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The concept of the quantum gas is introduced and illustrated by numerous examples. The
fundamentals of the theory of collective phenomena in quantum Maxwellian gases are
surveyed in a simple and readily assimilated form, and possible experimental studies are
outlined. Particular attention is devoted to weakly-damped spin waves. The spectrum of these
waves is calculated and the magnetic susceptibility generalized. The results obtained are
compared with experimental data on spin waves in gaseous H1, *Het, and *Het-*He quantum
solutions. It is shown that, at low temperatures, spin-polarized Boltzmann gases exhibit long-
range spin correlations which fall off as r— ' at large distances. The equations of spin dynamics
are solved for arbitrary temperatures and degrees of polarization, both in the weakly damped
and diffusion regimes. The thermodynamics of spin-polarized gases and some of the features of
transport phenomena are examined. Paramagnetic resonance and other collective effects in
binary quantum gases are discussed. Magnetic and structural thermodynamic phase transitions
in binary Maxwellian gases are predicted. Collective phenomena in semimagnetic
semiconductors and analogous effects in the spectroscopy of Rydberg atoms and levitating
electrons are discussed.
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1. INTRODUCTION: WHAT IS A QUANTUM GAS?

It has recently become clear that essentially quantum-
mechanical effects may become manifest in low-density sys-
tems at temperatures much higher than the quantum degen-
eracy temperature, i.e., in objects which traditionally have
been described by classical statistical physics. It is very im-
portant to note that many of these effects are not described
by small quantum corrections to classical formulas, but pro-
vide the main contribution to the quantitative description of
the physical phenomenon which, in this sense, has no classi-
cal analog. There is a relatively larger number of such phe-
nomena, ranging from specific oscillations of magnetization
to structural and magnetic phase transitions in equilibrium
thermodynamics. These effects are highly nontrivial in a gas
whose particles obey the Boltzmann-Maxwell statistics, and
are attracting increasing attention among both theoreticians
and experimentalists, especially since some rather surprising
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phenomena have recently been confirmed experimentally.
Boltzmann gases exhibiting macroscopic quantum phenom-
ena will be designated as “‘quantum gases,” and the signifi-
cance of this phrase will become clearer as we continue with
our review.

As usual, a “gas” will be understood to be a system in
which the contribution of free particles to the total energy is
much greater than the contribution due to the interaction
between them. This situation occurs when either the particle
interaction is weak or the gas density is low, although the
interaction at short distances may be very strong. The for-
mer case is encountered infrequently in nature and we shall
not consider it here (although, under certain particular con-
ditions, the Coulomb interaction between particles may be
regarded as weak, and is ignored in perturbation theory).
Wesshall, in fact, confine our attention to systems of particles
with a short-range interaction potential and low density N,
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such that Nry €1, where r, is the interaction range. The -

availability of this small parameter, natural for a gas, means
that all the macroscopic properties of the system can be de-
scribed in terms of the corresponding virial expansions. We
shall also consider that the gas temperature T is high
enough, i.e., T'>¢,, whereg, is the degeneracy temperature,
so that all the particles obey Boltzmann statistics. We shall
thus be concerned with quantum effects in the classical tem-
perature range.

When applied to a Boltzmann gas, the phrase “quan-
tum gas” means, broadly, that the interaction between its
particles must be described quantum-mechanically and not
classically. This imposes an upper bound on the tempera-
ture,namely, 7% T * where T * can be found for a power-type
potential by comparing quasiclassical and quantum virial
corrections in gas thermodynamics and is given by’

B(mT*)-42 —E(T*), UGE =T*, (1.1)

where m is the particle mass and U(r) is the interaction
potential between two particles, so that, when r = §, the in-
teraction energy of the two particles is comparable with the
temperature, i.e., it is of the order of the average kinetic ener-
gy of a free particle. Since, in a gas, we always have
E(T*) <N '3, itis certain that T *>&,, which is in accord
with the above assumption. We shall use the phrase “quan-
tum gas” in a narrower sense, namely, we shall use it to
describe a gas in which the mean de Broglie wavelength A of
the particles in the system is much greater than the linear
size r, of an individual atom. Actually, unless the gas has
already been condensed by reducing the temperature, we
shall enter the very interesting region

g kT -h—:

7 (1.2)
mr

which is available to us because of the availability of the
small gas parameter Nry € 1. Condition (1.2) is equivalent
to the following hierarchy of typical lengths in the system:
I3

muvq

N> A>r, A= (1.3)

=h(mT) 2,

which means, in fact, that we are dealing with a nondegener-
ate quantum gas and not a quantum liquid. Nevertheless,
although the gas molecules do obey Boltzmann statistics, the
particle delocalization scale in the region defined by (1.2) is
found to be greater than the size of the molecules (A >r,), so
that one would expect the system to exhibit qualitatively new
(as compared with a classical gas) and fundamentally quan-
tal properties.

Since the great majority of gases condense well before
(1.2) begins to be satisfied, the leading candidates for media
displaying quantum-mechanical effects are the gaseous iso-
topes of hydrogen and helium (H,, D,, HD, *He, and “He),
the traditional objects used in low-temperature physics,
which have appreciable saturated vapor pressures even in
the temperature region defined by (1.2). Although there
may be a great variety of macroscopic quantum-mechanical
phenomena in tenuous systems at low enough temperatures
(1.2) (some will be examined in Section 5), the most inter-
esting effects are those relating to the nonequilibrium dy-
namics of magnetization in spin-polarized gases. In many
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ways, this is explained by recent experimental advances in
the study of the spin dynamics of polarized gas systems. Spin
polarization, i.e., the establishment of unequal populations
of different spin states, can have a very substantial effect on
the macroscopic properties of quantum gases. Many inter-
esting effects displayed by such gases are due precisely to the
presence of spin polarization in the system. The most widely
studied systems are, at present, spin-polarized atomic hy-
drogen and helium-3, which are commonly denoted by H1t
and *Het. Gaseous Ht can be polarized and stabilized
against possible recombination into the molecular state H,
by applying a strong enough external magnetic field. Kagan
et al. (see, for example, Refs. 2 and 3) have examined in
detail the possible recombination channels and stability con-
ditions for the spin-polarized atomic state. Because of the
hyperfine interaction, there are four different modifications
of spin-polarized hydrogen of which the longest lived are the
states |a) = [t1) —n|l1) and |b) =|11), where 1 and t
represent the components of electron and nuclear spins and
7)is a small mixing parameter. Both states are, at present, the
subject of extensive experimental investigation.** The Am-
sterdam® and Massachusetts’ groups have produced very
high densities in gaseous Ht (4.5x10'"® ¢cm~2), and the
hope is that it may be possible to detect phenomena due to
the quantum-mechanical degeneracy of the gas, e.g., Bose
condensation and superfluidity, in Ht. Moreover, gaseous
H1 is the perfect material for the detection of macroscopic
quantum effects even in the classical temperature range, well
away from degeneracy, because theory suggests that it does
not condense even at absolute zero, so that we may be confi-
dent that the region defined by (1.2) exists, and there is no
prior condensation of the gas.

Another very convenient candidate for the spin-polar-
ized quantum gas is *Het. Its nuclear magnetic moment is
very small, so that gaseous *He cannot be appreciably polar-
ized by applying an external magnetic field. Different dy-
namic methods of producing nuclear spin polarization, e.g.,
optical pumping, injection of a polarized beam, and so on,?
have therefore become very topical. Recent experiments by
the Paris group®'® have resulted in the very high degree of
polarization = 70% at room temperature and a = 25—
50% at 4.2 K. The production of high levels of polarization
in a gas is of fundamental importance because many collec-
tive effects can be observed only for high enough values of a.
The relativistic dipole-dipole interaction in a gas is very
small, and the depolarization of *He atoms occurs mainly on
the walls of the chamber. Hence, by applying suitable coat-
ings to the chamber wall (solid H,, D,, Ne, superfluid *He,
and so on), it is possible to increase the magnetic moment
relaxation time in *Het very substantially. In the experi-
ments of Barbe ef al.,'! the longitudinal relaxation time 75,
i.e,, the time for which the magnetic polarization persists
after the optical pump has been turned off, is more than two
days at 4.2 K. Since the time necessary to establish equilibri-
um with respect to the spin 75 is immeasurably greater than
the gas Maxwellization time, the spin-polarized Boltzmann
*He exists for a long time after the pump has been turned off.
The total magnetic moment persists for ¢ S 7g, and the usual
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thermodynamic relations can be used as for a true equilibri-
um system.

The solution of *He in superfluid “He is an example of a
condensed medium that can be successfully described by the
quantum gas theory. Because of the particular form of the
diagram of state of solutions, the *He impurity atoms do not
“condense” into a dense liquid even at T" = 0. It follows that
we can always enter the temperature range (1.2) in which
the dissolved *He atoms may be looked upon as a quantum
gas of impurity quasiparticles.'*'* The difference from gase-
ous *He, for which the saturated vapor pressure at low
enough temperatures begins to decrease exponentially, is
that the gas of impurity excitations can be cooled down to an
arbitrarily low temperature at constant concentration be-
cause *He has a finite solubility in He II at 7= 0, which
means that realistically attainable magnetic fields can be
used to polarize the nuclear spins of *He in solution. In a
mixture of quantum gases, and, in particular, in a binary gas,
we encounter not only a trivial increase in the number of
components in the system, but also qualitatively new proper-
ties and effects that are not present in single-component sys-
tems. The new effects are particularly well-defined whenever
the mass of the particles of one of the components of the
quantum gas mixture is much greater than the mass of the
particles belonging to the other component. Accessible ex-
amples include cold, weakly-ionized plasma containing not
only electrons and ions, but also an appreciable number of
neutrals, and a gas of highly-excited Rydberg atoms in an
atmosphere of a foreign gas.'* In the former case, the light
component consists of the free plasma electrons which are
scattered by the short-range potential representing their in-
teraction with the neutrals. In (1.2), which defines the ex-
tent to which the Maxwell gas is a quantum gas, the mass m
must be interpreted as the reduced mass, i.e., practically the
mass m, of the electron, whereas r; is of the order of the
scattering amplitude of a slow electron on a neutral, i.e., it is
of the order of the atomic scale. In the second case, quantum
effects in the system give rise to the refraction of the bound
optical electron in the Rydberg atom by the foreign gas parti-
cles.

Nondegenerate semiconductors containing point de-
fects'* are convenient objects for the experimental investiga-
tion of collective quantum phenomena in binary Boltzmann
systems. When the concentrations of the conduction elec-
trons and defects acting as the components of the system are
not too high, all the qualitative characteristics due to the
scattering of electrons by defects can be obtained in the form
of the corresponding virial expansions. Moreover, since the
electron mass is small, the temperature range (1.2) in which
quantum effects are expected is substantially greater for the
systems enumerated above. For example, for typical values
of the effective mass of the electron in a semiconductor
(m*=0.1m,_ ), the upper limit in (1.2) is of the order of 10°
K, which covers practically the entire range of existence of a
nondegenerate crystalline semiconductor.

2. SPIN WAVES IN POLARIZED PARAMAGNETIC GASES
One of the most surprising quantum effects in spin-po-
larized Boltzmann gases is the presence of weakly-damped
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spin waves. The possibility of these magnetization waves,
their spectrum, and the conditions for their existence in H1,
*Het, and Maxwellian plasma” were first noted in our pre-
vious paper.'® A more detailed derivation and a solution of
the equations of spin dynamics for two-component spin-po-
larized Boltzmann systems were reported in Refs. 1 and 14.
In 1982, Lhuillier and Lalog&'® formulated the macroscopic
equations for magnetization in the form of the Leggett equa-
tions!” for a Fermi fluid, which enabled them to describe
spin oscillations under the conditions of strong damping,
and to follow the transition to pure diffusion at high tem-
peratures. The phenomenological equations of motion of a
magnetic moment in spin-polarized Fermi systems are also
given by Meyerovich.'® Quite recently, Lee, Freed, ef al.,
working at Cornei. University,'® used nuclear magnetic res-
onance to confirm experimentally for the first time the exis-
tence of weakly-damped spin waves in gaseous Ht for
T<0.8K, N~10" ecm~3, and H = 7.7 Tl, where H is the
external magnetic field. Levy and Ruckenstein®® have devel-
oped the quasiparticle approach to the description of gase-
ous Ht and have given a qualitative interpretation of some of
the experimental results reported in Ref. 19. At the same

time, the Paris group?' detected experimentally highly-.

damped collective spin modes in gaseous *Het for 7= 2-6
K, N = 10"-10'"® cm 3, and @ ~0.3. A systematic examina-
tion of collective effects, and a derivation and analysis of the.
equations of spin dynamics and long-range magnetic corre-
lations in spin-polarized quantum gases and quantum lig-
uids, is given in Ref. 22.

We note that a still earlier paper®® exploited the fact
that, in a low-density Fermi liquid, quasiparticles are weakly
damped even well away from the Fermi surface, and an at-
tempt was made to apply the transport equation of Fermi
liquid theory to a nondegenerate system of impurity excita-
tions in a *He-*He solution. It became clear later that the
small damping of the quasiparticles was not a sufficient basis
for the conclusion that the equations of the theory of Fermi
liquids were valid in the classical temperature range. Never-
theless, the reverse conclusion did turn out to be valid, i.e., in
the region in which collective effects provided the main con-
tribution, and spin waves were weakly damped, long-lived
quasiparticles could also be defined. For this reason, al-
though the formal application of the Fermi-liquid transport
equation to the description of the nondegenerate *He-*He
solution in a magnetic field would not appear to be complete-
ly valid (especially since collective spin effects can also oc-
cur in a Maxwellian gas of Bose particles) and would not
provide a complete elucidation of the conditions for the exis-
tence of spin waves, it could lead to the correct expression for
the spin-wave spectrum. Unfortunately, an error crept into
the calculations reported in Ref. 23 (it was subsequently
corrected in Refs. 15 and 24).

The frequency of spin waves in a quantum gas can be
either high or low and, as we shall see later, in contrast to the
zero-sound in a Fermi liquid, the damping of magnetization
waves is independent of the parameter wr, where o is the
oscillation frequency and 7~ (Nrivr) ™' is the gas-kinetic
relaxation time. The quantum nature of these waves be-
comes qualitatively particularly clear in the high-frequency
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case w75 1. Actually, in a classical gas with a short-range
interaction between the particles, the description of scatter-
ing processes reduces to the fact that all changes in particle
states occur only at the instant of collision while, in the inter-
val between collisions, i.e., within the mean free path, the gas
molecules move freely without any external disturbance. It
follows that, in the classical picture, there can be no high-
frequency processes with periods shorter than the time 7
between collisions. The physics of such phenomena in quan-
tum gases becomes clear if we consider as an example the
well-known quantum-mechanical problem of refraction of a
monochromatic beam of slow particles by a tenuous system
of scattering centers.?> The solution of this problem shows
that the difference between the real part of the refractive
index n and unity is proportional to the real part of the scat-
tering amplitude f(0, E) and the density N of scattering
centers [Ren — 1 ~N Ref(0, E)], whereas the imaginary
part of the refractive index, describing the dissipation of the
beam over one mean free path, satisfies the relation Im
n~NImf(0, E). According to the optical theorem, in the
case of scattering, Imf(0, E) = go/4m#i, where ¢ is the mo-
mentum of a beam particle and o is the total scattering cross
section. Hence, for slow, long-wave particles for which g7,/
#isr,/A> 1, we always have |Imf(0, E)| € {Ref(0, E} |, i.e.,
Ren — 1>1Imn, so that, in the leading approximation, the
beam experiences quantum refraction over distances shorter
than the mean free path, but does not dissipate. The correc-
tion Ren — 1 to the real part of the refractive index is an
indication of the presence of a certain addition to the real
energy of the beam particle, which is linear in the forward
scattering amplitude and is a functional of the distribution of
the scattering centers. This means that the beam particle is
always influenced by the entire ensemble of scattering
centers. In this sense, the addition to the energy of the beam
particle may be looked upon as being due to a particular
quantum-mechanical self-consistent field of the Fermi-lig-
uid type. The presence of this field, which is due to the quan-
tum-mechanical refraction of gas particles by one another
assures the possibility of collective quantum phenomena
even in the classical temperature range (1.2).

2.1. Collective effects and the transport equation

From the quantitative point of view, the description of
collective modes can be reduced to the determination of vir-
ial corrections to the kinematic part of the Boltzmann trans-
port equation (but not the collision integral!). The fact that
such corrections are necessarily present will become clear
even from the following simple considerations. Suppose we
have carried out the virial expansion for pressure and, by
differentiating this expression, have determined the virial
corrections to the velocity of sound in the gas, which are due
to the interaction between the particles. We now wish to
determine these corrections from the transport equation.
This means that we must pass to the hydrodynamic equa-
tions. By integrating the transport equation with respect to
the momenta, we obtain the continuity equation. The cur-
rent equation (the equation of Euler) is found, as usual, by
multiplying the transport equation by the momentum and
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integrating over phase space. The above integrals of the
right-hand side of the Boltzmann equation, i.e., of the colli-
sion integral in its usual form, must be equal to zero because
the number of particles and the total momentum are both
conserved. Hence, to determine the required addition to the
velocity of sound, we must take into account the virial cor-
rections to the transport equation, which do not vanish in the
course of the above integrations and contribute to the mac-
roscopic relationships expressing the conservation of both
momentum and particle number. As a convention, we shall
apply these corrections to the kinematic (left-hand) part of
the Boltzmann equation. Since we are concerned, in the pres-
ent case, with the hydrodynamic region, the required correc-
tions will be determined by the thermodynamic virial expan-
sions. Actually, the kinematic virial corrections appear in
the linearized transport equation because this equation must
be linearized in the small deviations from the true distribu-
tion function of the nonideal gas and not from the Maxwell
distribution function. Thus, the collision integral vanishes
precisely when the true distribution function is substituted
into it. The distribution function of a nonideal gas is a func-
tional of the Maxwell distribution function'**?® (virial ex-
pansion of the distribution function), and this leads to the
renormalization of the Boltzmann equation and to the ap-
pearance in it of kinematic virial terms of the Fermi-liquid
type.

The well-known Bogulyubov method can be used to de-
rive fairly simply from first principles the kinetic equation
for a nonideal gas, which contains the kinematic virial cor-
rections, Using the Fermi renormalization procedure, it can
be written in the following traditional form in the classical
long-wave limit'*'%22;

633 )

s | L3, )t A (S n, 4R,

1 “dng 7] ~
— 5 (Ves Gt ve,) = Stn,, .1
where the distribution function n, (p) and the renormalized
energy &, (p) of gas particles are spin operators, [, n], is the

commutator in spin space, £, is a functional of n_, i.e.,

4h?

g =2L—QﬁS H— Spa Z fss (0 E)nl (P)

>
(2.2)

St n, represents the collision integral, and H is the external
magnetic field. Since Egs. (2.1) and (2.2) are of the Fermi-
liquid form, one is tempted to find collective modes analo-
gous to those present in the degenerate Fermi liquid. The
fundamental question is then whether one can retain in the
transport equation for the high-temperature Maxwell gas
the self-consistent quantum corrections responsible for the
collective phenomena. It is readily seen that, in the quantum
gas, i.e., when (1.2) is satisfied, the retention of these virial
corrections is valid.

In point of fact, we have already noted that it follows
from the optical theorem that, in the leading approximation
in r,/A €1, the energy (2.2) of a gas particle turns out to be
real. In this approximation, the forward-scattering ampli-
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tude f;,, (0, E) is an energy-independent constant, namely,
the s-scattering length (with the sign reversed), whose nu-
merical value is of the order of the atomic size r,. Since we
are retaining the specific gradient terms VZ_dn,/Jdp on the
left-hand side of the transport equation (2.1), we must, in
principle, retain the nonlocal corrections to the collision in-
tegral on the right-hand side of the Boltzmann equation, i.e.,
we must take into account the expansion of the collision inte-
gral in terms of the gradients of the distribution function. In
the gas-kinetic approximation, this can be written in the
form

St n, o 6n,Nryve (1 -+ kA),

where k ! is the characteristic scale of a spatial inhomoge-
neity. In the temperature range defined by (1.2), nonlocal
corrections to St #, in (2.3) turn out to be of the same order
as the terms that were discarded in the transport equation
and were due to the imaginary additions to Z,, i.e., negligible
in comparison with the real kinematic corrections to &, in
(2.2), provided r,/A € 1. Hence, inclusion of the quantum-
mechanical self-consistent field in the Boltzmann equation
with a local collision integral is wholly justified for T <#%/
mry. Direct calculation will readily show thaté, = E /8n, in
the above approximation, where E is the total energy. This
provides a still better illustration of the analogy between the
transport equation containing the virial corrections for the
quantum Maxwellian gas and the equations of the Landau
theory of the Fermi fluid.

Of course, both kinematic corrections and the collision
integral are determined by the particle interaction and, in
this sense, the subdivision into them is arbitrary. However,
the physical significance of these two parts of the transport
equation is different. St n, describes the change in the state of
the particles during a scattering event, whereas the self-con-
sistent term represents the effect of the interaction on the
motion of particles between collisions. In the quantum tem-
perature range, the formal difference for 7, € A between the
virial kinematic corrections and the collision integral is par-
ticularly appreciable and ensures that the self-consistent
corrections are linear in the scattering amplitude while Stx,
is quadratic in . The analogy between the transport equation
of the Boltzmann gas (2.1) for |a|/A €1 and the equations
of the Landau theory of the Fermi fluid can be seen in the
relation Z, = 8E /6n, and in the fact that the correction to
the particle energy is expressed in terms of the zero-angle
scattering amplitude. However, it also has a more funda-
mental physical significance. The basic results of the theory
of the Fermi fluid are strictly valid only for highly degener-
ate Fermi systems, when all the quasiparticles are near the
Fermi surface. As the temperature of the system increases,
sothat TR £,, damping due to the finite lifetime of the quasi-
particles in the liquid becomes important. However, Ga-
litskif?” has shown that, for N '/3r,< 1, the damping of the
excitations in tenuous Fermi systems is proportional to the
square of the gas parameter (N 2/°r) and is small even well
away from the Fermi surface, right up to high momenta
p S#/ry,. Hence, even in a Boltzmann gas, the damping of

(2.3)

Fermi excitations is small right up to the boundary of the

quantum region TS #2/mr}, and we have well-defined long-
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lived quasiparticles with the energy spectrum (2.2). In the
leading approximation in |a|/A €1, the quasiparticle distri-
bution function is identical with the distribution function of
the true gas particles because the renormalizing constant of
the Green function of the low-density Fermi liquid differs
from unity by an amount of the order of N ?/3#3. As T—0, all
the results obtained for the Fermi gas go over to the corre-
sponding results®’ for the low-density Fermi liquid. When
the transport equation is justified for the Fermi liquid, there
is then no need to compare the self-consistent gradient term
on the left-hand side of the equation with the gradient cor-
rections in the collision integral because the latter always
contains the small factor (T /£,)” and vanishes as T—0.

However, the cooperative properties of the quantum
Boltzmann gas must not be totally identified with the high
temperature “echo” of the properties of the Fermi liquid
regarded as a set of fermions. Actually, in the region defined
by (1.2), where quantum degeneracy effects in particle sta-
tistics can be neglected, Eq. (2.1), taken with (2.2), is valid
for particles of arbitrary spin, independently of whether they
are fermions or bosons.

At higher temperatures T2 #°/mr}, both the real and
imaginary self-consistent corrections to &, are found to be of
the same order. The pseudopotential method used to deter-
mine the virial corrections to the kinematic part of the trans-
port equation then becomes ineffective. Moreover, when
ro R A, nonlocal gradient corrections to St n,, which, in this
case, are proportional to Nrjvr krodn, , become greater than
or comparable with the virial kinematic corrections, so that
the inclusion of the self-consistent quantum-mechanical
field in the transport equation with the local collision inte-
gral at high temperatures takes us outside the range of preci-
sion. To avoid misunderstanding, we emphasize once again
that, when the hydrodynamic parameters of a nonideal gas
are determined from the transport equation, e.g., the veloc-
ity of sound (but not the collective Fermi liquid modes, such
as zero sound!), the kinematic virial corrections can be taken
into account for arbitrary temperature because the exact col-
lision integral vanishes after integration during the deriva-
tion of the macroscopic hydrodynamic equations.

Analysis of the transport equation (2.1)-(2.2) shows
that, unfortunately, even in the quantum temperature range
defined by (1.2), the propagation of high-frequency waves
such as zero sound, or longitudinal spin waves with linear
dispersion relation, in a single-component Maxwell gas is
impossible because of strong collisionless Landau damping.
However, in some cases, the propagation of weakly-damped
collective modes with a linear dispersion relation is still pos-
sible in two-component quantum gases.'*

2.2, Weakly damped spin waves. The wave spectrum

Nevertheless, weakly-damped collective spin waves are
always present in a spin-polarized quantum gas and are
transverse relative to the spin polarization of the magnetiza-
tion wave. For a number of reasons, these waves are hydro-
dynamic in character even for w73 1, and constitute a weak-
ly inhomogeneous precession of the macroscopic magnetic
moment vector. The transport equation (2.1)-(2.2) can be
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made much simpler in the case of transverse spin waves.
Actually, since we shall confine our attention to weakly ho-
mogeneous solutions of the transport equation as £ -0, we
need only retain the largest gradient termin (2.1). Itis read-
ily verified that, because Nr} €1, the term Vn, -Jdg,/dp on
the left-hand side of the Boltzmann equation will be much
greater (at any temperature) than the nonlocal corrections
in the collision integral and the virial kinematic corrections
V& ,dn, /dp. Hence, the main contribution to the transport
equation is due to the spin commutator [&, n], and to the
term Vn, Jd€ /dp in which we can now neglect the particle
interaction, so that it takes the usual form corresponding to
the free motion of gas molecules between successive colli-
sions:

a [
2 +VVn,+ +[e, nl,=Stn,

P
VS (2.4)
The quantity Str, in (2.4) is now the usual local collision
integral without gradient corrections. The collision integral
which governs the collisional relaxation damping of spin
waves can be neglected in the transport equation (2.4) pro-
vided

Bt le, nl, | > (Stn, |

Using (2.2) for the energy, and simple gas-kinetic estimates
in the r-approximation for Stn_, we obtain the following cri-
terion:

1>lal> 2, (2.5)

where «a is the degree of polarization characterizing the un-
equal populations of spin states, i.e., the equilibrium (or
quasi-equilibrium) magnetic moment of the gas. Thus, for a
system of fermions with spin 1/2, the degree of polarization
is conveniently defined bya = (N -N_)/N, where N, and
N _ are the numbers of particles per unit volume with spins,
respectively, along and against the spin polarization vector.
The criterion (2.5) is fundamental because it shows that
weakly-damped magnetization waves can propagate in spin-
polarized gases only in the quantal temperature range (1.2)
and for a high enough degree of polarization of the gas. Un-
der these conditions, the real virial correction in the spin
commutator on the left-hand side of the Boltzmann equation
is greater than the imaginary collisional term on the right-
hand side of (2.4). When T'2 #i*/mr}, spin waves are always
strongly damped because the criterion (2.5) is not satisfied.
We emphasize that, even when (1.2) is satisfied, the inclu-
sion in the scattering amplitude f;, (O, E) of not only the
leading term (the s-scattering length) but also the higher-
order terms in r,/A <1, i.e., inclusion of higher-moment
scattering while neglecting damping, takes us outside the
range of precision because (2.5) is then violated for the cor-
reponding terms. In a previous paper,'® the criterion given
by (2.5) was derived from the condition for the existence of a
region in which both Landau damping and collisional ab-
sorption of spin waves were small.

We shall now derive explicitly the spectrum of trans-
verse spin waves in a gas. To be specific, we shall perform the
calculation for a gas consisting of spin | particles. The equi-
librium polarization density matrix for the spin-polarized

243 Sov. Phys. Usp. 29 (3), March 1986

Maxwell gas can then always be written in the form of a
linear function of Pauli matrices:

i (p)=(1+a0ﬁ) ng(p), ©=28, (2.6)

where I is a unit vector in the direction of the spin polariza-
tion and n,(p) is the Maxwellian distribution function

(2.7)

)= 2 (2 e
In principle, it is a relatively simple matter to introduce into
(2.6) the virial corrections to the equilibrium density ma-
trix.! However, these corrections can be neglected in the de-
termination of the spin-wave spectrum in the leading ap-
proximation. Small deviations of the density matrix n, from
its equilibrium value (2.6) will be sought in the form

dny=n,—n""=4(p) o, A(p) e» exp (ik-r—it). (2.8)

In accordance with the foregoing, we can write (2.2) for the
renormalized energy £, in the quantal temperature range
(1.2) in the form

o= 21’:-+goN— [goNaS_JZ>+2go > 7~(P)+5H] o,
P

2nak?
o= m 3

(2.9)

where we have introduced the s-scattering length a for the
collisions between the gas atoms. The next step is to substi-
tute for n, and &, from (2.6)-(2.9) into the transport equa-
tion (2.4), and linearize it in the small deviations A (p). By
taking the z-axis to be in the direction of the vector ﬁé, and
transforming to the circular variables A , =A, +i4,, we
obtain the equation describing the dynamics of transverse
magnetization in a spin-polarized gas:

4
(@4 Qu—Qne—k - v) A (P)— 5 07 (p) X A_(p)=St .,
-
Qe = — 2g°:’a= _ lmazNa , Q, 2pH

(2.10)

The equation for 4 (p) is obtained from (2.10) by intro-
ducing the replacements ® - — @, k— — k. When (2.5) is
satisfied, and collisional damping of spin waves can be ne-
glected, the expression given by (2.10) leads directly to the
dispersion relation

1_5,047@2 7o (D)
P

SF o= g 2@ B)=0. 2.11)

Integration in (2.11) must be performed in accordance with
the usual rule for going around poles. In the long-wave-
length region, kv €|Qy,, |, |@| €|y, |, and after some sim-
ple algebra we find from (2.11) that, in the linear approxi-
mation in 7,/ A €1, the dispersion relation for the spin modes
isl,22

. i (kve)?
m—Rem-—QH—i-m. (2.12)

The collisionless spin-wave absorption coefficient due to
Landau damping then turns out to be exponentially small:
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w=Imw=ImD(w,k)[ ReD(m,k)]
Q2 Q2
w”=—(%)”2 k;’;texp(————zﬁzg—i), lo"] < o]

(2.13)

The condition for the validity of (2.12) and (2.13) is
kvr €], | and determines the range of wave vectors in
which, when (2.5) is satisfied, weakly-damped spin waves
can propagate in the gas. Formally, small Landau damping
is assured by the k-independent term £,,, in the denomina-
tor of the singular part of D(w, k). The quantity €, , is a
measure of the molecular quantal field and of collective mag-
netic phenomena in the spin-polarized gas. Moreover, it fol-
lows from the obvious condition

N33 [Qup |t ~ 24 121 (2.14)

that all the values of the wave vector k €|y, | /v, for which
(2.12)—(2.13) are valid, satisfy the necessary conditions of
macroscopic and quasiclassical behavior, i.e.,

1 >EN-13 kA, (2.15)

which enable us to look upon spin waves in a quantum gas as
oscillations of the macroscopic magnetic moment in a con-
tinuous medium. In the short-wave region kv 2 |Q,,, |,
where the term ;. in the dispersion relation (2.11) can be
neglected, collisionless absorption prevents the propagation
of undamped spin waves.

In the real world, the principal mechanism producing
spin-wave damping is usually collisional relaxation. Since
the numerical value of magnetization is conserved in the ex-
change approximation, the integration of (2.10) over mo-
mentum space for uniform distributions with k = O ensures
that the collision integral St A _ becomes equal to zero, i.e.,
the uniform precession of the magnetic moment in the exter-
nal field is undamped. Hence, the collisional relaxation time
for transverse spin waves and small k is definitely a function
of k such that r_;, (k—0) - «. For weak collisional absorp-
tion (2.5), the transport equation (2.10) will readily yield
the imaginary addition to the spin-wave spectrum which is
due to the damping of the waves by collisions between gas
particles®?

— (kvo)? _ i ) R Qint)z
m—QH_I_ ant (1 Qntt ’ Teoll = s ( kvg T,

(2.16)

where 7 is a relaxation time which has the gas-kinetic order
of magnitude 7' ~ Na’vy, so that, when (2.5) is satisfied,
we have |, |7> 1. To describe transverse spin waves in a
Maxwell gas, we have discarded in the transport equation
(2.10) all the kinematic gradient corrections due to interac-
tions, although they could have been taken into account in
the temperature range (1.2). The solution of the complete
transport equation (2.1), including these virial correc-
tions,?? confirms the validity of (2.10).

2.3. Weakly-damped diffusion modes. Arbitrary temperature

Although, by virtue of (2.5), weakly-damped spin
waves exist in a gas only in the quantal temperature range
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(1.2), there is also definite interest in the equations of spin
dynamics at higher temperatures T'X #°/mr? at which there
is a transition from the spin-wave regime to the pure diffu-
sion-type spreading of magnetization, especially since it is
precisely this experimental situation that is usually encoun-
tered in gaseous *Het. We have already noted that Egs.
(2.1) and (2.2) cannot be used directly at high tempera-
tures. Nevertheless, we can neglect all the interaction-relat-
ed gradient corrections and retain in the dynamic equation
for the transverse magnetization the terms describing free
motion of particles, and the terms representing interactions,
but only in the local spin commutator and the local collision
integral, as was done in deriving (2.10). The possibility of
this simplification is entirely due to the low gas density Nr3
<1 and is in no way related to the temperature. However,
even in this case, the evaluation in a general form of the
kinematic virial corrections and of the collision integral in
terms of the exact scattering amplitude is a very complicated
problem. Nevertheless, at least in the linearized transport
equation, the self-consistent kinematic correction can be ob-
tained in explicit form. To do this, the virial correction is
written as a functional that is linear in én,, and the transport
equation is then used to deduce the linear equations of hy-
drodynamics. It is assumed in this procedure that the colli-
sion integral satisfies all the macroscopic conservation laws,
i.e., it vanishes after the corresponding integrations. On the
other hand, the macroscopic hydrodynamic equations can
be formulated by starting with only the thermodynamic
functions for which the corresponding virial expressions are
well known. By comparing the results obtained by these two
methods, it is possible to establish the particular form of the
linear functional for the kinematic virial correction to the
Boltzmann equation. Of course, such corrections can be
used in conjunction with the transport equation to find the
virial expansion for the hydrodynamic sound velocity at ar-
bitrary temperature. It turns out that the kinematic virial
terms in the transport equation arise simply from the renor-
malization of 6n, due to the virial functional corrections to
the equilibrium distribution function. For the spin degrees of
freedom, the macroscopic Landau-Lifshitz equations play
the part of the equations of hydrodynamics. The correspon-
dence between the transport equation with the virial correc-
tions in the spin commutator at arbitrary temperature and
the Landau-Lifshitz equations was demonstrated in Ref. 1.
In view of the foregoing, and using the results reported in
Refs. 1 and 22, we can readily verify that the equations of
spin dynamics for the off-diagonal components of the polar-
ization density matrix, i.e., for the transverse magnetization,
can be written at arbitrary temperature as before in the form
given by (2. 4), where

g‘_ _Bo. H'I' 6Elnt
and the interaction energy Eim is given by the virial expan-
sion??

(2.17)

Emt:Flnt 2 D, (p, P) 1 {p) nsr (D),
D (p, ') =1 (P, ’)+C(p. p')e. ¢,
b (0, P) =4 (34 (@) + A (@], (2.18)
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5 (p, )= (1/4) [4. (9) — A- (@),
2q=p—p',
A:@=—"2(Ref, (0, )

+ 2L [Re s (0, 9) o 12 6, )
~Imfs (8, 9 57 Refs(®, 9 ]};

where £, (6, g¢) and f_ (0, g) are the scattering amplitudes
for the two particles in the triplet and singlet states (spin 1/
2). If necessary, the quantities 4, (q) can be readily ex-
pressed in terms of the scattering phase shifts:

16, 9= 2,q2(21+1)(e2‘°1 1) Py (cos @), (2.19)
i

where the sum in (2.19) is evaluated over odd values of { for
[+ (6,¢) and over even values of / forf_ (8, ¢). The collision
integral St n, satisfies the macroscopic conservation law for
the absolute magnitude of magnetization although its specif-
ic structure is unknown in the general case. By transforming
(2.4) with &, taken from (2.17) and (2.18), and the small
perturbations of the density matrix from (2.8), we obtain
the following dynamic equation for the circular component
of magnetization:

(0+ @ —kv) A_(p) + 5

X 21 L(p, p) (70 (B) Ao (') — 2 (P') A (D)) =StA_.
"

(2.20)

It is readily seen that, when T < #*/mr}, so that the interac-
tions are largely reduced to s-scattering, the expression for £,
given by (2.17)-(2.18) and Eq. (2.10) become identical
with (2.9) and (2.10), respectively.

We shall now find the formal solution of (2.20), neg-
lecting the collisional right-hand side. This solution, which
we shall note by @ (k), will be sought in the form of an expan-
sion in powers of a small wave vector, @(k) = w, + w,
o+ A, =ADP+ AP+ AP + -, ie., we shall
neglect the exponentlally small Landau damping. Equation
(2.10) then yields immediately

Wy = "'—2' Z k -vg(p)n (p),

AL =1bny(p) @, 2 (p),

3 3 L, ) 7o ()12 (1) — g ()] —k- V=0
-

(Do=QH, (D‘=0,

b= const, A"’

(2.21)

It is readily verified that, even when the exact collisional
equation (2.10), including the right-hand side, is solved, the
imaginary terms describing the damping of spin waves ap-
pear only in the second order in k. The general solution of the
phenomenological equations of spin dynamics, obtained in
Ref. 16 in the first approximation of the Chapman-Enskog
method, can be written in the form

Dokt

© =0+ i (8N —1), (2.22)
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where D, is the classical spin diffusion coefficient for longi-
tudinal magnetization and 4 is a parameter that is indepen-
dent of @ and is due to the self-consistent molecular field.
Gas-Kinetic estimates such as (2.5), and the form of the gen-
eral solution of (2.22), leads to the conclusion that the for-
mal collisionless solution & (k) corresponds in (2.21) to the
limit as @ — o0, i.€.,

& (k) = 0+ Qur
Since, as can be seen from (2.21), g(p) ~1/a and w,~ 1/a,
the parameter u is independent of a, as should be the case,
and this enables us to determine it from (2.21)-(2.23) by
formally going to the limit as @ —»w. By using (2.23) to ex-
press 1 in terms of &(k), we can deduce from (2.2) the
dispersion relation for spin waves at arbitrary temperature
and degree of polarization:

(2.23)

Dyk?
m=QH+‘T+W(
1 &
=1z | AP %0 (P) o
1 ' ! &

-—3-SCI(1” P) o (P) = o

WA (p")
-4 [ oo,

— Dy Nay—1i),

P Mo (P) g =1,
Lp ) = ZIcl(p, ') Py (cosB),

(2.24)
where §,(p, p') and &, (p, p') are the first harmonics in the
expansion of the function & (p, p’) in terms of the Legendre
polynomials P, (cos ). In the quantal temperature range
(1.2), but for small polarizations a < |a|/A, the spin waves
are again found to be highly damped. The dispersion relation
for the magnetic moment in this case is deduced from
(2.22), (2.23), and (2.16), and is given by

Dgk? DQin
0= QH+W'(;1—1.)2(thT_L) ”BNG:QIntT=‘°—v£‘t‘ )
(2.25)
where 7 = D,/v is the diffusion relaxation time introduced
in (2.16).

2.4. Magnetic polarization and the collision integral

It is important to note that, when spin-wave damping is
taken into account, the expressions given by (2.22)-(2.25)
are explicitly valid only provided a is not too high. Actually,
even at low temperatures, the collisional term St », is always
found to contain two different components.”® The first has
the traditional form of a collision integral and contains the
é-functions of the total momentum and energy of the two
interacting particles, and can be interpreted as the difference
between the “influx” and “outflux” of particles in the given
quantal state:

dp, ]
1,0.0)= @y (2)° | dp, SBL2EE 6 (p, + py — P} — B)

2m 2m 2m

x [A1 (p3) 7o (Ps) — Ay (P1) Mo (Po)

+ A5 (Pg) 1o (P) — AL (py) 79 (p)] ~ NaPvsh, .

(2.26)

E. P. Bashkin 245



In deriving (2.26), we have allowed for the fact that the
equilibrium polarization density matrix is diagonal and that
perturbations of the off-diagonal elements of the density ma-
trix, i.e., of the transverse magnetization4, = (4,,4,), are
not coupled to density perturbations, as is the case for the
fluctuations in A, . The second term I,(A4, ) does not contain
the §-function of the total energy and is unrelated to relaxa-
tion processes. It must be looked upon as the next order
correction in |a|/A €1 to the spin commutator on the left-
hand side of the transport equation:

¥ dp; dp; ’ ’
4,00) =@ahy ()" § dp, LB S (bt 2 — B — B

X ';,?_,_p—;_z_m;*;tﬁ- 2a [iﬁ) {Ay (P mo (P2 — My (Do) o (P)}]

~ Na%,ah,. 2.27)

It is clear from (2.27) that the term I,(4, ) is small in com-

parison with the spin commutator #~'[e,n], to the extent
that {a|/A €1 for any a, so that I,(4,) can always be ne-

glected in the quantal temperature range when the real part

of the frequency (2.16) of weakly-damped spin waves is

evaluated. On the other hand, it follows from (2.26) and

(2.27) that I, (A, ) > I,(A, ) provided a €, so that the eva-

luation of spin-wave damping in terms of the coefficient D,

with the aid of the usual collision integral 7,(4,), as was

done in deriving (2.22)-(2.25), is admissible only fora < 1.

Hence, the formulas given by (2.25) and r = D,/v3 are

valid only for low values of the polarization. When

12 a> |a|/A, the expression for the spin-wave spectrum
(2.16) has the same form as before except that, when the
time 7 is evaluated, the collision integral must include not
only the term I,(4,), but also I,(4,). The inclusion of
I,(A,) in St A, essentially signifies that we are evaluating the
relaxation time 7 as a function of a. At high temperatures,
the specific expression for the collision integral in terms of
the exact scattering amplitude f(8, E) (as in the case of the
real kinematic corrections in the spin commutator on the
left-hand side of the Boltzmann equation) is still unknown
although the gas-kinetic estimates such as (2.26)-(2.27) re-
main valid, as before. Hence, even at arbitrary temperatures,
the formulation of the equations of spin dynamics in terms of
the usual diffusion coefficient D, given by (2.22), where u is
independent of e, is valid only for low polarizations a €1.?
Since, under these conditions, the equations of motion of
magnetization (2.20) are valid for any temperature (and not
merely in the quantal region), we have the basic possibility
of observing spin waves, even in the highly-damped diffusion
regime, in any paramagnetic gas such as O,, NO, NO,, ClO,,
alkali-metal vapor, and so on, in an external magnetic field.
The practical realization of this type of experiment is, how-
ever, very difficult because the exchange interaction, which
is a quantitative measure of the effect, falls off rapidly with
increasing temperature.

The derivation of the dynamic equations (2.20) and
(2.24) for arbitrary temperature is a good illustration of the
successful combination of the transport equation method
(the quasiparticle approach) and the phenomenological for-
mulation of spin dynamics. It is important to emphasize,
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however, that the macroscopic equations of motion for the
magnetic moment can only be formulated on the assumption
that a self-consistent exchange field is present in the spin-
polarized Maxwell gas, and the introduction of this field
must be justified within the framework of the transport
equation method. Moreover, the range of validity of the re-
sults, kvr € |12, |, cannot be found from macroscopic equa-
tions because they do not include the collisionless Landau
damping, which defines this range. After all the necessary
conditions have been elucidated on the basis of the transport
equation, the phenomenological scheme turns out to be very
convenient when spin dynamics is investigated in specific
experimental situations.

2.5. Long-range correlations in a gas. Phenomenological
equations

We now turn to spin waves in the undamped regime.
The criterion (2.5) is equivalent to |Q.)7>1. The
spin-wave eigenfrequency @ can then either be small
(B<€77"<|Q,,]) or large (77 '<@<|Q,, ], where &
= — g . In aclassical gas, and when the long-range van
der Waals forces are neglected, all the spatial (single-time)
correlation functions decrease exponentially over distances
of the order of the atomic size r,. This is why any macroscop-
ic superstructures or collective modes cannot be present in
such systems. On the other hand, in spin-polarized quantum
gases, the very existence of undamped, high-frequency
(wr> 1), magnetic-moment waves signifies the presence of
long-range spatial correlation between the spins of the gas
molecules. The self-consistent effective field produced by all
the gas particles, and significant only at low enough tem-
peratures (1.2) at which nondissipative quantum-mechani-
cal refraction begins to play the dominant part, is thus seen
to give rise to nonlocal terms in the total free energy and,
even in the exchange approximation, to the possibility of
long-range correlations and, occasionally, long-range order
in a Boltzmann gas. Moreover, like the spectrum of fluctu-
ations in magnetization, the coefficients of the gradient
terms in the free energy are expressed in terms of a local
quantity, namely, the zero-angle scattering amplitude. By
specifying the macroscopic energy of an inhomogeneity, we
can formulate the phenomenological equations, i.e., the
Landau-Lifshitz equations, for the spin waves in a gas. For
greater clarity, we begin with the H = 0 case, i.e., the situa-
tion where the spin polarization of the gas is produced by a
dynamic pump or in a time much shorter than 7, after the
external field is turned off (if the system had been polarized
simply by an external magnetic field).

We shall seek the linear response of the system to this
perturbation by introducing the effective field #°(r,t)
~exp(ik'r — iwt) and using the transport equation (2.4).
The method employed to obtain (2.10) and (2.11) can then
again be used to calculate the circular components
6M, =6M, +i5M, of the magnetization induced by the
external magnetic field (M, =y, &, ):

. 1
x- (@, k) =y} (—o, —k)=ﬁzm- (2.28)

The pole of (2.28) determines the spectrum of magnetiza-
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tion waves, as should be the case. The elements of the gener-
alized susceptibility matrix y;; (w, k), defined by the usual

relation
OM; (0, k) =y (0, K)Hr (0, k) (i, k =z,y),

(2.29)
can be expressed interms of y , (@,k) as follows:

(X++X )s

i

Xpx = —Kay= — 5 (X+— %)
(2.30)

Yax = Xyy =

The dynamic magnetic formfactor of the system

Sp (@, k)= 5 dsr 5 dt exp [i (0t —k -1)] Sia (2, 1),

- 00

Sip (t, 1) = (OM; (1, 1)) OMy, (t5, 13) 0,

t=1t, —ty,, =11, —151|

(231

can be expressed with the aid of the fluctuation-dissipation
theorem in terms of the y :

Sik ((1), k) =

In the long-wavelength region kvp €|, |, we can use
(2.28)-(2.32) together with D(w, k), given by (2.11) with
Q; =0, to show that*

Sxx ((1)7 k) = Syy ((1), k)

1_?:1—vr?w [‘5(‘”—%) —‘5(“’+T?%T)_]'

(2.33)

Im 3,5 (0, k). (2.32)

—hm/T

=2

The 6-functions in (2.33) represent the contribution of mag-
nons to the dynamic formfactor of the quantum Boltzmann
gas. Spin waves are then a collective Bose branch of long-
wavelength elementary excitations in the system. The gas
particles themselves (single-particle excitations) can then
be either fermions, as in the case of *He?1, or bosons, as for
H1t. It then follows from the obvious inequality

Nals (25 ) <

(2.34)

that, in a quantum gas, we always have #| Q) | €T. Since for
undamped spin waves |o| <|Q,,, |, the contribution of mag-
nons to the thermodynamics is always cut off at low frequen-
ciesw €T /#, i.e., it is negligible.

The static structure factor

S (k) = 5 €*e 8, (0, 1) dbr = | (20)71S (0, ) do

- 00

(2.35)

determines the purely spatial single-time correlation
between transverse spin fluctuations in the quantum gas.
Trivial integration of (2.35) and (2.33), subject to
A0, | €T, yields

Sxx (k) =

S,, (k) = B2Na cth

=2n|a| ( ZBNG)

hEk*vl
2 ] int | T
(2.36)
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It can be shown by direct calculation, using (2.28)-(2.32)
and (2.35), that §,, (k) =S5,, (k) =0, as expected. The
Fourier transform of (2.36) yields the correlation function
S, (r) in the coordinate representation??

S (r)=2]a] (BNG) Bir, (2.37)
which falls off with distance in the same way as in a cubic
ferromagnet with localized spins. However, in an ordinary
ferromagnet, the exchange interaction produces spontane-
ous symmetry breaking and a transition to a magnetically
ordered state in which the spin correlation function is pro-
portional to »~ ! at large distances. The change in magnetic
symmetry under the influence of an optical pump is then
energetically inconvenient and must be forced by external
agencies. Nevertheless, in a spin-polarized quantum gas,
magnetic exchange correlations follow the same power law
r~ ' at macroscopic distances. This slow reduction in corre-
lations in a gas with a short-range potential is the macro-
scopic manifestation of the specific self-consistent field due
to the quantum-mechanical refraction of particles. The final
expressions for the correlation function (2.36)-(2.37) and
for the magnon energy #iw’ (2.12) do not include the Planck
constant. This is a reflection of the fact that, despite the fun-
damentally quantal origin of spin waves in a gas, these waves
behave in the statistical sense as classical fluctuations, and
may be looked upon as a spatially-inhomogeneous preces-
sion of the macroscopic magnetic moment.

The correlation between the spins of different particles
over macroscopic distances gives rise to a specific macro-
scopic inhomogeneity energy, which is a measure of the in-
crease in the free energy of the gas when inhomogeneities in
the spatial distribution of the magnetic moment appear in it.
The corresponding change in free energy due to fluctuations
in transverse magnetization in an isotropic gas can be writ-
ten in the form
AF =5 { @ () 8V (x,) M (ry) dr, dry,

r=|[ry—ry|.
(2.38)

It is readily shown in the theory of classical fluctuations*”
that the Fourier component of the function ¢(r) and the
statistical formfactor are related by

S (k) = 'hkT; . (2.39)

The main contribution to the static structure factor for
kvp €|, | is given by (2.36), so that it follows directly that
the function @ (k) in (2.39) is given by

. T k \2

@ () =goro7 () - (2.40)
Usually, the free energy associated with slow changes in the
direction of the vector M along the system is written in the
form of an expansion in powers of magnetization gradients.
In a homogeneous isotropic gas, the first term of this expan-
sion has the traditional form

1 oM oM
AF—TAG,kS o o,

(2.41)
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Taking the Fourier transform of (2.41), and comparing
(2.41) with (2.38), we find that

Akt =g (k), A=t .

“ (el @Nar (2.42)

By introducing the energy of the magnetic inhomogeneity
and by specifying the coefficient 4 in (2.41)-(2.42), we are
able to provide a complete description of long-wavelength
oscillations in magnetization in a purely phenomenological
manner, using the linearized Landau-Lifshitz equations:

L E. [GLMAF, M].

“ (2.43)

Actually, it is readily verified that, by substituting for AF
from (2.41) into the linearized equation (2.43), with the
coefficient 4 given by (2.42), we obtain the spin-wave spec-
trum w’(k) in (2.12). This means that, despite the collision-
less and possibly high-frequency (w73 1) nature of the spin
oscillations, an essentially hydrodynamic situation prevails
in the long-wavelength region kv <€|€Y;,, |, especially since
the distribution function for these oscillations also has a hy-
drodynamic form, as is readily seen from (2.4) and (2.10).
There is no difficulty in including the dissipative terms in
(2.43), as well. These terms lead to collisional absorption in
the spin-wave spectrum (2.16) and (2.25). We emphasize,
however, that this method will actually produce only the
linearized and not the exact macroscopic equations of spin
dynamics. Since &, and E are related by the operation of
functional differentiation, i.e., &, = 8E /6n,, the determina-
tion of the spin-wave spectrum from the total free energy and
the macroscopic equations requires the inclusion in F of the
contribution due to spin fluctuations 4(VM)2, but when
this is introduced into the transport equation with £,, the
range of validity of the theory is exceeded.

Since the expression for S, (k) given by (2.36) is strict-
ly valid only for sufficiently small values of the wave vector,
such that kv, €|, |, Eq. (2.37) is suitable for the descrip-
tion of spin correlations only for large enough distances
r> P =01/ |, |- The characteristic parameter with the
dimensions of length, 7., which automatically appears in
the long-wavelength expansion when collective magnetic
phenomena in a gas are examined, can be interpreted as a
correlation scale in the self-consistent quantal field. This
scale is a measure of the difference between correlation prop-
erties of the quantum gas and point correlations (or, more
precisely, correlations over atomic distances) in a classical
gas. This difference is due to precisely the collective effect of
quantum-mechanical refraction. Thus, the function ¢ (k) is
expanded into a series in even powers of kr,,, that corre-
sponds to an exponential reduction in the function ¢(r) at
large distances (> r;,, ), which determines the energy of the
magnetic inhomogeneity. [In principle, the function @ (r)
may also acquire small power-type van der Waals “tails’ at
very large distances, but these will not be considered here. ]
Because the inequalities (2.14) and (2.15) are naturally val-
id for a gas, the sphere of radius 7, (the correlation zone)
will then always contain a macroscopically large number of
particles, Nr . > 1. This provides a qualitative explanation
of long-range spin correlations in the system. There is a simi-
lar criterion for plasmas in which the Debye sphere acts as
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the correlation zone and contains a large number of charged
particles. This ensures that low-frequency (w73 1) waves
can propagate in plasma.

We note that the range of validity of all the formulas
based on the exchange approximation and the long-wave-
length expansion for which &r;,,, €1, is bounded at the lower
end by values of the wave vectors that are not too low be-
cause relativistic effects provide a contribution even when
the magnetic dipole-dipole interaction is neglected. Actual-
ly, oscillations in the magnetization M are accompanied by a
magnetic field H which can be described by the Maxwell
equations. Since vy €c¢, we have w €ck throughout the wave
vector range kr,,, €1, so that the magnetic field H may be
looked upon as quasistationary. The corresponding magne-
tostatic equations

rotH =0, div(H 4+ 47M) =0 (2.44)

ensures that the spin wave has a specific relativistic anisotro-
py energy, i.e., the magnetostatic energy. The possibility of
neglecting magnetostatic energy thus means that the relativ-
istic gap in the spin-wave spectrum corresponds to 4k *3> 1.
If we substitute for 4 from (2.42), we obtain the following
criterion:

13> (krng)?> l—ffT ol (2.45)
where r, = e2/m,c* = 2.8 X 10~ "% cm is the classical radius
of the electron. The inequalities given by (2.45) are written
for gas particles with electron spin. On the other hand, for
particles with nuclear spins, the electron mass m. on the
right-hand side of (2.45) and in #, must be replaced with the
proton mass m,,, as in the case of *Het.

The introduction of a constant external magnetic field
H gives rise to the gap (1, in the spin-wave spectrum (2.12).
Hence, to include the external field H in all the formulas
given in this section, we must replace @ with £, . It is readily
seen that this produces a screening of spin fluctuations at
very large distances:

2]a| e, a0,
S, (r)=8 2l (BNa)? HT,
in (1) =08 —— (BNa) cosé, a>0,ﬂ

(2.46)

where the magnetic correlation length is on a macroscopic
scale, and is given by

1 T 1

rh=ar T TS (2.47)

N-23> N2,

2.6. Magnetic resonance. Theory and experiment

Spin waves are most readily detected and investigated
in magnetic resonance experiments in which a measurement
is made of the absorption of the energy of the alternating
magnetic field. The magnetic resonance spectrum, and the
absorption line shape corresponding to the excitation of
standing spin waves, depend on the geometry of the resona-
tor and the boundary conditions prevailing in the particular
experimental situation. Nevertheless, certain qualitative
conclusions can be deduced in the most general case what-
ever the specific boundary conditions may be. The energy
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dissipated in the system when an alternating magnetic field
propagates through it is proportional to the imaginary part
of the generalized magnetic susceptibility. Inclusion of the
weak collisional absorption of spin waves broadens the
S-function in the expression of Imy _ (@,k) into the Lorentz
curve. Using the well-known result

hm ,+ 7 = 10 ()

and the dispersion relation (2.16), we find from (2.28) that,
near the pole,

(2.48)

aD 1—D (0, k)
Imy- (o &) =1y 1 (50) ' Grmr =
(2.49)
or, finally,
p2 Na. Teoll
Im X+ ((D, k) - [O)—QH—-(ka z/ant)lz_i_Tcou .
(2.50)

The Lorentzian (2.50) describes the line shape in the case of
resonance absorption. The maximum of the Lorentzian at
o = o’ (k) is shown by (2.12) to correspond to the maxi-
mum line intensity I:

BANateol BeaN?a®
I= B = TETEmE

(2.51)

and the frequency difference between the maximum and the
point at which the intensity has fallen by a factor of 2 gives
the absorption linewidth:

m2/2k2T9/2

g * (2.52)

Ao =13 ~

Thus, the absorption linewidth increases and the intensity J
decreases with increasing %, i.e., increasing line number in
the magnetic resonance spectrum. Moreover, it follows from
(2.51)-(2.52) that, as the temperature 7 is reduced, or the
polarization & is increased, the lines become narrower and
stronger, and the observed number of lines increases. This is
precisely what is observed in NMR experiments'® with po-
larized atomic hydrogen. These experiments have revealed
the presence of fine resonance lines corresponding to the
excitation of spin waves for the nuclear spin degrees of free-
dom, due to |a) —|b ) transitions. The density and tempera-
ture of gaseous H1 in the experiments reported in Ref. 19
was varied in the ranges N = 3X 10" — 5% 10" cm ~* and
T=0.16 K-0.7 K. A typical NMR spectrum of gaseous H1
is shown in Fig. 1. It is interesting to note that gas-kinetic
estimates (2.51)~(2.52) indicate that neither the intensity
nor the linewidth corresponding to weakly-damped spin
waves depends on the parameters characterizing the interac-
tion between the gas particles, whereas the positions of the
lines in the spectrum, i.e., the resonance frequencies, are de-
termined precisely by these parameters. The exact formulas
for the line shape in the quantum temperature range (1.2)
can be expressed in terms of D, with the aid of (2.25):

No f BQiat _ kvl 2 4
I= Do kv’ ) . Ao= ( m) ﬁo- .
Levy and Ruckenstein20 used a numerical solution of the

macroscopic equations of spin dynamics with specific
boundary conditions to achieve good fit to the experimental

(2.53)
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FIG. L. Typlcal NMR spectrum of gaseous H1 based on the experimental
data reported in Ref. 19 for 7= 245mK, N = 3.2X 10 cm ™, a~ — .

results and a quantitative interpretation of the experimental
data from Ref. 19.

It is readily seen from the form of the spin-wave disper-
sion relation (1.12) that, when a > 0, the first spin-wave line
(it is also the strongest and narrowest) lies on the “blue”
wing (high-frequency end) of the NMR spectrum. Con-
versely, when a <0, the narrowest and strongest line appears
on the “red” wing (low-frequency end) of the NMR spec-
trum. Actually, when a <0, the frequencies of all the spin
waves with different k& are greater than Q, and the first
standing wave with the minimum value of & (the strongest
line) corresponds to the lowest frequency. The reverse situa-
tion prevails for 2> 0 (see the schematic given in Fig. 2).
Hence, the experimental NMR spectrum'® shown in Fig. |
corresponds toa >0, i.e., to a repulsion between the gas par-
ticles, and this is indeed the case for the interaction between
two hydrogen atoms with parallel spins. The profound ana-
logy between the phenomenological equations of motion of
magnetization and the Schrédinger equation, noted in Refs.
19 and 20, leads to the same interpretation of the experimen-
tal results. It is also clear from the form of the dispersion
relation that, if the direction of the spin polarizatign vector is
reversed relative to the external magnetic field (It — — M),

e., if we introduce the formal replacement @ — — a, the
principal (strongest) line will shift from the “blue” to the
“red” wing, and the entire NMR spectrum will be mirror-
reflected. This experiment on the change in the sign of @ was
performed in Ref. 19 and produced the expected results
(Fig. 3).

Searches for spin waves in gaseous *H. by the Paris
group’' were complicated by the fact that, under their condi-
tions (T = 2-6 K, a = 30-50%), the criterion (2.5) wasnot
well satisfied and the spin waves were known to be highly
damped.” Nevertheless, they succeeded in detecting one
spin wave corresponding to the first excited mode? in the
diffusion regime, and extracted from the experimental data
the magnitude of the parameter z which plays an exceeding-
ly important part in the formulation of the macroscopic dy-
namic equations. Figure 4 shows the experimental values of
4 and its calculated temperature dependence.*® The broken
line shows the function ¢ (7T) calculated in the s-wave ap-
proximation from (2.25), extrapolated to this temperature
range.
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FIG. 2. Schematic showing the disposition of the main (strongest)
line in the NMR absorption spectrum as a function of the sign of the
scattering length. When this scheme is used to interpret the NMR
spectra of gaseous Hf, it must be remembered that the degree of
polarization is given by @ = (N, — N,)/(N, + N, ), where N,
and N, are the particle densities in states |¢) and |5 ) so that, for
a <0, the direction of the equilibrium nuclear magnetization is par-
allel to H and we can use the spin-wave spectrum given by (2.12).

b_._————————____—_-———-

x

Gully and Mullin?®! used spin echo experiments to show
the presence of collective quantum-mechanical effects in a
quantum Boltzmann gas of *He atoms dissolved in super-
fluid “He. Since, as noted in the Introduction, an external
magnetic field can be used to produce appreciable polariza-
tion of the solution, condition (2.5) for weak damping of
spin waves, i.e.,

o BH lal
i>th-—2‘—>T’

presupposes the use of strong enough but practically attain-
able fields for which (BH /e;)> N '/?|a|. The temperature
range in which weakly-damped magnetization waves can
propagate in nondegenerate solutions is defined by

B Tse,

T>>8d, (254)

ea [ pomraT (2.55)

In the experiment reported in Ref. 31, the polarization of the
solution was a ~30%, and this was achieved with an exter-
nal magnetic field H = 89 kOe. The experimental data®'
were used to determine the temperature dependence of the
parameter Q;,, 7 = ufSNa, which is the main quantitative
measure of the self-consistent exchange field. Figure 5 shows
part of the data at the highest temperatures for which quan-
tum degeneracy of impurity *He quasiparticles can be com-
pletely ignored. The solid curve in Fig. 5 was calculated from

(2.25) with a = — 1.5 A and illustrates the satisfactory
X
20~
0 Wf
=20 L | . - ( 1
-0 15 -10 -5 0 5 0

Frequency, kHz

FIG. 3. Change in the NMR spectrum of gaseous Ht when the spin-
polarization vector is reversed in direction'® for N =1.5x 10" cm~?,
T =246 mK.
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agreement between experimental data and the theory as ap-
plied to weak *He—*He solutions. New effects due to spin-
wave processes, for example, concentrational suppression of
spin waves,?? may also be expected in the region of the Fermi
degeneracy in *He-He II solutions. However, phenomena
occurring in the quantum degeneracy region are outside the
scope of the present review.

Spin-polarized quantum gases placed in an external
magnetic field may exhibit long-lived dissipative helicoidal
superstructure.?? This occurs when, for a given a, the spin-
polarization vector (produced, for example, by an optical
pump) is oriented relative to H (M1 1H or M1 H, depend-
ing on the sign of @) so that the two terms in the spin-wave
spectrum (2.12) have different signs. When the magnetic
field strength H is not too high, i.e.,

Q€ [Qutly | Lnelvr? = kf € 1Qype|2w5*, (2.56)

the spin-wave frequency is then zero at k = &, in the wave-
vector range in which undamped oscillations in magnetiza-
tion are still present. However, this does not signify a ther-
modynamic instability because we are dealing with a
quasiequilibrium polarized state. This means that, over the
long relativistic longitudinal relaxation time that is neces-
sary to establish true thermodynamic equilibrium, the dyna-
mically induced polarization will vanish altogether, and the
system will assume a new state with P11H and polarization
a determined by the external field. Nevertheless, a dissipa-
tive helicoidal superstructure with spatial period of 27/ky
and lifetime given by

FIG. 4. Exchange parameter u of gaseous *He1 as a function of tempera-
ture. Solid curve corresponds to the theoretical calculation presented in
Ref. 30; 1—experimental data,?' 2—calculations for s-scattering in the
T-approximation, normalized to the value of u at T=2.15 K.
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FIG. 5. Temperature dependence of the self-consistent exchange field in
weak nondegenerate *Het—*He solution based on the experimental data
from Ref. 32 for H = 8.9 T. The solid curve represents s-wave calcula-
tions.

tzr_l%_gn (2.57)
H

is possible.

Experiments on nuclear spin waves in gaseous Ht and
*Het constitute more than simply a verification and identifi-
cation of collective modes in tenuous Boltzmann systems.
They actually confirm the existence of a new class of objects
in the physics of condensed states, namely, the quantum gas
in which macroscopic quantum phenomena occur even in
the classical temperature range. The properties of such sys-
tems are only just beginning to be studied. However, all the
experiments have been concerned with nuclear magnetism
alone. On the other hand, there is undoubted interest in the
possible experimental discovery of collective phenomena in
nondegenerate systems of particles with electron spin.

3. MAGNETOMECHANICAL EFFECT. TRANSPORT
PHENOMENA

Although the effect of spin polarization on the thermo-
dynamic functions of a gas does not result in qualitatively
new phenomena similar to spin waves, it does suggest the
possibility of certain interesting effects that are within the
reach of experimental possibility. To be specific, we shall
consider gaseous *Het, polarized by an optical pump in the
absence of an externalmagnetic field (H = 0). Owing to the
availability of the natural small parameter Nri<l, all the
thermodynamic functions of the gas can be written in the
form of the corresponding virial expansions that are equiva-
lent to the functional expansion into a series in powers of the
ideal-gas distribution function. For binary collisions, the
contribution of particle interactions to the free energy of a
gas can be written in the form of (2.18). The possibility of a
rigorous determination of the thermodynamic functions for
arbitrary values of « is based on the following fact. In the
nonrelativistic approximation, the particle interaction po-
tential is independent of the particle spins. Moreover, in the
second virial approximation that we have used, the interac-
tion function ®_. (p,p’) is not a functional of the density
matrix n, (p), as is the case in, say, a dense Fermi liquid, but
is determined explicitly by the two-particle scattering ampli-
tude in vacuum. Hence, the function @, (p,p’) does not de-
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pend on the polarization @, and is equal to its value in the
unpolarized gas. The spin dependence of the interaction
function is entirely determined by exchange effects. The de-
pendence of F,,, on & is governed by the polarization depen-
dence of the populations 7 in the ideal Maxwell gas, which
appear in the virial expansion (2.18). Substituting for »,
from (2.6) in (2.18), we obtain

Fm-4!p2p b (p, )+ (0 P)1no(P) o (p)- (3.1)

Thus, the polarization dependence of the interaction correc-
tions to the thermodynamics of a gas of spin } particles re-
duces to a quadratic function for arbitrary (not necessarily
small!) values of a.

The total free energy of the spin-polarized gas is deter-
mined by the sum of F;,,,, given by (3.1), and the term repre-
senting the contribution of the ideal Boltzmann gas, which
includes the quantum-mechanical corrections that are qua-
dratic in N, and N_. Integration in (3.1) in the light of
what we have said about the total free energy yields

P~ O+ [ hm ()"
+1n(1—a?) +aln ;2] + ¥ (T) N2,
FO)=—NTh[2 (2 )3/2]

2nh?
INT [ eq \3/2
+ (18n)i/? ( T) +X (1) N%,
(3n2N)2/8p8
gg=—n

2m !

X (T) = (umT) %2 |  (q) e=eim dig,

Y (T) = (nmT)-¥2 g L(q) e=a/mT d3. (3.2)
The dependence of a on any thermodynamic parameter of
the gas can be calculated readily from (3.2). Thus, the pres-
sure is given by

1 3/2
P(a)=NT[1+——(1Sn)1/, (i;-) (1 +a?)

X (1) Y (T)
+——Nta?—=N]|,
T T T ] (3.3)
Differentiating this with respect to density, we obtain the
hydrodynamic sound velocity in the gas (7, '€w €7~ '):

Pt ()L 1) o

The deviation of the paramagnetic susceptibility of the sys-
tem from the Curie-Weiss law for an ideal gas can also be
expressed in terms of the function P(a):

Play—P (@) _ Yia—% _ B
NTa® - 2xq 0 MTTT O

(3.5)

In the quantal temperature range (1.2), in which the particle
interaction in the gas reduces mostly to s-scattering, we find
from (3.3) that

P(a)=NT[1 +W ("T_d)”‘(1+a=)+n(1va3)
x (F+1) 1—an)],

hl
A= (3.6)
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It is clear from (3.3) and (3.6) that the pressure correction
due to the magnetic polarization of the gas is of the order of
the virial addition in the unpolarized gas, multiplied by a?.
This means that, for large enough values of @, the magneto-
mechanical effect is definitely within the range of modern
experimental techniques. In the limiting case where T<#/
mr?and a— 1, we find that
P() — NT _ o

PO) — NT 3.7

Magnetokinetic effects due to the enormous increase in
the mean free path and in the transport coefficients when the
gas is highly polarized are among the most interesting phe-
nomena in spin-polarized Fermi gases. It was predicted in
Ref. 32 for the degenerate quantum gas consisting of *He
atoms dissolved in superfluid *He, and was described in de-
tail in the reviews in Refs. 24 and 33. The physics of this
phenomenon can be summarized as follows. In the case of
s-scattering, which predominates in the quantal temperature
range (1.2), the only contribution to the scattering cross
section is that due to collisions between particles with oppo-
sitely directed spins. When the gas is completely polarized,
the s-scattering cross section is therefore zero, and the main
contribution to gas kinetics is due to p-scattering. The corre-
sponding p-scattering cross section is smaller than the
s-scattering cross section by the factor (A/a)*> 1. Conse-
quently, when the gas is completely polarized, the mean free
path / and the transport coefficients are greater by the same
factor. It is quite obvious that this effect is in no way related
to the form of the particle distribution function (which can
be either the Fermi or the Maxwell function, i.e., the gas can
be degenerate or nondegenerate). It can be fully explained in
terms of the quantum-mechanical scattering of slow Fermi
particles for |a|/A <. A detailed discussion of transport
phenomena in a nondegenerate spin-polarized gas in the hy-
drodynamic approximation (/ €d, where d is the typical geo-
metric size of the gas-containing vessel) is given in Refs. 16
and 34.

We shall now examine some of the features of transport
phenomena under Knudsen conditions, which may turn out
to be relevant in the study of the transport properties of
3He—*He solutions and gaseous *Het at the lowest possible
temperatures and densities. Actually, for an unpolarized
0.01% *He-He 1I solution, the mean free path is /~1073
cm. Hence, when the solution is completely polarized at
T~10mK 2 £, (whatever the method used to polarize it),
the value of / rises to something of the order of 10 cm, and
this is greater than any reasonable linear size of ordinary
experimental cells. In this situation, the transport coeffi-
cients are determined not by the particle interaction but by
the geometric shape and size of the vessel containing the gas.
In the plane-parallel geometry, and if we adopt the very
crude assumption that there is complete accommodation,
the viscosity 77 and thermal conductivity » are given by the
well-known expressions>*

n=Na (55)"*, x=2Na ()"

2nm

(3.8)

Using the first approximation of the Chapman-Enskog
method for 1 — a <1 in the hydrodynamic region'®
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—_ MO _ 58 (0)
"l(“)—5(1_a)v u(a')_%-(i—_a)’

(3.9)

and the well-known expressions for »(0) and 7(0) given in
Ref. 35, we can readily determine the polarization a, corre-
sponding to the transition from the hydrodynamic to the
Knudsen regime when the characteristic geometric size d is
such that

o <4< g (%)‘ (3.10)
The value of a. is given by
1_%:@ 4425 1 044
210 " 43 "Nda® Nda® ' (3.11)
in the case of the thermal conductivity, and by
t1—a=YE A 00 (3.12)

in the case of viscosity. It is clear that the transition to the
Knudsen regime in the spin-polarized gas becomes even
more important in the case of Fermi degeneracy because,
even when a = 0, the mean free path then contains the addi-
tional large factor (£4/7)%> 1. For degenerate *He—*He so-
lutions, the corresponding calculations were reported in Ref.
36. The temperature dependence of viscosity and thermal
conductivity under the conditions defined by (3.10) is
shown schematically in Figs. 6 and 7 fora <a_ anda>a,.
Of course, the Knudsen regime can, in principle, be imple-
mented even in an unpolarized gas (a = 0) if the capillary is
narrow enough, or the particle density high enough, so that
d </ from the very beginning. However, the greatest interest
attaches to the transition from the hydrodynamic to the
Knudsen regime under the influence of spin polarization.

We must also note the interesting possibility of identify-
ing the Knudsen regime in the *He—*He solution by perform-
ing thermodynamic instead of transport measurements.>®
When d </, the *He quasiparticles become “stuck” in the
capillary, and this gives rise to a thermomechanical effect,
i.e., to a pressure gradient at the end of the capillary when a
temperature gradient is applied. A qualitative measure of the
effect can readily be established with the aid of (3.6):

*

S =s=Nn[4 (5 )" ]+ TN a1, GID

2nkt

Const

-
*
™
o
=~

FIG. 6. Schematic temperature dependence of the viscosity of a Fermi gas
under the conditions of restricted geometry for different values of polar-
ization. 7(a.)/n(0)~Na’d»1 when T>e,, and 7(a,)/7(0) =2*3
when T« T*, where T* = (Nad) ™ '%,.
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FIG. 7. Schematic temperature dependence of the thermal conductivity of
a Fermi gas under the conditions of restricted geometry for different val-
ues of a. x(a,)/%(0) ~Na’d>1 when T>¢,, and x(a_)/x(0) =2
when 7«€T*,

where it is assumed that the temperature is low enough for
the phonon and roton contributions to the entropy to be
negligible.

4. PARAMAGNETIC RESONANCE IN BINARY GASES

It is well-known that the paramagnetic resonance fre-
quency of a Fermi liquid placed in an external magnetic field
does not depend on parameters characterizing the interac-
tion between the particles of the liquid and, as in the case of
the ideal gas, is exclusively determined by the gyromagnetic
ratio.”” The same conclusion is valid for an interacting
Boltzmann gas. However, the situation is radically altered in
the case of two-component (multicomponent) systems con-
sisting of different particles or of molecules of the same ma-
terial but in different internal states. The resonance frequen-
cies are then functions both of the interaction between the
particles belonging to the different components and of the
state of the system, i.e., they depend on the temperature and
the partial pressures of the two components. If, on the other
hand, the gyromagnetic ratios of the molecules of the two
components are equal, the exchange interaction between the
subsystems leads to the appearance of a new resonance fre-
quency which corresponds to the additional degree of free-
dom in the two-component magnet, all the particles of which
have the same magnetic moments.

If the magnetic field is not too strong, so that
#iy,, H<T, where y, , are the gyromagnetic ratios of parti-
cles belonging to the first and second components, respec-
tively, the free-energy density F'in the exchange approxima-
tion for the uniformly magnetized two-component system is
given by the phenomenological expansion

M3 M M,

F= 2)(,11 ' 2)(,n +
We can then use the Landau—Llfshltz equations and take into
account the small gas parameter N, r; € 1, k = 1,2 to deduce
from (4.1) the frequencies of spatially uniform oscillations
in magnetization, i.e., the spectrum of the magnetic reso-
nance frequencies’

=V,H(1—§—§:’)-)

M, +MH—  (4.1)

=wf (1-2) (4

when ¥, #7v,, or
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=vH, «ow,=vH (i —(—m—+—y(g)—)’

X1z (4.3)

when y, = v,=v, where y{?’ and y!2’ are the static para-

magnetic susceptibilities of the two components in the ideal
gas approximation, i.e.,

)2
IOy Vi Sp(Sp+1) th k=1, 2I

Arh = 7 3 (4.4)

where N, and S, are, respectively, the number of molecules
per unit volume and the spin of the molecule of the k th com-
ponent. For the resonance solution given by (4.3) with
¥, = ¥, the oscillations of the first type (frequency @,) con-
stitute the usual precession of the total magnetic moment of
the system M = M, 4+ M, around the applied magnetic field
with the Larmor frequency yH. In oscillations of the second
type, on the other hand, the total magnetization M is con-
served and does not oscillate although the magnetic mo-
ments of each of the components, M, and M,, do execute
periodic motions with frequency @, given by (4.3). The rela-
tive motion of the vectors M, and M, occurs so as to main-
tain M = const. The thermodynamic virial expansions can
then be used to obtain the exact expressions relating the
magnetic virial cross coefficient (and, hence, the resonance
frequencies) and the two-particle scattering amplitude of
the binary interaction.' When the spin of the particles be-
longing to one of the components is .S, = 1/2, these expres-
sions are

I S S —q2/amiaT g3y == Y120
/” 'Yﬂz (ZHM12T)3/2 Sg(q)e el dg = Vive
mym
E() =5z 28, +1 (A, —A4.), m12=71{*__:1?’ (4.5)

where the functions 4, (q) are given by (2.18) with m re-
placed by 2m, and f, (f,q) is the scattering amplitude
when the resultant spin of the pair of colliding particles is
S, + 1/2. Thus, when S, 1/2, we finally have

Y, (T
1-.»T( )Nz:l’

- [1_ S, (S?:-H)ﬁ Yis (T) N,:l,

oy= i [1 -4

Y2 T (4.6)
and when S|, = 1/2, i.e, ¥, = y,=7%, we have
Y, (T
oy=vH, o,=vH [1—{;—;’ N], N=N+N,
(4.7)

At low temperatures T€#/mr(, the function Y,,(T) is a
slowly-varying function of temperature:

2 2nh?
Y, (T)=W—,:T(a+—a_)

x[1

and the shift of the resonance frequencies in the leading ap-
proximation is inversely proportional toT:

2m12T

(a2 + a®4asa_ ):I (4.8)

Xh Ap \2
7’:: =3 5 (S"’H) (T;z )" N,
A=t =t _2@—a)
‘ 7 Tmpgvr T (mpaD)YE? G = 2841 * (4.9)

When the transport virial corrections in the spin commuta-
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tor are taken into account, the solution of the system of
transport equations (2.20) with k = O for each of the com-
ponents of the binary mixture again leads to the homogen-
eous paramagnetic resonance frequencies' given by (4.6)
and (4.7).

We note that, when ¥, = ¥, =7, the formulas given by
(4.7) and (4.9) do not contain any parameters that distin-
guish one type of particle from another, such that the effect
would vanish if these parameters were allowed to tend to
zero. Nevertheless, the above expressions are invalid when
the two components are identical (one-component gas), and
the effect disappears. The point is that there is no group of
parameters that would allow us to perform a continuous
physical transition from different to identical particles. Par-
ticles are always identical or always different (however
small the change in the parameters), and the transition can
only occur discontinuously. In this sense, the situation is
similar to that encountered in the well-known Gibbs para-
dox involving the entropy of a mixture of two identical gases.

There is a relatively wide range of gases whose mole-
cules are paramagnetic even in the ground state. Among in-
organic substances, there are the well-known O, (ground-
state term >2), NO (ground-state term 2[1), and the
triatomic gases NO, and ClO, with total spin § = 1/2. Re-
cent experimental work has shown that spin-polarized atom-
ic hydrogen H1 can be described as a long-lived, structurally
stable, paramagnetic gas. There is also a whole series of gase-
ous nuclear paramagnets, for example, *He, HD, o-H,
(orthohydrogen), and p-D, (paradeuterium). The above
formulas are valid, at least in principle, for all these gases.
However, since the quantum-mechanical corrections to the
free energy of the gas decrease with increasing temperature,
all the above effects are particularly appreciable in gases that
condense at the lowest possible temperature and, at the same
time, have an appreciable saturated vapor pressure. More-
over, the rotational quantum A, of the molecules of some of
these gases is found to be considerably smaller than the boil-
ing temperature (even at the very lowest pressures), so that
the rotational degrees of freedom of the molecules will be
definitely excited, which gives rise to strong coupling
between the electron magnetic moment and the angular mo-
mentum of the molecule. This, in turn, gives rise to a consid-
erable complication of the paramagnetic resonance picture
and of the identification of the phenomena discussed above.
For example, A, (0,) =2.1K and A, (NO) =2.4K.

Thus, for a clean observation of the predicted effects, it
is convenient to use different paramagnetic isotopes of hy-
drogen whose molecules are characterized by a large rota-
tional quantum, much greater than the boiling temperature:
A, (Hy) =85.4K, A, (D,) =43K,and A, (HD) = 64
K. However, since the hydrogen isotopes enumerated above
and *He are nuclear paramagnets, and the range of nuclear
forces is much smaller than the dimensions of the molecule,
there is very little overlap between the nuclear wave func-
tions during collisions between different molecules, and the
corresponding exchange interaction is utterly negligible. A
totally different situation occurs when the colliding mole-
cules include identical atoms. The exchange of complete
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atoms rather than nuclei is then possible in a reaction zone of
the order of the molecular dimensions. The order of magni-
tude of the exchange scattering amplitude is then deter-
mined by the size of the molecules, i.e., its scale is atomic
rather than nuclear. This situation can occur, for example, in
two-component mixtures of o-H, and HD (identical H
atoms) or p-D, and HD (identical D atoms). The saturated
vapor pressure of these materials at 7~ 10 K corresponds to
the concentration N, ~10'®*-10'° cm ™3, so that estimates
based on (4.9) for |a,|~1 A lead to the following paramag-
netic resonance line shift: |Aw, |/7 H~107°-10"%

Another interesting system that may exhibit analogous
effects is spin-polarized atomic hydrogen (H1t) because,
after stabilization in the magnetic field, the hyperfine inter-
action ensures that the gas is a mixture of atoms in different
spinstates, namely, |@) = |11) —7|i1),|6) = [11),i.e, H?
may be looked upon as a peculiar binary gas. Two magnetic
dipole transitions are then allowed, namely, |a)— |d ) and
|6 —lc), where [d) = [11), |e) =|41) + 7]11). The reso-
nance line corresponding to the |5 ) — |¢) transition has been
observed experimentally.*® The same atoms in ground and
excited states can play the part of different particles of the
binary gas, and this actually occurs in gas-discharge devices.

Quantitatively, the resonance-frequency shift is par-
ticularly large when one of the components of the binary
system is a simple gas of electrons whose mass m, is smaller
by three orders of magnitude than that of the atom. Here, we
nearly always encounter the ultraquantal condition
T<#*/mr{, and quantitative descriptions can be based on
(4.8) and (4.9) in the limit of low-energy scattering. Such
systems will be examined in the next section.

5. BINARY QUANTUM GASES WITH AN ELECTRON
COMPONENT

As already noted, when one of the components of a bi-
nary gas is a light electron gas, the system may be expected to
exhibit both an increase in the quantitative measure of col-
lective effects and a considerable expansion of the corre-
sponding temperature range, as well as the appearance of
qualitatively new phenomena. A typical example of this kind
of multicomponent quantum gas is cold, weakly-ionized
plasma containing electrons, ions, and neutrals.

5.1. Ferromagnetism and charge-density waves in a weakly-
ionized Maxwell gas

It is commonly considered that long-range magnetic or-
der in a system of particles with a short interaction range
requires either a high particle density, so that the separation
between the particles is comparable with the exchange inter-
action range, or a low enough temperature, mach lower than
the Fermi degeneracy temperature, so that the system in-
cludes long-range interactions such as those of Ruderman,
Kittel, Kasuya, and Yosida. Our assertion is that the quantal
virial corrections describing the interaction between the par-
ticles in a tenuous multicomponent gas containing a light
component can lead to a spontaneous phase transition and to
the appearance of a magnetic or structural order even at high
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temperatures, well away from the quantum degeneracy tem-
perature.'?

It is readily seen that, owing to the availability of the
small gas parameter Nr, <€ 1, the paramagnetic state of a one-
component gas is stable at any temperature, both for T2 ¢4
as well as for TS g4. The situation is totally different in the
weakly-ionized gas containing neutrals, electrons, and ions
because of the availability of a further small parameter,
namely, m,/m,_ €1, wherem,_ is the mass of the electron and
m,, the mass of the neutral. The interplay between these two
small parameters can lead to an unstable paramagnetic state
of the weakly-ionized gas in the classical temperature range.
To be specific, we consider the case where the neutral has
electron spin 1/2 and the plasma ions have no magnetic mo-
ment. Since typical values of the ionization potential I are
lower than or comparable with the quantum-mechanical en-
ergy #2/m_r 3, the condition for weak ionization of the gas,
T < I, implies that the condition T «#’/m_r % has been satis-
fied. At such temperatures the virial additions to the free
energy of the weakly-ionized polarized gas, which are due to
the interaction between electrons and neutrals, can be satis-
factorily calculated in the s-wave approximation'
7h3Ne Ny

(int) __
Fen''= 2me

(a1+ azaeanyﬁe)_ﬁn)a (51)

where N, N, are the electron and neutral densities, a., a,
are the polarizations of the two components, I, 2, are unit
vectors in the direction of the magnetization for electrons
and neutrals (¢, =3a, +a_,a,=a, —a_),anda_ and
a_ arethetriplet and singlet s-scattering lengths, respective-
ly. The total free energy of the ionized gas with polarized
components can then be written in the form

F (a,, ag)=F (0, 0)+ [N Z (ag) + NpZ ()]

k2 a,NeN

+ = ety m.,sm.,, (5.2)

Z(@)=1In(1—a?)+aln TE& “‘“
where the terms Z(a. ) and Z(«a, ) descrlbe the contribu-
tions of the ideal gas of electrons and neutrals, respectively.
Virial corrections due to the scattering of neutrals by neu-
trals and the weak electron-electron exchange corrections
will be neglected because the retention of these discarded
terms would produce additional terms proportional to N, r}
<lande’N /T «1in the final expressions. Moreover, vir-
ial corrections due to the mutual scattering of neutrals are
smaller by the factorm_ /m, > 1 than the termsin (5.1). The
subsequent procedure consists of minimizing the expression
for F(a.,a,) in (5.2). Minimization of free energy with_(e-
spect to the angle 8 between the magnetizations ¢, and It
showi tha& when a, < 0, we have the ferromagnetic struc-
ture JM,. M, =1, ie, =0, whereas, for @, > 0, we have
ferrimagnetic-type order with .. M = — 1, ie., 8 =7

The conditions for minima, JF /da, = 0 and JF /da,, = 0,
are equivalent to the set of equations
GeYeeEy _ _ _ mh?
&l‘cthan—*——T— &0, Ezh-—zm—eag-,
arcthae—a—"'\’—;f’ﬁzo Vee=DNelay 1% Yan=~Npla [
(5.3)
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The consistency condition for the equations in (5.3) defines
the magnetic phase transition temperature'

R2
Tor=grzz (Ve lay V2 (N, | gy 10 54)

The range of validity of Boltzmann statistics, used to calcu-
late T , from (5.4), i.e., the conditions T, , >£{%,e{™, corre-
sponds to the following inequalities for the electron concen-
tration:
13> Ny o > (55) > 1 Wi ey )
Nn (5.5)
It is clear from (5.5) that it is precisely the presence of the
small parameter m_/m, <1 that ensures the possibility, in
principle, of the magnetic phase transition in the classical
temperature range, provided the neutral-particle concentra-
tion is high enough:

13> WY a, |)4>>:_; (5.6)

Using (5.3) with (5.5), we obtain the equilibrium polariza-
tions of the two components. Near the transition point, these
polarizations turn out to be

= (67)1/2, Ne

Teo—T
aﬂ:(]vn c2

1/2
) ! AL Aey, T T Te < 1.

(!

(5.7)

The expression given by (5.4) is essentially the equation de-
fining the phase transition point because the electron con-
centration NV, and the neutral concentration V, in the plas-
ma, which appear in (5.4), are themselves functions of
temperature. If we use the Saha formula to calculate N, and
N,, it is difficult to satisfy (5.4)—(5.6) at the same time.
Nevertheless, under suitably chosen conditions, a solution of
(5.4) subject to (5.5) and (5.6) turns out to be possible. All
the same, a more convenient system for the observation of
magnetic phase transitions in the classical temperature
range is a nondegenerate semimagnetic semiconductor,
which will be considered in the next section. We also note
that the uniformly magnetized state of a quantum Maxwell
gas may turn out to be unstable against a transition to a
spatially inhomogeneous phase. However, this question
would take us outside the framework of the present review.

A further interesting quantum phenomenon in a weak-
ly-ionized gas is due to the structural phase transition and
the appearance in the system of a spatially-periodic super-
structure. This phenomenon involves not only the interac-
tion between electrons and neutrals, but also the Coulomb
interaction between charged particles, as well as the pres-
ence of the ion component in the gas. The physics of this
effect is as follows. If the particles did not have an electric
charge, the conditions for the thermodynamic stability of
the system against stratification, or a spontaneous change in
the density of the components at 7= const, could be re-
duced to the inequality

det”W“=det Anll>0  (k l=e, n, i).

(5.8)

We shall use the index i to label quantities referring to the ion
component. To keep the final expressions as simple as possi-
ble, we shall, as before, neglect the virial corrections due to
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the scattering of neutrals and ions, which we are entitled to
do because of the large mass of the particles. From (5.8),
(5.1), and (3.2), it then readily follows that, for T < T,
where

)1
Tor =g (Ve | a; 942 Ny | a |27,

(5.9)

the system becomes thermodynamically unstable, and the
electron component and neutral particles cannot coexist in
the same mixture. In the real situation, electrons and ions are
charged, so that the spontaneous separation of the electron
and neutral components for T < T, , which is accompanied
by a reduction in that part of the free energy that does not
depend on the particle charge and the Coulomb interaction
between the particles, gives rise to a departure from the over-
all electrical neutrality of the plasma in regions of macro-
scopic size. This type of redistribution of electrons affects
the macroscopic homogeneity of the plasma. It is accompa-
nied by the appearance of a macroscopic electric field and
produces an increase in the Coulomb correlation energy of
electrons and ions. These two competing mechanisms are
responsible for the phase transition involving the appear-
ance of a spatially periodic structure in the distribution of
the electric field and of the densities of all the gas compo-
nents, i.c., charge-density waves.”

Thus, when charged components are present, the condi-
tions given by (5.8) must also take into account the above
macroscopic electric field. The criterion for thermodynamic
equilibrium then reduces to the condition for constant
chemical potentials of the gas components in the electric
field, which must be augmented by the self-consistent
Poisson equation for this field:'

AN, + AN + AbN, = e,

ApbN, + ApdNy + AN, =0,

A1ONe + ANy + ApdNy = — ze0,
Ap + 4me (z6N; — 6N,) =0, (5.10)

where @ is the electric potential and ze and ( — e) are theion
and electron charges, respectively, so that N, = zN,. Elimi-
nating N, , k = i,n,e from (5.10), and calculating 4,, from
(5.1) and (3.2), we obtain

Ap +[dr?+ 5t (1—G)19=0, GmNN, |

nh’a1 )2
2meT | ?

(5.11)

where the Debye lengths of ions and electrons are respective-
ly given by

do=(gayzm) o = (gmm) (5.12)

Equation (5.11) determines the screening of the electrostat-
ic field in a weakly-ionized gas. The corresponding screening
length D is given by

Dr2=di? +-di* (1 —G). (5.13)
Within the temperature interval
TH<T<Toy, To=Te (1421 (5.14)
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we have D 2 <0 and Eq. (5.11) has an oscillatory solution
corresponding to charge-density waves of wavelength
A, =2m|D|~! whose value is determined by (5.13). This
means that, in the range T%* < T < T, a new spatially peri-
odic phase appears in the weakly-ionized gas and, at the
points T'=T% and T=T,,, a phase transition actually
takes place between the state in which correlations between
the particles decrease exponentially with distance and the
state in which the single-time correlation function oscillates
and falls off with distance in accordance with a power-type
law, which is a macroscopic manifestation of the appearance
of long-range order in the system. As the temperature is var-
ied from T% to T,,, the period A, of the superstructure
undergoes a formal variation from o to 0. Of course, a
charge-density wave is physically meaningful only when A,
has the macroscopic scale defined by A, N >> 1, k = e,n,i.
The formulas given by (5.11)-(5.14) and (5.9) are readily
generalized to the case of nonisothermal plasma, and Eq.
(5.11) can also be deduced within the framework of the tra-
ditional approach to the Debye length.'*

When T¢#/m,r}, the interaction between electrons
and neutrals ensures that there are quantum kinematic cor-
rections which must be taken into account in the transport
equation together with the self-consistent Coulomb field.
The corresponding set of equations'® enables us to determine
the corrections to the spectra of all the high-frequency oscil-
lations in the weakly-ionized plasma. Here, we reproduce
only the expression for the longitudinal permittivity:

e (0, k)=(1—GFFy)™ {14 (kdo)2 Fe 4 (kdy)2 F,
—GF Fy (14 (kdy))2 Fy}},

-—i
et dz

z—zp,—10 ?

Fae 128 |

@

T = —5—
m V3 kvrn,

(m=e, n, i).
(5.15)

In the static limit o € kvy, , kvy;, kv, , we find from (5.15)
that

e (0, k) = (1 —G)" {1 + (kdg)? + (kdy)=

— Gl + (kdy)-%)} =1 4+ (kD)% (5.16)

The solution of the equation £(0,k) = Oisin complete agree-
ment with the thermodynamic formulas given by (5.11)-
(5.13). When (5.14) is satisfied, this equation has a real
solution k250, k2= — D ~2, which corresponds to the
structural phase transition to a state with charge-density
waves. Of course, this is accompanied by a change in the
character of the Debye screening. Thus, the field due to an
extraneous test charge ¢, in a weakly-ionized gas is given by

e=rl Dl, Dz>0,

[ _4nee™ @k e r
(P(’)—Sm_(zn)a =7\ cos 7, D* <0,
(5.17)

In spin-polarized plasma at T<#%/m,r }, the propagation of
weakly-damped waves is possible in principle as in any other

E. P. Bashkin 256



quantum gas. Here, we shall confine our attention to the
solution for the homogeneous paramagnetic resonance with
k = 0 in an external field:""*

2| 2na,h H
- TS AR 8

(5.18)

In the case of weakly-ionized gaseous Cs at T~ 1000 K,
N, ~N,~10"-10" cm 3, |a,| ~ 10 A, the additional reso-
nance frequency e, satisfies the relation |w,—,[/
®,~107°-10"*, which is definitely within the range of ex-
perimental possibility.

As we have seen, there is a great variety of collective
quantum-mechanical phenomena in binary gases containing
a light electron component, and such phenomena occur in a
much broader temperature range than in the case of single-
component systems. Nevertheless, experimentally, they are
much more difficult to identify because of the presence of
various masking effects at the higher temperatures. More-
over, a number of specific difficulties is encountered, for ex-
ample, in the production of sufficient densities of electrons
and neutrals in the ionized gas, or electrons and point defects
in semiconductors. However, it is worth overcoming these
difficulties in order to be able to observe macroscopic quan-
tum-mechanical effects at room temperature.

5.2. Semimagnetic semiconductors

The effects discussed above are probably much easier to
detect experimentally in semimagnetic semiconductors.
Semiconductors in which the nonmagnetic host lattice con-
tains magnetic point defects, with low enough concentration
for the dipole-dipole interaction between the spins of the
defects to be neglected, are often referred to as semimagnetic
semiconductors. Because the separation between the defects
is much greater than the lattice constant, the behavior of the
defects (from the magnetic point of view) is then similar to
that of atoms in an ideal gas with susceptibility obeying the
Curie law. The magnetic defects can take the form of union-
ized impurity levels or impurity atoms of rare-earth, acti-
nide, and certain transition elements with uncompensated
electron spins in the f- and d-shells. No special assumptions
are necessary to calculate the contribution of collisions
between electrons and defects to all the thermodynamic
functions. The corresponding terms in the total free energy
of the system can be expressed in terms of the exact electron-
defect scattering amplitude. The concentrations of electrons
and defects are the natural small parameters of the problem.
It follows that, although the interaction between electrons
and defects can in no way be regarded as weak, all the ther-
modynamic quantities can be obtained in the form of virial
expansions in powers of the small concentrations, i.e., in the
form of a thermodynamic perturbation-theory series. Owing
to exchange effects, the amplitude for the scattering of an
electron by a paramagnetic impurity depends on the resul-
tant spin of the electron and defect. Exchange effects in the
scattering of conduction electrons (or holes) by localized
point defects lead to the possibility of magnetic phase transi-
tions and a variety of high-frequency phenomena in the clas-
sical temperature range. "
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We shall now consider a nondegenerate semiconductor
in which the host lattice has cubic symmetry, so that the
electron energy spectrum has the simple form & = p*/2m*,
where m* is the effective scalar mass. If we are not interested
in the structure of the disposition of defects in the lattice,
they can be described by a stochastic distribution of particles
with infinite masses. Averaging over the positions of the im-
purities is then equivalent to taking the limit of the usual gas
formulas as the mass of the defect tends to infinity. The elec-
tron-electron exchange interaction in the nondegenerate
semiconductor will also be neglected. Of course, at low
enough temperatures, and when the concentration of para-
magnetic impurities is low, an indirect effective interaction
may take place between them and may continue up to the
formation of a spin glass, so that the model involving nonin-
teracting magnetic defects will definitely become unaccepta-
ble. At still lower temperatures, the semimagnetic semicon-
ductor will exhibit observable phenomena such as the
Kondo effect. The essential point is, however, that all these
phenomena can occur only in the region of the Fermi degen-
eracy of electrons, so that, for T>£,, we can be sure that
these effects are absent, and the scheme adopted above is
valid.

Minimizing the free energy (4.1) with H = 0, we obtain
the stability criterion for the disordered paramagnetic state
of a semiconductor containing defects:

X11X12 2= Y32 == Xint, (5.19)

where y,,, ¥, are the paramagnetic susceptibilities of the
electron and defect subsystems. The equality sign in (5.19)
corresponds to the equation for the magnetic phase transi-
tion temperature 7,.. When 7 < T, a ferromagnetic struc-
ture with M, 11M, is formed for y;, <0, whereas a ferri-
magnetic order with M, 1 1M, is formed for y;,, >0 (this
state may turn out to be unstable against a transition to the
spatially inhomogeneous state). When T&# /m*r 3 ~ 10—
107 K, which is known to be the case in practice, we can use
(4.9) and (5.19) or (5.2) and (5.4) to determine the critical
temperature for the phase transition'*

T = oo 35 (S -F D)2 (Wead) /2 (N gad),
2(a,—al)

2541 ¢

where S'is the spin of the paramagnetic impurity, N,, N4 are
the concentrations of the electrons and defects, respectively,
and @ are the scattering lengths for the resultant electron
and defect spins of § 4+ 1/2. When S = 1/2, the equilibrium
polarizations a, and a,, i.e., the order parameters, are given
by (5.3) with m, and a,, replaced with m* and a,, respec-
tively:

1/2 —_
oo = (61)%, oy= (——) Oey THEE TcTc ! <1

Ay =

(5.20)

d
O w=1—exp [—2 (l"—)z:lz 1,

T Ne V1/2
ag= (F2) <, e« T« T

(5.21)

The condition T, > ¢, is equivalent to the requirement that
the electron density is not too high, i.e.,, N./N, « N2aS <1.
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Hence, in a nondegenerate, magnetically ordered semicon-
ductor, we always have @, » a4 although N, a, €N a4, i.¢.,
M ;> M. . Twotypes of collective spin wave can propagate in
a spin-polarized semiconductor containing defects. The first
type is the zero-gap Goldstone mode corresponding to the
inhomogeneous precession of the total magnetization with
spectrum given by '

p— Nede (kv'l‘)z (d) — Zna.h
0= Ngag & Neae Q(lt;l& ’ ant Nda'df
vie L
= (5.22)

The second type corresponds to the precession of the magne-
tizations of both components occurring in such a way that
the total magnetization vector remains constant (M, + M,
= const), although the individual magnetizations M, and
M, execute oscillations of frequency w, given by

—Qe) Naog (kv'r)’

= (d)
g ¥+ Q‘ int Ndad—Neae gg:l)t ’

2nka
Qfe) = = i N . (5.23)

The expressions given by (5.22) and (5.23) are written for
= 1/2, where the upper sign in (5.23) corresponds to the
ferromagnetic structure (M, 11M,) and the lower to the
ferrimagnetic order (Mg 11M,). It is readily verified with
the aid of (5.21) that the condition for weak collisionless
absorption a4 > |a,|/A is not satisfied in a spontaneously
magnetized semiconductor in the classical temperature
range, so that spin waves are highly damped in this case.
Higher values of &4 and a, than those shown by (5.21) are
necessary for the existence of weakly-damped spin waves.
They can be attained by dynamic polarization or by applying
a strong enough external magnetic field. A further term, rep-
resenting the Lorentz force acting on charged particles,
must be included in the transport equations (2.1)-(2.2)
when an external magnetic field is present. The dispersion
relation then assumes a relatively complicated form,'* but
becomes much simpler for spin waves propagating parallel
to the magnetic field (k||H). The spectrum of the two
branches of spin waves for T'> T is then described by

Ne (k')'r)
mlH—QH'l' Ne+Nd Q(d) >

A H N kvg)®
(5.24)

and the condition for weak damping a» |a,|/A, where
a, = ay=a=tanh(BH /T), is satisfied for H~ 100 kOe
even at high temperatures T<10* K. When k =0, (5.24)
gives us the two ESR frequencies, whose values in strong
enough magnetic fields and at low enough concentrations
N., Ny may be very different. For the typical values
N, ~10'%-10'7 cm™3, N4 ~10"-10"® cm™3, T~10% K,
lay| ~1 A, m*~ (10~2-10~ ') m,, the quantitative measure
of the effect | Q) — w,y (kK =0){/Qy turns out to be of the
order of 1073-10"".

258 Sov. Phys. Usp. 29 (3), March 1986

The spin-wave damping is proportional to k %, which
means that, although there are no weakly-damped spatially
inhomogeneous magnetization waves in a spontaneously
magnetized semiconductor when T' < T, and H = 0, the ho-
mogeneous magnetic resonance w,(k = 0) is nevertheless
observable, where w, is given by (5.23). Since, in the case of
spontaneous polarization with ¢, € T < T, we always have
Nyay> N, a., the resonance frequency is finally given by

0 (k=0)=F 24 y g, (5.25)

where a, is given by (5.21).

So far, we have examined the interaction between free
electrons and a system of neutral scattering centers. Quan-
tum-mechanical refraction effects can lead to interesting
phenomena even when electrons are in bound states. The
spectroscopy of localized electron states in condensed media
isfundamentally dependent on the properties of these media.
Even a tenuous gas medium will very appreciably modify the
energy levels of an electron as compared with the spectrum
in vacuum, and this may extend to the total vanishing of
localized discrete states. If, for some reason, the medium is
magnetically polarized, the interaction between an electron
and the medium will remove the spin degeneracy, and the
energy levels will split (even in the absence of an external
magnetic field!). Quantum-mechanical refraction of a
bound electron by particles of the medium in an external
magnetic field will change the mutual disposition of the Zee-
man lines in the spectrum.

A clear example of the influence of the ambient medium
on a localized electron state is the change in the energy of
shallow levels of highly-excited atoms (Rydberg atoms) in
an atmosphere of an extraneous gas,'***! or the analogous
phenomena in a system of impurity levels and large-radius
excitons in semiconductors containing point defects.'* Thus,
the level splitting of Rydberg atoms in a spin-polarized gas
and the spectral line intensity ratio in a doublet are given by
the following simple expressions:

__ nh? I, 1+4a
Ag— meNlazla, I__'_i—a'

(5.26)

Methods of producing relatively high degrees of polarization
in alkali-metal vapor by optical pumping are now well estab-
lished. In the system of electrons localized above the surface
of liquid helium,*? quantum-mechanical refraction by atoms
of the saturated vapor can also be used to explain a number
of observed effects.’*

6. CONCLUSION

The properties of quantum gases have attracted increas-
ing attention during the last twelve months because of the
experimental confirmation of the clear and nontrivial pre-
dictions of the theory. The theory presented in the present
review provides a rigorous description of tenuous sytems
such as gaseous helium or hydrogen, without introducing
any particular models. The theory is also satisfactory in the
case of the weakly nonideal gas of quasiparticles in con-
densed media such as *He-*He solutions, semimagnetic
semiconductors, and so on. And while a surprising phenom-
enon such as collective spin oscillations has already been
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discovered in gaseous Ht and *Het, and in *He—*He solu-
tions, the analogous effect in semiconductors, and the no less
surprising magnetic and structural phase transitions in the
classical temperature range, still await their experimental
discovery.

YWe note that, even earlier, Aronov** used a model to examine undamped
spin-wave oscillations in a nondegenerate gas of electrons in semicon-
ductors with nonequilibrium spin orientation.

2'This is why numerical calculations®® of the shape of the NMR linesin the
spectrum of gaseous H 1 under the conditions of the experiment reported
in Ref. 19 appear to be essentially qualitative.** In the phenomenological
sense, the inclusion of 1,(A, ) means that it is possible to introduce two
relaxation times*® into the macroscopic equations.

YA further object in which the weakly-damped spin modes were detected
is the quasi-two-dimensional H1 adsorbed on a helium-covered sur-
face.*

“Recently, Laloé et al.*® carried out an experiment in which they used a
radio-frequency field gradient and a uniform static magnetic field. They
were able to identify reliably spin waves in gaseous *Het for 7= 2-5K,
a=30%, N=10" cm™~*.

*'A physically similar phenomenon in a liquid electrolyte near the critical
point was considered in Ref. 47.
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