for
the different values of <p/W= 0(1), 0.2 (2), and 0.4 (5). b—Tempera-
ture-dependence of the gap A. for <p/W= 0.03 with/* "' = 3.50 (7), 3.70
(2), and 3.80 (3); forJ. ~' > 4.11 the gap equals zero at all temperatures.

For example, for a simple cubic lattice the addition to the
spectrum (4)

6e (k) = (p (cos kxa-cos kya + cos fc^a-cos kza

+ cos kza -cos kxa)

models the Fermi surface, which is now determined by the
equation

e (k) + 6e (k) = 0. (6)

As was shown in Ref. 23, the self-consistency equation in
this case acquires a more complex form than in the BCS
theory:

w
1 f de

+ th[£ *]}2T

and it has two nontrivial solutions at T=0. When <p < A0,
the solution of (7) is A = A0, and when Ao/2<^<A0, the
new solution A, = [A0(2^ — A0] 1/2<A0 appears.

Comparison of the thermodynamic potentials of the di-
electric and metallic M phases shows that the phase A l is not
realized at r=0.23

The solutions of Eq. (7) at finite temperatures are
shown in Fig. 1, from which we see that a critical point <p0

appears. It is of a type such that, when A0/2 < <p < <p0, the
transition remains continuous, while when <p0 < <p < A0, a
jump in the order parameter appears.63 It was shown here
also how the modulation of the Fermi surface removes the
singularity in the generalized susceptibility ̂ (Q, 0), which
leads to instability with respect to doubling of the period.

Other factors that lead to a first-order transition can be:
a) interactions that fix the phase of the order parameter64; b)
terms cubic in A in the free energy of the system arising from
taking account of collective oscillations37-65 or anharmoni-
city66; c) a sharp change in the correlation energy near the
MDT point.41

= e ± (t2 (k) + A2)1/" - (8)

The gap between the latter is determined by the solution of
Eq. (7). The phonon spectrum is also rearranged, with dou-
bling of the number of branches in it.23-28 Going outside the
framework of the generalized Hartree-Fock approximation
(GHFA) enables one to find the decay of the phonons in the
dielectric phase67 caused both by electron-phonon and
phonon-phonon interactions.

We note that most studies on MDT's involving the for-
mation of CDW's and SDW's have been conducted within
the framework of the GHFA, which differs from the ordi-
nary Hartree-Fock approximation in taking account of the
"anomalous" means (a^a^ + Q<a,}. Actually this is the
weak-coupling approximation As •< 1 and A, ^ 1. The latter
condition implies that the system exists in the metallic state
far from the Mott-Hubbard transition point A, ~ 1.

The Fermi-liquid treatment is applicable for such a sys-
tem when conducted with allowance for electron-hole pair-
ing.68 It confirms the conclusion69 that CDW's and SDW's
cannot coexist for the half-filled band of (3) or in the two-
band model of an exciton dielectric with equal numbers of
electrons and holes. Singlet and triplet pairing can coexist,
e.g., upon doping. This leads to the appearance of exciton
paramagnetism.37

2.3. Metal-dielectric transition with change in the topology of
the Fermi surface

Let us assume that the Fermi level of noninteracting
electrons lies in the region of overlap of two allowed bands.
Their mutual arrangement can vary owing to variation of the
lattice parameters under pressure, upon doping, or upon
thermal expansion. Consequently a complete separation of
the bands can occur, while the Fermi level can lie inside the
dielectric gap. According to Ref. 70, a transition of this type
at T= 0 is a 2.5-order transition, since the thermodynamic
potential depends on the volume according to the "five
halves" law:

6Q <*> \ V - Vc | 5/<>.

This weak dependence is smeared out by the temperature,
and hence such a transition at T ^0 is not, strictly speaking,
a phase transition.70

The fundamental conclusions obtained in the model of
noninteracting electrons continue to hold when we take ac-
count of Fermi-liquid effects.71 However, taking account of
the long-range component of the Coulomb interaction (ac-
cording to perturbation theory) led the authors of Ref. 72 to
conclude that the singularities of the thermodynamic poten-
tial are amplified near the transition point.

3. BAND THEORY OF THE METAL-DIELECTRIC TRANSITION
WITH FORMATION OF CHARGE- OR SPIN-DENSITY WAVES

The experimental study of compounds that undergo a
metal-dielectric transition enables their classification into
two groups in terms of the temperature-dependence of the
paramagnetic susceptibility j(D in the metallic high-tern-
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perature region. For example, the temperature-dependence
of>( T) for VO2 and NiS is fundamentally of the Pauli type.
At the same time, the susceptibility of V2O3 has a Curie-
Weiss behavior (see, e.g., Ref. 16). We can naturally as-
sume55 that such a classification corresponds to substances
with weak (A < 1) and intermediate (/I ~ 1) electron-elec-
tron correlations. We note that the self-consistent-field the-
ory presented below in Sec. 5 confirms the possibility of clas-
sifying metals into two categories—those having localized
magnetic moments or not (and correspondingly obeying the
Curie law or not in the paraphase). However, no consistent
theory exists at present that goes outside the framework of
the self-consistent-field method and can describe the transi-
tion region from localized to delocalized moments.

Section 3 will study substances with a rather weak cor-
relation, which can be taken into account within the frame-
work of the GHFA. A detailed discussion of the physical
properties and mechanisms of the MDT's of the vanadium
oxides is given in the book of Ref. 5.

3.1. The transition in vanadium dioxide

None of the compounds discussed below has a simple
cubic or bcc lattice that would allow using the condition (3)
for the d-bands. At the same time, they all have a distinct
symmetry axis (the c-axis), along which chains of cations
lie. Therefore a number of studies have assumed that a frac-
tion of the d-bands is quasi-one-dimensional and satisfies the
condition (3) with Q = (0, 0, tr/c), where c is the distance
between the cations in the chain (for VO2, Refs. 73-76 for
V2O3, Refs. 59, 77-78 and for NiS Refs. 79, 80). However, a
metallic phase with a quasi-one-dimensional conduction
band would have a considerable anisotropy of all the elec-
tronic properties. This is actually not observed. Hence we
can assume that the Fermi level intersects two bands—one
band singular in the sense of the condition (3) and the sec-
ond nonsingular and formed by hybridized orbitals and hav-
ing a complicated three-dimensional dispersion law.

Such a model has been proposed for VO2.
75 A band cal-

culation81 has confirmed it in the main (see Fig. 2). How-
ever the vector Q for VO2 proved to be equal to TT( I/a, 0, I/
c). A calculation of the generalized susceptibility showed
the existence of a maximum of^(Q, 0) at Q = (ir/a, 0, TT/
c).81 This leads to phonon instability and the formation of
CDW's. Experimental study of the electronic structure of
VO2 by optical and thermooptical methods also confirms the
association of the MDT with electron-phonon interaction.82

Figure 3 shows the possible states of the two-band mod-
el. A self-consistent theory of the MDT in the two-band
model63 has been constructed with account taken of the two
types of anomalous means—singlet and triplet. The spec-

FIG. 2. Cross sections of the Fermi surface for two bands of VO2 that
intersect the Fermi level.81

trum of the electrons of band 1 with spin up or down is

(9)

In the case of only singlet or only triplet pairing, the gaps are
the same: |At | = |A, |. If CDW's and SDW's coexist, then
the spin degeneracy is removed,37 1 A, | ̂  \ A 1 1 . One seeks the
gap A, andAj and the chemical potential /i from the system
of self-consistency equations. In the multiband model the
latter differs from the equations of Ref. 37 in the presence of
a reservoir of electrons of finite capacity. The singlet and
triplet anomalous means are found as the symmetric and
antisymmetric linear combinations:

(10)

(11)

The important parameters of the two-band model are
the spacings between the energy centers of gravity of the
bands £2 — e, = d, which is determined for VO2 by the split-
ting of the t2g level by the tetragonal component of the crys-
tal field, and also the relationship between d and the band
widths 2/1W. The Fermi level intersects both bands in the
metallic phase if W2 > d. In the converse case the second
band is empty and plays no role.

To describe the MDT's in stoichiometric VO2 and
NbO2, one must seek the singlet solution A, = A, = A for
the concentration of electrons p = 1. Under the conditions
T = 0 and cp = 0 and for the semielliptical-band model of
(27), the energy gap is

—jj-) , ^ = £.#,(0). (12)

The results of numerical calculation for T ̂  0 and <p ^ 0 are
shown in Fig. 4, from which we see that two nontrivial solu-
tions exist, A! > A2. Comparison of the thermodynamic po-
tentials of these phases and the metal phase A = 0 shows that
the phase A2 is unstable atp = 1. A first-order MDT occurs
with increasing T with Tc <A(0) and a jump in the gap
A(rc) /A(0)~-l . At the transition point we have

FIG. 3. Possible states of the two-band model of VO2 with
band 1 satisfying the nesting condition, a—Metal, b—Var-
iants of a dielectric, c—Semimetal.
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FIG. 4. Temperature dependences of the gap A and the chemical potential
77 for/I -' = 3.50. Wl = 0.5 eV, W2 = 0.7 eV, d = 0.69 eV, cp = 0.15 eV.
Curves 1-4 correspond to the values p= 1 (/), 0.990 ( 2 ) , 0.982 (3), and
0.980 ( 4 ) . The solid lines pertain to the phase A,, and the dotted lines to
the phase A2.

= /u(A2) =//(0). For q> — 0, the solution of the
equations yields a second-order transition with Tc ~ A(0).

The physical mechanism that yields a first-order transi-
tion when £>SA(0) is as follows. For/? = 1, the dielectric
gap in the spectrum (9) is A — cp. If we have A, (0) ><p when
T= 0, then the quantity &i(T) declines with increasing T
until the condition A, (Tc) = <p is no longer satisfied. With
further increase in T, the spectrum becomes semimetallic. If
£>~A,(0) , then we have Tc < A, (0), and we can neglect the
thermal excitation of electrons through the gap. In this case
the carriers arise jumpwise at Tc. Actually we see from curve
/ in Fig. 4 that At(71,.) = (p. For small cp, the intersection of
A] (7*) with the level <p occurs at T~ A j (0), when the ther-
mal scatter is substantial—in this case the concentration of
carriers varies smoothly.

The two-band theory63 also enabled understanding the
existence of the triple points on the phase diagram of VO2

doped with trivalent impurities (see Ref. 5 and the experi-
mental studies cited there). Each Me3+ atom in the com-
pound V, _xtA.e3

x
 + O2 leads to formation of a hole on the

background of V4+ ions, and the concentration of electrons
decreases.

The small concentrations at which the new phases and
the triple point (xc ~0.01) were found in V, __xMe}

x
 + O2,

and also the identical phase diagrams upon doping with an
atom of either a transition or a nontransition element have
allowed one to assume that these phases also exist in stoi-
chiometric VO2, but in a metastable state.83 This assumption
is confirmed in experiments on uniaxial pressure, in which
the dielectric monoclinic phase that is metastable under nor-
mal conditions is separated out in a stable modification.84

For small x it is reasonable to use the rigid-band ap-
proximation for the metal phase, while assuming that none
of the parameters of the substance vary except the concen-
tration.

There is also an indirect experimental proof of the ap-
plicability of the rigid-band approximation, which was ob-

0.995 0.985 O.975 />

FIG. 5. Phase diagram of the two-band model. Solid line—magnetic field
H = 0, dotted line—^B# = 0.001 eV, dot-dash line—H = Q,W2 = 0.705
eV; see Fig. 4 for the rest of the parameters.

tained in studying V] _;c_>,Me3. + Mo_),O2.
85 Each Mo ion

furnishes an extra electron and thus compensates holes
created by Me3 +. Consequently p increases, while experi-
mentally85 the M2 phase stable in the absence of Mo (A2 in
our notation) is replaced by the Ml (A[) phase as y in-
creases.

Curves 2-4 in Fig. 4 correspond to an increased concen-
tration of holes. The result of solving the system of self-con-
sistency equations forp < 1 shows that the phase A2 is stabi-
lized with decreasing p with a smaller gap, while a triple
point and a region of stability of a new phase arise in the
phase diagram in the ( p , T) plane (Fig. 5).29 All the boun-
daries in Fig. 5 are first-order transition lines. As we see it,
the leftward shift of the triple point with increasing W2 imi-
tates the stabilization of the A2-phase upon uniaxial com-
pression perpendicular to the c axis. The effect of different
pressures on the triple point has been studied in Ref. 86.
Figure 5 also shows the shift of the triple point in a strong
magnetic field, while Tc practically does not vary upon im-
posing a magnetic field.

Thus the rigid-band model for the metal phase of
V, _ x Me3 + O2 enables one to describe the low-temperature
phases qualitatively correctly. However, a more exact de-
scription of the phase diagram must include, e.g., taking ac-
count of the scattering of electrons by the random potential
of the impurities, the variation of the parameters of the band
structure upon doping, etc.

Moreover, actually the symmetries of the Ml and M2
phases differ in the method of pairing of the cations.5 In the
simplified model63 with one cation, these phases have an
identical symmetry of the displacements of the cations,
while differing only in the values of A! and A2. For this same
reason an intermediate T-phase is lacking in the theory
between the Ml and M2 phases. The electric and magnetic
properties of doped VO2 have been discussed in Refs. 5, 16,
and 87 on the basis of a model of quasi-one-dimensional Hei-
senberg spin chains and formation of spin-polarons.

The problem is interesting of the need for long-range
crystalline order for the existence of an MDT in VO2. The
experimental studies contain contradictory results: accord-
ing to Ref. 88, a dielectric phase in amorphous VO2 is absent,
and crystalline order is necessary for existence of an MDT.
However, according to Ref. 89, a transition is observed in the
amorphous state. Apparently the difference involves a dif-
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faring degree of amorphousness. Structural and electric
measurements90 have shown that the MDT in an amorphous
specimen prepared by cooling from the melt is conserved,
although Tc and the magnitude of the jump in conductivity
are decreased. At the same time, the degree of amorphous-
ness of the prepared specimens was not studied specially,
and the diffuseness of the diffraction lines in the x-ray spec-
tra enabled the authors90 to speak "rather of a strongly de-
fective structure of VO2 than of total absence of structure."

Another example of the influence of disorder on an
MDT is given by doping with quadrivalent impurities, e.g.,
in the system V,_.(NbxO2 an MDT was observed up to
xSO.15,91 in V^Mo.O;, up to xS0.2.92 In Ref. 93 the
influence was studied of two types of disorder: diagonal in
the node representation and nondiagonal (interatomic), on
the MDT with formation of CDW's. Diagonal disorder sup-
presses the dielectric phase just like charged impurities in an
exciton dielectric94 and paramagnetic impurities in a super-
conductor.95 Nondiagonal disorder alters the width Wof the
band, thus affecting the magnitude of A(0) and Tc [see
(12) ]. Both an increase and a decrease are possible, depend-
ing on the sign of the change:

In the case of replacement of vanadium ions by ions of a
4d-metal whose ionic radius is larger, we have S W> 0, and
the decrease in Tc owing to diagonal disorder is partially
compensated by an increase owing to nondiagonal disorder.
At the same time, in the replacement of a 4d-ion by a 3d-ion,
we have 8 W < 0, and both forms of disorder decrease Tc. The
former case is characteristic of the systems V, _ x Nbx O2 and
Y! _ x Mox O2 cited above,5'91'92 where the slow decline in Tc

can apparently be explained by partial compensation of the
contributions of diagonal and nondiagonal orders. The latter
case corresponds to the system Nb[ _ x Ti., O2, in which all
the disorder mechanisms act toward decreasing Tc: one ob-
serves a sharp decrease in Tc from the value 1090 K at x = 0
to300Katx = 0.017.96

Thus far we have been discussing VO2 from a single
standpoint, namely that of bands, in which the very major
effects of Coulomb and electron-phonon interactions are as-
sociated with the singling out of the anomalous singlet and
triplet means. We must acknowledge that a number of ex-
periments5 exists for which the interpretation in the lan-
guage of Mott-Hubbard correlations seems preferable.16 Ap-
parently, VO2 is characterized by an intermediate situation,
in which the correlations are not so large as, e.g., in V2O3,
but neither are they small enough, so that the correlation
corrections to the Hartree-Fock approximation are substan-
tial.

3.2. The metal-dielectric transition in nickel sulfide

Despite the large number of theoretical and experimen-
tal studies (see the reviews of Refs. 15, 16, 28-31), the na-
ture of the ground state and the MDT in NiS were unclear
for a long time. Most of the investigators started with the fact
that the high-temperature phase of NiS is a paramagnetic
metal with band-type conduction and an almost tempera-
ture-independent Pauli susceptibility,97'98 and that the tran-

sition point coincides with the Neel temperature
Tc = TN = 264 K.

Two sets of experimental data on the temperature-de-
pendence of the electric conductivity below Tc contradict
one another: according to Ref. 97, NiS is a semiconductor
with a large anisotropy of the conductivity a^/(j\\ ~102,
while according to Ref. 98 it is a semimetal with a smal!
anisotropy of conductivity.

A calculation of the band structure of NiS99'100 has
shown that the Fermi level jn intersects several bands: the
narrow d-band (mainly formed by the eg-states of Ni) and
sp-t2g -hybridized bands of sulfur and nickel, with fj. lying
near the center of the d-band (band 1) and near the top of the
sp-t2g-band (band 2). These calculations confirmed the
qualitative two-band model of the metallic phase.97'98

The symmetry of the ee -functions and the arrangement
of the cations in NiS (chains along the hexagonal c-axis) are
of a type such that the overlap of the eg orbitals occurs main-
ly along the c-axis. Hence we can expect the nesting condi-
tion to be satisfied with Q = (0, 0, TT/C). Actually, taking
account of the exchange molecular fields involving the alter-
nation of spins along the c-axis in the band calculations100

showed that the formation of SDW's leads to an MDT.
It was noted also in Refs. 17 and 18 that antiferromag-

netic ordering can lead to formation of a dielectric gap; a
self-consistent theory for SDW's of the states was developed
in Ref. 21. The two-band theory described above allows one
to explain the apparent experimental contradictions
between Refs. 97 and 98 upon taking account of the antisym-
metric solutions A, = — At = A corresponding to SDW's.

As will be shown below (see also Refs. 32 and 100), the
reason for these contradictions is explained by the presence
of cation vacancies. In an ideal, stoichiometric NiS crystal
the ground state is of semiconductor type. However, a semi-
metallic phase is formed with increasing number of cation
vacancies.

From the formal standpoint, the transition from singlet
to triplet solutions consists in replacing the coupling con-
stants gs —gt. Hence the results63 described above for VO2

can be obtained also for NiS, namely, the jumpwise charac-
ter of the transition, and also the existence of additional or-
dered phases and of a triple point in the phase diagram.

Since band 2 in NiS intersects^ near the top (but in VO2

near the bottom), it is convenient to alter the notation: now
let £2 be the top of band 2, and £, as before be the center of
band 1, and let d = e2 — et. The stoichiometric composition
of NiS corresponds to one hole per cell, ph = 1. We assume
for simplicity that both bands are nondegenerate,2' and then
p = 3 for pb = 1. As is known, like other monosulfides of
3d-metals, NiS practically cannot be made stoichiometric.
Usually compositions close to stoichiometric contain excess
sulfur and a cation deficiency. This gives rise to excess holes
(Sp<0).

We shall take account of the smooth modification of the
Fermi surface involving deviation from the condition (3)
owing to non-nearest neighbors in the same way as in Refs.
23 and 63 by assuming that <5£,(&) = <p in one half of the
solid angle of each octant of the surface, and &, (&)= — cp
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optical, electric, and magnetic data on NiS. Experiments on
infrared absorption102 revealed two gaps—a smaller one of
0.14 eV and a larger one of 0.4 eV. In our notation we have

FIG. 6. Band diagram for NiS. a—Metal, b—Proper semiconductor.
Semimetal. d—p-type semiconductor.

in the other half. Then the band model of the metallic phase
of NiS will look as shown in Fig. 6.

For the proper semiconductor that arises below Tc, in
the stoichiometric case (Sp = 0), the chemical potential lies
inside the gap, and the SDW amplitude A = <p (o*) in the
model of a rectangular density of states 7VA (e) = (1/2) W^
is equal at T = 0 to

(13)

This solution can occur when q> + d < A0. The magnetiza-
tion of the sublattice is

> = _£a_arsh (14)

With a small concentration of holes Sp<Sp0

= (d + A0 - <p)/W2, they lie only at the top of band 2 (Fig.
6d), and the occupancy of the subbands E f ( ± q>) is not
changed. Hence we have A = A0, while the chemical poten-
tial is diminished. When dp = 0 the semiconductor phase is
energetically more favored than the metallic phase A = 0.
However its stability decreases with increasing \Sp \, and as a
calculation of the energies of all the phases shows, when we
have

the metallic state becomes more favored. A semimetallic so-
lution can also occur when ft also intersects the subbands
E j+ ( — tp) and£f (<p) (Fig. 6c). In this phase (for simpli-
city we assume that W, = W2 = W) the gap is equal to

and it increases linearly for small \8p \ 4,1 • Comparison of the
energies shows that the semimetallic phase is unstable in the
stoichiometric case but is stabilized when \Sp\> Sp2. An ex-
plicit expression for the critical concentration Sp2 is given in
Ref. 101. The essential point is that Sp2 <8pl< Sp0. Hence in
a stoichiometric specimen and when \Sp\ <Sp2, the ground
state of NiS will be a semiconductor, but a semimetal when
\Sp\ >Sp2. Apparently the difference between the results of
Refs. 97 and 98 involves a different degree of nonstoichio-
metry of the specimens.

The two-band theory80-101 also allowed one to relate the

£fmln(-<p)-£2max = 0!14 eV,

i(-q>)-£fmax(tp) = 0.4 eV.
(16)

According to the magnetic and neutron-diffraction
data,98 the MDT in NiS is a sharply marked first-order tran-
sition with a practically temperature-independent magnetic
moment ( ( j . = (1.66 + 0.08)[iB at 4.2 Kand (1.50 + 0.10)
/j.B at 260 K). Hence we can replace A(r) in the relation-
ships (16) by A0. We obtain another equation for the three
quantities A0, <p and d from the activation energy of conduc-
tion Eg = 0.34 eV.97 In a substance with an anisotropic Fer-
mi surface, the optical gaps that are sensitive to the anisotro-
py will not equal the activation energy of conduction, which
is determined by quantities averaged over the Fermi surface.
Hence, instead of all four of the subbands E f ( +<p), two
remain after averaging E ,* (0) having <p — 0, and then we
have Et =<p0 — d. Consequently we find from the optical
and electric data A0 = 0.4 eV, cp = 0.2 eV, and d = 0.06 eV,
and we can calculate the magnetic moment of the sublattice
by using (14). Recalling the twofold degeneracy of band 1,
we have /z = 2g (a2)^ = 1.68 /ZB (the bandwidth is
2 W = 1 eV, according to Ref. 97). This agrees very well with
the experimental data presented above.

The large anisotropy of the semiconductor phase found
in Ref. 97 is explained by the presence of holes at the top of
band 2, so that carriers exist in the basal plane, but are absent
along the hexagonal axis. In the semimetallic phase carriers
exist in all bands, and hence the anisotropy is small.

At the same time, a number of experimental facts can-
not be explained within the framework of the two-band the-
ory.80'101 The fundamental ones are the structural data: the
change in the lattice parameters and in the unit-cell vol-
ume—and also the softening of the phonon spectrum.103-104

We should note that the distortion of the lattice in the MDT
in NiS does not at all resemble the distortion of the lattices of
VO2, V2O3, CrS, and FeS, where the period along the c-axis
is doubled. In NiS the cation sublattice is not distorted, and
only the anions are displaced.

Another unsolved problem is the Neel temperature in
NiS. Most investigators assume that TN = Tc, and that the
substance is paramagnetic in the metallic phase. However,
Mott16 assumes that TN S 1000 K. This statement is based
on singling out the Curie-Weiss contribution to the tempera-
ture-dependence of the susceptibility. However, for NiS the
deviations of ̂ (T) from the Pauli law are small, and the
degree of accuracy of the description of these deviations
from the Curie-Weiss law is unknown.16 Moreover, as is
known, the Coulomb correlations can lead to a temperature-
dependence of%(T) in paramagnetic materials.26'105 A final
answer to the problem of the magnetic properties of the me-
tallic phase requires further studies.

3.3. The transition in vanadium sulfide

Just like the other monosulfides of 3d transition metals,
VS is usually nonstoichiometric, and this nonstoichiometry
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leads to a certain ambiguity in the experimental data. The
final phase diagram in the composition-temperature plane
has not yet been established. However, a region has been
revealed near the stoichiometric composition where the
MDT is accompanied by a structural transition.106

The band structure and the Fermi surface of the high-
temperature hexagonal phase of VS have been calculated in
Refs. 107 and 108, where the Fermi level was shown to inter-
sect the partially filled d-bands. The Fermi surface has a
rather complicated form. In particular, there is an electron
cylinder near the center of the Brillouin zone (point F) and a
hole cylinder near the point M at the edge of the zone. The
cylinders have an almost identical form and match rather
exactly upon translation by the vector Q in the TM direc-
tion.

A theory of the MDT with formation of CDW's for VS
was constructed in Ref. 109, which took account of only the
singular regions of the Fermi surface (the electron and hole
pockets). The theory107-109 qualitatively explains the rela-
tion between the MDT and the structural distortion, as well
as a number of other experimental data: the decrease in the
Knight shift, the electronic susceptibility, the anomaly in the
heat capacity, and the kinetic characteristics.

At the same time, the Knight shift does not drop to zero
below 7"c, but only by 30%; the temperature-dependence of
the conductivity is not activational in type, as must happen
in a semiconductor phase with a gap 2A equal to 0.3 eV109;
the Pauli susceptibility calculated in Ref. 107 is an order of
magnitude smaller than the experimental value. All these
discrepancies of the theory109 with experiment primarily in-
dicate the need for taking account of the other bands having
nonsingular Fermi surfaces, the existence of which is im-
plied by the band calculations.107 A very simple possible
three-band model includes two singular bands (an electron
and a hole band) and one nonsingular band.106 The Fermi
level above 7"c intersects all three bands, while below Tc it
intersects only the third one. Then the density of states
N(fj,)^Q both above and below Tc, and the Knight shift
does not fall to zero. The conductivity in this model is de-
scribed by the formula

Ti,0

Here cr^(T) is the conductivity in the third (nonsingular)
band, which is not activational in type. The susceptibility in
this model is also larger owing to the increase in the density
of states at the Fermi level.

Actually the third band plays the role of a reservoir of
electrons. Owing to the nonstoichiometry, the Fermi level is
shifted, and in this case CDW's and SDW's of the phases can
coexist. Depending on the relationship between the phases of
the SDW's and CDW's in the coexistence region, the sub-
stance will be either antiferromagnetic with a distorted lat-
tice or an "exciton ferromagnetic material." 37'69 The experi-
mental data do not yet allow one to distinguish the region of
coexistence of CDW's and SDW's of the phase. This will
require further magnetic studies of different compositions-of
v,_xs.

Metal

Semiconductor

b

FIG. 7. Diagram of the band structure of Ti2O3 in the metallic (a) and
semiconductor (b) phases.

3.4. The metal-dielectric transition in Ti2O3

The transition in Ti2O3 differs appreciably from the
MDT in the vanadium oxides in the absence of a sharp jump
in the electrical conductivity and in the absence of a marked
transition point. The conductivity varies smoothly by a fac-
tor of 10-50 over the broad temperature range 400-500 K.
At the same time, the heat capacity has a singularity at
7^450 K (see Fig. 2.5 in Ref. 16). The lattice symmetry is
not changed in the transition, but the lattice parameters are
altered. Ti2O3 remains paramagnetic both above and below
T no2 c.

A diagram of the band structure of Ti2O3 has been pro-
posed111 and is presented in Fig. 7. According to this model,
the Fermi level in the metallic phase intersects two d-bands
that arise from the t2g -level, which is split in the trigonal
crystal field into e^- and a,-levels. As is proposed in Ref.
I l l , the change in the lattice parameters leads to a change in
the band energy such that the en- and al-bands do not inter-
sect. Since the a t -band proves here to be completely filled,
the state obtained is a semiconductor.

A self-consistent two-band theory of MDT's based on
such a model of the spectrum has been constructed112 with
account taken of the Coulomb interactions (in the spirit of
the Hubbard model—intraatomic ones) J7n, £/22 for each
band and the interband interactions U12. In the Hartree-
Fock approximation these interactions lead simply to a shift
of the bands, and since the matrix elements Uab differ, the
shifts differ for each band.

The free energy calculated in Ref. 112 depends on three
self-consistency parameters: the chemical potential fj., the
lattice distortion R, and the number of electrons in the €„-
band «2. When «2 = 0, the en- band is empty (semiconduc-
tor), while when «2^0, this band is partially filled simulta-
neously with partial filling of band 1 (since nt + «2 = 1)—
this is a metallic state. Of course, the thermal scatter of the
electrons has the result that «2 ̂  0 at such temperatures, and
hence the MDT proves to be smooth.

The theory enabled a qualitatively correct description
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of the behavior of the lattice parameters, the heat capacity,
and the magnetic susceptibility, as well as the effect of im-
purities on the MDT.

In closing this section we note the interesting properties
of weakly doped Ti2O3: in the system (T^ _ x Vx )2O3, even
an addition of 0.5% V gives rise to metallic conduction and
to the appearance of the properties of a spin glass. At larger x
the spin-glass state is replaced by antiferromagnetic order
when the composition is closer to V2O3 (x £ 40%).113

3.5. The metal-dielectric transition in Magneli phases

A large number of oxides of vanadium and titanium
with the general formula MenO2n_! (« is an integer),
called the Magneli phases, have MDT's. A detailed analysis
of their complex crystal structure and physical properties is
given in Ref. 5. Let us list the fundamental experimental data
on which we can base a decision on the mechanism of the
MDT.

1. In all the vanadium oxides with 3<n <9 except V7O13,
there are three temperature regions: a) paramagnetic metal,
T> Tc; b) paramagnetic dielectric, rN < T< Tc; c) antifer-
romagnetic dielectric, T< JN.

2. The lattice symmetry does not change in the MDT.
However, the cations are displaced from the centers of the
oxygen octahedra, while the octahedra themselves are de-
formed.

3. In the metallic phase the ions V3+ and V4+ in
V2

 + V* 12 O2n _! are disordered, but ordered in the dielec-
tric phase.

4. The magnetic susceptibility above Tc is intermediate
in character between Curie-Weiss and Pauli behavior, and
undergoes a break at the point Tc. The Neel temperature 7"N

declines monotonically with increasing n.
In view of the low lattice symmetry of the cations and

the large number of atoms in the cell, the band structure of
the Magneli phases has not been calculated, and the number
of theoretical studies on these compounds is small. These
studies start with different models of the band structure of
V2O3 or VO2, which one can formally ascribe to Magneli
phases with n = 2 and n = oo, respectively.

An explanation of the MDT's involving the formation
of CDW's has been proposed in Refs. 114 and 115 in differ-
ent models of the electronic spectrum. Since formation of
CDW's requires satisfaction of the nesting condition (3),
one must explain its origin.

To understand the possible electron spectrum, let us
calculate p—the number of electrons per cation. Each vana-
dium ion can yield five electrons to chemical bonding, of
which two fill the p-shell of each of the (2n — 1) oxygen
ions. Consequently the number of band electrons is

filled band. That is, the model of Ref. 114 starts with V2O3.
The Fermi level is lowered with increasing n, so that the

fraction l/n of the band is always occupied. Here the condi-
tion (3) is satisfied only for a one-dimensional band

5n-2(2rt-l) =i 2
" n n ' (17)

Actually the models of Refs. 114 and 115 are distinguished
by a differing distribution of the electrons over the bands.
The model of Ref. 114 assumes that one electron per cation
completely fills a certain lower band and plays no role, while
the remaining 8p = 2/n electrons fill a singular band that
satisfies the condition (3). When n = 2 this will be a half-

e (k) = — W cos ka. (18)

For three-dimensional bands it can hold only for half-
filled bands. Peierls instability of the homogeneous state
having the spectrum of (18) gives rise to formation of
CDW's with an «-fold superstructure, which contradicts ex-
periment on the in variance of the unit cell of VB O2n _ , in an
MDT. Moreover, there are purely theoretical claims on the
model of Ref. 114: a) when n — oo the band of (18) will be
empty, and thus the MDT in VO2 cannot be described; b) it
is difficult to imagine how the spectrum of (18), which is
characteristic of a one-dimensional chain of cations, can be
realized in a real Vn O2n _ , structure; c) if it were realized in
any way, then CDW's and SDW's cannot be formed in a one-
dimensional chain.116

The model of Ref. 115, which starts with the spectrum
of VO2, seems more successful. For VO2 a d-band with the
condition (3) is known, and when n = oo, only it figures in
the treatment. Here we have p=l, and the band is half-
filled. With decreasing n oxygen vacancies arise. In their
field localized electron levels are formed with energies far
below the Fermi level. It is assumed that the "extra" dp = 2/
n electrons fill these levels, and the band of (3) is half-filled
as before, and splits into two subbands below Tc. The local-
ized spins in the vacancy levels remain here in the paramag-
netic state.

According to Ref. 115, the Coulomb interaction is the
cause of the ordered arrangement of the vacancies along
chains (one-dimensional order) and ordered arrangement
of the chains (three-dimensional order).

Various mechanisms of antiferromagnetic ordering in
Vn O2n _ i are discussed in Ref. 115. Most of them involve
the existence of a vacancy band a,, which is formed by the
overlap of the wave functions of the "extra" Sp electrons.
This band must be rather narrow so as to fulfill the condition
of Mott-Hubbard localization, which has been studied117 in
the case of a partially filled band.

As is known, interatomic hopping of electrons in a
Mott-Hubbard dielectric leads to antiferromagnetism in the
case of a half-filled band (see Sec. 5 of this review), but a
tendency to ferromagnetism arises upon partial filling.47 It
can be exactly proved for U-> oo and with a single carrier in
the case of simple cubic and bcc lattices that the ground state
is ferromagnetic.118 Hence the detailed microscopic theory
must include the competition of mechanisms of ferro- and
antiferromagnetic ordering. Since this has not yet been done,
we must acknowledge that there is no microscopic under-
standing of the nature of the antiferromagnetism of Magneli
phases.

A phenomenological theory of the MDT in Magneli
phases based on the model of Ref. 115 has been constructed
in the form of a two-parameter Landau expansion in terms of
the singlet and triplet order parameters.119 The result of this
theory is the proof of the monotonic decline of Tc and in-
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crease of TN with decreasing n from VO2 to V2O3. However,
actually Tc varies nonmonotonically (see Ref. 5), which is
explained in Ref. 119 by scattering by oxygen vacancies ar-
ranged in disordered fashion.94

The analysis of the experimental data performed in Ref.
123 leads to the conclusion that the correlation effects in the
Magneli phases are stronger than in the extreme oxides of
the series VO2 and V2O3. However, owing to the nonintegral
number of electrons, the system remains a metal with local-
ized magnetic moments, which corresponds to the atomic
limit of the Hubbard model (see Sec. 5). For this reason one
must rather classify the Magneli systems among the systems
with strong correlations, and the description of the MDT in
them must be more complicated than the Hartree-Fock the-
ory of CDW's or SDW's.

The dependence of the Neel temperature on the number
« has been derived from the semiphenomenological ex-
pression for the free energy of an antiferromagnetic semi-
conductor'14

TABLE I. Comparison of the experimental and
theoretical values of the Neel temperature for
Magneli phases."4

F(T)=—(6P-

2T ,
• —wln (N/2) \ (19)

Here the first term is the energy of the ground state with the
exchange integral J, R is the relative magnetization of the
sublattice, n2 is the number of current excitations, the factor
8p — «2 reflects the fact that the magnetic moment per atom
is (8p — «2) R, the second term is the minimal energy of the
current excitations through the gap Eg, and the third term is
the entropy term. Expression (19) has been written pre-
viously for Sp = 1 (V2O3) in Ref. 47 and is valid when
T<gEg, when «2< 1 and one can neglect the distribution of
excitations over the band, assuming that they all have the
energy Eg. Since 7"N < Tc, the condition Eg > T is satisfied
for all T in the antiferromagnetic phase.

Upon minimizing (19) with respect to the parameters
«2 and .ft, we obtain the following self-consistency expres-
sions:

- - , (20)

(21)
JR (6p—R2)2 — U exp (—Eg/T)

Equation (21) without allowance for the current excitations
(the last term in the argument of the hyperbolic tangent)
reduces to the ordinary Curie-Weiss equation, which de-
scribes a second-order transition at the point T$\ However,
here it leads to a first-order transition close to second order
with TN <T$\ Let us select the parameters entering into
(20) and (21) such that TN for n = 2 coincides with the
experimental value for V2O3.

66 Then let us assume that all
the Magneli phases differ only in the concentration of elec-
trons, and let us calculate TN (n). As we see from the table,
the results agree well with the experimental data.

To explain the MDT's in the titanium oxides, one as-
sumes electron-hole pairing from the "congruent" and va-
cancy bands.' '5 However, there is no detailed theory. At the
same time, the MDT in Ti4O7 possesses a singularity, name-
ly: two conductivity jumps are known, and are separated by

vn°in-i

V20,
V306
V407
ViO,
v,on
V8015

flp

1
2/3
1/3
2/5
1/3
1/4

Experi-
ment

156
70
40
30
23

7

Theory

156
69
42
33
28
8

an interval of =;20 K. One of them is a semiconductor-semi-
conductor transition, while the other is a semiconductor-
metal transition. For a discussion of the titanium oxides, see
Ref. 5.

We note also the analogy between the MDT's in the
Magneli phases and in magnetite Fe3O4, which was dis-
cussed in Ref. 5. Both cases are characterized by a disor-
dered arrangement of the cations of different valency above
Tc, and by their spatial ordering below Tc. It is not ruled out
that one must combine the ideas of electron-hole pairing in
an exciton dielectric with the ideas employed to describe
transitions involving intermediate valency for a microscopic
description of these substances.13

A large number of theoretical studies has been devoted
to presenting polaron models of the MDT's in Ti4O7 and
Fe3O4.

16-'20 We note also the experimental study, Ref. 121
where an isotope shift of Tc was found in magnetite upon
replacing 16O with 18O. This directly indicates the need to
take account of the electron-phonon interaction in con-
structing the theory. An isotope effect has been found in the
vanadium oxides VO2, V3O5, and V2O3.

122

Thus a theoretical treatment based on very simple mod-
els enables one to establish the causes of appearance of
MDT's and to describe qualitatively the low-temperature
thermodynamic properties of rather complicated com-
pounds of the d (f) elements. Next comes the study of the
kinetic characterisitcs and their singularities near MDT
points. For this reason, Ref. 43 is of interest, in which the
conductivity of a nonideal exciton dielectric at T = 0 is stud-
ied. An extremely essential point is that experiment indi-
cates a defining role of the Coulomb and electron-phonon
interactions, which are not at all small. Therefore calcula-
tions by the ordinary band theory of the Hartree-Fock type
can only indicate correct trends, but not yield measurable
values. Thus, in the compound NiS the experimental value of
the dielectric gap is A0 = 0.4 eV with a band width 2 Wl = 1
eV. According to (13), this corresponds to A., ~ 1.

The problem of the possible construction of a perturba-
tion-theory series in the reciprocal quantity A ~' and the
finding of interpolation relations in the region of A ~ 1 is
discussed in Sec. 5 of this review.

4. FEATURES OF THE METAL-DIELECTRIC TRANSITION IN
MATERIALS WITH LOCALIZED MAGNETIC MOMENTS

As a rule, in the rare-earth metals and their compounds,
the electrons are well separated into localized f-electrons,

333 Sov. Phys. Usp. 29 (4), April 1986 ZaTtsev eta/. 333



which form a localized magnetic moment (LMM), and col-
lectivized s-, p-, and d-electrons; the s-d (f) exchange model
can be applied to describe such substances.35 Such a sharp
division usually does not exist in compounds of the 3d-met-
als, but in the series of compounds of Cr, Mn, and Fe—
elements from the middle of the row, where the tendency to
localization is greatest—LMM's can exist, at least in the
zero-order approximation with respect to hybridization and
other perturbations that mix the band and atomic states.124

Apparently, this is the situation in FeS and CrS, whose
MDT's are discussed in the reviews of Refs. 32, 125. Let us
present the fundamental properties of these substances.

One observes the following sequence of phase transi-
tions in FeS with decreasing T\ a paramagnetic metal-anti-
ferromagnetic metal transition (TN =600 K), an easy
plane-easy axis magnetic orientational transition (Ts = 445
K), and an antiferromagnetic metal-antiferromagnetic di-
electric transition with doubling of the period along the hex-
agonal axis (rc = 420 K).

The sequence of transitions in CrS upon cooling differs:
a paramagnetic metal-paramagnetic dielectric transition
with doubling of the period along the c-axis (Tc = 600 K),
and a paramagnetic dielectric-antiferromagnetic dielectric
transition CTN = 450 K).

X-ray photoemission data126 have shown that the hy-
bridization of the 3d-states of sulfur in FeS is weaker than in
NiS. Whereas in NiS the 3d-band is superposed on the upper
part of the 3p-band, in FeS the 3d-bands lie above the
3p-bands. A possible scheme of the energy structure of FeS
below and above Tc is presented in Ref. 127. In this model
the metallic properties are associated with the half-filled
d^ -band, which is formed by overlap of the cationic eg -orbi-
tals d^. As is assumed, the remaining d5-electrons form the
term 6A.l with the spin 5= 5/2. Below Tc the dz2-band is
split into two subbands, the lower of which is completely full
at T — 0, while the upper is empty. Within the framework of
perturbation theory, the description of the MDT in this
model cannot be restricted only to interactions of the band
electrons, but must allow also for interaction with the local-
ized spins.

In this regard a number of studies have constructed a
theory of MDT's in an s-d model in which the conduction
band satisfies the nesting condition (3). In the latter, in ad-
dition to the singlet and triplet intraband pairings, an insta-
bility of the paramagnetic system of the LMM's can arise
from the s-d exchange interaction and the formation of den-
sity waves of the LMM's.128 Under nesting conditions it is
insufficient to restrict the treatment to second-order pertur-
bation theory in the s-d exchange J for calculating the indi-
rect interaction between the LMM's, but one must sum all
the electron-hole loops with the transferred momentum Q.
In essence this is the same instability as has been used129 to
explain the possible magnetic structures of the rare-earth
metals.

For a self-consistent description of the dielectric phase
in this case one must introduce three order parameters—the
gaps As and A, and the amplitude of the density wave of the
LMM's (S2,) = ( S z ) exp (iQf). This problem has been

solved for a ferromagnetic130 ordering of the LMM's and for
an antiferromagnetic101'131 ordering. Reference 101 also
treated the more general case in which two bands exist—one
with the spectrum of (3) and the other nonsingular.

We note that the effects of the exchange interaction of
LMM's and band electrons in the case of a Fermi surface
with nesting differ from the case of ordinary electrons. While
usually the carriers in the broad-band s-d model (/< 2 W)
serve only to establish the indirect exchange interaction, and
we can neglect their magnetization and Coulomb correla-
tions, the situation differs in the nesting case. An arbitrarily
small intraband interaction leads to formation of SDW's; if
the LMM's do not interact with one another in any way, then
the paramagnetic system of the LMM's lies in an inhomo-
geneous molecular field and is magnetized in it, so that at
r= 0 we have (Sz) = S sgn J. The sign of / affects the
mutual orientation of the LMM's and the band moment;
they can exist in phase or counterphase. Here the triplet gap
in the spectrum of the electrons increases and consists of two
contributions—from the band and from the LMM's. This
implies that Tc also increases.130'131

The situation is more interesting in which one takes ac-
count of the spin-phonon interaction caused by magneto-
striction. The linear coupling between the deformations and
the magnetic structure prevents one from separating the
SDW's from the CDW's. Therefore singlet and triplet order-
ings coexist even whenp = 1, whereas this was impossible in
the band theory.37 These conclusions are corroborated both
by the analytic solutions of the self-consistency equations at
T= 0 and by numerical study of them at finite TV31

The theory of MDT's in the s-d model presented here
qualitatively reflects certain features of the MDT's in CrS
and FeS: the Tc 's in substances having LMM's are usually
higher (~103) than in band systems (~102); the coexis-
tence of antiferromagnetism and lattice distortion is charac-
teristic of the ground states of FeS and CrS. Nevertheless,
the sequence of phase transitions indicated at the beginning
of this section is not described by the theory. Moreover, the
electronic structure of FeS and CrS must be treated in more
complex multielectron models. One of the variants of these
models has been proposed.32 However, there is currently no
detailed study of MDT's in the multielectron theory.

5. METAL-DIELECTRIC PHASE TRANSITION IN SYSTEMS
WITH STRONG INTRAATOMIC CORRELATIONS

At present a broad class of compounds is known with an
unfilled electron shell, called the Mott insulators, which are
dielectrics at normal pressures, but which transform with
increasing temperature to a completely disordered state with
no substantial change in the dielectric gap (see the review by
Wilson132). As an example, let us examine the phase dia-
gram of vanadium sesquioxide V2O3, which has been ob-
tained in a series of studies by McWhan et a/.133~135, and is
presented in Fig. 8. Upon passing through the line L, a sec-
ond-order phase transition occurs with disappearance of the
antiferromagnetic order parameter, but without disappear-
ance of the dielectric gap. On passing through the line K
(with decreasing pressure), a dielectric gap appears practi-
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FIG. 8. Phase diagram of the solid solution (V, _ ..Cr, )2O3 for
x = 0.0375.134

cally simultaneously with the antiferromagnetic order pa-
rameter, so that we can interpret this transition as the forma-
tion of an SDW. On passing through the line M a sharp
change in conductivity occurs, but the form of crystal struc-
ture does not change: in both phases the unit cell has the
corundum structure, which persists in the disordered para-
magnetic phase. Wilson and Pitt136 observed a qualitatively
similar situation in the compound NiS2. Here passage
through the line M is accompanied by a small change in the
volume of the unit cell, which has a pyrite-type structure in
both high-temperature phases, remaining paramagnetic
when T>TK (Fig. 9). One can understand intuitively that
the source of the dielectric gap is the strong intraatomic elec-
tron-electron correlations, as is confirmed by the Hubbard
theory. The physics of the transition from the parametallic
to the paradielectric state (through the M-line) is consider-
ably less well understood. The fundamental theoretical
problem here consists in finding an order parameter that
disappears or arises in passing through the line of disappear-
ance of the dielectric gap.

5.1. The Hubbard theory and the metallic order parameter

In his study24 Hubbard starts with the atomic limit,
where one can neglect the overlap of the electronic wave
functions—the zero-order approximation. In the next ap-
proximation one can take account of the collectivization of
the atomic states owing to one-electron intercell transitions.

BO P, kbar

FIG. 9. Phase diagram of the compound NiS2.
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The so-called Hubbard I solution, which pertains to the par-
aphase, but without taking account of scattering by the fluc-
tuations of the local spin, was derived in this way. Thus, for
the very interesting case in which the number of electrons
equals the number of cells, Hubbard obtained two allowed
bands24:

(22)

Generalization of the Hubbard theory to the case of an anti-
ferromagnetic material with two identical sublattices also
yields two allowed bands:

( r/2 \ 1/2
*2(k) + -V) • (23)

The notation is the same as in Sec. 2 [see Eqs. ( 1 ) and (2) ].
Even in this very simple approximation Hubbard found a
result that the band theory cannot yield — a dielectric gap
exists in both the antiferromagnetic and paramagnetic
phases. Its maximum value ( [/) is attained in the atomic
limit. However, according to (22) and (23) it exists also in
the band limit — with an arbitrarily small value of the Hub-
bard energy U. This result is the major defect of the Hubbard
I solution, since when t/->0, the system must possess the
metallic properties of a weakly nonideal Fermi gas.

In one of the following studies137 (below — Hubbard
III ) , Hubbard takes account of the scattering of electrons by
the static fluctuations of the local spins. Here he obtained
not only a transition from the dielectric to the metallic state,
but also found a highly important property of a Hubbard
dielectric — the magnetic susceptibility has a characteristic
temperature-dependence of the Curie- Weiss type through-
out the region of existence of the paraphase. The existence of
this dependence, which arises from the presence of local mo-
ments, in the vicinity of the metal-dielectric transition and
also in the metallic phase, has extremely expanded the region
of applicability of the Hubbard model, not only toward com-
pounds of the transition elements but also to the transition
metals themselves and the rare-earth metals, in which one
always observes a Curie- Weiss law.

It was necessary to understand how the transition oc-
curs to the band limit, where local moments are absent. This
question has been answered within the framework of the
Hubbard model by Syrot.'38'139 He showed by using the
method of functional integration that one can find two sin-
gular points from the side of the band limit: a) where a local
moment and a nonzero value of the Curie- Weiss constant
arise; and then b) where a transition to a dielectric paramag-
netic phase occurs.

In the theory of Ref. 139 which corresponds to the self-
consistent-field approximation, the condition for existence
of local magnetic moments (LMM's) has the form of the
Stoner criterion averaged over the random and independent
arrangement of the spins

(24)

Here we have
i _ f PQ (e) de

E—i(k)-H8~
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n(E) is the Fermi distribution, and in the limit as r-»0 we
have n (E) = 6(— E). Here and below, S is a small positive
increment,

1 for x > 0,
0 for z<0,

andp0(s) is the start-up density of one-particle states.
The transition from the dielectric to the metallic state

occurs even in the region of existence of LMM's of (24),
mainly because of the scattering of the electronic excitations
by fluctuations of the LMM's.

The properties of the Hubbard model in the region of
small U, where LMM's are absent, have been studied by
Gutzwiller.140 Upon using a suitable test function in the
region

U < C0 — —16 S t (k) n [t (k)], (25)

he was able to determine the number of pairs (d) localized at
a single node, and also to prove that the jump in the distribu-
tion of single-particle excitations ( q) vanishes precisely at

, 1 / , U \ _. U* __ m
a~~Z~ I —7-71 ' 9 —a—r*"""^*"1 (26)

The latter relationship for the effective mass m* was derived
by Brinkman and Rice55 on the basis of the Landau theory of
the Fermi liquid (see Ref. 142).

A numerical analysis of the relationships (24) and (25)
shows that formally these inequalities do not contradict one
another. In other words, at the point where LMM's appear,
beyond which the Gutzwiller theory ceases to hold, all three
quantities d, q, and m* remain finite. Thus, in the model of a
semielliptical (SE) band, for which

PO (6) = ,,W2 (" E ) ' (27)

the condition for appearance of LMM's has the form
U = (37T/8) W; the transition point to the dielectric state is
determined by the quantity U= Uc = (4/3)W, and the
Brinkman-Rice point U = C0, where the effective mass be-
comes infinite, arises at the even greater values3'
U=C0= (32/3v)W. Numerical integration of relation-
ships ( 24 ) and ( 25 ) for a simple cubic lattice yields the value
f/<0.82 W for the point of appearance of LMM's,150 and
C7= 2.56 W for the Brinkman- Weiss point.141

The Hubbard III theory starts with the atomic limit
where LMM's always exist, so that its results are qualitative-
ly valid throughout the region of (24), and in particular, in
the neighborhood of the metal-dielectric transition.

In the Hubbard theory it is convenient to introduce the
new quantity S instead of the Green's function of virtual
electrons calculated in his study, summed over all momenta
(F):

With this definition the function S for |o>| •< I/is proportion-
al to the density of states p (e ) for the given energy £ = ieo, as
referred to the Fermi level. This function essentially deter-

mines the properties of the system at the Fermi level: in the
metallic phase it is finite, and decreases as we approach the
transition point; in the dielectric phase we have 5(0) =0,
which corresponds to the forbidden band, which owes its
existence to the correlation gap.

According to the Hubbard theory,137 in the SE band
model of (27), the function S satisfies a cubic equation with
coefficients that depend as power functions on co. Just like
the function F, the quantity S is an odd function of the com-
plex frequency co. However, in contrast to F, in the dielectric
phase it vanishes as <a-»0. If the energy ico is small in com-
parison with U, then the equation for 5 reduces to the
canonical form:

TO) + &C03 = 0) (28)

Here we have b ~ U 2 > 0, while the dimensionless param-
eter r is small and determines the closeness of the system to
the metal-dielectric transition point [seeEqs. (31) and (33)
below].

The region r < 0 corresponds to the metallic phase hav-
ing a finite density of states at the Fermi level

\ l /2p ( 0 ) ~ ( 0 + ) = - - - (29)

When r > 0, a nonzero density of states arises for a finite
value of the energy ia>, which corresponds to the dielectric
gap

2 / T \3 /2

(,1/2 (30)

Equation (28) is very general: any self-consistent pro-
cess describing the process of closing of the gap without the
vanishing of any thermodynamic order parameter leads to
Eq. (28) near the point where the gap vanishes. We can
present the theory of superconductors with paramagnetic
impurities as the historically first example,95 and then the
theory of a nonideal exciton dielectric.94 In the Hubbard
model the coefficients T and b have been calculated by Zait-
sev.27.

T=l- 47 S t2 (k)u'2'
k

(31)

According to Ref. 143, the coefficient y is proportional
to the product of the temperature and the magnetic suscepti-
bility. In the atomic limit we have Y = 3, and Eq. (31) com-
pletely agrees with the Hubbard III theory (with \co ^ I/and

All the thermodynamic quantities can be expressed in
terms of the summation over the frequencies of functionals
that depend on a and ca. Here the singularities near the
Mott-Hubbard transition point (termed below the M-H
transition) are defined in terms of Eq. (28). Thus one can
find in the limit as T->0 the singular component of the total
energy of the system (£an ). According to Ref. 154 we have

E ~ —(—T)7/2 6 (—T). (32)

The number of pairs (d) per cell does not vanish for any
value of the ratio U / W. However, one can show that near the
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MDT this function has a singular component (dan), which
is calculated by the same method as the anomalous compo-
nent of the energy:

(f co _(_t)S/2 0 ( —T).

Thus, in the region of existence of local moments (where
y^O, and the relationships (26) are invalid), the quantity 5
is the sole function that vanishes near the metal-dielectric
transition point similarly to the order parameter in the the-
ory of second-order phase transitions.144 For this reason we
shall call it the metallic order parameter below. The complex
frequency a> acts as the conjugate quantity, while the quanti-
ty 5 itself is proportional to the density of states at the Fermi
level in the limit as a — 0 [see Eq. (29) ].

In the far-lying metallic phase in the presence of strong
elastic scattering of electrons by impurities, an analogous
quantity was introduced by Wegner.145 He wrote 146 "....
The system has an internal isotropic symmetry with the fre-
quency as the source and the density of states as the order
parameter." It has been shown in the theory of localiza-
tion147 that mainly the transverse components of the multi-
component order parameter fluctuate at the localization
point, similarly to the fluctuation of the transverse compo-
nents of the spontaneous moment in a two-dimensional fer-
romagnet near the temperature of absolute zero.

Near the Mott-Hubbard transition point, where an
equation of the Ginzburg-Landau type (28) holds in the
self-consistent-field theory, both the transverse and the lon-
gitudinal components of the metallic order parameter fluc-
tuate strongly.43 This idea is the basis of the correlation the-
ory of the metal-dielectric transition.

5.2. Phase transition In the paramagnetic phase

There is an extensive literature that refines and devel-
ops the Hubbard theory. The most modern approach, which
is based on the method of functional integration,148'149 was
proposed by Cyrot139 and by Moria and Hasegawa.150 De-
spite the fact that these studies do not take account of the
transverse fluctuations of the spins, the longitudinal fluctu-
ations, which are characterized by the quantity {£2}, are
calculated in self-consistent fashion at the Mott-Hubbard
transition point itself. Upon introducing the complex fre-
quency ico instead of the energy e, and the metallic order
parameter a = iW2/4 instead of the intrinsic-energy com-
ponent £(£), we again obtain Eq. (28) near the transition
point and as co -> 0, with the coefficients

v (I2)2 i i.— 4 miT — 5i75 J ' ° H72~' \33)

A numerical integration of the self-consistency equa-
tions at the transition point itself has been given in Ref. 138,
where the value (f2)1 /2 = 0.74 was obtained. Mertsching151

and Hasegawa152 give close-lying numerical values. How-
ever, the following temperature corrections were obtained in
Ref. 151:

(34)

As we see from Figs. 8 and 9, the M-H transition line in

the variables (T, P) actually has a small temperature slope.
However, the dependence (34) proves too weak. Upon dif-
ferentiating the condition for an M-H transition with respect
to the temperature, we can show that the slope of the transi-
tion line in a cubic crystal is determined by the product of the
thermal-expansion coefficient (a) by the hydrostatic com-
pression modulus (K). For V2O3 this relationship yields a
result elevated above the experimental value by a factor of
4.5. This difference can be ascribed to electron-phonon in-
teraction, which effectively weakens the interaction U. At a
temperature above the Debye temperature, at which the one-
phonon contribution is proportional to the first power of the
temperature, we have153

(35)

Here d is the volume of the unit cell, t is the overlap integral
expressed in the same units as the coefficient of thermal ex-
pansion a, and z is the number of nearest neighbors. Accord-
ing to Ref. 153, the coefficient if> is expressed in terms of the
ratio of the static electron-phonon interaction constant to
the square of the Hubbard energy U. The coefficient if> is
small, but its contribution is of the same order of magnitude
as the thermal-expansion coefficient.

As we have already noted, the Hubbard model per se
yields a very weak singularity of the energy of the system
near the transition point. According to Refs. 1 54 and 1 55, as
!T-»0, we have a singularity that corresponds to a phase tran-
sition of order 3 . 5 [ see also (32)]. The experimental study of
the Mott transition in transition-metal compounds shows
that it is accompanied by a weak isostructural first-order
transition (see Fig. 10, which is taken from Ref. 156, and the
experiments157 in which two-phase regions were found in the
system (V, _xTix )2O3). To eliminate this contradiction,
Mott proposed158 that the free energy as a function of the
volume must have two minima. If one takes account of the
well-known general Peierls-Landau-ZeFdovich concepts,
one can easily understand159 that the origin of the second
minimum is explained by the sharp change in the long-range
component of the Coulomb interaction. Ultimately the lat-
ter involves the onset of exponential screening upon trans-
formation from the dielectric to the metallic phase. Upon
extrapolating from the low-temperature region, we note that
the reciprocal square of the Debye screening radius R is pro-
portional to the density of states at the Fermi level. Hence,
by using Eq. (29) we obtain

R ~ -t)-V* 8 T).

P, kbar
too
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FIG. 10. Experimental critical isotherm (7"= 293 K) of pure NiS2.'
56
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Using the Debye-Huckel theory (which corresponds to the
perturbation theory in the long-range component of the
Coulomb interaction), we directly find the singular contri-
bution to the polarization component of the free energy159:

-- Rs (-T)3/-1 0 (— T).

In the general case we have

(36)

(37)

Here the perturbation theory has (3' = 3/4; the correlation
theory43 of the ^-expansion type yields a stronger power-
function singularity, /?' = 11/12.

Thus, in agreement with the Mott hypothesis, the free
energy at T=0 and r-»0 has a 90-degree "cusp," which
becomes diffuse with increasing temperature. Upon expand-
ing the enthalpy in powers of the deformation with
allowance for the singular component of (37), one can de-
rive a very simple relationship between the hydrostatic com-
pression moduli in the metallic (Km) and dielectric ( K d )
phases pertaining to the first-order transition point160:

P'
(38)

Here 0' is the exponent in the singular component of the
expansion in the enthalpy as T-*Q. Substitution into (38) of
the values of Km and AT d for NiS2 yields/9' = 0.87, lyingjust
between the values yielded by the self-consistent-field theory
(36) (/?' = 0.75) and the correlation theory of the ̂ -expan-
sion type (P'=\ 1/12^0.92).

5.3. Phase transition in a magnetically ordered phase

With decreasing temperature, a Hubbard-type system
becomes ordered. According to Slater,17 in alternant-type
lattices (bcc, simple cubic), antiferromagnetic ordering sets
in at an arbitrarily small value of the energy U. In nonalter-
nant lattices (of the type of fee or hep), a critical value of the
ratio of the Hubbard U to the width W of the conduction
band always exists, above which antiferromagnetic ordering

arises in the system. According to Ref. 151, the critical ratio
for a fee lattice is ( U / W ) C = 0.72.

Mertsching151 has calculated the Neel temperature for
arbitrary values of U and for the special case of an SE band
(Fig. 11). Here it turned out that the Neel temperature in
the variables T / Wand U /M has a maximum near the critical
value corresponding to the metal-dielectric transition point
in the paraphase. One can obtain an analogous curve for any
alternant lattice if one finds the point of antiferromagnetic
instability in the paraphase under the condition of complete
nesting (3).27'161 Here, according to Ref. 150, for a simple
cubic lattice, and also in the model of an SE band, the maxi-
mum value of the Neel temperature proved to be two orders
of magnitude smaller than the Hubbard energy (as we see
from Fig. 11).

Upon studying the experimental situation depicted in
Figs. 8 and 9, one might conclude that the M-H transition
line breaks off at the magnetic-ordering line. However, no
physical justification exists for this. The reason for the disap-
pearance of the dielectric gap in the Hubbard III model is the
scattering of electrons by fluctuations in the localized spins.
In passing through the magnetic-ordering line, the spin fluc-
tuations are weakened but do not vanish.161 Here, according
to Ref. 162, near the transition point the correction to the
coefficient y in Eq. (31) is decreased in proportion to the
square of the antiferromagnetic order parameter.

-2"). (39)' ~" " rN

Substitution of this expression into (31) enables one to esti-
mate the region of existence of the antiferrometallic phase
for a given deviation of the pressure from the critical point
(AP):

6AP a (In W)
SK d (In ft)

(40)

For transition-metal compounds the derivative*? In W/
d In •& does not exceed three, so that we obtain a small value
not exceeding several percent for characteristic values of the

(T/WJ-t03(2)

MO

7—simple cubic lattice
2—SE band FIG. 11. Theoretical phase diagram of the Hubbard model in the

case of a simple cubic lattice obtained by Moria and Ha-
segawa150 (1) and for the semielliptic distribution of (27) from
Refs. 151 and 152 (2).
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FIG. 12. a—Experimental phase diagram of the solid solution
Ni(S, Se)2, where an antiferrometallic phase (cross-hatched)
was first discovered.165 b—Hypothetical phase diagram of the
Hubbard model with strong breakdown of the nesting condi-
tion.'39 c—Proposed region of existence of an antiferrometallic
phase in the neighborhood of a tetracritical point of the com-
pound V2O3 and solid solutions based on it; the M-H transition
line in the antiferromagnetic phase was obtained by using Eq.
(40).

hydrostatic compression modulus of 1-2 mbar and P~ 10
kbar. The relationships (39) and (40) are applicable to any
lattices, regardless of the exactness of fulfillment of the nest-
ing condition (3). For this reason we must assume that in all
cases the M-H transition line deviates sharply toward higher
pressures after intersecting the magnetic-ordering line.4'

For a theoretical analysis of the possible existence of an
antiferromagnetic phase with complete nesting and in the
model of an SE band in the Hasegawa equations,152 let us
transform to the variables

8iu= VF2(2;l + S;1), 8A = W2(S71—S;1). (41)

The quantity & has the meaning of the metallic order param-
eter, while A is proportional to the mean moment of one of
the sublattices. If we assume the possible existence of a gap-
free phase (o)^Q with co = 0) and then take the limit with
co2 < A2, we obtain the equation of the Mott-Hubbard transi-
tion line in the antiferromagnetic phase:

2£^<£2) = [! + (! — a2)1/2] W2, a— ̂ * . (42)

Here (£ ) and ( f 2 ) are the mean and mean-square values of
the local moment. When (f} = 0 we obtain a result pertain-
ing to the paraphase [see (33), with the condition r = 0].

Moving into the ordered phase corresponds to an in-
crease in the parameter a. Here the critical value Wc of the
width of the electron band at the boundary with the antifer-
romagnetic phase also increases. Thus, near the point of in-
tersection of the lines of the second-order transition and the
metal-dielectric transition, where W = W*, we have

W, = l (43)

The rms fluctuations of the spontaneous moment rapid-
ly decrease with decreasing temperature, and vanish as
J->0.152 Here a = 1, while in the model of an SE band, ac-
cording to (12), we have

(44)

Thus, when J7< W, the condition (42) cannot be fulfilled.
Hence we conclude that an antiferromagnetic phase under
conditions of complete nesting can exist only at a finite tem-
perature below 7"N (see Fig. 12c).

In nonalternant lattices the rms fluctuations of the local
moment differ from zero at all temperatures. For this reason,
in the given case an antiferromagnetic phase exists also at
T = 0 (see Fig. 12a). According to Ref. 139, in an fee lattice
a type-I antiferromagnetic phase at T = 0 exists in the inter-
val 0.89C/< W< 1.3917. In real alternant lattices, where the
nesting condition (3) is satisfied only approximately, anti-
ferromagnetic order exists also at T = 0, but to the extent
that transitions to the second nearest neighbors exist (see
Fig. 12b, Eq. (4), and also Ref. 163).

Near the M-H transition line, the metallic order param-
eter satisfies the Landau equation (28) with coefficients de-
pending on the magnitude of the antiferromagnetic order
parameter. In nonalternant lattices or in the case of incom-
plete nesting, the equation for S contains a term quadratic in
5, but with a purely imaginary coefficient. Here we must
recall that the frequency uo always enters in combination
with the chemical potential, which is a consequence of Gali-
lean invariance18:

TG> + Jocco2-)-p\o3 = (o— i[i. (45)

Upon using the obvious transformations <3-»« — i(a/3/3),
we have

I, _. T
 a I 2t*a

^ 3p ~i 2?P2 •

Again this equation reduces to the canonical form (28), but
with a shifted transition point r-»r + (a2/3y#).

In nonideal crystals of the type of the solid solution
Ni(S, _ x Sex ) 2 or \\f{ _ xy V

4/ O3 _ x, a sharp decrease in the
Neel temperature occurs with increasing concentration, si-
multaneously with expansion of the region of existence of the
metallic phase (see Figs. 12a and 13). The reason for this lies
in an additional mechanism of scattering by composition
fluctuations, which is equivalent to a concentration increase
in the parameter that enters into (31). In the general case, if
one allows for the fluctuations of the hopping integrals (non-
diagonal disorder) as well as the fluctuations of the electro-
static potential (diagonal disorder), Eq. (28) will be valid as
before near the M-H transition point, but with coefficients
that depend on the concentration.162'164 With decreasing
temperature, the nonthermodynamic composition fluctu-
ations persist even at the absolute zero of temperature. For
this reason one can observe an antiferromagnetic phase even
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at T = 0, but at not too small a concentration x, as we see
from Figs. 12aand 13.

6. CONCLUSION

In this review we have tried to offer a view of the phys-
ical picture of the phase transition from the metallic to the
dielectric state in compounds of the transition metals, where
electron-electron interactions are essential. Systems with
weak correlation have been treated within the framework of
models of overlapping bands. In nonideal systems and in
systems with strong correlation it is extremely convenient to
use the concept of the metallic order parameter to describe
the transition. By using it one can describe the singularities
of the physical parameters and the processes that occur near
the transition point. As we see it, the further development of
the theory of the metal-dielectric transition must lie in the
direction of greater concretization of the electronic struc-
ture, which rests on band calculations of the self-consistent-
field type with account taken of the existence of the metallic
order parameter and detailed accounting taken of the Cou-
lomb and exchange correlations in the presence of a possible
onset of anomalous means corresponding to charge, spin,
and orbital ordering.

The authors thank D. I. Khomskii, A. A. Levin, and V.
A. Ivanov, who have read the manuscript and made a large
number of highly valuable remarks.
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