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The advent of the laser and its extensive application have led to the creation of new topics in
science and technology. One is modern fiber optics. The most highly developed application of
fiber optics at present is fiber-optic communication. This review discusses different types and
technologies of low-loss glass optical fiber, the theory of optical fibers, and certain phenomena
that accompany the propagation of optical radiation in such fibers, including nonlinear optical

phenomena.
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1. INTRODUCTION it was considered that they were not promising for commun-

The advent of the laser and its extensive application
have led to the appearance of a number of new topics in
science and technology. One of them is modern fiber optics,
based on the low-loss glass optical fiber. Fiber-optics com-
munication is at present the most important and developed
application of fiber optics.

Low-loss glass optical fibers were developed in response
to the need for a transmission medium for optical communi-
cation systems. The successful experiments of A. S. Popov
were followed by the rapid development of radio communi-
cation, partly because the exploitation of the then new radio-
frequency range was accompanied by the development of
monochromatic sources of radio-frequency waves. It was
well understood that a larger amount of information could
be transmitted by reducing the wavelength of these waves.
The optical range remained practically unused for commun-
ication purposes, mostly because monochromatic sources of
radiation were not available in optics. However, the advent
of the laser led to the development of communication lines
for the optical band. The initial infrastructure was thus
made available, and all the necessary ideas had already been
developed in the radio-frequency band. Early experiments
on the transmission of information through the free atmo-
sphere by means of the laser beam showed that the atmo-
sphere was not a suitable medium for the transmission of
light to large distances because of meteorological factors.
The effects of atmospheric instabilities on the light beam
could be removed by pipes incorporating correcting compo-
nents, but this meant that the transmission lines became
complex, large, and expensive.

Glass optical fibers had been used even prior to the in-
vention of the laser, but their loss exceeded 1000 dB/km, and
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ication purposes. In 1966, Kao and Hockham' showed that
the high loss of glass optical fibers was due to impurities
present in glass, and that a figure of less than 20 dB/km
could be achieved in the optical range. This work was a pow-
erful stimulus to the development of low-loss optical fibers.
In 1970, the Corning Glass Company in the United States
produced optical glass fibers with a loss of less than 20 dB/
km in the visible range. In the same year, Zh. 1. Alferov et al.
succeeded in producing continuous generation at room tem-
perature in a semiconductor laser based on the GaAlAs dou-
ble heterostructure.” These two advances provided the basis
for the development of fiber-optic communication. In not
much more than another five years, optical fibers based on
high-silica glass with extremely low loss of the order of a few
tenths of dB/km (~10° cm™"') in the near infrared were
developed. The availability of glass optical fibers with such
low optical loss in turn stimulated intensive development
work on other optical communication systems, including
long-life (in excess of 10° h) semiconductor lasers, photode-
tectors, components for integrated optics, and so on. This
led to rapid advances in fiber-optic communication.

Many different fiber-optic communication systems
have been tested in many countries under practical condi-
tions during the last ten years. At present, the most extensive
application of optical fiber communication is in the tele-
phone network. Low-loss optical fibers are also very promis-
ing for cable television, and major projects involving the set-
ting up of fiber-optic cable television have been established
in all developed countries. In particular, in May 1984, prac-
tical tests began in Moscow on the first optical-fiber cable
TV line supplying television signals to a house on Ural’skaya
Street, which is in an area with poor television reception.
These trials demonstrated the technological and economic
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utility of these systems. World wide, low-loss optical fibers
are now being manufactured at the rate of about 10° km/y.

Fiber-optic cables have obvious advantages as com-
pared with coaxial cables. They have no need for scarce non-
ferrous metals (copper, lead, and so on) and are highly im-
mune interference. Their most important advantage is that
they can transmit information at high speed to large dis-
tances without repeaters. For example, fiber-optic commun-
ication systems have now been developed for data transmis-
sion at the rate of 4 Gbit/s to distances in excess of 100 km
without repeaters.® The enormous possibilities of fiber-optic
communication and the present state of development of the
necessary infrastructure is illustrated by the underwater fi-
ber-optic communication cables that are at present being
installed under the Atlantic and Pacific Oceans.

Recent years have seen a number of new applications of
the low-loss glass optical fiber. These include optic-fiber sen-
sors for different physical fields (acoustic waves, tempera-
ture, magnetic waves, rotation, and so on) in which the optic
fiber is the sensitive element,* and also the use of optic fibers
for the channeling of powerful laser radiation for medical
and technological purposes.®

Nonlinear fiber optics is a further important and inter-
esting application.® High-silica glass is not highly nonlinear,
but the very considerable length of low-loss optic fibers and
their small cross section have sharply reduced the threshold
for different nonlinear phenomena. This has also substan-
tially extended the range of possible experiments because itis
now possible to use as pump sources the relatively low-pow-
er tunable dye and doped-crystal lasers.

All this has been responsible for the extensive interest in
nonlinear fiber optics, and very interesting results have been
reported in recent years. They include the observation of the
soliton mode of propagation of optical pulses, the produc-
tion of the femtosecond optical pulses, the development of
the soliton laser, and so on. Nonlinear optical communica-
tion lines are under discussion in the literature.*’>¢

In this review, we shall consider the types and technolo-
gy of low-loss optical fibers, the theory of optical fibers, and
some phenomena accompanying the propagation of optical
radiation along a fiber.

At the end, we shall consider possible future develop-
ment of fiber optics.

2. TYPES OF OPTICAL FIBER AND FABRICATION
TECHNOLOGY

The typical optical fiber is a long filament with a diame-
ter of 100~1000 um, depending on the particular applica-
tion. It consists of a cylindrical glass core surrounded by
cladding with a lower refractive index (Fig. 1). The cladding
is usually made of glass, but different polymers are also used.
Optic fibers can be divided into multimode and single mode
fibers, depending on the number of modes that can propa-
gate along the lightguide. The core diameter 24 is usually 5-
8 um for single-mode fibers working in the nearinfrared, and
between a few tens and a few hundred ym in the case of
multimode fibers. The difference between the refractive in-
dices of the core and cladding, An = n, — n,, produces the
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FIG. 1. Cross section and refractive index profile of multimode step-index
(a), multimode graded-index (b), and single-mode fibers.

channeling of light by total internal reflection at the core-
cladding separation boundary, and is usually 1-2% for mul-
timode fibers and a few tenths of a per cent for single-mode
fibers. The numerical aperture

NA=(n}—ngp)2=sinéd,,

is an important parameter of the optic fiber, where 6, is the
maximum angle between the light ray and the fiber axis for
which propagation as a result of total internal reflection is
still taking place.

Three basic types of optical fiber are manufactured at
present, depending on application (see Fig. 1).

1. Step-index multimode fibers with high numerical ap-
erture (0.29-0.30) and a large core diameter (a few hundred
um). This class of fiber has been developed for low rates of
data transmission (tens or hundreds of Mbit/s) over short
distances.

2. Graded-index multimode optic fibers for wide-band
long-distance communication lines. Here the data transmis-
sion rate is up to 140 Mbit/s or higher, and the distances are
2040 km. As a rule, the core diameter of these fibers is 50
pm, the total diameter is 125 #m, and the numerical aperture
is 0.20-0.23.

3. Single-mode optic fibers for data transmission rates
in excess of 140 Mbit/s and distances in excess of 40 km.
These are also widely used in fiber-optic sensors of different
physical fields.

The greatest advances have now been achieved in the
development of optic fibers based on high-silica glass. These
fibers have the lowest loss (fraction of dB/km in the near
infrared) and the greatest mechanical strength (up to 5
GPa). The core and cladding material is usually high-silica
glass doped with GeO,, P,0s, B,0,, or F~. These dopants
are essential if the necessary optical and thermophysical pa-
rameters of the core and cladding material (refractive index,
softening point, etc.) are to be achieved. F~ and B,0, reduce
the refractive index of the high-silica glass, whilst all other
dopants tend to increase it. Any dopant will reduce the melt-
ing point of high-silica glass.

The fabrication technology used for fibers of this kind is
based on the chemical deposition of fiber material from the
vapor phase, the initial materials being volatile halides and
oxygen. The volatile halides are usually the chlorides of sili-
con, germanium, and boron, phosphorus oxychloride, and
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boron bromide. The principle of fabrication of the fiber pre-
form by chemical deposition from the vapor phase is illus-
trated schematically in Fig. 2. The left-hand side of the fig-
ure shows the scheme used to produce the halide vapor.
Oxygen is used as the carrier gas. The gas flow controllers
(GFC) are used to vary the supply of the compounds neces-
sary to produce the preform.

Three methods are used in commercial fabrication of
high-silica optic fibers. In the first method (Fig. 2a), which
is frequently referred to as the inside deposition process, the
reaction between the halide vapor and oxygen occurs inside
a rotating fused-silica tube (substrate tube). This produces
fine particles of silicon dioxide and of the dopants, which are
deposited on the inner surface of the substrate tube. The
resulting layer of porous glass is then fused into bubble-free
transparent glass by a gas torch moving along the tube. This
procedure produces layer after layer of the cladding, and
then the core. When a sufficient number of such layers has
been deposited, the temperature is raised and the tube col-
lapses into the preform rod. The preform has the necessary
internal waveguide structure (core surrounded by the lower-
index cladding), and is ready for drawing out into a fiber.

In the second method (Fig. 2b), called the outside de-
position process, the halides are oxidized in the flame of the
torch, and the resulting fine oxide particles are deposited on
the outer surface of a rotating cylindrical substrate (bait
rod), with the gas burner moving along the rod. This pro-
duces the porous material of the core and then of the clad-
ding. The porous preform is then slipped off the bait rod and
is zone-sintered and simultaneously dried. The collapse of
the transparent preform and the drawing out into the fiber is
performed in a single technological operation.

In the third method (Fig. 2c), called the vapor phase
axial deposition process, the porous material is deposited on
the end of a rotating fused-silica bait rod. The resulting po-
rous preform is again zone-sintered and simultaneously
dried.

All three methods can now be used to produce fibers of
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FIG. 2. Diagram illustrating the fabrication of optical-fiber pre-
forms by chemical deposition from the vapor phase: a—inside
process (MCVD), b—outside process (OVD), c—axial deposi-
tion (VAD).

comparable quality. However, their productivities are dif-
ferent. A single preform produced by the internal deposition
method can be used to draw out ~ 10 km of fiber (125 um
diameter), whereas the preform produced by the outside
method will produce several tens of km. The axial deposition
method produces preforms from which 100 km of fiber can
be drawn and, in principle, is capable of continuous produc-
tion of optic fiber.

The next operation in lightguide fabrication is to draw
the fiber from the preform, with the simultaneous deposition
of a polymer coating.

In principle, the drawing process is simple (Fig. 3). The
preform is fed by a precision preform drive mechanism into a
furnace in which the tip of the preform is melted. The optic
fiber, retaining the waveguide structure of the preform, is
drawn from this molten glass at a rate of a few tens of m/min
and up to 60 m/min. The drawing of high-silica fiber wave-
guides is not a simple task because the temperature in the hot
zone of the furnace must be 2200 °C. At present, the preform
is usually heated in a graphite resistance furnace, an induc-
tion furnace, or an oxyhydrogen torch. A promising alterna-
tive approach is to use the CO,-laser (see, for example,
Ref. 7).

The drawing process has an important influence on the
parameters of optic fibers, especially their mechanical
strength. This strength must be sufficient to withstand the
applied load when the fiber-optic cable is manufactured, in-
stalled, and used.

The theoretical strength of glass, which is determined
by atomic bonding forces, is very high. Estimates show that
the breaking point is about 20 GPa. Figures of up to 16 GPa
have been recorded in many experiments. However, most
glass components have much lower strength, usually 30-100
MPa. Moreover, it has been noted that various defects (in-
homogeneities, inclusions, cracks) give rise to a substantial
reduction in the strength of glass and, as a rule, the strength
of glass samples is determined by surface defects.

The lower strength of glass as compared with the theo-
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FIG. 3. Schematic of fiber-drawing machine used to produce optical fibers
from preforms: 1—precision preform drive mechanism, 2—preform, 3—
furnace, 4—fiber diameter sensor, 5—deposition of primary coating on
fiber, 6—furnace for the polymerization of primary coating, 7-—precision
takeup drum, 8—displacement of drum for layered winding, 9—fiber di-
ameter control feedback system, 10—preform drive mechanism control
or takeup-drum control.

retical value is explained by the Griffiths microcrack hy-
pothesis. In this model, it is postulated that very small cracks
are present on the surface of the glass sample. The tensile
stress applied to the sample is concentrated at the tip of the
crack, the local stress may become equal to the theoretical
stress of the glass, and the atomic bonds are broken. How-
ever, the average stress in the sample can still be quite low.
This approach leads to a fracture criterion for glass in the
form o'/%(a) = const where o is the applied stress and a is
the semi-major axis of the crack, assumed to be elliptic in
cross section.®

Estimates show that the presence of a crack with
a = 0.03 um in the glass fiber wil] lead to fracture under a
tensile load of 3.5 10* MPa.

The validity of the Griffiths hypothesis has been con-
firmed by the many successful applications of methods of
increasing the strength of glass based upon it. They include
ion exchange, chemical etching, and so on. The hypothesis
has also been confirmed by the fact that the strength of fresh-
ly fabricated glass fibers is greater by several orders of mag-
nitude than the strength of fibers left unprotected for several
days in the laboratory.

A glass sample contains many cracks, but it is the larg-
est crack that is responsible for the fracture of the sample
under stress. There is no way at present of determining the
size and position of the largest crack in a sample and, since
each specimen has in general a crack size distribution, it is
clear that the strength of glass is an essentially statistical
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parameter. Measurements of strength are usually analyzed
in terms of Weibull statistics, based on the weakest-link
model. The probability that a fiber of length / will fail when a
tensile stress ¢ is applied to it is satisfactorily described by
the Weibull probability formula

F (o, I)=1—exp [ZL (Ui)'"]

orlnln [1/(1 — F)] =mIn (c/0,) + In (I /1,) where Fis
the fraction of fiber samples of length / that fail under a given
load and /,, 0, m are constants, determined by failure testing
of a large number of samples.

The quantity m is inversely proportional to the spread
in the strength of samples. For optic fibers with a small
spread in their longitudinal strength, the Weibull distribu-
tion has a steep slope (m is large).

Numerous studies of the failure of glass optic fibers and
of the effects of fabrication technology on their strength have
been carried out in the course of the last decade (see, for
example, Refs. 9-12) and have led to the development of
light fibers with tensile strengths of up to a few GPa for fiber
lengths of the order of 10 km. These studies have demon-
strated that high-strength optic fibers must satisfy the fol-
lowing basic conditions:

1. High optical quality of the substrate tube. Synthetic

‘high-silica glass is preferred.

2. The preform must have a high-quality surface. The
preform must be etched or fired, or both, prior to the draw-
ing process.

3. The preform must be heated under sterile conditions
during the drawing process. The heating of the preform with
a CO, laser beam seems to be promising.

4. The deposition of polymer coatings during the draw-
ing process must not damage the surface of the optic fibers.

Failure rates, %

99

90 E

50

T

[ ] M B
a6 08 1 2 4 &
Tensile strength, GPa

FIG. 4. Failure probability distribution for synthetic high-silica fibers.
Sample length 20 m, number of samples 20. 1-—standard atmosphere in
graphite furnace, 2—dust free atmosphere in furnace.
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The most common materials for covering the optic fiber
during the drawing process are epoxy resin curved by ultra-
violet radiation, or silicone rubber vulcanized at moderate
temperatures. The thickness of the coating ranges from a few
pm to several tens of pm.

Figure 4 shows the Weibull distribution describing the
probability of failure for synthetic high-silica glass fibers
drawn with the aid of a graphite furnace.'' Dust particles in
the furnace have a very considerable effect on the strength of
the fibers.

3. THEORY OF PROPAGATION OF OPTICAL RADIATION IiN
REGULAR OPTIC FIBERS

Ray theory describes correctly the basic features of
propagation of light in an optic fiber, but more detailed in-
formation can only be obtained by solving Maxwell’s equa-
tions. The theory of regular optic fibers is now in a satisfac-
tory state and is described in great detail in the literature
(see, for example, Refs. 13-15), so that we shall confine our
attention to a brief presentation of the method of solution
and of the final results for some simple cases.

Maxwell’s equations can be reduced to the scalar wave
equation

Vip=ep SE, (1)

where i represents each of the components of Eand H, and ¢
and p are the permittivity and magnetic permeability, re-
spectively. Equation (1) is valid on the assumption that ¢ is
constant in space. Marcuse'® has shown that the wave equa-
tion (1) is approximately valid wherever the variation in ¢ is
small over distances of the order of one wavelength. This is
precisely what happens in an optic fiber.

Consider a cylindrical set of coordinates p, @, z, such
that the z axis lies along the axis of the fiber, and assume that
the permittivity is independent of z. The transverse field
components E,, E_, H,, and H, can be expressed in terms
of E, and H, by using the Maxwell equations written in
terms of cylindrical coordinates.

We shall seek the solutions in the form

E=E (pv ‘P) exp [—i (mt— ﬁz)]w

2
H = H(p, ¢) exp [ — i (ot — Bz, (2)

where A is the longitudinal propagation constant. The trans-
verse field components are then given by

. i [ po 6H
Ey=—r (Bo+5- 52)

_ i (B OE oH
E‘l"“u_ﬂ(p_ g HO sz)' 3)
H. — i aH, we_ BE,)

== (B~ =)

i B oH. oF.
Hy= =55 (5 g toe52) »
where

2 12 _p2_ (2% \2_ qao

wt =kt —pr— () — 2, (4)

and k is the propagation constant in a medium of refractive
index n. '
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The components E, and H, can be found by solving the
scalar wave equation (1) in cylindrical coordinates. These
equations are rigorous for E, and H, because ¢ is indepen-
dent of z.

Separation of variables is achieved by taking the solu-
tions in the form

E, = AF (p) etve,

5
H, = BF (p) eWve. )

The differential equation with respect to @ shows that the
constant v must be an integer in order to ensure azimuthal
periodicity. The differential equation for F(p) is
2F 1 oF v2 *

6674_.‘;3_9 (e—p— 5 ) F=0. (6)
So far, we have not defined the structure of the optic fiber.
However, we must now consider this structure because the
solutions for S and F(p) are found from (6) by imposing the
appropriate boundary conditions. The simplest structure of
an optical fiber for which (6) can be solved is the step-index
structure. The fiber then consists of a uniform core of diame-
ter 2g and refractive index n,, and a surrounding infinite
cladding of refractive index n,. Physical considerations im-
mediately show that the solutions must satisfy the following
conditions: F(p) finite for p = 0, and F(p)—0 for p— 0.

For p <a, these conditions are satisfied by the Bessel
function J,,, so that

E, = AT )Mup) e, -
H,= B Jy (up) etve,

where > = k? — 82 k, = 2wn,/A, and A4, B are constants.
For p>a, the above conditions are satisfied by the

modified Hankel functions, and the solution has the form

E, = CK, (wp) etve, (8)
H, = DK, (wp) etv,
where w” =% — k3, k, = 27n,/2, and C, D are constants.
The quantity V= (u>+w’)"?a= (2ma/l)(n?
— n2)'/?is the characteristic parameter (or normalized fre-
quency) of the fiber and, as we shall see later, it contains a lot
of information about the fiber properties.
We must now analyze (7) and (8). As wp— w0, we have
K, (wp)—e~ " . Physical considerations show directly that
w> 0 for p—x. Consequently, B>k, The equality sign
gives the cut-off condition, in which case w = 0 and the field
leaves the fiber. Inside the core, the constant ¥ must be real,
so that k, > B. The propagation constant is thus seen to have
the following range of allowed values:

k<< B<C Ky 9

The exact solution for /7 is found from the conditions of
continuity of the tangential components of the fields E and H
across the boundary p = a. These conditions give a set of
four homogeneous equations for the unknowns 4, B, C, and
D. The equation for the eigenvalues # (the characteristic
equation ) is obtained by setting the determinant of this sys-
tem equal to zero:
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Jwa)  Kywa) 4 MJLwa) MK wa)
[t totoen | [ + o
1 1
=V2ﬁ2 (T +T”T) '
= 2na { nju?4-njw? \1/2 (10)
= ()

The primes in this equation represent differentiation with
respect to the complete argument. This equation allows only
discrete values of B within the range defined by (9).

For v = 0, the solution consists of transverse magnetic
(H, =0) and transverse electric (E, = 0) modes (TM and
TE, respectively) in the conducting hollow cylinder.

When v#0, we have the hybrid modes HE,, and
EH,, . Both E, and H, of these modes are nonzero. The
designations HE and EH depend on which of the compo-
nents (E, or H, ) gives the greater contribution to the trans-
verse field.

The oscillating character of the Bessel function J, (up)
means that equation (10) has m roots for a given v.

An important mode parameter is its cut-off frequency
which corresponds to w = 0 and, consequently, V= u,,a.
‘The cut-off conditions corresponding to different modes are

" given by the following equations:

Eva HEim: J (uma) = 0
Evm: (r}4+1) Jomy (uma) = uma Jy (Uma), (an
v=2, 3, 4,
TEom: TMom: Iy (upma) =0.

The only mode with zero cut-off frequency is HE,,. By
choosing the fiber parameters (e, An) for given wavelength
so that the next higher modes TE,,, TM,,,, and HE,,, which
have higher cut-off frequencies, cannot propagate, we can
determine the conditions for the propagation of the mode
HE, |, i.e., the optic fiber is then a single-mode fiber. This
occurs when V =2ma/A)(n} —n3)"?<2.405. Figure 5
shows a graph of the propagation constant 8 /k, for a num-
ber of low-order modes.

Let us now consider the power distribution in a given
mode within the core and cladding. This distribution is ob-
tained by integrating the Poynting vector over each part of
the fiber cross section. Marcuse'® has shown that the power
propagating in the cladding in a region well away from the

o 7 2 3 4 5 6

y= Zi“( ng-nf) e

FIG. 5. Reduced propagation constant as a function of ¥ for some of the
lowest-order modes in a step-index fiber.
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cut-off is given by

[ (- 4).

(12)

where u 2 is the mth root of the equation J, (#2a) = 0. It is
clear that

Pcore _ 1__ Pcla

Py Pyt

Hence it is clear that, as V increases, the fraction of
power transported by any mode in the cladding will de-
crease. For example, for the HE,, mode, about 70% of the
power is transported in the cladding and 30% in the core
when V=1, whereas for V = 2.405, for which the next

- group of modes begins to propagate, approximately 84% of

the power is transported in the interior of the core.

We already saw in (8) that the field distribution in the
cladding behaves as K, (wp). For large values of wp, it is
found that K, (wp)—exp( — wp), sothat whenp = w~"the
field has fallen by a factor of ¢ from its maximum value. If we
take this value of p as the mode radiusp,,, , we can show that

a
1
(M= wSap[ 11— 2w/ V)] (1)

1
Pvm ==
For example, for the HE |, mode with V' = 1, the mode radi-
us is py;==3a. Thus, the thickness of the cladding must ex-
ceed this value if perturbations of the field in the fiber are to
be avoided.

It will be useful at this point to give the expression for
the total number of modes propagating in a fiber with given
V. It has been shown' that, to a good approximation, the
total number of modes is given by

172
N=-p .

(14)

So far, we have confined our attention to an optic fiber
consisting of a uniform core surrounded by infinite cladding.
There is one other distribution of the refractive index over
the cross section of the fiber for which an exact solution of
the scalar wave equation can be obtained. This is the qua-
dratic index variation of the form

2
n’(p)—n’(O)[1—2A(-s—) ] (15)
where n(0) is the refractive index on the axis of the fiber.
Multimode optical fibers with this refractive index profile
are of major practical interest because, as we shall see later,
the near-parabolic index distribution equalizes the group ve-
locities of different modes and extends very substantially the
data transmission band width as compared with the step-
index fiber. The solution of this problem is given in Ref. 13
and will not be examined in detail here. We merely note that,
in this case, the fields can be expressed in terms of the well-
known Laguerre-Gauss functions. The mode propagation
constant is given by the simple expression

Broa=n(0)k [1 — ZVIL

e era+n]” s
In view of the importance of graded-index fibers in optic-
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fiber communication systems, it is desirable to find simple
solutions for optical fibers with a more general index distri-
bution. This problem has been solved'® by the WK B method,
well known in quantum mechanics.

A substantial simplification of the problem can be
achieved in the approximation of weakly-guided modes for
which n,~n,. It has been found'®'” that, when n,~n,, the
HE,  ,, and EH,_ |, propagation constants are almost
equal. This suggests that it may be possible to simplify the
problem by taking E, and H, in the form of a linear combi-
nation of solutions. Having determined the transverse field
components with the aid of (3), we find that (in Cartesian
coordinates)

E::‘Hﬂ:o’
Ey=AT, ) (g ve) an
mr (§) 00 (5220,

where no~=n,~n,.

Thus, it is clear that the chosen linear combination rep-
resents a wave that is linearly polarized in the y direction.
Obviously, the form of the transverse field that we have ob-
tained is simpler than the exact solution. Similar expressions
are obtained for the mode with the orthogonal polarization.
Repeating the same operation for the region p > a (with the
Bessel function replaced with the modified Hankel func-
tion), it can be shown that linearly polarized fields are the
only ones present.

Application of the boundary conditions leads to the fol-
lowing equation for the eigenvalues

wk,, +1 (wa)
Ky(wa)

ud vat (ua) _
Iy (ua)

(18)

This equation is clearly much simpler than (10). Snyder'®
has shown that the solution of this approximate equation
gives rise to an error of not more than 1% for
A = (n, — n,)/n<0.1 and 10% for A<0.25.

Linearly polarized modes are designated LP,,, in the
literature. The lowest order mode is LP,, . The relationship
between different mode designations is as follows:

LPOI - I_IE'llv
LPvm - HEv+1.m + EHv-l.mv TEomo TMomt

4. OPTICAL PHENOMENA IN GLASS FIBERS

The propagation of optical radiation in an optical fiber
is accompanied by a number of phenomena that are of both
practical and scientific interest. One of them is the attenu-
ation of the optical signal. Studies of the mechanisms respon-
sible for the optical loss and its spectral dependence enable
us not only to obtain minimum-loss optical fibers, but also to
select materials and spectral intervals for particular applica-
tions of a fiber of a given material.

Another phenomenon that is important in practice is
the broadening of a short optical pulse as it propagates along
an optical fiber. This phenomenon is important, above all,
because the broadening of a pulse restricts the rate at which
data can be transmitted along the lightguide in optical com-
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munication systems. In this Section, we shall also examine
nonlinear optical phenomena which have a number of im-
portant features in optical fibers.

4.1. Optical loss in glass fiber lightguides

We shall examine the origin of optical loss in glass light-
guides by taking the high-silica glass lightguide as an exam-
ple because this is the most widely used fiber at present and
its optical loss has been extensively studied. High-silica glass
has maximum transparency in the visible and near infrared
parts of the spectrum. The optical loss of glass is determined
by fundamental (intrinsic) absorption and scattering mech-
anisms, and by absorption and scattering by impurities and
defects.

Additional loss due to the scattering of light by inhomo-
geneities in the waveguide structure is possible in optical
fibers.

The fundamental mechanisms responsible for optical
loss in the above spectral interval include the tails of elec-
tronic absorption bands in the ultraviolet as well as the in-
frared lattice absorption and scattering of light by inhomo-
geneities present in glass with linear dimensions smaller than
the wavelength (Rayleigh scattering). »

Figure 6 shows estimates of the fundamental optical
loss in high-silica glass, obtained by extrapolating the elec-
tronic and phonon fundamental absorption edges to the
high-transparency region, and also by taking Rayleigh scat-
tering into account.' Absorption was calculated from the
transmission spectra of ultrapure high-silica glass samples in
the ultraviolet and near infrared, and the Rayleigh scatter-
ing curve was obtained by extrapolating the loss due to scat-
tering, measured in highly homogeneous high-silica glass
specimens at 0.63 um, using the A ~* law. It is clear from the
figure that the maximum transparency region of high-silica
glass lies in the range 1-1.17 um, where the absolute mini-
mum of optical loss occurs at 1.55 #m and amounts to about
5%10~7ecm™! (~0.2 dB/km).

As far as impurity absorption is concerned, in the near
infrared it is mostly due to transition-metal impurities such
as Fe, Cu, Nij, Cr, V, and so on, and also hydroxyl groups.
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FIG. 6. Fundamental optical loss in high-silica glass, doped with germani-

um, as a function of wavelength and photon energy: ultraviolet absorption
(1), Rayleigh scattering (2), infrared lattice absorption (3), total (4).
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FIG. 7. Optical loss spectrum of a graded-index multimode fiber with a
high-silica glass core doped with germanium dioxide. Broken line shows
the theoretical limit due to Rayleigh scattering.

Absorption by transition-metal impurities and hydroxyl
groups can be reduced to negligible levels by reducing their
concentration to a few parts per billion (107°) and a few
parts per million (107°), respectively. The methods devel-
oped by Devyatykh ez al. for the removal of volatile halides
can be used to produce silicon chlorides, germanium chlor-
ides, and so on, containing metals, organic materials, and
water at the level of 10~'-10 % mass %, 10~* mol %, and
10~° mol %, respectively.”>*! This degree of purity of the
initial compounds, combined with the well developed tech-
nology of fabrication of optical fibers, has resulted in im-
proved fibers without additional contamination of glass dur-
ing the fabrication process. The corresponding optical loss is
close to the theoretical limit.

Figure 7 shows the optical loss spectrum of a graded-
index multimode optical fiber>* with a high-silica glass core,
doped with germanium dioxide. It is clear that, with the ex-
ception of the small absorption peak near 1.38 um, which is
due to absorption by the hydroxyl groups, the optical loss is
close to the theoretical limit set by Rayleigh scattering. The
minimum loss at 1.5 gm amounts to 0.25 dB/km.

It follows that the most promising spectral interval for
optical fiber transmission (if retranslation repeaters are not
tobe used) is the wavelength range 1.2-1.6 um where optical
loss in high-silica glass fibers is at a minimum.

4.2, Broadening of short light pulses

The upper bound of the transmission capability (data
transmission rate, data bandwidth) of an optical fiber is de-
termined by the minimum separation between neighboring
data-coding pulses, which will not produce overlap and,
consequently, symbol interference. There are three principal
mechanisms that broaden short pulses propagating in opti-
cal fibers and thus restrict their bandwidth.

The broadening of a short light pulse propagating along
a multimode fiber is due, above all, to the difference between
the mode group velocities. In typical multimode optical fi-
bers with core diameter of 50 um and index difference
between core and cladding of 0.01, there are several hundred
propagating modes, and pulse broadening amounts to a few
tens of nanoseconds per kilometer of fiber. This restricts the
bandwidth to a few tens of MHz per kilometer of fiber
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FIG. 8. Ray propagation in a step-index (a) and graded-index (b) optical
fiber.

length. The effect of the group velocity difference between
modes can be sharply reduced by establishing a suitable in-
dex profile across the fiber (Fig. 1). A near-parabolic index
profile will largely equalize the mode group velocities and
will reduce the pulse broadening to something of the order of
0.1 ns/km. Graded-index optical fibers are now being manu-
factured with a bandwidth of more than 1 GHz-km (Ref.
23). We note that the above three methods of producing
optical fibers can also be used to fabricate graded-index fi-
bers.

The pulse broadening effect in step-index multimode
fibers, and its reduction in graded-index fibers, can be
graphically illustrated in terms of the ray approximation in
which different modes correspond to rays propagating at
different angles to the waveguide axis. Figure 8a shows ray
propagation in a step-index multimode fiber, whereas Fig.
8bshows the situation in a graded-index fiber. It is clear that,
in the former case, rays entering the waveguide at greater
angles will traverse a longer path, and the radiation trans-
ported by them will arrive at the end of the fiber with a delay
which produces pulse broadening. In the second case, rays
entering the fiber at greater angles will also traverse a longer
geometrical path, but some of this path lies in the region with
the lower index, so that, provided the index profile is suitably
chosen, the optical paths can be approximately equalized
and thus substantially reduced the pulse broadening.

In optical fibers with the optimum index profile, and
also in single-mode fibers, pulse broadening is largely due to
chromatic dispersion, i.e., the fact that the refractive index
of the fiber material is a function of wavelength. Since the
optical pulse always has a finite spectral width, it will broad-
en even as it propagates in a single-mode fiber.

Pulse broadening due to chromatic dispersion in a fiber
of length L is given by

L dn

St= < o AGK,
where ¢ is the velocity of light in vacuum and 84 is the spec-
tral width of the radiation source. As an example, consider
the broadening of a pulse produced by a GaAs light-emitting
diode working at 800 nm with a spectral width of 16 nm.
When this pulse propagates along the high-silica glass opti-
cal fiber, broadening by chromatic dispersion amounts to
about 3 ns/km.
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FIG. 9. Chromatic dispersion as a function of wavelength for high-silica
glasses: SiO, + GeO, (1), Si0,(2).

Pulse broadening due to chromatic dispersion is sharp-
ly reduced when the wavelength of incident radiation lies
near 1.3 um. Figure 9 shows the wavelength dependence?* of
chromatic dispersion, M = A /c d°n/d A %, of different high-
silica glasses. It is clear that the chromatic dispersion of
these glasses is zero near 1.3 um. It is useful to note here that
the region of negative chromatic dispersion of high-silica
glass lies at wavelengths greater than 1.3 um. This is impor-
tant from the point of view of detection of certain nonlinear
phenomena in optical fibers, which we shall consider in the
next Section.

In the region close to zero chromatic dispersion, the
pulse broadening is produced by waveguide dispersion, due
to the dependence of the group velocity of a given mode on
the geometry of the lightguide (in particular, the diameter of
the core). Waveguide dispersion is usually small in compari-
son with chromatic dispersion across the entire spectral
range, except for the region near the point of zero chromatic
dispersion.

By suitably choosing the structure of the optical fiber,
e.g., by using a multilayer structure, it is possible to annul
chromatic dispersion by waveguide dispersion, since the two
have opposite signs in the spectral range 1.3~1.4 um. Signal
distortion is then a minimum, and is determined by higher-
order dispersion.?>-?¢ Estimates show that such single-mode
fibers can transmit data at the rate of the order of a few
hundred Gbit/s over a distance of 1 km.

We saw in the last Section that the optical loss of high-
silica glass fibers is a minimum in the range 1.3-1.6 gm.
Consequently, this is the most promising region for long-
distance wide-band optical-fiber communication.?’

4.3. Nonlinear optical phenomena in optical fibers

We have so far considered glass optical fibers, regarded
as passive or linear media. Since the core material of glass
fibers is isotropic, the first nonlinear term in the expansion of
the polarization in terms of the field is the cubic term, i.e.,
the term representing the nonlinear polarization P, = y*
EEE. Despite the fact that the cubic nonlinearity in glass is
small, the considerable length of optical fibers, their low op-
tical loss, and their small transverse dimensions ensure that
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they are among the most interesting media for the observa-
tion of various nonlinear phenomena.

In fact, if we use an optical fiber of, say, 1 km or more,
the length of the region of interaction between the laser radi-
ation and the medium is increased by a factor of 10°-10° as
compared with the medium in bulk and comparable beam
diameter. The core diameter of a single-mode fiber in the
near infrared is 5-8 um, so that when 1W of radiation is
passed through the fiber, the power density is of the order of
afew MW cm ™2

The mode properties of optical fibers present us with
new opportunities for investigating nonlinear phenomena.
We have already seen that by varying the fiber parameters
(core diameter and An) we can produce different propaga-
tion conditions for optical radiation, including single-mode,
low-mode, low-mode with a given mode number, and multi-
mode. Each mode has its own effective refractive index and
an unvarying field configuration along the entire interaction
length.

These properties enable us to use optical fibers to ob-
serve not only virtually all known nonlinear phenomena, but
also many new and unique effects.

We are, in fact, facing the emergence of a new and ra-
pidly developing branch of fiber optics, namely, nonlinear
fiber optics. ‘

We must now briefly consider some of the more inter-
esting phenomena that also have important practical appli-
cations.

In high-silica glass, the Raman spectrum is wide and
the vibrational frequency corresponding to the scattered in-
tensity maximum lies at about 450 cm™'. The first Stokes
component of stimulated Raman scattering (SRS) is ob-
served by using a pump of a few hundred mW. Cascade SRS
can be produced relatively readily in a multimode fiber by
using a Q-switched Nd-YAG laser (1 = 1.06 um and 0.53
pm). The large number of Stokes components then covers
the transparency range of high-silica glass up to 1.6 um
(Refs. 28-30). The high conversion efficiency (more than
50% ) and relatively low process thresholds make this a very
promising wide-band source of powerful radiation for differ-
ent applications. It is also possible to produce tunable nar-
row-band SRS lasers either by laser pumping an optical fiber
placed in a dispersive cavity,®! or simply by inserting the
fiber into the cavity of a garnet laser in which the crystal is
pumped by a lamp.*?

Stimulated Mandel’shtam-Brillouin scattering
(SMBS) in optical fibers can be observed at even lower
pump levels if the width of the pump spectrum is of the order
of the line width of the Mandel’shtam-Brillouin scattering
which for high-silica glass is of the order of 100 MHz. In the
case of the argon laser pump, the minimum power level at
which SMBS was observed in a 80-m single-mode fiber
placed in the cavity was 15 mW (Ref. 33).
was 15 mW (Ref. 33).

Despite the fact that the SMBS gain in glass is greater
than the SRS gain by more than two orders of magnitude, the
latter process is usually the dominant one because the pump
bandwidth is usually much greater than the Mandel’shtam-
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Brillouin scattering line width.

SMBS in multimode optical fibers was investigated for
the first time in Refs. 34 and 35. The multimode fibers were
pumped by narrow-band laser radiation (Nd:YAG laser,
A = 1.06 um), and pump wavefront reversal was observed.
The efficiency of nonlinear conversion of a pulse pump in
SMBS (7, = 100-300 ns) in a multimode fiber is very high,
namely, more than 65%, and the threshold power is low (34
W; Ref. 34).

The specific features of nonlinear processes in optical
fibers are clearly seen when four-photon mixing is investi-
gated.?' Stimulated four-photon processes are effective in
laser-pumped optical fibers. In these processes, two pump
photons (v,) create photons at the Stokes (v,) and anti-
Stokes (v, ) frequencies in accordance with the law of con-
servation of energy: 2v, = v, +v,. The phase-matching
condition for the interacting waves is 2k, =k, +k,
(k; = 2mn;/A; where n, is the refractive index). In bulk me-
dia with normal chromatic dispersion and collinear interac-
tion between plane waves, we have 2k, <k, + k,. Phase
matching in such media is attained when waves interact at
particular angles, and the interaction length is then small. In
fiber lightguides, phase matching over a considerable length
of the interaction region can be assured by compensating
chromatic dispersion with intermode separation of pump
waves and Stokes and anti-Stokes components into different
modes with different effective refractive indices. Stimulated
four-photon processes in low-mode fibers in which the phase
matching conditions were satisfied were first observed when
an optical fiber was pumped by a neodymium laser.*® The
frequency shifts Av = v, — v, = v, — v, wereless than 400
cm™'. Stimulated four-photon processes with frequency
shifts of a few thousand cm~' were observed later.>”*® Fre-
quency shifts up to Av = 5500 cm ™' were reported in Ref.
37 for fiber lengths of a few meters and pump power ~ 1 kW,
This can be used to produce by pumping with a neodymium
laser generation in the region 1.4-1.6 um, i.e., in the region
of negative chromatic dispersion of high-silica glass.

There is undoubted interest in the investigation of four-
photon processes in biharmonically-pumped optical fibers,
which offer us new opportunities both for producing sources
of narrow-band radiation that can be tuned over a wide
range and for spectroscopic studies of the structure of
phonon resonances in amorphous media.***° In addition to
the strong anti-Stokes wave at the frequency v, =2v, — v,
(v, >v,), which is formed in the low-mode fiber when the
phase-matching conditions are satisfied, a strong Stokes
wave was observed in Ref. 39 at the frequency v, = 2v, — v,
for which the intermode phase-matching condition need not
be satisfied. Moreover, if the tuning range of the anti-Stokes
wave is confined to a relatively narrow range by the phase-
matching conditions, the tuning range of the Stokes wave is
1000 cm~ ' or more.

The mechanism responsible for the above Stokes gener-
ation in biharmonically-pumped optical fibers without the
phase-matching conditions being satisfied can be described
as follows. A weak wave is created at the Stokes frequency
v, = 2v, — v, within the coherence length which for fused
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A rel. units

FIG. 10. Stokes-wave power at frequency v, = 2v, — v, as a function of
the frequency difference Av = v, — v, (), 2—spontaneous Raman scat-
tering.

quartz is of the order of 1 cm. This wave is then exponential-
ly amplified by stimulated Raman scattering in the pump
field over a considerable length. The amplification of the
wave v, occurs if the pump frequency difference is equal to
the frequency of phonon resonances in the medium
(v, — v, = v, ). Actually, the measured dependence of the
Stokes power on Av = v, — v, is in reasonable agreement
with the spontaneous Raman spectrum for fused quartz
(Fig. 10).

Nonlinear phenomena in glass optical fibers offer us
new opportunities for picosecond and femtosecond pulse
generation with controlled pulse parameters. It may be pos-
sible to exploit the nonlinearity of the refractive index of the
fiber material to produce wide-range frequency scanning of
the pulse field.*"*? In contrast to the phase modulation of
ordinary laser beams, the broadening of the spectrum in the
homogeneous nonlinear medium of the single-mode optical
fiber is not accompanied by a change in the spatial structure
of the beam or energy redistribution over the cross section
due to the accompanying nonlinear effects (self-focusing,
nonlinear absorption, and so on). This results in a broaden-
ing of the laser pulse spectrum, which is uniform over the
entire cross section.*’

The combined effect of index nonlinearity and fiber dis-
persion produces the time-domain self-compression of
pulses and gives rise to the appearance of optical envelope
solitons in the region of negative group-velocity dispersion.

The propagation of the envelope of a light pulse is de-
scribed by an equation called the parabolic or nonlinear
Schrodinger equation:

. [ 04 2% 52

L S
where v, is the group velocity of the wave and a depends on
the field distribution in the lightguide. When the loss § must
be taken into account, the term — /64 must be added to the
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FIG. 11. Nonlinear dynamics of the time-domain envelope | (2, 7)|* and
the spectrum I(w, z) of 2- and 3- soliton pulses (a and b, respectively) in
optical fibers. The variable z is normalized to the dispersion length and all
other variables to their valuesatz=0,7=0, Aw =0.

right-hand side of this equation. However, Zakharov and
Shabat have shown that this equation has soliton solutions
for the input pulse envelope in the form of the hyperbolic
secant, the pulse amplitudes being multiples of the ampli-
tude 4, of the fundamental soliton.** The fundamental soli-
ton does not change its shape during propagation, provided
losses can be neglected. The second-order soliton has twice
the amplitude, and the corresponding solution is periodic.
The pulse contracts to its minimum width in half a period,
and then expands again. Higher-order solitons have ampli-
tudes that are multiples of 4, and their behavior is more
complicated. They not only contract, but also split (Fig.
11). In 1973, Hasegawa and Tappert predicted the possibil-
ity of solitons in optical fibers.*> The soliton propagation of
pulses in optical fibers made from high-silica glass was sub-
sequently confirmed experimentally.*®

The possibility of using soliton propagation of optical
pulses in optical fibers as a means of data transmission has
recently given rise to an extensive literature.*’=’ It has been
shown #748:50:33-56 that the data transmission rate in the case
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of the soliton propagation of pulses in an optical fiber is re-
stricted by the linear optical loss in the lightguide and the
nonlinear interaction solitons.

Different ways of amplifying solitons and thus increas-
ing the rate of data transmission along a lightguide have been
proposed.®'*>° One of the most interesting ways of amplify-
ing solitons in optical fibers is to exploit another nonlinear
phenomenon, namely, stimulated Raman scattering.>%°7-5°
It has been shown®® that nonstationary stimulated Raman
scattering in a low-mode optical fiber can be used not only to
reconstruct the shape and energy of an optical pulse during
its linear propagation along the fiber, but also to perform
nonlinear soliton conversion.>”-*

The use of high quality single-mode optical fibers as
nonlinear phase modulators in dispersive compression of op-
tical pulses has now given rise to considerable advances in
ultrashort light pulse production. The method has been used
to generated powerful picosecond pulses in the visible®*52
and near infrared.®*®* In particular, the compression of an
initial 110-fs pulse was used in Ref. 60 to produce the short-
est pulse duration so far, namely, 12 fs. The maximum com-
pression (by a factor of 80) was reported in Ref. 61 where a
33-ps pulse was compressed. Spectral filtration was used in
Ref. 65 to select picosecond pulses utilizing the combined
effect of phase self-modulation and stimulated Raman scat-
tering.

Light pulse compression can be performed directly in
the optical fiber because of the negative group velocity dis-
persion of high-silica glass for 4 > 1.3 um. This was used in
Ref. 66 to achieve a 27-fold compression of 7-ps pulses at the
wavelength of 1.55 um, and a more than hundred-fold com-
pression of 30-ps pulses®”%® tunable in the range 1.5-1.6 zm.
Efficient SRS conversion of such pulses resulted in single
pedestal-free pulses of 200 fs and 56 kW (Ref. 68).

5. CONCLUSION

The main applications of fiber optics at present utilize
optical fibers made from high-silica glass. The correspond-
ing fiber technology is now good enough to produce com-
mercial high-strength optical fibers with acceptable band-
width and optical loss close to the theoretical limit. The
minimum loss is about 0.2 dB/km in the near infrared. There
have been rapid advances in fiber-optic communication. The
most striking are the advances in the development of wide-
band optical-fiber communication lines. Suffice it to say
that, in the last few years, optical data-transmission systems
have been developed with transmission rates of a few Gbits/s
over distances in excess of 100 km without the use of repeat-
ers. The development of optical-fiber communication sys-
tems with heterodyne reception has increased the transmis-
sion range to a few hundred kilometers without the use of
repeaters. Optical-fiber sensors will find extensive applica-
tions. Optical sensors of rotation, acoustic waves, tempera-
ture, magnetic field, ionizing radiation, and so on are under
development.

However, for many applications, above all, for optical-
fiber communications, it would be desirable to have optical
fibers with still lower loss.
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It is clear from Fig. 6 that the position and size of the
fundamental loss minimum of glass is determined by two
main mechanisms, namely, Rayleigh scattering (for which
the scattered intensity falls off with wavelengthas A ~*) and
the infrared absorption edge. If we were able to find materi-
alsin which the infrared lattice absorption tail could be shift-
ed toward longer wavelengths, then the rapid decrease in
Rayleigh intensity with increasing wavelength would ensure
that the loss minimum would also shift toward longer wave-
lengths, and its size would decrease as well. A shift of the
infrared lattice absorption edge toward longer wavelengths
can be expected for materials consisting of heavier atoms.
Calculations have actually shown that there are several ma-
terials (glasses and crystals) in which optical loss in the mid-
dle infrared range (2 — 11 gm) can be 0.01-0.001 dB/km.

They include fluoride glasses with minimum optical
loss in the range 3—4 um (Ref. 69), chalcogenide glass with
minimum loss at 5-6 um (Refs. 70 and 71), and also crystals
of the halogenides of metals with minimum loss at longer
wavelengths.”>”* The possibility of producing optical fibers
with loss reduced by 1-2 orders of magnitude as compared
with the high-silica glass has stimulated intensive research in
this area.”*"’

Fluoride and chalcogenide glasses with loss of the order
10 dB/km (Ref. 78) and a few tens of dB/km (Ref. 76),
respectively, and polycrystalline fibers with loss of 100 dB/
km at 10.6 um (Ref. 79) have now been produced in the
laboratory. Although this loss level exceeds by several or-
ders the theoretical limit, the rapid advances made in this
area suggest that a further rapid loss reduction will be
achieved in infrared optical fibers.

The infrared optical fibers developed so far are promis-
ing for channeling powerful laser radiation (chemical, CO,
and CO, lasers), for technological and medical applications,
for temperature sensors, and for different location systems.
The development of infrared lightguides with loss approach-
ing the theoretical limit will result in optical-fiber communi-
cation lines with a transmission range of 1000 km without
repeaters.

YThis paper is published in celebration of the 25th anniversary of the
invention of the laser (1960) and continues the series of papers published
in the January 1986 issue of this journal.
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