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The spin dynamics and the orbital dynamics in the A and B phases of superfluid 3He are
analyzed. Attention is focused on solitons and instantons: nonsingular configurations of the
field of the order parameter of the 3He superfluid phases. A qualitative explanation in terms of
solitons and instantons is offered for several experiments involving the A and B phases of 3He.
The analysis of these questions is prefaced by some general information on the order parameter
and the free energy in superfluid 3He.

TABLE OF CONTENTS

1. Introduction 186
2. Order parameter 188
3. Free energy 189
4. Spin dynamics 190

4.1. A phase. Spatially homogeneous case. 4.2. B phase. Presence of textures.
5. Domain walls or solitons 191

5.1. Creation of solitons. 5.2. A phase. V-solitons. 5.3. B phase, n-solitons. 5.4. B
phase, t^-solitons.

6. Orbital dynamics in the presence of a superfluid flow in 3He-A 194
6.1. Dissipative superfluid motion. 6.2. Instanton mechanism for phase slip-
page. 6.3. Phenomenological equations and trajectories of the system.

7. Conclusion 196
References 197

1. INTRODUCTION

Nature has two liquids which do not solidify as the tem-
perature is lowered all the way to absolute zero (at standard
pressure). These are the quantum liquids helium-4 and heli-
um-3. The bahavior of these liquids is quantum-mechanical
because in the region in which they exist (at temperatures of
the order of 1 K) the de Broglie wavelength of the thermal
motion of the He4 and He3 atoms is comparable to the dis-
tance between the atoms of the liquid. The quantum-me-
chanical properties of helium-4 and helium-3 are quite dif-
ferent: The spin-zero He4 atoms form a Bose liquid, while the
spin-1/2 He3 atoms condense into a Fermi liquid.

A characteristic property of Bose systems is a Bose con-
densation: the accumulation of a finite fraction of the parti-
cles in the ground state (with zero momentum). Associated
with the property of Bose condensation is the phenomenon
of superfluidity, which was discovered in helium-4 (at tem-
peratures below 2.17 K) by Kapitsa in 1938. Superfluidity is
the property of a liquid which allows it to flow without fric-
tion through capillaries, but the term "superfluidity" itself
combines many properties of quantum liquids at tempera-
tures below the temperature of the transition to the super-
fluid state. The liquids themselves in this state are called
"superfluids."

Another phenomenon associated with Bose condensa-
tion is superconductivity (the property that an electric cur-
rent can flow through a conductor without experiencing a
resistance). In this case the quantum fluid is formed by elec-
trons, which are spin-1/2 particles. For electrons, condensa-

tion is forbidden by Fermi statistics. At low temperatures,
however, the conditions become such (an attraction arises
between electrons) that the system of electrons is unstable
with respect to the formation of Cooper electron pairs. Since
an electron has a spin of 1/2, a Cooper pair has an integer
spin and obeys Bose statistics. A Bose condensation of Coo-
per pairs therefore occurs in a superconductor. An explana-
tion for superconductivity as superfluidity of Cooper pairs
was offered by Bardeen, Cooper, and Schrieffer (BCS) in
1957.

After the mechanism for superconductivity became
clear, it was expected that there was the further possibility of
a transition of helium-3 to a superfluid state, associated with
Copper pairing of He3 atoms. The mechanism for this pair-
ing was found by Pitaevskii1 in 1959. Pitaevskii showed that
the van der Waals attraction causes He3 atoms to form a
Cooper pair with a nonzero orbital angular momentum /. By
virtue of the Pauli principle, the wave function of the pair is
antisymmetric with respect to the interchange of particles,
so that a triplet pairing (a total spin 5=1) corresponds to
odd values of I, while a singlet pairing (S=Q) corresponds
to even values of/.

The superfluidity of helium-3 was therefore predicted.
This prediction launched an experimental search for the ef-
fect. This search was rewarded with success when cryogenic
techniques made it possible to reach temperatures of the or-
der of a thousandth of a kelvin.

In 1972, Osheroff, Richardson, and Lee2 discovered
two phase transitions ("A" and "B") in helium-3 at tem-
peratures below 3 mK. It soon become clear that Osheroff,
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Richardson, and Lee had discovered two superfluid phases
of helium-3: A and B.

Phase transitions from normal He3 to the A phase and
from the A phase to the B phase were detected on the melting
curve of solid He3 (at a pressure P = 35 atm) at tempera-
tures Tc = 2.6 mK and TAB = 2.07 mK, respectively. As
the pressure is lowered, the transition temperature ( T c )
between the normal state of He3 and the superfluid state
decreases (from Tc = 0.9 mK at P = 0), while TAB in-
creases (to TAB = 2.4 mK at P = 20 atm); i.e., there is a
multicritical point. The phase transition between the normal
state and the superfluid state (the A or B phase) in a second-
order transition, while the AB transition (between He3-A
and He3-B) is of first order. Theoretical and experimental
research on the superfluidity of helium-3 has shown that a
triplet Cooper pairing (S = 1) with an orbital angular mo-
mentum / = 1 occurs in superfluid He3.

Superfluid states of a Fermi liquid with / = 1 were first
studied by Anderson and Morel3 and Balian and Werth-
amer4 in the early 1960s. These Anderson-Morel3 and Ba-
lian-Werthamer4 states—the two states of the many possible
states which were the first two to be studied—were in fact
realized in nature as the A and B phases, respectively, of
superfluid helium-3.

The transition of helium-3 to a superfluid state was pre-
dicted, ' as we have already mentioned, but the existence of
two superfluid phases of He3 was an unexpected result. It is
interesting to note in this regard that Balian and Werth-
amer4 were not actually trying to describe the superfluidity
of He3. Regarding the Anderson-Morel state, they wrote
that Anderson and Morel had predicted that a state with ap-
wave attraction would have many strange features such as an
energy spectrum with an anisotropic gap, which vanishes in
certain directions, a nonexponential heat capacity, and sur-
face currents. Balian and Werthamer concluded that the net
effect is to make that state physically improbable and in
sharp contradiction of the results of the BCS theory and
experiment.4 Those comments show that anything in the
way of a quantitative prediction regarding the superfluid
properties of He3 (the temperature of the phase transition,
the orbital angular momentum, etc.) was impossible before
the experiments by OsherofF, Richardson, and Lee.2

The Anderson-Morel and Balian-Werthamer theories
are BCS theories for an interaction potential which depends
on the angles between the momenta of the interacting parti-
cles. This interaction allows different states of the conden-
sate of Cooper pairs of He3 atoms. The Anderson-Morel
state corresponds to the pairing of two spins, directed "up"
or "down," while the Balian-Werthamer state corresponds
in addition to a pairing between the "up" and "down"spins,
i.e., among all the components of the triplet S^ = +1,0,
— 1. The properties of the Anderson-Morel and Balian-

Werthamer states are determined by the structure of the
pairing amplitude or of the order parameter and also by ad-
ditional interactions. The properties of the superfluid phases
of He3 are remarkable because of their variety because they
combine the properties of superconductors, liquid crystals,
and magnetic substances. From the theoretical standpoint,

superfluid He3 has won popularity because it has presented
some fundamental new problems in the physics of the con-
densed state.

Superfluid helium-3 has been the subject of several re-
views.5"9 Most noteworthy is the early and frequently cited
review of Leggett,5 which has detailed discussions of general
questions of the theory of a Fermi liquid, the BCS theory,
and the Ginzburg-Landau theory as they pertain to helium-
3. The review by Brinkman and Cross6 is devoted to the spin
dynamics and orbital dynamics of superfluid He3. The rath-
er complicated structure of the order parameter of the super-
fluid phases of He3 has forced the theoreticians to appeal to
elements of topology (homotopy theory) in order to study
the superfluidity in helium-3. This circumstance and the
particular features and textures of the field of the order pa-
rameter in the A phase of He3 are examined in the popular
review by Volovik and Mineev.7 Another review by Mineev8

introduces the reader to the basic experimental methods for
studying superfluid He3 and its properties. That review8 also
gives a detailed description of the structure of the order pa-
rameter and of the free energy of the superfluid phases of
He3. It also gives a theory for the spin dynamics of the A and
B phases of He3. Another review by Volovik9 introduces the
reader to the variety of superfluid properties of the A phase
of He3.

Perhaps the most interesting properties of the super-
fluid phases of He3 stem from the spatially inhomogeneous
configurations of the fields of the order parameter: disclina-
tions, vortices, solitons, and so forth. All these entities play
important roles in the spin dynamics and orbital dynamics of
superfluid helium-3.

The present review supplements the existing reviews
with an examination of the spin dynamics and orbital dy-
namics in the superfluid phases of He3 in the presence of
textures (spatial inhomogeneities) in the field of the order
parameter. Most of the effort in research on the dynamics
has been devoted to solitons and instantons, which are non-
singular configurations of the order-parameter fields. Our
examination of the dynamics of textures of the order param-
eter is preceded by a general discussion of the order param-
eter and the free energy of the A and B phases of He3 (Sec-
tions 2 and 3). Section 4 sets forth Leggett's theory of spin
dynamics, which, along with experiments on nuclear mag-
netic resonance, has made it possible to identify the A and B
phases of He3 as Anderson-Morel and Balian-Werthamer
states. Section 5 is devoted to the dynamics of domain walls
or solitons in the fields of the order parameter. The method
of the inverse scattering problem is used to describe the cre-
ation of solitons when a magnetic field is turned off. The
research on He3-A and He3-B deals with solitons whose exis-
tence stems from a dipole-dipole interaction of the magnetic
moment of He3 nuclei and the presence of an external mag-
netic field. A qualitative description of experiments with the
A and B phases of He3 is offered in terms of dipole and mag-
netic solitons. Section 6 deals with the persistent orbital mo-
tion in the A phase of He3, which is a result of a dissipative
flow of a superfluid liquid which is maintained by virtue of
the formation of an array of instantons: space-time oscilla-
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tions of the orbital part of the order parameter of the A phase
of He3. A phenomenological description of this motion is
offered.

2. ORDER PARAMETER

The superfluid phases of He3, like other ordered sys-
tems (superconductors, liquid crystals, and magnetic sub-
stances), are conveniently described in terms of an order
parameter. In superfluid liquids the order parameter repre-
sents the wave function of a condensate. In the case of He4

below the A point or for superconductors, for example, the
order parameter is

6(r, t)=\Q(r, t)|eW.<>, (1)

where \9(T,t) |2 = ps (r,t) is the superfluid density, and <l> is
the phase of the wave function. The condensate wave func-
tion is a macroscopic quantity; the most important param-
eter is the phase, whose variations in space and time are re-
lated to the superfluid motion of the liquid. The superfluid
flux density is

-psv<J> (2)

(3)

(m is the mass of a particle), from which we find

since js =ps vs . It follows from ( 3 ) that the phase of the wave
function agrees with a constant factor with the velocity po-
tential of the macroscopic superfluid motion. We might also
note here that for superfluid liquids and for ordered systems
in general an important concept is the space of the order
parameter or the region of degeneracy of states of the sys-
tem.7'8'10'11 The "space of the order parameter" is that sub-
space of the region of values of the order parameter which
corresponds to various equilibrium states of the system with
an identical free energy. In the example under consideration
here, the region of values of the order parameter 0(r,t) is a
complex plane, while the degeneracy space is a circle of radi-
us 1 6 | = const on the complex plane. The phase 4> is a degen-
eracy parameter: The free energy does not depend on the
phase, but each value of 4> corresponds to a particular equi-
librium state of the system.

We turn now to He3. In superfluid He3, the order pa-
rameter is the wave function of a pair or the anomalous
Green's function

(4)

From (4) we find
Yae (k) = — Y|»a (— k). (5)

In the case of pairing with an odd value of /, ^lae is an odd
function of k and is a symmetric second-rank spinor corre-
sponding to a particle with a spin 5=1. Assuming that the
order parameter ̂ ae depends on only the direction in mo-
mentum space, n = k/k (this is a good approximation), we
can write *a/3 as a linear combination of spherical harmon-
ics with the given value of/. For /= 1, we can choose the
components of the vector n as these functions. We know that
a symmetric spinor can be associated with a complex vector,
which we denote by d(n). Here are the direct and inverse
relations between tya and d:

Yas(n), (6)

where a = {a* ,ay ,&*} are Pauli matrices. The quantities
(oay )a/3 constitute a basis for the expansion of the spinor
*Vap in spin space, and the order parameter itself is the quan-
tity11 d(n). Another form of the order parameter can be
found after an expansion of d(n) is spherical harmonics, as
mentioned above. In the case 1=1, this expansion is

d,(n)=AtJnt, (7)

where Ati is a complex 3x3 matrix, which is the order pa-
rameter in the form which we will be using below. In the case
of triplet pairing the space of the order parameter is there-
fore 18-dimensional; in other words, there are nine complex
or 18 real degeneracy parameters. Obviously, this circm-
stance seriously complicates the study of He3, but at the
same time it leads to the large variety of properties of the
superfluid phases of He3.

Barton and Moore12 found 11 phases or 11 types of or-
der parameters by minimizing the Ginzburg-Landau free-
energy functional. Each of the phases which they found is
stable in a certain region of the parameters of the functional.
Among these phases are the Anderson-Morel and Balian-
Werthamer states, which describe the A and B phases of
superfluid He3.

We see that there is some arbitrariness in the choice of
the order parameter for the two superfluid phases of He3

which have been seen experimentally. If we also note that we
have not eliminated other types of pairing, e.g., in the rf-state
(/ = 2, S = 0), this choice cannot be made without analyz-
ing the experimentally observed properties of the superfluid
phases. For example, some of the phases found theoretically
have a spontenaous magnetic moment,12 but such a moment
is not observed experimentally. Accordingly, such phases
(order parameters) must be discarded (there are other argu-
ments of this sort). Consequently, it was not immediately
obvious that the first two of all the states with /> 1 which
were considered would turn out to be the only suitable states
having all the properties of the two superfluid phases of He3.
As we have already mentioned, these states are the Ander-
son-Morel and Balian-Werthamer states.

A state of a pair of He3 atoms is characterized by projec-
tions of the orbital angular momentum and the spin onto
certain axes. In the Anderson-Morel state, all the pairs have
a projection 1=1 onto some axis, whose direction we denote
by the unit vector 1, and a zero spin projection onto some axis
V. The directions V and — V are equivalent (V2= 1).
Neither the directions of the axes 1 and V nor the relative
orientation of these axes is fixed; i.e., there is a degeneracy in
terms of the directions of the quantization axes for the spin
and the orbit angular momentum.

The orbital part of the wave function of a pair in the A
phase can be written in the form "Kr) =^(r)sini?-exp(/<^),
where r| is the distance between the atoms of the pair, i? is
the angle between 1 and r, and <p is the azimuthal angle in the
plane perpendicular to 1, reckoned from an arbitrary direc-
tion A'. We see from this discussion that the degeneracy in
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terms of the directions of 1 and V is supplemented with a
degeneracy in terms of the phase <p. The situation could al-
ternatively by represented as a degeneracy in terms of the
orientations of the triad of mutually perpendicular vectors 1,
A', A" and in terms of the directions of the spin axis V (Refs.
7 and 9).

DeGennes13 introduced the following expression for
the order parameters in the A phase:

where

The expression for the superfluid velocity is of the form in
(3) only if the vector 1 is constant over space. In general,
when 1 depends on the coordinates, the expression for vs is
(Ref. 9, for example)

*! = -£-AW,

where m is the mass of the He3 atom.
In the Balian-Werthamer state, the projections of the

spin and the orbial angular momentum onto any axis are
equiprobable, and the spin coordinates rotate in an arbitrary
way with respect to the orbital coordinates. In this case the
order parameter is proportional to a real orthogonal matrix
and is given by14

where Rik is a matrix describing a rotation through some
angle t? around some direction n. The degeneracy param-
eters here are n, i?, and the phase <p. In (8) and (9), AA and
AB are phenomenological parameters of the gap in the quasi-
particle spectrum.

3. FREE ENERGY

The free energy of ordered systems near the phase-tran-
sition temperature is constructed as an expansion in powers
of the order parameter. The free energy must be real and
must have certain symmetry properties, associated with the
degeneracy of the system. In the superfluid phases of He3, in
the absence of a dipole-dipole interaction of the magnetic
moments of the He3 nuclei, the directions and relative orien-
tation of the quantization axes for the spin and the orbital
angular momentum are arbitrary. Consequently, at equilib-
rium the free energy must be invariant under independent
rotations of the spin and coordinate space.2' The Ginzburg-
Landau free energy, which meets these requirements and
which is constructed from invariants of second and fourth
orders, is

Fc = — aSp (AA+) + P! | Sp (AA) |2 + p2 [Sp (AA +)P

+ P3 Sp [(A-A) (A+A)*] + p4Sp ((AA+)*]

+ P5Sp ((AA+) (AA+)*], (10)
where a and/?, are phenomenological parameters of the the-
ory, which can be calculated at a microscopic level in the so-
called weak-coupling approximation A <5F (£F is the Fermi
energy). The condensate energy (10) and also the additional

interactions (discussed below) describe spatially homogen-
eous states of the A and B phases of superfluid He3, for which
the matrix^ is determined by (8) and (9), respectively.

If the order parameter^ depends on the coordinates, it
is necessary to take into account the gradient terms in the
expansion of the Ginzburg-Landau free energy.13 The gradi-
ent energy is written in most general form as5

For the simple BCS model with weak coupling we would
have K! = K2 = K3=K /2, and K would be

„ 3 11 (3) fi2 N
A 5 (2nkBT0)* m»

where TV is the He3 density, m* is the effective mass, £„ is the
radius of the pair, and 7VF is the state density of the Fermi
surface.

The spaces of the order parameter are five-dimensional
and four-dimensional for the Anderson-Morel and Balian-
Werthamer states, respectively [as follows from (8) and
(9) ]. The degeneracy is partially lifted when the spin-orbit
interaction, the boundary conditions, and a magnetic field
are taken into account. The role of the spin-orbit interaction
is played by the dipole-dipole interaction of the magnetic
moments of the nuclei of the helium atoms making up a pair.
We write the dipole energies and magnetic energies for the A
and B phases as follows5:

PA 3 n\7\z M91
/'dip— g-£D('V)2, (l^>

(13)

(14)

^magn=-a(Hn)2, <* ~ g» (-%-)*. ( 1 5 >

In (12)-(15), gD is the dipole-dipole interaction constant,
JA and JB are the susceptibilities of the A and B phases of
He3,//,, is the nuclear magnetic moment of the He3 atom, and
A is the gap in the quasiparticle spectrum.

If we ignore the boundary conditions, we would write
the free energy density as the sum of the energies listed
above:

F = FK + Fer&A + ^dlp + ^magn. (16)

The energies in (16) are given in order of magnitude by

T? If "
^grad ~ ^—T

I & } (17)

where r is a characteristic length over which the gradient
energy becomes comparable to the energies Fc , Fdip , and
•Fmagn • Consequently, we can find a correlation length, a di-
pole length, and a magnetic length by working from the
equalities Fgrad = Fc , Fgrad - Fdip , and Fgrad = Fmagn :

K 1/2

Smagn :
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These scale length satisfy the inequalities

i <C IdiP ^> bmagmSmagnj (19)
J = [S, H],

where £dip ~£ £agn is magnetic fields H~2Q G.
The dipole length and the magnetic length tell us the

distances over which the spin-orbital symmetry is lost in the
superfluid phases of He3. For example, we see from (12) that
in the A phase the vectors 1 and V, which determine the
quantization axes for the orbital angular momentum and the
spin, are oriented parallel to each other over distances
r > l"dip ; i-e-> the dipole energy eliminates the arbitrariness in
the relative orientation of the 1 and V axes. The magnetic
energy in (14) causes the vector V to beome oriented per-
pendicular to the magnetic field at distances r > £ ® agn . In the
case of the B phase, the dipole energy reaches a minimum at
cos t?0 = -1/4, but the direction of n remains arbitrary. This
direction can be fixed by a magnetic field. It can be seen from
(15) that at distances r > g ® agn we have n\\ ± H. Finally, at
short range the description of the A and B phases by means
of order parameters (8) and (9) is limited by the correlation
length I". This analysis shows that the order parameters are
different at different distances in the superfluid phases of
He3 (Refs. 8, 10, and 11).

4. SPIN DYNAMICS

4.1. A phase. Spatially homogeneous case

The experiments by Osheroff, Richardson, and Lee2 in
which the superfluid phases of He3 were discovered in the
course of measurements of the pressure on the melting
curve, were quickly followed by an NMR study of He3, by
the same group of investigators. 15 They found that in normal
He3 there was, as usual, a signal at the Larmor frequency <OL ,
but as the temperature was lowered below Tc the resonant
frequency was observed to become continuously higher until
the transition from the A phase to the B phase, at which
point the resonant frequency abruptly returned to the value
a)L . It was these experiments and Leggett's theory,15 which
explains these experiments in terms of triplet pairing, which
made it possible to identify the A and B phases as Anderson-
Morel and Balian-Werthamer states.

The experiments of Ref. 15 showed that the shift of the
resonant frequency in the A phase is described by

(20)

1 . According to Leggett's theory of spin dynam-

ics,16 this shift is caused by a nuclear dipole-dipole interac-
tion.

Let us use Leggett's phenomenological Hamiltonian16

to derive equations of motion for the spin (S) of the system
and for the order parameter. In (21), y0 is the gyromagnetic
ratio of the He3 nuclei, \ is the susceptibility, and H is the
magnetic field.

We consider the Heisenberg equations of motion for the
spin S and the order parameter A^:

ih-tr=

(22)

(23)

where the following commutation relations31 hold for S and
A^, (Ref. 16):

lSt, Sj] = ihe,}hSh, (24)
[A i, S<] = ihs ihAji-. (25)

Following Leggett,16 we assume that the orbital motion
is slower than the spin motion, and we replace the equation
for A^, by an equation for V, assuming that the vector 1 is
given. After evaluating the commutators, we then find a sys-
tem of equations for S and V (Ref. 17):

dS --'""' '~|.£D [VI] (VI), (26)

(27)dV

Now linearizing (26) and (27) in small deviations of S and
V from their equilibrium values S0 = ^A70~

1H0 and V0||l
(H0 is a static magnetic field) and also in terms of the alter-
nating external magnetic field SH, we find equations for
<5S = S - S0 and 5V = V - V0:

[6VV0] juT^i (28)

(29)

where <yL = 70H0 and ftl = -f
Equations (28) and (29) can be solved easily in the

cases <5H||H0 and <5H1H0. For<5H||H0||0z (V0||Ojc), for ex-
ample, we have

w.HsF§- «*'-*• <">**'• (30)

From Eq. (30) we see that there is a longitudinal resonance
at the frequency flA .

In the case of a transverse resonance the dispersion rela-
tion is

in agreement with the experimental expression (30) for the
frequency of a transverse resonance. Experimentally, a lon-
gitudinal resonance was discovered by Osheroff and Brink-
man18; they also established the relationship between the fre-
quencies of the longitudinal and transverse resonances,
(31).

We wish to stress that the longitudinal resonance has
nothing in common with the ordinary resonance at the Lar-
mor precession frequency. The longitudinal resonance must
occur even in a zero magnetic field. In this case the equation
for SS takes the particularly simple form

(32)

i.e., the spin oscillates around its equilibrium position be-
cause of the spin-orbit interaction. The same events occur in
the case of a transverse resonance, but in this case against the
background of the ordinary classical precession.

4.2. B phase. Presence of textures

To study the magnetic resonance in the B phase we use
Leggett's equations for the variables S, n, and •&, which were
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derived by Brinkman.19 We restrict the analysis of the case
n = const; the equations for S and t? linearized in terms of
small deviations from equilibrium are then

6S = [ X B Y L («H - XB
1Y06S)] - nyw-*Q&&, (33)

where fl| = 3g
It follows from (33) and (34) that here, as in the A

phase, we should observe a longitudinal resonance at the
frequency a = f l B . In the case of a transverse resonance,
however, there is an interesting feature: The shift of the reso-
nant frequency depends on the angle (a) between n and H0:

o)2 = o)l fQ| sin2 a. (35)

As mentioned above, the minimum of the magnetic en-
ergy, (15), is reached in the case n 11 H, so that in the spatially
homogeneous case there is no shift of the transverse reso-
nance in the B phase, in agreement with the observations of
Ref. 15. It therefore follows from (35) that a shift of the
transverse-resonance frequency should be evidence of the
presence of spatially inhomogeneous configurations or tex-
tures in the field of the vector n.

Certain NMR experiments with the B phase have re-
vealed a dip on the absorption profile (Ref. 20, for example).
This dip can be explained quite easily under the assumption
that the field of the vector n has a domain wall in which the
parallel orientation of n with respect to H gives way to an
antiparallel orientation.20 Such domain walls or solitons are
analogous to the walls in nematic liquid crystals.21'22

An n-texture is implicitly present in this example. In the
discussion below we will directly study textures of the order
parameter in the superfluid phases of He3.

5. DOMAIN WALLS OR SOLITONS

From the topological standpoint, solitons are nonsingu-
lar stable configurations of the order-parameters fields. Such
configurations may form because the order parameter may
be different at different ranges. The scale lengths determin-
ing the structure of the order parameter at different ranges
are related to the dipole-dipole interaction and the presence
of a magnetic field. The same lengths determine the sizes of
the solitons. In the present section of the paper we examine
dipole and magnetic planar solitons in those very simple
cases in which the solitons can be described by sine-Gordon
equations. The solutions of these equations correspond to
domain walls in the V, 1, n, and •& fields, which form order
parameters of the He3 superfluid phases. The basic topics of
this section are the creation and dynamics of solitons.

5.1. Creation of solitons

Before we take up specific examples, let us examine the
creation of solitons and find the characteristics of solitons in
situations describable by a sine-Gordon equation

^tT — $K + sin \|> = 0 (36)

with the initial conditions

T = 0: r|> = 0, \|JT = 2w (£). (37)

In the A phase of He3, for example, ijj/2 would be the angle
between I and V, and the initial conditions would correspond
to the switching off of a nonuniform magnetic field.23

We apply to ( 36) , ( 37 ) the method of the inverse scat-
tering problem, developed for the sine-Gordon equation by
Ablowitz et a/.24 (see also Ref. 25). This method can be
summarized as follows: We introduce the auxilliary system
of equations

<pt = V (X, i > < (38)<p,
<pt = V (K, (39)

where <p = I ), and the matrixes C/and V depend on the

parameter /I and the unknown function ^t. The matrices U
and Fare chosen in such a way that Eq. (36) follows from
the condition for the compatibility of the system (38),(39):

t /T—F5 + IU, V] =0. (40)

Treating the eigenvalue problem for Eq. (38) as a scat-
tering problem in which the potential is given in terms of if>
and i/>T at r = 0, we can then find the scattering data: <pN and
AN at r — 0. The time evolution of the scattering data is
determined by Eq. (39). The method of the inverse scatter-
ing problem makes it possible to use the scattering data to
find the scattering potential, i.e., the function if> which satis-
fies Eq. (36).

For the purposes of the present calculation it is suffi-
cient to solve an eigenvlaue problem, so that we can deter-
mine, e.g., the velocity of the TVth soliton.

Equation (38) is a system of equations for ^>, and <p2.
For the case of initial conditions (37), this system of equa-
tions takes the form23

= _J_.j t LO)(E) (41)

- f fcn (42)

where k=X- 1/4A.
Maki and Kumar23 showed that for a Fl-shaped func-

tion,

CD (|) = coe (Z2 — g2), (43)

the problem of finding the eigenvalues AN reduces to the
problem of solving the equations

sin (Ip + g) = 0, (44>

where/)2 = a)2 — x2, sin q = 2-,cosq = —, and x = — ik.
a> co

Purely imaginary values of A correspond to solitons,
while complex-conjugate pairs (A, — A * ) correspond to
breather (pulsating) modes or doublet solitons.24

It follows from the solution of (44) that the following
inequality must hold for the formation of a pair of solitons or
breather modes23:

where / = lco, IN = ir(N~\),N = 1,2,... . Pairs of solitons
are created under the condition23

0) > (46)
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(the opposite inequality corresponds to breather modes).
The dependence of ION on / was found numerically in Ref.
23, but at values of \x/to\, which are not too close to unity it
is simple to derive the following expression26 for CON :

l+/? (471
<a*r= i(i + i*Li*N)-iN • ^ '

This expression remains qualitatively correct even as we let
\x/co\—*l. The velocity of the N th soliton and the frequency
of the Nth breather mode are, respectively,

2 (48)
1

\ (49)

The results found here make it possible to describe ex-
periments in which a magnetic field is switched off in terms
of an inverse scattering problem (the quantity ta is propor-
tional to the field which is switched off).

5.2. A phase. V-solitons

Let us examine the solitons which exist in the A phase of
He3 by virtue of the dipole energy in (12). We begin by writ-
ing the energies which we will need in the Lagrangian, taking
into account the form of the order parameter in the A phase,
(8). The gradient part of the potential energy is27 (in the
absence of surface terms)

*"grad =^- j d'r[3 |div A|2+|rot A|2+2 |(AV) V|2

+(divV)2+(rotV)2]. (50)

The kinetic energy describing the rotation of the vector V
is28

where to is expressed in terms of the Euler angles a, /?, and y:

<ox — — PJ sin 7 + «j cos 6 sin p,
cflj, = P< cos 7 + a, sin 6 sin p, (52)
w* — Y« + «« cos p.

We impose a static magnetic field H along the z axis. At
equilibrium, the vectors V and 1 are therefore in the xy plane.
We assume that the distribution of 1 is uniform, and that the
V-texture changes only along the z direction. In this case the
Lagrangian takes the simple form

# = T|- (v!-2«L"C<-ej.Yl4 Qa
Acosz7), (53)

where y is the angle between 1 and V, CL = YO(K^\/XA. ) I / 2

is the velocity of spin waves propagating perpendicular to 1,
and the last term in (53) is the dipole energy in (12).

From (53) we easily find an equation for the angle
between 1 and V:

Y« —clYzz + ̂ Asin7Cos7 = 0. (54)

This equation has the soliton solution

7= 2arctgexp [± (55)

which describes a perturbation which is moving at a velocity
u = VCL and whose dimension is £dip = ci/flA (at v = 0).

The parameter v is determined by the initial conditions.
Maki and Kumar23 have studied the experimental situ-

ation in which a nonuniform magnetic field H0(z) is
switched off. In this case, we must add the following initial
condition to Eq. ( 54) :

i = 0: 7 = 0 , vt = 670ff0(2), (56)

where the constant 8 is determined empirically (in Ref. 23,
8=1).

Using the substitution 2-y = ifi, and transforming to di-
mensionless variables r = HAt and £ = ClAz/cL , we find a
standard sine-Gordon equation, (36), with the initial condi-
tions in (37). In the case of a Fl-shaped pulse, (43), we
would have / = L /£ dip , a = <57o/y0/flA here, where 2L is the
"length" of the pulse, H0 is the strength of the field which is
switched off, and the velocity of the Nth soliton is
"N — yNci • If we assume, in accordance with Ref. 23, the
value S = 1, we find that at a~ 1 hundreds of solitons are
produced.29

A V-soliton is a domain wall between two orientations
of the vector V: parallel and antiparallel to 1. A V-solition
can be observed if the homogeneous distribution of is im-
posed by, for example, boundary conditions. In an open sys-
tem, a homogeneous distribution of 1 is unstable, and a mixed
structure forms in which the vectors 1 and V rotate in the
plane perpendicular to the magnetic field.27'29

Recent experiments30 in which He3-A was studied by a
pulsed NMR method demonstrated effects of domain walls
in the field of the vector V. In these experiments, V-solitons
(apparently of the splay type21'22'29) were produced by an rf
pulse which deflected the magnetization through a large an-
gle ( > 140°). Fomin31 has offered a theoretical explanation
for the creation of solitons in such experiments on the basis
that the spatially uniform precession of a magnetization de-
flected through a finite angle is unstable.32 Fomin showed31

that periodic structures in which the vector V can rotate
through 2ir with respect to 1, forming a domain wall, cannot
form in the A phase of He3. A domain wall of this sort would
be unstable and should either disappear or break in two. A
breakup of domain walls can explain the time evolution of
the shift of the NMR frequency which was observed in Ref.
30. Furthermore, a transition from uniform precession to a
soliton precession31 provides a qualitative explanation for
the existence of two precession frequencies of a magnetiza-
tion deflected through a large angle.30

5.3. B phase, n-solitons

As we mentioned earlier, a magnetic field gives rise to n-
textures in the B phase of He3 which are analogous to mag-
netic walls in nematic liquid crystals.21 In this subsection of
the paper we examine the creation and propagation of n-
solitons when a nonuniform magnetic field is switched off.
In a situation of this sort, Webb, Sager, and Wheatley33 ob-
served in He3-B a propagation of slow magnetic perturba-
tions at a velocity which was a complicated function of the
exciting magnetic field. In order to identify the magnetic
pertubations observed in Ref. 33 with n-solitons, it is neces-
sary to carry out more-detailed measurements of the depen-
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dence of the wave velocity on the magnetic field. However, a
qualitative explanation for the results of Ref. 3 can be offered
in terms of n-solitons.26

The potential energy in the B phase of He3 in a magnetic
field is the sum of the orientational energy in the magnetic
field,34 (15), the dipole energy (13), and the gradient energy
(11), the last of which is written in the following way35 in and the velocity of the N th soliton is
terms of the variables n and ft:

The situation with a magnetic field being switched off is
now described precisely as in the preceeding subsection, ex-
cept that now we have

L

-cos0)

X[(divn)2 + (rotn)2]

— -|- [(nV) 0 -f sin * div n

-h(l-cosd)(nrotn)]2}. (57)

The kinetic energy is given by (51), where XA must be
replaced by %B, and it is convenient to express e> in terms of n
and i? (Ref. 35):

<o = n#, — (1 — cos •&) [nn(] + sin On,. (58)

It is now a straightforward matter to derive an equation
of motion for the vector n, under the assumption that we are
dealing with a Leggett configuration cos i?0 = — 1/4, since
the dipole energy is considerably greater than the magnetic
energy for a broad range of magnetic fields. We furthermore
restrict the analysis to planar structures, ignoring excursions
of the vector n from the plane because of a mixing35 of bend
and twist deformation.22 We accordingly assume that the
magnetic field is directed along the x axis and we have
n = {cosf>(x), sin <p(x),Q}. This case corresponds to splay-
bend deformations and is described by the equation26

l = 0; (59)

Here

ej=4--

where 6, = 13, 62 = 11, 63 = 16, K, are the "Frank con-
stants,"22 and a is given by expression (6) in Ref. 36

If AT, = AT3 (a2 = 0), static solution (59) represents a
wall perpendicular to the magnetic field.21 An anisotropy
(AT, 7^ AT3) has the consequence that the wall becomes asym-
metric with respect to the x = 0 plane.

Seeking a traveling-wave solution (59), <p = <p(x
— ut), we find the condition26

4-<_^«l. (6°)

Under this condition, we can ignore the difference between
AT, and K3, and we can solve the following equation instead
ofEq. (59):

(fit — cz<fxx + QH sin q> cos <p = 0, (61)

where

(62)

Let us briefly discuss the behavior of the soliton velocity
as a function of the temperature Tand of the fields H0 and H.
The temperature dependence of the limiting soliton velocity
c <x AB <x [ 1 — T/TC) ]1 / 2 (we are ignoring the temperature
dependence of^B here), is the same as the temperature de-
pendence of the velocity of the magnetic perturbations ob-
served in Ref. 33. This velocity is roughly three or four times
smaller than c; the velocity of the magnetic perturbations
increased with decreasing field HM and with increasing field
HR (Ref. 33). According to (62), the velocity of an n-soli-
ton depends in a similar way on the fields H and H0, which
correspond to //M and //R. That this is true can be seen
easily when we have *ON ~ 1, and the dependence of MN onff
and H0 is determined primarily by the quantity co <xH0/H.
We should also note that the temperature dependence of the
soliton velocity given by (62) is stronger than that observed
in Ref. 33 if we take into account the "experimental" tem-
perature dependence of the quantity a, in accordance with
Ref. 36.

5.4. B phase, d-solitons

In the B phase of He3, the t?-solitons stem from a dipole-
dipole interaction, as do the V-solitons in the A phase. The
energies which we need have already been written—in (13),
(51), and (57)—so that we can immediately write an equa-
tion for n||H||Oz, under the assumption that the field of the
vector n is constant and that we have t? = t?(/,z) (Refs. 37
and 23):

*„- c\ 022 = -g- QJ (cos 0 + 4-) sin 0, (63)
"" V ' 4 /

where cy = 70(ATAB/2^B)1/2 is the velocity of the spin
waves along the n direction.

We have two types of soliton solutions of Eq. (63)
(Ref. 37):

* , /
T = ± (

.,cth z — ut

^]1/2th z — ut

(64)

(65)

where £dip = cv /HB is the dipole length, u = vc^ is the soli-
ton velocity, and v is a parameter.

In a soliton of the first type, in (64), the angle i? varies
from i?0 to 2ir —1?0; in a soliton of the second type, a domain
wall, (65), i? varies from — t?0 to i?0, where cos i?0 = — 1/4.
Mineyev and Volovik" have shown that a soliton of this
second type undergoes a continuous transformation into an
n-soliton with decreasing energy.

Solutions (64) and (65) are particular solutions of Eq.
(63). In contrast with the case of the sine-Gordon equation,
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we cannot analytically derive JV-soliton solutions in this
case. We simply note that, as in the case of the sine-Gordon
equation, states analogous to breather modes have been
found for Eq. (63) by numerical integration.38

6. ORBITAL DYNAMICS IN THE PRESENCE OF A
SUPERFLUID FLOW IN He*-A

Up to this point we have been concerned primarily with
the spin subsystem of the superfluid phases of He3. We have
simply mentioned briefly that mixed spin-orbital textures
may form in the A phase of He3 by virtue of a dipole-dipole
interaction.27'29 There is yet another important case in which
a wall appears between two opposite orientations of 1. Such a
wall arises when there is a superfluid flow in a liquid. This
situation was studied by Hall and Hook,39'40 who proposed
an explanation for the experiments by Paulson, Krusius, and
Wheatley,41-42 which had revealed a persistent orbital mo-
tion in He3-A. Paulson et al. observed persistent oscillations
of the intensity of sound transmitted through the A phase
after peliminary changes in the direction and strength of a
magnetic field. These oscillations could continue for hours,
and the very finest details of the shape of the oscillations
were reproduced.43

Hook and Hall40 showed that these oscillations can be
explained in terms of a precession of a domain wall in the
field of the vector 1, to whose orientation the absorption of
sound is very sensitive. The period of the oscillations is
3flyi;//jS||i4, according to Ref. 40 (where f i , is the orbital
viscosity coefficent, and ps^ is the superfluid density along
1). As a result we find a rather good description of the period
and temperature dependence of the oscillations of the sound
intensity in the experiments by Paulson et al.*1

Volovik44 and Hall45 have proposed another explana-
tion for these experiments. According to this alternative ex-
planation,44-45 a precession of the vector 1 under dissipative
conditions, by analogy with the time-varying Josephson ef-
fect in an ordinary superfluid liquid. This effect stems from a
so-called phase-slippage mechanism.46 Before we take up the
description of the phase-slippage mechanism in He3-A,
which is called an "instanton mechanism,"47 we consider the
dissipative superfluid motion and the phase-slippage mecha-
nism in superfluid He4 and a superconductor.

6.1. Dissipative superfluid motion

As we have already mentioned, superfluidity stems
from ordering in a system or from coherent behavior of a
macroscopic fraction of the particles of a superfluid liquid.
From the topological standpoint, this phenomenon stems
from a degeneracy in the phase of the wave function of a
condensate or an order parameter. Another, and no less in-
teresting, consequence of the topological properties of the
space of the order parameter is a different type of superfluid
motion: dissipative. In this case, there is a periodic and
abrupt change in phase (the "phase slippage") of the order
parameter due to the formation of vortices in the liquid flow
when the velocity of the superfluid flow exceeds a certain
critical level. This is the case of the time-varying Josephson

effect.46'7'9 In a superconductor, this process is accompanied
by the emission of electromagnetic radiation.

A vortex in superfluid He4 or in a superconductor is a
singular line. As this line is circumvented along a closed
contour, the phase of the order parameter, (1), changes by
2irn (where n is an integer), while the phase is not defined on
the line itself. Far from the vortex line, the order parameter
is described by

6(r) = Bo. exp (imp), n = 0, ±1, ±2

where 6„ = const, cp is the polar angle in a cylindrical coor-
dinate system {z, p,<p}, and the vortex line runs along the x
axis. The form of the order parameter is found from the cor-
responding Euler-Lagrange equations. Far from the vortex
axis, the equation for the phase 4> = <t>(^>) takes the simple
form

d»<D n= 0,

from which we find 4> = Ccp, where Cis a constant. From the
requirement that the order parameters 0(r) be continuous
upon a change of ITT in the angle <p we conclude that
the constant C must be equal to an integer n
(n = 0, ± 1, ± 2,...). The distribution of the order-param-
eter field can be described in a graphic way as the distribu-
tion of a two-dimensional vector (of length 9X ) which can
be introduced in place of 6 ̂  exp{/n^}. For example, in the
case n = 1 a vortex can be depicted by the field of vectors of
this sort, tangent to concentric circles. The center of the cir-
cles corresponds to the vortex line and is a singular point of
the vector field (the direction of the vector field is not de-
fined at this point). Actually, \0 \ (and thus the superfluid
density ) vanishes on the vortex line. This circumstance cor-
responds to a destruction of the condensate and to a transi-
tion of the liquid into the normal state. The latter assertion
means that energy must be expended on the formation of a
vortex, since the ordered state corresponds to a minimum of
the energy (at temperatures below Tc ).

We turn now to the dissipative case of superfluid mo-
tion, associated with the formation of vortices in a superfluid
flow. We write the equation of motion of an ordinary super-
fluid liquid:

where//0 is the chemical potential in the coordinate system
in which the velocity of the normal motion is vn =0 (here
and below, we are asssuming vn=0).6 Equation (66) de-
scribes an acceleration of the superfluid liquid by an external
force.

Sincevs = (#/ra)A«l>, Eq. (66) can be integrated along
some path connecting points 1 and 2:

•ar<<P,-«Pi)=—£<!*:-ri), (67)

where m is the mass of the particle (the He4 atom or the
Cooper pair). According to Eq. (67), the phase difference
between certain points increases linearly with the time. An-
derson46 showed that vortices prevent an unbounded accel-
eration of a superfluid liquid; as they intersect the line con-
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necting points 1 and 2, the vortices reduce the phase
difference by 2-rr (in the case n = 1). The result is the estab-
lishment of a steady state, which can be described by averag-
ing Eq. (67) over a long time interval T. The number of
vortices which intersect the line connecting points 1 and 2 in
a unit time interval is therefore46

dJVy
At

(68)

Equation (68) determines the steady-state dissipative flow
of a superfluid liquid which is the result of phase slippage,
i.e., a change in the phase difference between certain points
due to the formation of vortices.

6.2. Instanton mechanism for phase slippage

Anderson and Toulouse48 have shown that phase slip-
page can occur in the A phase of superfluid He3 as a result of
the motion of nonsingular vortices (the order-parameter
fields are continuous on the lines of these vortices; in other
words, the condensate does not break up7'9). In He3-A, how-
ever, we are apparently dealing with the instanton mecha-
nism of phase slippage proposed by Volovik44'7'9 and Hall.45

Let us examine this mechanism in more detail.
In the case of the He3 A phase we would replace Eq.

(66 )by 6 (v n =0)

_^L— _-£i±!_ !L_i r_£L-£Ll (69)
dt dxt 2m L dxi dt J '

We consider a one-dimensional motion, assuming that all
the variables depend on only the single coordinate (z) along
the flow (vs =uf). We rewrite (69) as

(70)

where

_
2m

„n'

_
dz dt

(71)

It is easy to see that a steady state is reached in the
system if 44

•<•*>=«• '0,

i.e., if oscillations of the vector 1 maintain a nonzero time
average of the gradient of the chemical potential.

The quantity n has the meaning of the density of the
instanton charge. The integral of n over some space-time
region AS (in the case at hand, the dimensions of AS are
determined by the periods of the oscillations along z and t}
with a homogeneous distribution of 1 at the boundary of AS"
is a topological invariant (a charge), i.e., a quantity which
does not depend on continuous deformations of the 1 field.
Specifically, the integer44'9

AS

is the "order" of the mapping of AS on to the unit sphere
I2 = 1. The order of the mapping is the number of times the
sphere is circumvented by the vector 1 during motion over
the region AS. Configurations of the 1 field with N ^0 are
"instantons" (Ref. 49, for example).

FIG. 1.

Figure 1 shows an example of a configuration of the 1
field with N = 1. We see from this figure that the inhomo-
geneous distribution of the 1 field has finite dimensions in
both space and time; hence the name "instanton." Such con-
figurations were apparently first found for the field of the
director n (n2 = 1; the directions n and — n are equivalent)
in a nematic liquid crystal.22 Figure 2 shows the distribution
of the n field, whose intersection with the y, z plane has the
configuration shown in Fig. 1 (with a replacement of the
time t by a second spatial coordinate, y). Such a distribution
of a unit vector field is also called a "nonsingular vortex" or
"linear soliton."51-" These are precisely the vortices in the
field of the vector 1 which Anderson and Toulouse48 studied
in the paper in which they proposed a phase-slippage mecha-
nism. It should also be noted that configurations character-
ized by the order of a mapping of a sphere onto a sphere
(instantons or nonsingular vortices or linear solitons) as-
sumed a general significance after the appearance of Belavin
and Polyakov's paper50 on a planar Heisenberg magnetic
material, which is simultaneously a representative of a wide
range of field-theory models with an interaction of a geomet-
ric type. Belavin and Polyakov50 derived exact multi-instan-
ton solutions of the equations in the model in which they
were working. One of the many examples of the application
of the instanton concept was described above: Space-time
oscillations of the vector 1 in the form of an array of instan-
tons in the space z,t effect a phase slippage in He3-A. Ques-
tions associated with Belavin-Polyakov instantons were
studied in detail in the review by Perelomov.49

We turn now to the hydrodynamics of the He3 A phase.

FIG. 2.
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6.3. Phenomenological equations and trajectories of the
system

A persistent orbital motion in He3 -A occurs when spe-
cial initial conditions are arranged. Furthermore, a persis-
tent motion will not be observed in practice at pressures be-
low the melting pressure.43 The numerical solutions of the
complicated nonlinear equation for the vector 1 which have
been carried out40 do not tell us which regimes are possible in
a superfluid liquid and in which regime will a liquid be under
some particular set of conditions. To generate a picture of
possible regimes in the behavior of He3-A containing super-
fluid flows, Volovik47 proposed a phenomenological de-
scription of the hydrodynamics of He3-A on the basis of an
instanton phase-slippage mechanism.7'9'44'45 Let us examine
that model.

We supplement Eq. (70) for vs with an equation for 1
(Refs. 47,6),

where

E = -

I 1 /-IT,- - I - ' (72)

(73)

p., ~K^\m2/f? is the superfluid density, and £(1) is the or-
bital part of the gradient energy in (50) (Ref. 47).

We now transform to Volovik's "crude" model,47 in
which system (70), (72), a system of hydrodynamic equa-
tions for vs and 1, reduces to a system of ordinary differential
equations for variables averaged over regions larger than the
characteristic region z0f0 of the space-time variations of the
vector 1, the density of the gradient energy e, the density of
the superfluid flow ys, and the density of the instanton
charge n. Formally, this approach is made by replacing the
derivatives d/dz and d/dt by l/z0 and \/t0, respectively,
where z0 and t0 are given by47

ft 1 (74)

'Ps-^rif •
(75)

For example, an equation for £ can be found from Eq.
(72), multiplied by d\/dt,

6e ai .. / 51 \a , „ (76)

and the estimate
(77)

at

Substituting (77) into (76), we find
te_= __ n>_ (78)
dt P" "ra ^PsM1! e >

where a, > 0 is a parameter of the model, which is of order
unity. An equation for n is derived in an analogous way; it
contains four phenomenological parameters.47

An equation for u, can be found by replacing the quant-
ties in (70) by their average values. The gradient of the
chemical potential either is given or in the case of a given
current, is found from (70).

We thus have a system of equations for the large-scale
variables us, £, and n. This system of equations contains five

dimensionless parameters, one of which can be eliminated by
a gauge transformation. In the case of given current, (dvs/
dt = 0), we are left with two equations, which take the fol-
lowing form47 in the system of units vs =ps = f i , = 1:

i--»-i, at>0, (79)

where a^ a2, and a3 are parameters of the model.
A study of the dependence of the trajectories of the sys-

tem, (79), (80), on the parameters a, yields information on
the states of the A phase in the presence of superfluid flows
and on transitions of the system from one state to another
induced by temperature changes and external fields. Such
transitions correspond to changes in the topology of trajec-
tories (79), (80) or bifurcations.

We see from (79), (80) that two types of steady state
are possible:

1) Without dissipation, i.e., in the absence of instan-
tons,

n = 0 , E = EO, (81)

where e0 is arbitrary.
2 ) An oscillatory dissipative steady state,

(82)

under the condition
l+a 3 >cc 2 . (83)

In the case without dissipation, with EO^O, there is a
superfluid flow with an inhomogeneous distribution of 1.

In the dissipative case, as follows from (74), (75), and
(82), the time and space scales of the oscillations are47

Zn~_ft (84)

In other words, we have the oscillatory situation which was
observed experimentally in Ref. 41 and 42. This situation is
stable if

a!+a2<2. (85)

In addition to the cases which we have just listed, there
may be a current state without dissipation in the system.47

One of the possible regimes in which such a state is stable is47

«!>!, «8>0. (86)
It is easy to see that the ranges of the parameters a, which
are determined by inequalities (83), (85),and (86) overlap,
so that there may be either a homogeneous state or a dissipa-
tive state, depending on the initial conditions. This is appar-
ently the result which has been found experimentally4' (see
the discussion above).

7. CONCLUSION

Solitons and instantons are found in many physical sys-
tems. Several of these systems were described above. We can
add a few related examples: In magnetic substances, domain
walls or solitons can exist. In rotating He3-A, nonsingular
vortices form.52"54 In thin superconductors, there is a phase-
slippage mechanism analogous to that discussed in the pre-
ceeding section of the present paper.55 This list of examples
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could easily be continued, but we turn instead to some gen-
eral comments.

Superfluid helium-3 is interesting in many regards. On
the one hand, the superfluid phases of He3 constitute rather
exotic physical entities which exist at low temperatures. On
the other hand, these phases combine the properties of many
physical systems, such as magnetic substances, liquid crys-
tals, and superconductors; they are also a real embodiment
of certain field-theory models. Furthermore, the realization
of triplet pairing in He3 makes it extremely likely that the
superfluid phases of He3 are not the only entities in nature
whose Bose condensates exhibit anisotropic properties. For
example, triplet pairing may occur in neutron stars and su-
perconductors.9

Yet another important point in research on superfluid
helium-3 is the circumstance that a description of the prop-
erties of the superfluid phases of helium-3 has required ap-
pealing to topological methods. The reason is that the spaces
of the order parameter of the He3 superfluid phases have a
nontrivial topology, which allows the existence of a variety
of topologically stable extended entities (vortices, disclina-
tions, solitons, instantons, etc.) in the field of the order pa-
rameter. Furthermore, as was mentioned above, the spaces
of the order parameter are different at different length scales,
so that the field configurations which are topologically sta-
ble at short range may be unstable at long range. The net
result is that we must abandon the ordinary methods which
are used, for example, in research on disclinations in liquid
crystals.22 The methods of the theory of homotopy10 have
made it possible to classify extended entities in superfluid
phases of helium-3.

Finally, it is also important to note that topology not
only gives us methods for studying the superfluidity of heli-
um-3 (and of other physical systems) but also a language for
describing physical phenomena which involve extended en-
tities. In other words, the topological consequences of the
theory are amenable to direct experimental observation.

I would like to thank G. E. Volovik, who read the first
draft of the manuscript, for several comments.

"The order parameter is proportional to the quantity A(7") (T is the
temperature), which has the meaning of a gap in the quasiparticle spec-
trum. The quantity A (T) may be regarded as a phenomenological pa-
rameter of the theory. Near the phase-transition temperature Tc, the
behavior of this parameter is A( T) <x (rc - T) "2, and in the limit T-+0
we have A—>const. See Ref. 5 for a detailed interpretation of the quantity
d(n) and the choice of normalization (see also Ref. 8).

2'The matrix element of the order parameter, Atj (of column j and row;'),
transform as a vector under a rotation of the coordinate space or of the
orbital space and also as a vector under a rotation of the spin space.

3)Commutation relations (24) and (25) can be derived by a variety of
methods. The quantities S and A^, may be regarded as quantum-me-
chanical operators, and the corresponding commutators can be calculat-
ed by specifying S and A^ in terms of the creation and annihilation
operators of the BCS theory.16 It should also be kept in mind that S and
A^ are macroscopic quantities, and for them we can calculate Poisson
brackets and write classical equations of motion. Alternatively, we could
switch from Poisson brackets to commutators in accordance with

sional spin rotations [or the generators of an associated representation
of the SU(2) group]. Relations (24) are then simply commutation
relations for the generators of the SO(3) group, and relations (25)
follow from (24) if we note that the spin index of the matrix A^, speci-
fies the components of a vector which takes on values in a Lie algebra of
theSO(3) group (the generators S, form the basis of this algebra).
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The simplest approach, however, is to regard the components of the
spin operator S as the generators of the group SO(3) of three-dimen-
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