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A study is made of the trajectories of free motion of test particles and photons in the Kerr
metric, which describes the gravitational field of a rotating massive body. The trajectories are
classified on the basis of the integrals of the motion, which have a clear physical meaning. The
cases of a strong gravitational field in the neighborhood of a rotating black hole as well as the
weak-field approximation describing the motion of particles in the gravitational field of a
rotating star or galaxy are considered. The review includes bound states (orbits) in the field of
a rotating mass, scattering and gravitational capture of particles and photons by a rotating
black hole, trajectories of falling into a black hole, and the bending of light rays and the
gravitational time delay of signals in the gravitational field of a rotating body.
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1. INTRODUCTION heimer and his collaborators24—to which it has the most
direct relationship. Now that neutron stars have become or-

In lectures read in May 1921 at Princeton University dinary reality and the final confirmation of the discovery of
and entitled "The fundamentals of the general theory of rela- the first black hole in the constellation Cygnus is, it seems, to
tivity," Einstein made the following assertion: "A rotating be expected at any moment,15'40 the general theory of relativ-
hollow body must generate within the cavity it bounds a ity has become a working tool of astrophysical investiga-
"Coriolis" field that deflects a body in the direction of the tions.
rotation, and also a centrifugal field... The centrifugal effect Allowance for general relativistic effects is particularly
also follows from the theory, as Thirring showed." In 1918, important for the explanation of astrophysical phenomena
Lense and Thirring73 also showed that the gravitational field in which black holes participate directly. According to our
outside a massive rotating body must have a similar effect, present ideas, such phenomena include the cosmic sources of
tending to cause test bodies to rotate relative to a distant x rays, and possibly, gamma rays, the processes responsible
inertial system attached to the fixed stars. In this case, the for the violent activity of quasars and the nuclei of galaxies,
dragging does not necessarily take place in the direction of gravitational lenses, and also possible cosmic sources of gra-
rotation; in particular, the displacement of the perihelion of vitational radiation.
Mercury through Aft = 42" 9 in 100 years—one of the three It is well known that a black hole is formed by the corn-
classical general relativistic effects—must be reduced by the plete gravitational collapse of matter in situations when it
rotation by the amount Aftrot s;4-10~4Aft. This was the cannot be withstood by the internal pressure. Qualitatively,
prediction and first quantitative estimate of the effect of black holes were predicted more than 200 years ago by the
dragging of inertial systems by the gravitational field of a English physicist John Mitchell in a paper to the Royal So-
rotating body. ciety in 1783. He asserted that if the Sun were shrunk so as to

For a long time, the Lense-Thirring effect was of purely have a diameter ~ 6 km, light could not leave it (references
academic interest, just like the strongly relativistic objects— inRef. 114). In 1799, Laplace published a paper116 in which
the neutrons stars and black holes predicted in the frame- he gave a quantitative theory based on Newton's law. In
work of general relativity at the end of the thirties by Oppen- 1939 black holes were predicted in the framework of general
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relativity by Oppenheimer and Snyder.24 According to mod-
ern ideas, black holes (if they exist) arise either from initial
perturbations in the distribution of the matter density in the
early stages in the evolution of the universe if at that time it
was strongly inhomogeneous (the idea of primordial black
holes was advanced by Zel'dovich and Novikov104 in 1966.
For details of their formation and subsequent fate, the reader
can study the reviews of Refs. 23 and 30; the present physical
and astrophysical status of primordial black holes is consid-
ered in the recent review of Ref. 107) or are the end product
of the evolution of sufficiently massive stars24 (for scenarios,
see the monographs of Refs. 10 and 18) and star clusters
(the idea and mechanism of formation of a massive black
hole by the collapse of a collisionless system of stars were
proposed in 1965 by Zel'dovich and Podurets105; for the sub-
sequent development, see the review of Ref. 40 and the refer-
ences given there).

The search for black holes is regarded as one of the
principal tasks of the astronomy of the last decade.29'40 It is
virtually impossible to observe a black hole directly; it can be
observed only through indirect manifestations associated
with the influence of its strong gravitational field on the mo-
tion of the surrounding matter and on the propagation of
radiation. In astrophysical models including black holes, ra-
diation is generated in the process of heating of gas that falls
into the hole and the acceleration of this gas in the accompa-
nying magnetic field. To obtain the necessary temperature
ensuring correspondence between the model and the ob-
served picture one requires a hugh amount of energy, the
source of which could be the gravitational field of the black
hole. It is regarded as very probable that astrophysical black
holes possess intrinsic rotation (a rotating black hole is
formed naturally by the collapse of a rotating star and by the
collapse of a star in a binary system). The existence of angu-
lar momentum of a black hole is required above all for quasar
models, in which a centrally positioned massive (107-108

MQ ) black hole must provide the energy of the radio source
genetically related to the quasar—the presence of a rotating
axis could preserve the "memory" of a distinguished direc-
tion during the entire lifetime of the radio source (see Ref. 40
and the references given there). In addition, the rotation of a
black hole in an external field is accompanied by helpful
effects analogous to unipolar induction.108'109-115 A rotating
black hole with mass M and angular momentum / in an ex-
ternal magnetic field H and in the presence of a constant
inflow of electric charge acts as an electric battery with pow-
er (see, for example, Ref. 106 and the references given there)
WH x 1040(3//1063/0 )

2(///mail )
2(#/104)2 erg/sec.

Investigation of the gas-dynamic and radiative pro-
cesses in the vicinity of compact rotating astrophysical ob-
jects necessarily poses the question of the motion of test bod-
ies and the propagation of radiation in the strong
gravitational fields they produce. According to the general
theory of relativity, test bodies11 move in a gravitational field
along geodesies of the space—time geometry created by the
distribution and motion of the matter. Geodesies are the
world lines of free motion, i.e., motion governed solely by the
gravitational field described by the given geometry. The

timelike geodesies are the trajectories of free motion of test
bodies, while the null geodesies are those of the free motion
of photons, i.e., of the propagation of radiation provided its
wavelength is significantly shorter than the characteristic
scale of variation of the field. The space-time geometry
created by a rotating massive body is described by the Kerr
metric. The characteristic scale of variation of the field is
determined by the radius of the event horizon:
r+ = [1 + (1 — a2)1'2 ]GMc~2, where G is the gravitational
constant, c is the velocity of light, M is the mass, and a is the
specific dimensionless angular momentum of the gravitating
body, which is related to its total angular momentum by
a =J(GM2c~1)~l. If the radius of the rotating object is
r* >r+, the Kerr metric describes the gravitational field of a
rotating star or galaxy; for r, >r+ that of a neutron star, and
for /•„ —>r+ that of a black hole.

Since particles in the neighborhood of a rotating body
move along timelike geodesies of the Kerr metric, and radi-
ation propagates along null geodesies, study of the geodesies
of this metric on the one hand, gives a clear picture of the
properties of the space-time geometry in the neighborhood
of rotating objects and, on the other, is necessary for astro-
physical applications. (There is a brief review of geodesies of
the Kerr metric known up to 1979 written in the style of a
guide—where what is to be found or who did what,85 and a
review of later work can be found in Ref. 112.)

The region of applicability of the geodesic approach to
the study of physical processes in the neighborhood of a ro-
tating black hole is restricted for photons by the condition
that the wavelength be short compared with the characteris-
tic scale of variation r+ of the field; when the wavelength
becomes comparable with r+, wave effects become very im-
portant (see Ref. 112). Consideration of these questions
goes beyond the scope of the present paper, but the most
interesting results, associated with the phenomenon of su-
perradiant scattering by a black hole, are briefly presented
here (Sec. 2). In addition, allowance for the influence of
gravitational radiation qualitatively changes the picture of
the motion even in a weak field (a detailed analysis for the
Schwarzschild metric is given in Ref. 10, p. 135). Quantita-
tively, the energy lost by a body with mass m through the
emission of gravitational waves is characterized by
amcz(m/M), where the coefficient a is appreciably less
than unity (for the case of gravitational radiation in the field
of a rotating black hole, see Ref. 6 and the references given
there). Therefore, the restriction of the approximation con-
sidered below of free nonradiating particles is characterized
by a quantity proportional to the ratio of the mass of the test
particle to the mass of the gravitational body that produces
the metric.

It should also be noted that in the present review we
consider the motion of test bodies and photons in the gravita-
tional field of a stationary black hole, i.e., it is assumed that
the black hole has already been formed and that its param-
eters do not change. Under real astrophysical conditions,
black holes are dynamical objects. They interact with the
surrounding matter and fields, and the parameters which
characterize them change with time. The direction that in-
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vestigates the dynamical behavior of black holes in an astro-
physical environment, using ideas of early studies of A. L.
Zel'manov, has become particularly popular in recent years
in connection with the theory of quasars. Therefore, al-
though these questions lie outside the subject of the review,
we mention briefly the fundamental principles of the dynam-
ical description of black holes.122 The approach is based on
ascribing to a black hole a two-dimensional closed "sur-
face," or, as it is called, a membrane. The existence of the
membrane in time is represented by a timelike hypersurface,
as if the membrane were an ordinary but very thin material
layer. At each fixed instant of time, the membrane diameter
only just exceeds the diameter of the black hole's event hori-
zon. Like an ordinary material layer, the membrane pos-
sesses mechanical and electromagnetic properties. The layer
is a viscous deformable fluid, electrically charged and con-
ducting, and it possesses finite entropy and temperature. The
equations of external electromagnetic and gravitational
fields in which the black hole is situated, together with natu-
ral boundary conditions for these fields on the horizon of the
black hole, determine the specific properties of the mem-
brane and their evolution in time. This "membrane" ap-
proach to the description of the dynamical properties of
black holes makes it possible to use physical intuition and
ordinary astrophysical methods to analyze the interaction of
a black hole with its environment.

We note also that black holes in stellar systems move in
accordance with the ordinary laws of relativistic celestial
mechanics. Detailed calculations for the case of binary sys-
tems are given in the studies of Ref. 123.

To construct astrophysical models directly related to
observations, the geodesic motion outside the event horizon
is particularly interesting. It can be divided into three types:
1) motion beginning far from the gravitating body, includ-
ing the bending of light rays and the time delay of signals in
the field of the rotating body and infall trajectories and gra-
vitational capture in the field of a rotating black hole; 2)
motion in finite orbits, including the effect of dragging
(frame dragging) on the orbital motion; 3) the propagation
of photons emitted in the vicinity of the black hole which
then either reach a distant observer, or are captured by the
hole, or are absorbed or scattered in the accretion disk
around the hole, if there is one. Problems related to 3) are
usually solved by constructing specific models of astrophys-
ical phenomena in which the general relativistic effects are
considered in conjunction with other physical (magnetohy-
drodynamic, radiative, etc.) effects (see the reviews of Refs.
40 and 77); their solution is based on the results obtained in
1) and 2). The influence of rotation on the propagation of
radiation emitted near a black hole has been investigated "in
pure form" in the problem of the formation of the image of a
star on an orbit near a black hole,57 and also in the problem
of the propagation of radiation emitted in the interior opti-
cally thin regions of an accretion disk and then captured in
its outer regions.25,58,87 Such problems are solved, as a rule,
numerically. (The effectiveness of various numerical meth-
ods for integrating the equations of Kerr geodesic motion is
compared in Ref. 86.)

In the present paper, we consider motion of the first and
second types. The numerous results, including exact analyt-
ic and numerical solutions of the geodesic equations, already
obtained in this field effectively give a kinematic picture of
the motion in the gravitational field of a rotating body. In it,
the dragging of the inertial systems takes varied and nontri-
vial forms, so that one can speak of a kind of "spin-orbit"
(the spin characterizes the gravitating center) interaction in
the gravitational field of the rotating object. For example,
the famous bending of light rays in the field of a massive
body predicted by Einstein in general relativity depends in
the case of the field of a rotating body on the mutual orienta-
tion of the wave vector of the photon and the rotation axis,
and as a result rays with negative values of the projection of
the orbital angular momentum onto the axis are deflected
more strongly than rays with positive projection (Sec. 7). In
the strong field of a rotating black hole, the dependence of
the bending of the rays on the orientation of the orbital angu-
lar momentum relative to the axis has the consequence that
photons oriented along the rotation can pass much nearer
the hole than photons oriented in the opposite direction, and
the cross sections for scattering and gravitational capture
are strongly deformed depending on the angle of falling to-
ward the black hole. Analogous results hold for nonrelativis-
tic particles (Sec. 4).

The trajectories of free fall into a rotating black hole are
necessarily twisted in the direction of its rotation near the
hole. The radial free motion without rotation is transformed
into motion in a spiral wound round the conical surface
t? = t?M = const. When clouds of weakly mutually interact-
ing particles fall into a rotating black hole, their trajectories
tend to collect on analogous conical surfaces
t? ,,2 = + sin~2 [L 2

z/a
2(E2 - 1) ]"4 (Lz is the projection

of the angular momentum of the particle onto the axis, and E
is its energy) and to twist in the direction of rotation of the
hole (Sec. 5).

In the case of bound orbits, the influence of the effect of
the frame dragging, or the spin-orbit interaction, leads to
displacement of the periastra of the Keplerian orbits, and for
spherical (r = const) orbits to a dragging of the nodes (the
points of intersection of the orbits with the equatorial plane)
in the direction of the rotation. In addition, the rotation of
the central body changes the period of revolution of bodies in
circular equatorial orbits, increasing the period of a direct
orbit (oriented in the sense of the rotation) and decreasing
the period of a retrograde orbit. As a result, the point of
encounter of two test bodies moving in opposite directions
around an orbit of the same radius will drift in the direction
opposite to the direction of rotation of the central body (Sec.
6).

The effect of the frame dragging is manifested in a par-
ticularly interesting manner in the gravitational time delay
of signals—for photons moving in the equatorial plane of a
rotating object in the sense of its rotation, the additional
gravitational time delay due to the rotation is negative, while
for photons moving in the opposite direction it is positive.
For photons falling into a rotating black hole, and also for

217 Sov. Phys. Usp. 29 (3), March 1986 I. G. Dymnikova 217



photons passing by any rotating object parallel to the rota-
tion axis the additional rotational gravitational time delay is
also negative! Thus, the influence of frame dragging on the
propagation time of signals is manifested in the way that the
gravitational time delay corresponding to rotation is often
gravitational acceleration (Sec. 8).

The existence of additional gravitational time delays of
opposite signs can lead to interesting consequences in situa-
tions in which a rotating massive body plays the part of a
gravitational lens. In connection with recent discoveries of
double and triple quasars, which are interpreted as images of
the same object formed by gravitational lenses,22'92"94 and
also in connection with the discovery of extremely rapid
variability in time of the radiation from certain objects in
space,75 these consequences could possibly be of practical
interest. For a rotating gravitational lens, there must be a
relative time delay of the rays that form the different images
of the same object in the lens. In addition, it is also in princi-
ple possible to have a situation in which a rotating black hole
is situated on the line of sight between the observer and an
extended source of radiation and appears literally in the im-
age of the radiation source as a black hole bounded by a
curve which is not symmetric (because of the rotation)
about the center and is formed by photons deflected by the
black hole through angles A^ = ± 3kir, k = I, 2, 3... . In
this case, there must be a relative time delay of the photons
forming the luminous halo surrounding the image of the
hole, and in the case of rapid variation in the brightness of
the radiation source this may have the consequence that the
brightness will vary nonuniformly around the halo, giving
rise to a "running hare" effect (advancing spot of light)
(Sec. 9).

Besides the spin-orbit interaction, there is also in the
gravitational field of a rotating body a spin-spin interaction
with test particles possessing intrinsic rotation. These ques-
tions lie beyond the scope of the present paper, since, strictly
speaking, a particle with spin does not move along a geodes-
ic. However, I should like to mention the most interesting
effects. The first example of spin-spin interaction was given
in the classical study of Lense and Thirring?3and takes the
form that an ideal gyroscope in the field of a body rotating
with angular velocity a) is turned relative to a distant inertial
frame associated with the fixed stars at rate fl^car+/r. In
general relativity, the gravitational potential is not a scalar,
in contrast to Newton's theory of gravitation (Ref. 10, p.
45), so that the gravitational field of a rotating body behaves
like the electromagnetic field of a rotating charged body, and
therefore the corresponding first-order effects are called gra-
vimagnetic effects.I9>l<" The gravitational field components,
like the magnetic field of a rotating charged body, lead to a
splitting of spectral lines analogous to the Zeeman effect.
The gravitational Zeeman effect, predicted by ZePdovich,101

is universal, since the splitting does not depend on the specif-
ic properties of the radiating system and is the same over the
entire range of electromagnetic waves. A line emitted at a
pole with frequency <u0 is split into two components with
frequencies o}0 ± Hand with opposite circular polarizations,
i.e., photons with left and right circular polarization are sub-
ject to different red shifts in the gravitational field of the

rotating body.
The spin-spin interaction, like the spin-orbit interac-

tion, depends strongly on the mutual orientation of the angu-
lar momenta. If the spin direction of the test body coincides
with the direction of the rotation axis of the gravitating
body, a gravitational force of repulsion arises between them;
in the opposite case, there is attraction.'I0 A method of ex-
perimental determination of the gravimagnetic field of the
Earth was proposed by Braginskii, Polnarev, and Thorne111

on the basis of this effect.
In the gravitational field of a rotating body, there is one

further form of interaction, which was predicted by Bra-
ginskii and Polnarev; it is a spin-quadrupole interaction.98

This new relativistic spin-quadrupole effect consists of the
excitation of vibrations in a quadrupole mechanical oscilla-
tor in the field of a rotating gravitating body. In an orbit
around the Earth, the relative amplitude of the vibrations
can exceed 1(T10.

In the following section we write down the Kerr metric
(choosing the signature as in Landau and Lifshitz17) and
consider its most remarkable properties due to the presence
of rotation: the dragging of inertial frames and the possibility
of extracting from a black hole its rotational energy by: 1)
the Penrose process and 2) superradiant scattering (reflec-
tion with amplification) of waves incident on the hole. The
remaining sections contain a detailed review of the geodesies
of the Kerr metric. Almost everywhere we use Boyer-Lind-
quist coordinates. These are coordinates of a distant observ-
er that coincide asymptotically with ordinary spherical co-
ordinates in flat space; we use the geometrical system of
units (c = G= 1).

2. THE KERR METRIC

Although black holes are deservedly regarded as among
the most exotic of the objects populating the universe, as
objects they are in fact rather simple, since we can study only
their external fields, which are completely determined by
just three quantities, mass, charge (if present; see the review
of Ref. 80), and angular momentum. This property of black
holes is usually formulated as the assertion that a black hole
has no "hair." For a rotating black hole. This was noted for
the first time by Doroshkevich, Zel'dovich, and Novikov,'00

while the behavior of the magnetic field in the collapse pro-
cess was investigated by Ginzburg.99 (A review of later stud-
ies can be found in Ref. 18.) The Kerr metric describes the
gravitational field of an uncharged rotating black hole; if the
radius of a gravitating body is greater than the event horizon,
it also describes in many cases the gravitational field of other
rotating astrophysical objects—galaxies, stars, and neutron
stars.

The metric in a given geometry characterizes the square
of the distance, ds2 = ga/3dxadxe (a, P = Q, 1, 2, 3),
between two nearby points of space-time. Considering mo-
tion in the gravitational field of a rotating body from the
point of view of a distant observer, it is convenient to use
Boyer-Lindquist coordinates,42 which coincide at infinity
with ordinary spherical coordinates in flat space. In these
coordinates and in the geometrical system of units
(c = G = 1), the Kerr metric takes the form
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,ds2 = (1 — 2Mr Z-1) d*z + 4M2 or sin2 * • S'1 d* dcp

_S-idr2— Sdd2— sin2*

X (r2 + aW2 + 2M3cft sin20 . S'*) dq>2, ( 2. 1 )

where
S = ( — g)V2 = r2 + a2Af* cos2 #, A = r2— 2Mr + aW2;

(2.2)
where Af is the mass of the gravitating body and a is its spe-
cific dimensionless angular momentum, which is related to
the total angular momentum by J = aGM 2c ~ l .

In the Kerr metric, there exist two physically distin-
guished surfaces: the surface Sm , on which g^ vanishes and
which is described by the equation

(2.3)

and the surface S+ , which is situated within Sm and is deter-
mined by the condition g „-+<*> (A = 0); it is described by
the equation:

and is a one-sided valve or exterior event horizon of the ro-
tating black hole.

The frame dragging effect takes the form that all locally
inertial frames of reference in the gravitational field are
dragged into rotation relative to a distant inertial frame.
Like the field, the degree of dragging decreases with the dis-
tance, and there is therefore a differential rotation of the
inertial frames with angular velocity determined in the
weak-field approximation by the well-known formula of
Landau and Lifshitz (Ref. 17, Vol. 2, p. 324 of the Russian
original ) :

(2.5)

where g, = — go/goo' • I*1 the limit of large r, the vector H has
the components66

2M »o cos * Af'osindJ (2.6)

Near the equatorial plane, the unit vector e^ is antiparallel
to the angular momentum vector J of the central body, and
therefore the rotation of the inertial frame in the equatorial
plane far from the gravitating body takes place remarkably
in the direction opposite to the direction of its rotation:
Six — Jr~3. It is this that leads to the decrease, mentioned
above, of the advance of Mercury's perihelion and the de-
crease in the deflection angle of a ray passing in the equator-
ial plane in the direction of rotation.

In the general case of a strong field, all locally inertial
frames of reference must rotate relative to the distant inertial
frame with angular velocity.

_l!t_/JOB._l!£.)1'*<Q<

*0<p I/2 0 (2.7)

As the surface.^ is approached, the value of ftmin increases,
i.e., the frame dragging effect becomes stronger. When

goo — 0, ftmin = 0; hence, all locally inertial observers are
necessarily forced to rotate with positive angular velocity.
Therefore, the surface Sm is the limit to the possibility of
remaining static in the Kerr metric — beyond this surface,
the equation d<p /At = 0 does not have roots, so that no body
within Sm can have q> = const; all stationary observers (i.e.,
observers with r = const and <p = const) must necessarily
rotate relative to the frame of reference at rest at infinity with
positive angular velocity

(2.8)0
"

Q"

which tends in the limit r—»r+ to the angular velocity of the
dragging at the horizon:

o _ «M (2.9)

which is called the angular velocity of the rotation of the
black hole.53

The region between the surfaces Sm and S+ is called the
ergosphere (from the Greek word epydr), meaning work).
Here, events can take place accompanied by the direct ex-
traction of rotational energy from the black hole. On the
passage through the surface Sm, the component g00 changes
sign and becomes negative. This has the consequence that in
the ergosphere the energy of a particle with 4-velocity u",
which is equal to E = n ( g0o

u° + 8ok "* ) • can be negative.
The geodesies with negative E are entirely within the ergos-
phere, and therefore no freely moving particle can reach
such a geodesic from without. However, such a geodesic can
arise through the breakup of a body that enters the ergo-
sphere, when the other fragment of the breakup can reach
infinity (a distant observer) with energy ERn> Ein, carrying
away some of the rotational energy of the hole.26'52'78 This
mechanism of energy extraction from a black hole is called
the Penrose process. Examples of realization of the process
and possible astrophysical applications are considered in
Refs. 34, 113-115, 117, 118, and 121 and in the monograph
of Ref. 112.

The wave analog of the Penrose process is the superra-
diant scattering of waves by a rotating black hole (Refs. 11,
28,76,81, and 82). Such a possibility was pointed out for the
first time by Zel'dovich, 102-'°3 who considered the scattering
of electromagnetic waves by a conducting cylinder that ro-
tates with angular velocity ft; in this case, a wave with orbi-
tal angular momentum m and frequency co will be amplified
on reflection from the cylinder if co < mil, while the energy
and angular momentum of the reflecting body will be de-
creased. Zel'dovich showed that: 1) an analogous effect
must take place for the scattering of multipole waves by a
rotating black hole; 2) in the quantum treatment of scattered
waves there must be spontaneous emission of energy and
angular momentum through the production of pairs of pho-
tons within the ergosphere with subsequent absorption of
one of them by the hole and radiation of the other to infinity,
infinity corresponding to the radius of the transition from
the near zone to the wave zone: R £ cm/co ~r+.

A more rigorous treatment shows that the wave solu-
tions of the equations of general relativity describing pertur-
bations on the background of the Kerr metric behave at in-
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finity as exp[ — ito(t±r.)]; the plus and minus signs
correspond to the incoming and outgoing waves, respective-
ly. The coordinate r. is related to the ordinary radial coordi-
nate r by the equation

and varies in the range — oo <r. < oo for /•_,_</•< oo, and for
this reason has become known as the "tortoise coordinate."
In the limit /•.—>•— oo , the wave is described asymptotically
by a function proportional to exp[ +i(co — mfl+ )/•.],
where m is the azimuthal quantum number of the wave. A
physically reasonable boundary condition on the surface of
the event horizon requires that the wave be incident for all
local observers drifting around the hole under the influence
of the frame dragging. Since such observers near the horizon
must have angular velocity fl xfl+, they will regard as inci-
dent a wave proportional to exp[ — i(co — md+)r. ] and
having group and phase velocities ygr = — 1 and
i>ph = — 1 + (mfl+/a>). It follows from this that locally
the energy flux is always directed into the hole. The phase
velocity, which determines the picture seen by a distant ob-
server, can, for certain values of m and (a, be directed away
from the hole. A wave incident on the black hole from infin-
ity encounters in its path a "radial barrier," which is deter-
mined by the vanishing of the quantity k2(r) in the wave
equation. The wave is partly reflected by the radial barrier
and is partly absorbed by the hole. If in the incident wave
m>0 and the frequency lies in the interval 0<(a<mfl+,
then for an infinitely distant observer this incident wave be-
comes an outgoing wave and amplifies the corresponding
reflected wave mode — the wave undergoes superradiant
scattering by the space-time curvature in the strong gravita-
tional field near the rotating black hole. For a nonrotating
hole, the effect is absent. From the point of view of an observ-
er drifting around the hole, energy flows only into the hole,
while from the point of view of the distant observer there is
an effect of reflection with amplification — the flux of energy
directed into the hole is determined for scalar waves incident
on the hole by the expression16

5m (0) sin 0 d# d(pn,

where ^S,m (d;aa>) are angular functions corresponding to
the symmetry of the problem: spheroidal wave harmonics
(see, for example, Refs. 6 and 32 and the references given
there ) . For 0 <co < mfl + , the derivative dE /dt becomes neg-
ative, i.e., energy is extracted from the hole and carried away
to infinity. Similar but more complicated expressions can be
found for electromagnetic and gravitational waves.28 The
coefficient of reflection of electromagnetic waves exceeds
unity by a few percent and reaches a maximum in the limit
co— *mCl+. The characteristic frequencies are
w-~0.Sc3 ( GM) ~ ' and in the case of black holes of a stellar
mass and more lie in the radio range. A gravitational wave
can be amplified by more than a factor 2 — the reflection
coefficient is Rv = 2.38 for a—*l, l — m = 1, and

the possibility of the existence in its neighborhood of so-
called floating orbits, in which the energy losses through the
emission of gravitational waves are completely compensated
by the energy extracted from the hole by the superradiant
scattering.76-81

The superradiant scattering of electromagnetic waves is
the basis of the idea of a "black hole bomb,"81 which exploits
the possibility, first pointed out by Zel'dovich,103 of multiple
amplification of radiation by the introduction of a positive
feedback realized by a spherical mirror that is placed opti-
mally around a rotating black hole and reflects low-frequen-
cy radio waves.

3. INTEGRALS OF THE MOTION

The equations satisfied by the motion of test particles in
the Kerr metric can be obtained from the Hamilton-Jacobi
equations

.^ = 0 (a, p = 0, i, 2, 3).

the action being written in the form

5= -

As a result, one obtains equations of motion50 that are the
first integrals of the geodesic equations:

(3.1)

(3.2)
(3'3)

-aLz]; (3.4)

here.yu is the rest mass of the particle, the dot denotes differ-
entiation with respect to the affine parameter A, which is
related to the proper time by the equation r = juA; for a pho-
ton^ = 0. The coordinates r and t are measured by a distant
observer in units of GA/c~2 and GMc~3. The quantities Q, E,
and Lz are integrals of the motion, the significance of which
can be elucidated by means of the passage to the limit r—* oo:
' d r \2 , _, / d f l \ 2 — IX*

<? + L\ = Lz —az (E2— u2) cos>•&„.

(3.5)
(3.6)
(3.7)

The amplification of gravitational waves reflected in
the strong gravitational field of a rotating black hole leads to

In the case of a nonrotating body, the Kerr metric becomes
the Schwarzschild metric, and Q + L2 is the square of the
total conserved angular momentum of the test body. At the
same time, the integral Q is related to the Laplace vector,
which arises on the transition to the Kepler problem in the
Newtonian theory of gravitation.

Thus, E is the conserved energy of the test particle, L2 is
the conserved projection of the angular momentum onto the
rotation axis, L is the total initial angular momentum, and v0

is the initial velocity of the particle.
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The quantities ft, E, and L2 are three obvious integrals
of the motion in the Kerr metric. The existence of the fourth
integral Q was initially somewhat unexpected (see, for ex-
ample, Ref. 18). However, papers were soon published in
which its existence was justified from the mathematical
point of view.2' The point is that in the language of differen-
tial geometry the existence of integrals of the motion is asso-
ciated with the existence in the given geometry of Killing
vectors, which describe infinitesimally small translations in
space-time that preserve curve length (see, for example, Ref.
18). If the metric g"^ does not depend on a certain coordi-
nate xa , then the Killing vector |" = d/dxa, which satisfies
the Killing equation |̂ .v + E,vj3 = 0, describes the symme-
try of space-time with respect to the coordinate shift
xv—»vcv + e8v

a = xv £%v
a along the cyclic coordinate x".

Under such a curve-length conserving transformation, the
distances between the space-time points remain the same,
i.e., the geometry is not changed. To each Killing vector
there corresponds a quantity that is conserved in free mo-
tion, i.e., motion along a geodesic, it is |"vfv, where
tv = dxv/cW is the vector tangent to the geodesic and nor-
malized such that t° ta = — yu2. In the Kerr metric, the co-
ordinates t and q> are cyclic, and there are the two Killing
vectors £" = S" and g" = 8^, to which correspond the con-
served quantities E = — |"v tv and L2 =gvtv. They are
identified with the energy and the projection of the angular
momentum onto the rotation axis, since asymptotically as
/•—>oo the Killing vector |" corresponds to the generator of
displacements in time and f" to the generator of rotations
about the symmetry axis. Both these integrals of the motion
are linear in the components of the tangent vector and, there-
fore, in the components of the momentum and angular mo-
mentum.

It was found56'68-69'9' that in the Kerr metric there are
not only the Killing vectors but also a Killing tensor Kav, a
symmetric second-rank tensor related to the angular mo-
mentum of the field source and satisfying the equation
Kav.a + Kaa.v = 0. Because of this, there exists a quadratic
integral of the motion K = Kav t" t

v conserved in free motion
and related to our integral of the motion Q by the identity
transformation Q+ (L2 —aE)2=K. On the transition to
the Schwarzschild metric, K becomes the square of the total
angular momentum of a test particle, which is conserved in
the case of motion in spherically symmetric geometry. For
motion in the equatorial plane of a rotating body Q + L}
also formally has the meaning of the square of the total angu-
lar momentum, but, as follows from Eqs. (3.3) and (3.4), in
this case Q =0. One could expect that this quantity would
tend to the square of the total angular momentum of the
particle as /•—>oo, since the Kerr metric is asymptotically
flat. However, as follows from (3.7), this does not occur,
and the effect can be interpreted as a coordinate effect,64 i.e.,
as the result of describing space-time by coordinates that
lead to the additional a2-dependent term in (2.7), which de-
scribes at infinity a fictitious contribution to the angular mo-
mentum of the particle due to the noninertial nature of the
coordinate system or, equivalently, the angular momentum
of the gravitational field itself.

Thus, the geodesic of a particle in the Kerr metric is
completely determined by its integrals of the motion E, Lz ,
and Q. Some general properties of geodesies follow from an
analysis of the first integrals (3.1)-(3.4) by the method of
effective potentials.50'14-95 Writing the expression for the
right-hand side R(r) of Eq. (3.1) in a form that does not
depend on the mass// of the particle, i.e., regarding E and L2

as specific quantities, we obtain

Lz-aEF]r-a2Q. (3.8)

From the form of the coefficient of r4 we obtain an obvious
condition — no geodesic can reach infinity if the correspond-
ing energy satisfies E 2 < 1 . In this case, the motion is bound-
ed, or finite, i.e., the particle moves in a region bounded with
respect to r and neither reaches infinity nor intersects the
event horizon (if gravitational radiation is taken into ac-
count, the picture is changed: The particle, radiating gravi-
tational waves, will gradually approach the event horizon,
going over to ever closer orbits until it is captured by the
hole).

The effective potentials are determined as solutions of
the equation

R (r) = [r* + a2 (r2 + 2r)] E2 — 4arLzE + Lfa2

(3.9)

They have the form

U±(r, Lt, <?) =

where D is the discriminant of Eq. (3.9), and they are shown
in Fig. 1 (Ref. 14) for the case of an extremely rotating
(a = 1) black hole. The asymptotic behavior of U± and
their derivatives is determined by14

-dr *• ± 0° *
r — r+

r H

w_ (3.11)

For reality of the radial velocity r, non-negativity of the
function R(r) is required, i.e., fulfillment of the conditions

E^U+(r,LZJQ), (3.12a)
E |< U.(r, Lz, Q), (3-12b)

which are related by a one-to-one correspondence: E, Lz,
Q*-*- — E, — L2, Q, as can be seen in Fig. 1. Bound states
arise in the region of energies in which there exist not less
than three points of intersection of the curve U+(r,Lz,Q)
with the straight lineE = const (turning points of the parti-
cle trajectory). Analysis of the number of sign alternations
in the expression (3.9) shows that in the region of energies
E 2> 1 there can exist not more than two turning points, and
in the region E2 < 1 not more than three (see Fig. 2, Ref. 14).

The condition for the motion to be finite, E2 < 1, imme-
diately imposes on the integral of the motion Q restrictions
that can be obtained by writing the right-hand side of Eq.
(3.2)—the latitude potential Q — H(tf)—in the form95

Q — H (#) = a2 cos2 0 (E* —
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FIG. 1. Effective radial potentials U+(r, L,, Q).

where

1 / ^ 2 Q \

^^ o, \ sin* d cos* ft /

The condition E2 - V2(•&) >0 for all values of Lz in the re-
gion of values E2 < 1 presupposes positivity of Q. For if
Q<0, then F2(i?) > 1 and E2> 1. Thus, bound states are
possible only for g>0 and E2 < 1, and the orbit is character-
ized by the value Q = 0 if and only if it is restricted to the
equatorial plane. This can be readily seen by considering the
behavior of the latitude potential H(&) for E2 < 1 (Fig. 3,
Ref. 14). All finite motions with Q < 0 are forbidden by Eq.
(3.2), since Q<0 would imply negativity oft?2. The only
point on the curve H(&) characterizing motion with
17 = const corresponds to the value i? = ir/2, i.e., to finite
orbits in the equatorial plane. Nonequatorial finite orbits
with 17 = const do not exist in the Kerr metric14'62; finite
circular (r = const) orbits on the surface 17 = const could
exist in the field of a charged rotating black hole, for which
the equilibrium of the particle in the orbit is ensured by the
competing effect of the electromagnetic and gravitational
forces (see, for example, Refs. 46 and 63 and the review of
Ref. 80).

The condition Q>0 is a necessary but not sufficient con-
dition for finite motion. For Q>0, there exist both finite as

well as infinite trajectories of free motion. For Q<0, all the
admissible geodesies are infall trajectories, if the particle ini-
tially moves along the direction toward the hole, the particle
being necessarily, as it approaches the hole, dragged into
rotation around the axis in the direction of rotation of the
hole (see Sec. 5).

Thus, all trajectories of free motion can be divided into
two classes depending on the sign of Q.l4'46-48 Geodesies of
the first class have Q>0. They intersect the equatorial plane
or are entirely situated in it (for 0 = 0) and are called geo-
desies of orbital type.46 Geodesies of the second class have
Q < 0 and never intersect the equatorial plane; when

K>-2aLz -!)'/*] + a*
for
for

Lz>0,
(3.13)

particles move between two hyperboloids •& = const < tr/2
( Refs. 46 and 6 1 ) in giant vortices, since <p = const is impos-
sible near the hole. These geodesies are called geodesies of
vortical type.46 In the special case when

K = — 2aLt [E— (£*— I)1/2] + o* for

(3.14)

for

the motion takes place along the surface of the hyperboloid
t71>2 = const, where i? 1>2 = ± sin"1 [L \/c?(E2 - 1) ] 1/4,
and is stable with respect to i? perturbations. 14>61 The separa-
tion of the geodesies into the two indicated types is shown for
the case of photons in Fig. 4 (Ref. 48) : the region of motion
of vortical type is bounded by the conditions

FIG. 2. Radial motion is unbounded for £2

ft/2 Jt *

FIG. 3. Latitude potential H(&) for the case E2 < 1.
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FIG. 4. Division of geodesic motion into orbital and vortical depending on
the integrals of the motion K and L2.

or - aE)\ (3.15)

and in Fig. 4 is filled with dots. The region of motion of
orbital type is situated within the parabola K = (Lz — aE)2.
In all the remaining range of A" and L2/E values, motion is
forbidden ( t?2<0). Points situated on the parabola
K = (Lz — aE)2 itself describe motion in the equatorial
plane.14'45

The integral of the motion Lz determines the possibility
of reaching the poles and the rotation axis in free motion.
For Lz / 0, as follows from Eq. (3.2), the geodesic of a parti-
cle never reaches the poles; this is possible only for£z = 0. A
particle can move along the axis only if49

Q=—a?(E*— 1). (3.16)

Motion along the axis is always unbounded in the radial di-
rection, since turning points in the equation R(r) = 0 ap-
pear only at negative values of r:

The condition Lz = 0 is only a necessary condition for the
reaching of the poles or the rotation axis. In the general case
with L2 = 0 there exist geodesies with polar angle t? not
equal to 0 or IT. A characteristic feature of such geodesies is
the monotonic variation of the azimuthal angle <p(r) along
the trajectory in accordance with the equation

2aEr (3.17)

in complete agreement with the dragging of the inertial
frames by the gravitational field of the rotating body. An-
other feature is the fact that the region of variation of the
polar angle •& is restricted to one of the hemispheres
(see Sec. 5).

4. SCATTERING AND GRAVITATIONAL CAPTURE

4.1. Impact parameters

Scattering by a rotating center is characterized by two
impact parameters (Fig. 5), which are related to the inte-
grals of the motion, the initial value i?0 of the polar angle, and
the initial particle velocity v0 by

Pj-=7r)
0 sin d0

(4.1)

FIG. 5. Impact parameters for scattering by a rotating center.

= ± - L| ctg2 tf 0

They can be either positive or negative. Negativity of the
impact parameter p± means that the component L2 of the
orbital angular momentum of the particle is opposite in di-
rection to the angular momentum of the hole. The sign ofp\\
is determined by the initial variation of the polar angle t?. In
their turn, the components Lz and Q and the total angular
momentum L can be expressed in terms ofpi andpK by

<? + LI = £Xp2— a2 (£2~ (i2) cos2 r>0,

(4.2)

The coordinate of a turning point of a trajectory is
found as a root of Eq. (3.1), which describes the radial mo-
tion. In the case of scattering by a black hole, it is possible to
have gravitational capture of an incident particle by the hole,
and therefore all the infinite orbits beginning far away from
the black hole are divided into capture or infall orbits and
escape orbits. In addition, there are intermediate orbits cor-
responding to capture by an unstable orbit in the neighbor-
hood of the hole; from the formal point of view, they are not
capture orbits but can become such when allowance is made
for dissipative processes.

In the case of radial motion toward the hole, when the
angular momentum and both impact parameters are equal to
zero, capture is unavoidable, the rotating black hole forcing
the particle, before swallowing it, to twist in the direction of
its rotation (see Sec. 5 ) . In this case, the equation R (r) = 0
does not have real roots for r>r+ . When the angular momen-
tum of the incident particle is increased to a certain critical
value, the first root (which is double) appears; this deter-
mines the position of an extremum of the function R (r) and
the radius of the unstable spherical orbit that separates the
infall orbits from the escape orbits. With further increase in
the angular momentum of the particle, the function R(r)
acquires two real roots, at least one of which lies in the region
r> r+, corresponding to the appearance of escape orbits. To
the limiting unstable spherical orbit correspond critical val-
ues of the impact parameters; a particle with nearly critical
impact parameters passes many times around the hole before
escaping to infinity or falling into the hole (for this situation
there are analogies both in classical scattering theory — the
orbiting effect associated with falling into a Newtonian sin-
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gular potential ~r 3—as well as in quantum mechanics—
resonance scattering).

4.2. Nonrelatfvistic particles

For nonrelativistic (u0<l) particles, the coordinate of a
turning point is determined as solution of the equation

* - - - vl (p2 - a2 cos* + a2 - 2Plt>0a sin ft0) r

For particles incident in the equatorial plane, Q = 0 and
/OH =0, and the critical values of the impact parameter pL

corresponding to falling with positive and negative angular
momentum Lz are4'84'26

(4.4)
The minimal value rmin of the distance of closest approach

» (4.5)

is simultaneously the radius of the limiting unstable circular
equatorial orbit and the minimal periastron of the escape
orbits. For an extremal (a = 1 ) Kerr black hole r0 = 1 for
p[ + ' and r0 = 5.83 for p( ~ ).34>35 A particle falling into the
hole with negative impact parameter/^ can initially encoun-
ter a turning point with respect to tp 74: rv = 2[ 1 — (aE /
Lz ) ] , and it then changes the direction of its orbital motion
before capture.

Particles falling in the equatorial plane with impact par-
ameters p >pcrit pass around the black hole and go away to
infinity in parabolic (foru0<l,togoodaccuracy£ = ̂ ) or-
bits with periastron97

16(p±-a)»
(4.6)

The angle of deflection of particles in the equatorial plane of
a rotating body is determined in the weak-field approxima-
tion (rp >r+) by the expression41 (here, we have taken into
account the dependence, not considered in Ref. 41, of the
deflection angle on the sign of the orbital angular momen-
tum of the particle)

6=sAq> — n = 2 -

— .
(1 — tfg)1/1

and in the small-angle approximation the differential cross
section of scattering, with allowance for the sign ofp^ (Lz ),
has the form
da _ p
do—

— 1) 12
-!) J

3n(5r»— 1)
" 49s(v2-i)

4ya PI
-i)1/8 I PJ, I

The first term corresponds to Rutherford's formula for scat-
tering by a gravitational potential ~ l/r, the second gives the
general relativistic correction, which does not depend on the
rotation ( see also Ref. 55), while the third term describes the
influence of the rotation of the scattering center, giving an
essentially asymmetric picture of the scattering.

For particles incident parallel to the rotation axis,
Lz = 0,/?1 = 0, and the function/ (r) takes the form

where ^=VQ (p\ —a2). The position of the turning point of
the trajectory is determined as

(4.3) for all q>q0, where q0 satisfies the equation

- 8a2 (6 + a2) 9* - 48a4?0 - 16a« = 0
and corresponds to the impact parameter of capture and to
the radius of the limiting unstable spherical orbit. For a = 1,
the scattering is characterized by the following values of the
critical impact parameter, the minimal periastron, and the
cross section of gravitational capture:

p»«« = 3 , 8 5 - - , rc-3.37M, a, = - - . (4.7)

These expressions are also valid for arbitrary angles of inci-
dence t?0 provided that the projection of the angular momen-
tum of the particle onto the axis is not too large; the corre-
sponding restrictions have the form

and are not satisfied only for large values of pL in the case of
incidence at angles i?0 near ir/2. The cross sections for gravi-
tational capture of a flux perpendicular to the axis and of an
isotropic flux are respectively97

-^)2, aw=14,4n (-^-)2. (4.8)

Comparison of the cross sections (4.7) and (4.8) shows that
the gravitational capture of nonrelativistic particles takes
place most effectively in the case of incidence parallel to the
rotation axis.

4.3. Photons and ultrarelativistic particles

The scattering of ultrarelativistic particles and photons
whose wavelength is much less than the radius of the event
horizon is described by Eqs. (3.1)-(3.4) with i>0— >•! and
E— *• oo . Then the integrals of the motion Q and Lz increase
unboundedly, but Lz /E and Q /E 2 remain finite and can be
interpreted as the impact parameters introduced above. The
condition for the presence of a turning point in a photon
trajectory is

(r2 + a2— ap.L sin *0)
2 - A [p1, + (px - a sin ft,)2] = 0. (4.9 )

For incidence in the plane of the equator p\\ =0, and the
critical values of the impact parameter pL are determined
from the equation66

(Pi + a)9 - 27 (Pj. - a) = 0,

whose solutions can be written in the form10

-(j i— cos^1 | a I)] (4.10)

for incidence with positive angular momentum Lz and in the
form
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p(-) = o-8cos»(-J- cos-Mo l ) (4.11)

for incidence with negative angular momentum Lz . The cor-
responding unstable circular photon orbit has the radius35

cos [-|-

and the angular momentum in the orbit

(4.12)

The upper sign corresponds to a direct orbit ( the direction of
the orbital angular momentum is the same as the direction of
rotation of the black hole), and the lower to a retrograde
orbit (these directions opposite). When a — 1, rph = 1 and
pi =2 for a direct orbit and rph = 4 and py = — 7 for a
retrograde orbit.35 Examples of photon geodesies in the
equatorial plane are given in Fig. 6 (Ref. 54) . It can be clear-
ly seen how the rotation of the hole destroys the symmetry
between the orbits with positive and negative parameters — a
photon with impact parameter pL = — 8 is deflected much
more strongly than one with/^ = + 8. All captured pho-
tons with negative impact parameters change in the process
of capture the direction of their orbital motion under the
influence of the dragging by the gravitational field of the
rotating black hole.

In the case of incidence with arbitrary initial angle i?0»
the range of values of the impact parameters of photons cap-
tured by the hole is bounded in the case a = 1 by the curve8

f>\ + (pj. - sin fl0)
2 - 4 [pa + (Pl - sin iEW

+ 4(pj.sin00-l) = 0. (4.14)
Photons that come within this curve are captured at the
points

the remaining photons are deflected at the points

sin#6'-l)]^}. (4.16)

For photons incident parallel to the rotation axis,

r,flln = 4- IP II + (P°« - 4P ii - 4)</zj , pf» = 2 (1 + V 2) ,
,- (4.17)

r,= l + V2, a, =23,31 n.
The cross sections of gravitational capture for a flux of pho-
tons perpendicular to the axis and for an isotropic flux are,
respectively,97

-n -a -4 o 't a 12

FIG. 6. Photon geodesies in the equatorial plane.
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FIG. 7. Dependence of shape of the gravitational capture cross section on
the angle of incidence for the case of an extremal black hole.

a,8 = 23.90jt. (4.18)
Comparison of (4.17) and (4.18) shows that, in contrast to
nonrelativistic particles, photons and ultrarelativistic parti-
cles are most effectively captured by a rotating black hole in
the case of incidence perpendicular to the rotation axis.

As for particles, the photon capture cross section de-
pends weakly on the angle of incidence. However, the shape
of the capture cross section depends strongly on the angle.
For incidence at angle tfo^O, particles and photons with
positive Lz can pass much closer to the hole than photons
and particles with negative L2 , so that with increasing angle
of incidence the capture cross section becomes more and
more asymmetric. Figure 7 shows how the shape of the cross
section of photon gravitational capture depends on the angle
of incidence. The cross section is maximally asymmetric in
the case of incidence perpendicular to the axis.35'97'7 In this
case, photons with impact parameters

| pi, |^3^3, -7<P1^2 (4.19)

are captured at the points

For angles of incidence in the interval

the capture cross sections have a straight section, which rep-
resents the capture of photons with impact parameters

directly at the point r0 = r+.
The characteristics of the scattering of particles and

photons by an extremal black hole are shown in Table I. The
curious features in the behavior of the capture cross section
with increasing angle of incidence (increase for photons and
decrease for particles; see Table I) can be explained by the
effect of the dragging of the inertial frames. Outside the ro-
tating body, the angular velocity (2.5) of the inertial system,
written down at the given point in the local basis of unit
vectors along dr, dd, dqp, has the form

a=~ -sin
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TABLE I. Characteristics of the scattering of particles and photons by an extremally rotating black
hole.

Angle of incidence Impact parameters of capture Distance of
closest approach

Cross section of
gravitational
capture

Particles
Pfi

8in»0.«l+-g-

90°

Isotropic flux

3,85 —
VQ

1 Pll 1 ̂ ^ O»oO "• • .
" "o

DO ~" x t>0

3,37

1<<*<5,83

Photons

0°
30°
45°

60°

90"

Isotropic flux

2(l+/~2)
| P)| |< 4,94, — 6 < Pi < 3,5

1 p,, 1 C 5.04,
-6.4<Pl<2,8

lp,,l<5,12,
— 6,73 <Pl< 2,31

|P||l<3/3"-7<Pl<2

1+/2
1.5<d<3.23
1,06 <<J< 3.55

1 < d < 3.80

1<*<4

14-8n(-^r)
"* (i)2

14.4* (^-)2

23,3lJi
23,56n
23,66n

23,80n

24.27n

23.90R

The region of gravitational capture of the nonrelativistic
particles is situated far from the hole (p~c/v0). In this re-
gion, the "Coriolis" acceleration due to rotation with the
velocity (4.21) is for incidence parallel to the axis

4JI/»o Pi "5 _
»l ? •?- +

and this leads to a twisting of the trajectory in the direction
of rotation of the hole, while for incidence in the equatorial
plane it is

Wj.=-

and corresponds to the presence of an effective repulsion of a
particle moving in the direction of the rotation, this repul-
sion increasing with decreasing initial velocity of the parti-
cle. Therefore, particles are more readily captured by the
hole when incident parallel to the axis. The region of photon
capture is situated much closer to the hole, in the strong-
field region. The angular velocity acquired by a test body
incident parallel to the axis is

d<p 2ar
II

For incidence in the plane of the equator, it is
dq> PI^O (r — r<f>

where r,,, = 2 [ 1 — (a/pL v0) ] is a turning point with respect
to the angle tp. Since the photons in the equatorial plane are
subject to a stronger twisting action on the part of the hole,
they are more readily captured by the hole when incident
perpendicular to the rotation axis.

5. INFALL TRAJECTORIES

The trajectories of particles and photons incident on a
black hole with arbitrary initial angle tf0 depend strongly on

the projection of the orbital angular momentum of the parti-
cle onto the rotation axis. Nonrelativistic particles falling
from infinity to a rotating black hole purely radially
(P\. =P\\ =LZ =g = 0) arrive at a certain point r>r+ at
ti,^ »;_«39the time3

(4
The dependence on t?0 revealed in the third term means that
particles moving in the equatorial plane fall faster than parti-
cles moving along the symmetry axis. Therefore, in terms of
the coordinate time t, i.e., from the point of view of a distant
observer, a flux of particles that is spherical at infinity is
drawn out, as it falls, along the symmetry axis, as shown in
Fig. 8.39

For small projections of the orbital angular momentum
of the particles, in the interval

a2£2-l (5-1)

the region of variation of the polar angle i? and the nature of
the trajectory is determined by the behavior of the latitude

FIG. 8. Deformation of a spherical shell of particles that fall onto a rotat-
ing black hole.
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FIG. 9. Latitude potential #(#) for£2>l and Lj<a2(£2 - 1).

potential/T(t?) which is shown in Fig. 9 (Ref. 14),for£2>l.
The admissible values of the polar angle of the incident parti-
cle are in the interval i?min <#<#„,„, the range of variation
of i? for Q<0 being restricted to one of the hemi-
spheres.14-61'62 i.e., the trajectory of the particle is situated
between two hyperboloids i? = t?min and t? = t?mM. The con-
dition of arriving on such a trajectory has in terms of the
impact parameters the form32

9\ + Pi cos2 *o < «2cos2 q>0. (5.2)

Analysis of Eqs. (3.1), (3.3), and (3.4) shows32 that for
geodesies of this type the radius r of the trajectory decreases
monotonically; to reach the surface of the event horizon, the
particle requires a finite proper time and an infinite time
according to the clock of a distant observer, who measures
the coordinate time t; the azimuthal angle <p increases mono-
tonically for pi >0; for/c^ < 0 it decreases far from the black
hole but, beginning at distances

the angle <p then increases, i.e., as the hole is approached, all
the trajectories wind in the direction of its rotation. In the
limit i?0—<--n-/2, these quasiradial geodesies tend to equatorial
geodesies with/o2 < a2. In the limit a—*Q, all infall trajectories
determined by the condition (5.2) go over into trajectories
of radial falling.

The simplest quasiradial infall trajectories are the geo-
desies on which the value of the polar angle remains constant
and equal to i?0 during the motion. They are situated at the
minima of the latitude potential H(&) (Fig. 9). To them
correspond the integrals of the motion

Q=—a?(Ez — 1) cos* 00, LI == o2 (E2 — 1) sin4 00

and the impact parameters/^ = a sin #0>P\\ =0- The infall
trajectories with •& = d0 = const for u0< 1 can be expressed
in terms of elliptic integrals,5 and in the limit v0—>l are de-
scribed explicitly by the formulas32

r = — Ev0t for any value of a

A I 1 In r~ 1~(1~al)'/' "I
("1—— fl'i^/' r 1 ̂ - f l • — O f y ^ ' f ^ * I

• • i d

(1—a')1/1 r— 1 — (1—a')1/1 J<P==<Po-f- 2(1 (5.3)

for a-=l.

guished trajectories in the Kerr metric. They are determined
by the values

Lt = aE sin2 fl«, Q == -a*£2 cos* d8

and form a special family, called a principal null congruence
(a congruence is a family of lines that fill a space without
intersecting or it is a ruled surface. The radial component of
the wave vector of a photon of a principal null congruence is

kr = -E. (5.4)

In the Kerr metric, there are two principal null congruences.
The second is characterized by the value

fcr = +E (5.5)

of the radial component of the wave vector and describes
outgoing photons whose world lines are null "generators" of
the horizon—it is precisely these and only these photons that
can remain forever on the horizon. Their angular velocity

d(p a
"dT~ r5. + a"

is equal to the rotation angular velocity (2.5) of the hole.
The world lines of the photons of the principal null congru-
ences are shown in the Kerr diagram (Fig. 10; Ref. 18) for
the equatorial section of an extremal black hole. The world
lines of the outgoing photons are represented in the form of
broken spiral lines. The physical meaning of the principal
null congruence (5.4) becomes clear when one goes over to
Kerr coordinates, which are related to the Boyer-Lindquist
coordinates by the transformation

d<p = dq> + -T- dr. (5.6)

They are a generalization to the case of rotation of the Ed-
dington-Finkelstein coordinates of the Schwarzschild met-
ric and are formed by the world lines of freely falling pho-
tons: the "radial" geodesic of such a photon has the
coordinates (V, t?, #) = const. The world lines of the pho-
tons of the principal null congruence directed inward form
on the Kerr diagram the conical surface V= const. The co-
ordinate p is an untwisted azimuthal coordinate, and there-
fore the diagram does not show a tilting of the light cones due

'Outgoing" geodesies

const

The photon geodesies of this class are physically distin- FIG. 10. Kerr diagram for equatorial section of an extremal black hole.
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-so

FIG. 11. Evolution of the latitude potential H(d) with increasing ratio
E2 - 1) (the largest is a> = 10).

to dragging of the inertial frames in the direction of increas-
ing <p, which occurs in the coordinates (r, t, &, <p). On the
event horizon, the light cones are completely tilted inward,
except for the tangent line.

With increasing orbital angular momentum of the inci-
dent particles, there is a decreasing probability of their arriv-
ing on trajectories corresponding to the potential wells in the
curve of the latitude potential H(&). The behavior of the
potential curves H(&) with increasing value of

a> = Ll{a2(E2—1)]~» (5-7)

is shown in Fig. 11 (Ref. 14). With increasingca, the depth of
the minima of the potential curves rapidly decreases. In the
limit a—>1, the minima are effectively smoothed, and at
<a = 1 there remains one minimum at & = ir/2. In the case
o > 1, the nature of the motion is determined by the potential
curves shown in the upper half of Fig. 11. With increasing a,
these curves become narrower and narrower, i.e., the infall
trajectories approach closer and closer to the equatorial
plane.

The quasiradial geodesies t? = const = i?0 are also phy-
sically distinguished for nonrelativistic particles. An ensem-
ble of weakly interacting test particles incident on a rotating
black hole is described in the first approximation by motion
in a given potential under the action of a stochastic force,
which can be taken to be a random Gaussian force ̂ -corre-
lated with respect to the proper time.9 The distribution of the
probability of the resulting orbits with respect to the polar
angle t? has the following remarkable properties9: 1) for
o)> 1, a maximum of the probability density is attained in the
equatorial plane; 2) for 0 «y < 1, the maximum of the prob-
ability density is split into two maxima, to which correspond
values of the polar angle

&i.i =± sin-'ol/4,

characterizing the positions of the minima of the curve
H(&) (see Fig. 9), i.e., the orbits of the panicles tend to
collect on the surfaces t?, = const and #2 = const.

6. BOUND STATES

6.1. Spherical orbits

The simplest and best studied case of bound motion cor-
responds to the spherical (r = const) orbits.95'67-12 Stable
spherical orbits of photons can exist only below the inner
(r = 1 - ( 1 - a2) 1/2, A(r_ ) = 0) event horizon,89 but, be-
cause of the instability inherent in the interior region of a
rotating black hole, these orbits evidently have only a formal
meaning. The spherical orbits of particles (timelike bound
geodesies) are determined by simultaneous solution of the
equations

R (r0) = 0 ( spherical orbit ) , (6.1)

• 0 (extremum of potential, guaranteeing
preservation of the condition r0 = const),

(6.2)
> 0 (condition of stability). (6.3)

Reversal of the sign in (6.3) determines the family of unsta-
ble spherical orbits. Equations (6.1)-(6.3) are augmented
by the condition of bound motion, g>0, and then the values
of r0, E, Lz, and Q are completely determined. The family of
stable spherical orbits in the neighborhood of an extremal
Kerr hole is shown in T g. 12 (Ref. 95) in the form of a two-
dimensional surface in the (r, L2, Q) space. The intersec-
tions of this surface with the plane Q = 0 represent the circu-
lar orbits in the plane of the equator. For orbit radii r0>9
there are two lines of intersection, corresponding to direct
and retrograde orbits. The nature of the orbit is determined
by the sign of the projection of the orbital angular momen-
tum onto the rotation axis Lz. Direct stable circular orbits in
the equatorial plane exist up to r = r+. The retrograde circu-
lar orbits become unstable once the orbit radius reaches

For fixed radius of the orbit, the energy in the orbit
varies monotonically along the surface shown in Fig. 12. The
direct circular equatorial orbits have the greatest binding
energy W= \ — E, and the retrograde orbits for r0>9 the

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ N flffif x

\\\\\\\\\\\\V\XVxV
10,0 12,0 r

FIG. 12. Part of the surface of spherical orbits in the field of an extremal
black hole.
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lowest binding energy. For r0 < 9, the lowest binding energy
corresponds to orbits transitional from the stable to the un-
stable ones and situated at the points of inflection of the
radial potential, where d 2R /dr1 = 0. These orbits represent
the edge of an opening in the surface under consideration.
The binding energy characterizes the energy that can be
emitted in the form of gravitational waves by a body falling
toward a black hole with initial energy E £ 1 when it is cap-
tured by the corresponding orbit.

In the general case of nonequatorial motion, a spherical
orbit is said to be direct if the displacement A<p of the parti-
cle's azimuth in the orbit during the time of one cycle in
latitude is positive. The azimuthal displacement per cycle is
determined by the expression95

) — aLz

(6.4)
here, z = cos21? and z_ and z+ are turning points with re-
spect to the angle i? (roots of Eq. (3.2)); n and K are elliptic
integrals of the first and second kind. The first term on the
right-hand side has the sign of Lz, while the second is always
positive for spherical orbits that satisfy the condition
(3.12a). For negative values of Lz, the first term always
remains predominant, since with decreasing Lz the integral
II( — z _ , (z_/z+) l / 2 ) increases sharply.

Stable spherical direct orbits exist until the surface of
the event horizon is reached. The one-parameter family of
orbits that "slip" along the horizon is characterized by a
value of Lz in the interval

2 (a = : (6.5)

The lower limit is obtained from the condition of a bound
motion, Q^O, and the upper from the stability condition
(6.3). The values of the integrals of the motion Q and E can
be uniquely expressed in terms of Lz:

E=^-" <? = Az,»_l. (6.6)

The limiting direct spherical orbits are shown in Fig. 13
(Ref. 95). The particle moves along a spiral lying on the
surface of a sphere between the lines of maximal and mini-
mum latitude, which are situated symmetrically on the two
sides of the equator. The values of the limiting polar angle
I1?ma* I vary from 0° for an orbit with Lz = 2/V5, lying in the
equatorial plane, to 25° for a spherical orbit with Lz = v2,

Horizon
Maximal latitude

Minimal latitude

FIG. 13. Limiting spherical orbits in the field of an extremal black hole.
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FIG. 14. Dependence of maximal latitude of limiting spherical orbits on
the angular momentum in the orbit.

E = l/v2, and Q= 1/2. The dependence of |<?max on Lz is
shown in Fig. 14.95

The line of intersection of the surface of the spherical
orbits with the plane Lz = 0 determines polar circular orbits
passing alternately over the north and south poles. Stable
polar orbits exist for values Q > a2 ( 1 — E 2 ) down to the min-
imal radius r0 m i n , which is determined by the condition16

2£2r (r2 + a2) — E2 (r — l)(r2 + a2) A-1 — rA =0

and the condition (6.3). For an extremally rotating black
hole, r0min — 2.53. The minimal radius of an unstable circu-
lar polar orbit satisfies the equation

rph — 3r£h + a2rph -f a2 = 0.

As r-H>rph, the energy on the orbit increases without limit,
i.e., the limiting unstable polar orbit is a photon orbit. Its
radius lies in the interval from r0 = 3 fora = 0 to r0 = 1 +V1
for a = 1.

6.2. Circular equatorial orbits

These orbits, which are of special astrophysical interest,
for example, for the study of processes of disk accretion,
have been investigated most fully in the Kerr metric (Refs.
34, 35, 42, 60, 71, and 84). The effective radial potential
U ± (/•) in the plane of the equator has the form34

(6.7)

The stable circular orbits are situated at the minimum of the
curve U+ (r), the unstable orbits at the maximum. For null
(photon) orbits, Eq. (6.7) is reduced to the form

r , Lz (rA1/2 + 2a)

from which it follows that all the circular equatorial photon
orbits are unstable — the effective potential U + ( r ) for the
photons has in the region r+<,r< oo only a maximum; all
null geodesies have at most a single turning point and, there-
fore, are unstable for both signs of L: .

The simultaneous solution of the equations R = 0 and
dR /dr = OforE and Lz gives the integrals of the motion as
functions of the orbit radius34-3'':

* r3/»(rV2 — 3r ' /2± 2s)'/2 '

The upper sign corresponds to direct orbits, the lower to
retrograde. From the point of view of a distant observer, the
angular velocity in the orbit is

d « P _ _ , 1 (6.9)
r3/2 ± a
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TABLE II. Limiting stable circular orbits in the gravitational field of a massive body (black hole).

ra

£

W=l- E

L,

Newtonian
orbits

0

+ 00

o

Schwarzschild
orbits

6
2 Y~2

3
5.72%

2 V^3

Kerr orbits

1
1

/T
42,35%

2
VT

a = l )

9
5

3 \f~3
3,77%

22
3 /T

while the physical rotation velocity is

At large distances from the center, the binding energies of
the direct and retrograde orbits are almost equal. With de-
creasing r, the spin-orbit interaction becomes stronger, and
this increases the binding energy of the direct orbits and de-
creases the binding energy of the retrograde orbits compared
with the Schwarzschild orbits. The maximal binding energy
and the minimal value of the angular momentum correspond
to the limiting stable orbit, the radius of which can be deter-
mined from the equations34

(6.10)4 = 1 + (1 — a2)'/" [(1 + a)'/3 + (1 — a)V»],

The parameters of the limiting circular orbits in the equator-
ial plane of an extremally rotating black hole are given in
Table II,84 where they are compared with the corresponding
characteristics for the Newtonian and Schwarzschild cases.

With a further decrease in the radius of the unstable
orbits, the value of E determined from Eq. (6.7) becomes
greater than unity once a certain radius rmb of the orbit is
reached, and the orbits then become unbound. The radius of
the limiting bound orbit is the minimal pericenter of a para-
bolic (Ex 1 ) orbit35:

rmb = 2 + a + 2 (1 =j= a) V«.

With further tending of r to r+, there comes a moment
at which the denominator of the expression (6.8) vanishes
and the values of E and Lz become infinitely large. Here
there is the limiting unstable photon orbit, whose radius

corresponds to impact parameter value

Figure 15 (Ref. 35) shows how the radii of the limiting sta-
ble orbit (rms), the limiting bound innermost orbit (rmb),
and the limiting photon orbit (rph ) in the equatorial plane of
the black hole depend on their specific angular momentum.
The continuous curve is the dependence of the radius r+ of
the event horizon on a. The straight line rm is the equatorial
boundary of the ergosphere. From the point of view of a
distant observer measuring the radial coordinate r, the radii
of the three direct limiting orbits coincide in the limit a—»•!
with the radius of the event horizon r+—>1. This coincidence

occurs because an infinitesimally small change of the radial
coordinate r corresponds in the limit r—*r+ to an infinitely
large change of the radial distance R. In accordance with
(2.1) or (1.1),

— 1) as a->l.

If the specific angular momentum a differs very little from
unity, a = 1 — e, £<1, then35

'•mb « 1 +2eV>, rms » 1 + (46)1/.,

and the radial distances between the limiting orbits and the
horizon are

•ff +ph -yln3' In

At the same time,

E-"^. vV*--2 for r^rms,

£•=1, for r ->- rmb.

It is interesting to note that the angular velocity vf on the
orbit r = rms in the case a = 1 is the same as in the case a = 0,
despite the fact that for a = 1 the orbit is in a stronger gravi-
tational field. This circumstance, like the lagging of Mer-
cury's perihelion associated with rotation, is due to the drag-
ging of the inertial frames.

6.3. Influence of frame dragging effect on orbital motion

The classical results describing the influence of the ro-
tation of a source on the orbital motion in the weak-field

r/M

direct
retrograde
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FIG. 15. Limiting circular orbits in the equatorial plane.
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approximation are due to Lense and Thirring.73 They
showed that for noncircular orbits in the plane of the equator
the dragging of the inertial frames by the gravitational field
of a rotating body leads to an additional displacement of the
periastron of the orbit: in each revolution in the orbit, the
azimuthal angle cp changes by the amount66'73

(6.11)

The influence of rotation on spherical orbits reduces to a
dragging of their nodes (the points of intersection of the
orbits with the equatorial plane) in the direction of rotation
of the central body. In the weak-field approximation, a node
is displaced after each revolution in the orbit through the
following angle in the direction of the rotation:

2a (6.12)
AQ=- .3/2

In the general case, the value of Afl depends on the ratio of
the frequencies of the oscillations in the latitude, v#, and
azimuthal, vf, directions. If these frequencies were equal,
then during one cycle in latitude the angle cp would change
by 277. Therefore, the ratio of the frequencies has in the gen-
eral case the form

_V£_ = .A£ (6.13)
Vfl. 2n *

As numerical calculations show,9

-^L<1 for L2<0,

1*->1 for 1

(6.14)

i.e., the nodes of spherical orbits are always dragged in the
direction of the rotation. The angle of drag in one revolution
is

1*.-. 1 (6.15)
VO

The dependence of AH on the orbit radius for the case a = 1
is shown in Fig. 16 (Ref. 95). For r0>r+, the angle Afl de-
creases as r~3/2, in accordance with the Lense-Thirring for-
mula. In the limit r0-+r+, the angle Afl increases in accor-
dance with the law

A O _ 2na (6.16)

where the numerical coefficient a varies in the range from
0.817 to 0.835 for variation of the angular momentum in the

orbit in the interval (6.5). In the strong-field region, the
angle Afl of dragging depends not only on the orbit radius,
as in the Lense-Thirring approximation, but also on the val-
ue of Lz (spin-orbit interaction). For example, for orbits
with radius r0 = 9 near the equatorial plane, the value of
Aft/(27r) varies from 0.0814 for an orbit with L2 <0 to
0.0607 for an orbit with Lz > 0.

The displacement of the periastron of noncircular equa-
torial orbits was obtained13 in a more general case in analytic
form to terms of order (M /r)3. In terms of the focal param-
eter p and the orbit eccentricity e, which are related to E and
L z by

-e') | (l-e')Mf

(6.17)

the displacement of the orbit periastron is determined by

A(p _ 3M 4M3/aa I, , 9M \
n ~~ p p3/2 \ • p I

In the strong-field region, the displacement of the per-
iastron has been calculated numerically for individual or-
bits.67'96 It follows from the calculations that the additional
displacement A^> due to rotation increases with increasing
energy of the particle in the orbit. An example of a noncircu-
lar equatorial orbit is given in Fig. 17 (Ref. 67). For positive
Lz, the orbit consists of two geometrically distinct parts: an
elliptic part and a spiral part. Beginning at the apoastron, the
particle moves along the elliptic part of the orbit; then, near
the horizon it makes several turns around the center along
the spiral section, reaches the periastron, and returns again
to the elliptical section, where it reaches the next point of
apoastron. The closer E is to the energy £"max in the first
unstable orbit, the greater is the number of turns in the spiral
section. In the limit Em3i!i — E—*0, the particle reaches at the
periastron an unstable orbit, where it can, in principle, re-
main for an arbitrarily long time. For orbits with negative
Lz, the spiral section is much more pronounced.

In the general case of nonequatorial and nonspherical
orbits, numerical calculation of a motion of a cloud of parti-

FIG. 16. Dragging of nodes of spherical orbits in the field of a rotating
black hole.

-11,20

FIG. 17. Noncircular equatorial orbit in the plane of an extremal black
hole. L, —2,E = 0.9, number of turns along the spiral section n = 3.
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FIG. 18. Motion of a cloud of particles with E = 1, Lz =0,
and Q = 10 in the field of an extremal black hole.

cles with energies E = 1 (Lz = 0) in the neighborhood of an
extremal black hole (Fig. 18; Ref. 96) shows that all the
particles in the cloud that initially had zero angular momen-
tum L2 ultimately acquire an angular velocity equal to that
of the hole.96

The effect of the dragging is manifested not only in the
different deformations of the orbits described above. The
difference between the revolution periods of two test bodies
in the same circular equatorial orbit moving in opposite di-
rections leads to relativistic drift of the point of encounter of
these bodies. This effect, called by the authors19 the plan-
etary gravitational Zeeman effect, depends neither on the
radius of the orbit nor on the mass of the central body, nor
even on the gravitational constant, but only on the specific
angular momentum of the gravitating body. In accordance
with (6.9), the period of revolution of a test body in a circu-
lar equatorial orbit is

T± = 2ji (rJT ± a) = 7"N (6.19)

The first term also follows from Newton's theory, while the
second represents the relativistic correction, which depends
only on a. The condition of meeting of two bodies moving in
circular equatorial orbits of the same radius in opposite di-
rections has the form

n = 0, 2, 4, . . . .

The drift of the place of meeting during one revolution is

*_ *«$+ _._•)„ .

The effective drift per unit time (in radians) is determined as

and is 4".4/100 yr for the Earth, 280V100 yr for Jupiter,
and 600Y100 yr for the Sun.19

7. BENDING OF LIGHT RAYS

The equations describing the propagation of radiation
in the gravitational field of a rotating body, provided that the
wavelength is much less than the characteristic scale of vari-
ation of the field, are obtained by integrating Eqs. (3.1)-
(3.4) and have the form (see, for example, Ref. 18)

f dfr _ f dr
J [Q-H («)]i/« — J [fl(r)]V« '
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(7.1)

< p = _ J - —L,
sin" •&[<?— '

(7.2)
„ f aE9
B J 10—

(7.3)
The azimuthal deflection of a ray coming from infinity in the
equatorial plane is determined by the expression

Pxr°-2r(Pl-q) ( ?4- o f Pxr-2r(Pl-q)
* J A[r«-r'(p5.-a') + 2r(pj_-

where the letter d denotes the dimensionless distance of
closest approach of the photon and the deflecting body.

In the weak-field approximation (d>r+), the deflec-
tion of the ray in the equatorial plane can be obtained from
(7.4) in the explicit form

15K-16 4a
d" l P . l l '

(7.5)

The first term describes the famous bending of light rays in
the gravitational field of a massive body predicted by Ein-
stein, in magnitude dtp = 1 ".75 for a ray grazing the edge of
the Sun. The correction that depends on the rotation7-27'42'79

has opposite signs depending on the motion of the photon—
in the direction of the rotation or in the opposite direction.
As a result, rays with negative impact parameters are de-
flected more strongly than rays with positive ones (see Fig.
6). Combining the expressions for &<p for the two rays with
impact parameters equal in magnitude but opposite in sign,
one can in principle determine the angular momentum of the
deflecting body.

The latitude deflection and the azimuthal twisting of a
ray propagating parallel to the rotation axis are described
by7-27

' i 15n . 4a (7.6)

In the case of an arbitrarily oriented ray trajectory, the
ray is characterized by three parameters (Fig. 19): the radi-
us d of closest approach, the value of the coordinate i? at
r = d (i? d ) , and the angle i)d between the tangent to the spa-
tial trajectory and the Killing vector ̂ . The constants of the
motion and the extremal value of the coordinate i?, equal to
#«., can be expressed in terms of these three parameters20:

sin #„ = sin ftd cosr\d
. 2a sin *^

COS t](j
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FIG. ] 9. Bending of a ray in the general case; i)d is the angle between the
tangent to the spatial trajectory and the Killing vector gr ; t?,, is the extre-
mal value of the polar angle t?.

In the general case, the total deflection of the ray is given
by20

(7-7)

where e is a unit vector perpendicular to the plane of the
orbit.

The azimuthal deflection of a ray passing in the equa-
torial plane in the immediate vicinity of the capture region is
characterized by a logarithmic dependence of A<p on

B±
[r±

d{[3r±(2d+
(d-r±){[r± (2d+r±))i+r±))i/>+r±+d}J'

(7.8)

where Av and IF are equal to
.p d'(d—1)

"~ /§ d&.(d) '

a'(3+da)—2d(3—d)
(1—o2)V» ]• (7.9)

The effects of rotation are most pronounced in the case
of an extremal black hole, for which a photon that arrives
with positive impact parameter must be captured directly at
the point r0 = r+. In the case of exact equality a = 1, the
azimuthal deflection of a ray passing near the region of cap-
ture is proportional to \/8. Astrophysical rotating black
holes most probably have specific angular momentum
slightly different from unity a = 0.998 (see, for example,
Refs. 29 and 33). The slight difference between a and unity
leads to a qualitative change of the asymptotic behavior of
the azimuthal deflection Af near r0, since when a— >•! the
point r0— >r+ = r__. Therefore, the azimuthal deflection of
the ray in the limit d—>-r0-^r+ can be described in terms of
the two small parameters £ and 6:

7= - - -
2/3[26+(B/6)1/z]

(7.10)^ ' - I U '

O.OB -

13rt A<p

FIG. 20. Dependence of the deflection angle for photons passing near the
capture region in the equatorial plane of an extremal black hole on the
value of S = d — r+.

The dependence of A<p on 8 fora = 0.998 is shown in Fig. 20.
For rays with negative impact parameters (r0 = 4 for d = 1)
A^) depends near the capture region logarithmically on S:

3/3 3/3

D

The rays close to the capture region, deflected by the hole
through angles

Acp» ±3fei, k =1, 2, 3, (7.12)

form an "apparent edge of the hole" in the situation in which
the hole is on the line of sight between the observer and the
radiation source. The shape of the boundary of the luminous
halo surrounding the image of the hole in the plane perpen-
dicular to the line to the radiation source depends strongly
on the angle between the line of sight and the rotation axis of
the hole, since with increasing angle the shape of the photon
scattering cross section becomes more and more asymmetric
with respect to the center (see Fig. 7).

8. GRAVITATIONAL TIME DELAY OF SIGNALS

Until comparatively recently, there were three classical
effects that tested the general theory of relativity: the dis-
placement of Mercury's perihelion, the deflection of light in
the gravitational field of a massive body, and the gravita-
tional red shift. In 1964, Shapiro proposed a fourth test,
which consisted of measuring the time needed for a signal
sent from the Earth to reach some inner planet, be reflected
from it, and return to the Earth (see Ref. 2 and the references
given there). As the experiments of Shapiro's group showed,
the gravitational time delay of a signal reflected by Mercury
in the field of the Sun is 240 jusec, the accuracy of the mea-
surements being 1.5-10~6sec.

Theoretically, the time of propagation of a signal, mea-
sured by a distant (from the gravitating body) observer is
obtained by integrating along the complete propagation tra-
jectory with allowance for the change in the gravitational
field from point to point. In the equatorial plane of the rotat-
ing body, the time of propagation of the signal from the point
R to the point of closest approach d, obtained by integrating
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(7.3), has in the weak-field approximation
form7-8'13

d

R—d\l/2
I Pi I

the

(8.1)

The principal term corresponds to the signal propagation in
flat space, and the second and third describe the gravita-
tional time delay measured in Shapiro's experiments. The
additional correction to the gravitational time delay of a ra-
dar signal due to the rotation of the Sun is characterized by
the value 2. 1 • 10~ 10 sec, 13 which is as yet below the accuracy
of the measurements.

However, allowance for the influence of rotation on the
signal propagation time is in principle important physically,
since the additional gravitational time delay in the gravita-
tional field of the rotating body may be not only a delay but
also an acceleration. For signals propagating in the equator-
ial plane, the sign of the additional delay due to the rotation
depends on the direction of the signal — with or against the
rotation. The propagation time of a signal traveling parallel
to the rotation axis,7'8

(8.2)

depends on the rotation to a higher order in the small ratio
r+/d than is the case for (8.1); moreover, the additional
gravitational delay due to the rotation is negative. The qua-
dratic dependence off y on a/d is in a certain sense analogous
to the transverse Doppler effect of the special theory of rela-
tivity and means that for propagation of radiation parallel to
the axis the frame dragging effect is not so important as in
the equatorial plane, though the additional gravitational de-
lay is an acceleration.

A photon incident on a rotating black hole from a cer-
tain point R along a quasiradial trajectory (5.3) has a posi-
tive value of the projection Lz = aE sin21?0 of the angular
momentum onto the axis. To reach the event horizon, it re-
quires the time32

t = In (r'_

1 In r-l-d-q')1/' I |r+
l_a2)i/aln

 r_1 + (l_ai)i/t J | H ' (8.3)

which is less than the time of falling of a photon into a nonro-
tating black hole, which is determined by the first two terms
in (8.3).

Thus, the influence of the dragging of the inertial fields
by the gravitational field of the rotating body has the conse-
quence that the additional "rotational" gravitational time
delay may be not only a delay but also an acceleration. The
signal propagation time in the gravitational field of a rotat-
ing body depends strongly on the orientation of the signal
propagation direction relative to the rotation axis. This de-
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FIG. 21. Relative time delay of photons traveling in the equatorial plane
of an extremal black hole on different sides of the axis (the lower curve is
for Ar|eom, which is the purely geometrical time delay due solely to the
geometrical path difference).

pendence is enhanced for signals propagating in the immedi-
ate vicinity of the region of gravitational capture of a rotat-
ing black hole. The analytic expressions describing in this
case the signal propagation time are rather cumbersome,7

but qualitatively the behavior of Af as a function of 8 and as a
function of the sign of the impact parameter is similar to the
behavior of the azimuthal deflection A^ (see the previous"
section). The difference between the propagation times of
photons traveling in the equatorial plane of a rotating black
hole near the capture region on different sides of the hole is
shown in Fig. 21 (Ref. 7). For the deflection angles (7.13),
it describes a relative gravitational time delay of signals trav-
eling in the region in which the "apparent edge of the hole"
(see Fig. 7) intersects the equatorial plane, i.e., the maximal
relative time delay of the photons forming the luminous halo
that is the boundary of the hole in the image of the radiation
source illuminating it.

9. ROTATING GRAVITATIONAL LENS

The gravitational lens effect, predicted by Einstein in
1936, has recently acquired practical topicality. Several31 as-
trophysical objects are now known—double and triple qua-
sars—that are interpreted as images of the same object
formed by gravitational lenses lying on the line of sight
between the quasars and the observer. 20'22>92~94 The gravita-
tional lenses could be stars, galaxies, clusters of galaxies, and
also black holes.

In the rigorous sense of the word, gravitational lenses
are extended objects in which the matter distribution (and,
thus, the refractive index) depends on the coordinates, al-
though a focusing effect also occurs for a point gravitating
mass; indeed, it was for such a case that it was first predicted
(see Ref. 22 and the references given there). There is an
extensive literature on gravitational lenses. The present sec-
tion will be devoted to a single aspect of the theory of gravita-
tional lenses—the possible consequences of rotation of the
massive body that plays the part of the lens (Refs. 3,7, 8,20,
21, and 72), which are obtained for point lenses but evident-
ly have a general nature. They are as follows.

First, it has been established that there is a displacement
of the focus of a rotating lens compared with a nonrotating
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lens3'21; in the first approximation, the focus of the Kerr lens
is displaced relative to the axis passing through the center of
the source parallel to the incident light beam by an amount
numerically equal to the specific angular momentum a of the
lens irrespective of the impact parameter and the mass of the
lens.

Second, it is found that the dependence of the photon
propagation time on the orientation of its orbital angular
momentum relative to the rotation axis leads to a relative
delay of the rays focused by the rotating massive body. The
action of the gravitational lens leads to the appearance of
multiple images of an isolated radiation source formed by
rays that travel along different optical paths. In the case
when the radiation source, the nonrotating point mass that
plays the part of the lens, and the observer are situated on a
single straight line, the resulting images are simultaneous,
i.e., the signals propagate from a given point of the source
along the different optical paths corresponding to the differ-
ent images in the same time. In the case of an extended gravi-
tational lens with spherically symmetric density distribution
and when the observer is on the straight line joining the radi-
ation source and the center of the lens, all the rays arriving at
the observer arrive simultaneously (this assertion can be
verified by using, for example, Ref. 17, Vol. 2, p. 324).

Rotation of the gravitational lens leads to nonsimultan-
eity of the resulting images even in the simplest case when
the source of the radiation, the lens, and the observer are on
the same straight line. The relative delay between rays arriv-
ing at the same point of observation along different optical
paths is maximal in the equatorial plane of the focusing
body. The condition that the radiation source, the lens, and
the observer are on one line has the form8

(9.1)15n—32

where b is the distance from the lens to the point of emission,
and/is the distance to the point of observation (Fig. 22). It
follows from this relation that rays emanating from the same
point of the source with positive and negative impact param-
eters can arrive at the same point of observation only if they
satisfy the condition

d- = d+ + a. (9.2)

As a result, there arises a relative delay in time associated
with the difference of the optical paths between rays arriving
at the same point of observation; it is given by

FIG. 22. Deviation of rays traveling from a point of the source S in the
equatorial plane of the rotating body M to the point of observation 0;d+,
d_ and &<p+, A?>_ are the distances of closest approach and the deflection
angles of rays possessing positive and negative impact parameters.

1 st ray

2nd ray
ff

PIG. 23. Paths of rays in a Kerr gravitational lens in the general case; S is
the radiation source, O is the observer, and J is the angular momentum of
the lens.

The relative delay depends on the type of focusing object and
the mutual disposition of the source, lens, and observer. It
lies in the range

(9.4)

In the general case, when the radiation source is not in
the equatorial plane of the lens, the expression for the rela-
tive delay has a more complicated form20:

[4/>tant?d COST;,,

The path of the rays is shown in this case in Fig. 23, where a,
and a 2 are the intervals of the angular variable

joining the images to the lens and forming with each other
the angle

a I cos »d [ /_! . 1_\
p / V at ~r a2 / '

As »?rf, one can take t?, or «?2, the accuracy of the calculation
being unaffected.20

Rotation of the lens can lead to curious consequences in
the case when the lens is a rotating black hole situated on the
line of sight between the observer and a source of radiation
that has dimensions greater than the angular dimensions of
the lens. In this case, as we have already said, the black hole
must be seen literally as a black hole in the image of the
source, surrounded by an asymmetric luminous halo formed
by photons deflected by the hole through the angles (7.13).
As a result of the asymmetry of the scattering, there must be
a relative time delay of the propagation of the photons form-
ing the boundary of the image of the hole. The relative delay
of the photons propagating in the equatorial plane with max-
imal and minimal impact parameters is given by8
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At « 3 1 A<p 1 GMc-3- (9.6)

In the case of a variable source of radiation, this may have
the consequence that if the brightness of the source changes
the brightness of the boundary curve will vary nonuniform-
ly, and a "hare" will run round it from the point correspond-
ing to the minimal value of the impact parameter pL, with
velocity vh s(c/6)/?s//?H (for an extremal black hole),
where R H is the distance from the observer to the black hole,
and R s is the distance from the observer to the radiation
source.

The relative delay of signals focused by a rotating gravi-
tational lens in the case when the lens is a massive black hole
is characterized by a quantity that is perfectly measurable,
though it is at present difficult to give a specific example of
the realization of such a situation. However, there have long
been reports of the observation of extremely rapid variability
in time of the radiation intensity from cosmic objects. In
particular, the quasar 1525 + 227 exhibits a variation of its
radiation intensity with a characteristic time r~200 sec.75

For an object of the scale of a quasar, this time interval is so
short that it is difficult to explain it by processes taking place
in the quasar itself. One could assume that the rapid variabil-
ity in the radiation intensity could in some cases be due to the
effect of a rotating gravitational lens situated between the
quasar and the observer. In principle, such a possibility does
not seem unjustified.
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"By this we mean test bodies without intrinsic rotation.
2lThe fact of the existence of an additional constant of the motion has an

analogy in mechanics, for example, there is the conservation of Z.z and Pz

for motion in the field of an infinite homogeneous cylinder (Ref. 17, Vol.
l ,p .33) .

3lBy April 1984, five gravitational lenses were known (Sky and Telescope,
April 1984).
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