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A review is given of the current data on the fine structure of the Rayleigh scattering spectra of
molecular gases and liquids. A microscopic description of the scattering spectrum of a
molecular gas is provided by a method based on the Boltzmann transport equation. It is shown
that the fine structure of the spectrum is associated with the interaction of rotational and
translational degrees of freedom in collisions. The same approach is used in a study of changes
in the spectrum of a gas due to the presence of a magnetic field and also due to deviation of the
properties from those of an ideal gas.
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1. INTRODUCTION

Investigations of the Rayleigh scattering of light in gas-
es and liquids, whether experimental or theoretical, have
been concentrated in the last decade mainly on the fine ef-
fects in the scattering spectrum. This trend was started by
Starunov, Tiganov, and FabelinskiT' who were the first to
observe experimentally the fine structure of the depolarized
component of the Rayleigh spectrum of light scattering in
liquid nitrobenzene and quinoline. Soon after Stegeman and
Stoicheff2 also discovered a fine structure in the depolarized
spectrum of the scattering by several liquids. These investi-
gations have been continued by many using the latest tech-
nology, both lasers and the technique of high spectral resolu-
tion.3~lx At present the experimental picture of detailed
investigations of the structure of the Rayleigh scattering
spectra of liquids looks as follows.

In the depolarized scattering spectra of some liquids
consisting of anisotropic molecules there is a small dip at the
center of the scattering spectrum which is observed in a cer-
tain range of temperatures against the background of a wider
Lorentz profile. This applies to the intensity component JVH

of the depolarized Rayleigh scattering spectrum, where the
subscripts V and H denote (as usual) the directions of the
polarization of the incident (V means perpendicular or ver-
tical) and scattered (H means parallel or horizontal) light

relative to the scattering plane which is formed by the wave
vectors of the incident k, and scattered k2 waves. In the case
of the /HH component of the depolarized scattered light the
unit vectors representing the polarizations of the incident
and scattered waves lie in the scattering plane. Typical pat-
terns of the JVH component of the scattering spectrum of

3 o 6 GHz

FIG. 1. Scattering ( /Vn ) spectrum of triphenyl phosphate recorded at
r=70.2°C at the scattering angle of 0 = 90° (A = 5145 A, R=h,/
A,-0.47).
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FIG. 2. Scattering (7V H ) spectrum of triphenyl phosphate recorded at
r= 41.6 °C for 0 = 90".

liquid triphenyl phosphate recorded for different tempera-
tures and for different scattering angles8 are shown in Figs.
1-3. For the sake of clarity, the dashed curve in Fig. 1 shows
the complete Lorentzian profile extrapolated to the line cen-
ter from the wide part of the profile in the wings of the line.
The dashed curve represents the spectrum which would have
been obtained in the absence of a fine structure at the line
center (a = 0). It is clear from Figs. 1-3 that the fine struc-
ture disappears as a result of cooling, i.e., on increase in the
viscosity ( Figs. 1 and 2 ), or at a fixed temperature because of
an increase in the scattering angle 6 (see Fig. 3) or of the
quantity q2 = (4wn//l0)sin(f?/2), where n is the refractive
index and A() is the wavelength of the incident light. More
precisely, experimental investigations'""* have shown that
the fine structure in the/ VH scattering spectrum manifested
by a small dip at the center of a line is observed at relatively
low values of the viscosity rj (r/~ 10~2 P), when the follow-
ing condition is obeyed:

where r/ is the shear viscosity, p is the mass density (g/cm3),
and ro is the width of the wide part of the spectrum of the
depolarized light scattering.

Such a small dip has been observed so far in liquids with
molecules with a great variety of shapes: short rods (for ex-
ample, CS2 and CO2 molecules ) , long rods ( MBB A ) , almost
spherical molecules (TPP and pyridine), etc.17 It is interest-
ing that the dip contrast R at the line center (i.e., the ratio
R = h,/H2 in Fig. 1) is almost independent of the shape of
the liquid molecule and is close to R ~0.4 for all the investi-
gated molecules. Table I gives the values of the dip contrast
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FIG. 3. Scattering ( 7 V [ I ) spectrum of triphenyl phosphate recorded at
r= 25.4 °C for different angles 0 U = 6328 A).

R for various types of molecules. An increase in the viscosity
of the liquid (i.e., cooling), when the parameter q2r//prit

becomes of the order of unity or greater, destroys the dip in
the scattering spectrum. A further increase in the viscosity of
the liquid right up to r/~ 10A P, close to the glass-forming
range, gives rise in some liquids to two satellites of very low
intensity in the JVH scattering spectrum and these satellites
are associated with traveling shear waves. |y~22 However, we
shall not consider highly viscous liquids because the micro-
scopic theory of light scattering considered below applies to
dense gases and can provide only a qualitative description of
the spectrum in the case of low-viscosity liquids, but is in no
way applicable to highly viscous liquids.

The pattern of the/HH component of the Rayleigh scat-
tering spectrum of liquids has been studied much less and is
less clear. The most usual feature is the appearance, against
the background of a wide profile of the same kind as in the
case of the/ VH spectrum, of very weak peaks at the Brillouin
doublet frequencies + OB (Refs. 2, 5, and 8-10). In some
cases a fine structure in the form of asymmetric profiles is
observed at these frequencies.23

We have considered so far the structure of a depolarized
scattering spectrum of a liquid because the majority of the
available experimental investigations of the spectral compo-
sition of the scattered light has been carried out on liquids.
Experimental studies of the depolarized Rayleigh scattering
of light in gases have just begun.24"31 In these investigations
attention has been concentrated on the profile of the de-
polarized component of the Rayleigh scattering of light,

TABLE I. Experimental values of R for liquids.

Molecule

anisaldehyde
tolane
acetophenone
pyridine
triphenyl phosphate
ethyl benzoate
CS,
MBBA (isotropic)
benzonitrile

R

0 43+0 02
0,39

0,43+0,04
0,35+0,08
0,45±0,05
0,41 ±0,05
0,35±0,06
0,36+0,02

0,37±0,02

Ref.

4

5

6

7, 8
9

10
11
12

13

Molecule

n-hexadecane
n-docosane
salol
pyridine
iodopropyne
cyanopropyne
F2

C02

R

0,33±0,02
0,38±0,02
0,28+0,04
0,70±0,05
0,20±0,05
0,40±0,10

0,46 at 70 K
0,22 at 120 K

0,20

Ref.

14

1

1
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which in most cases does not reduce to a simple Lorentzian
profile. In particular, Keijser et a/.25"27 have shown that for
simple molecular gases of N2, CO3, HD (but excluding H2

and D2) the depolarized scattering line profile differs con-
siderably from the Lorentzian form. The main reason for
this difference is the contribution made to the scattering by
severaly'-y transitions (j is the rotational quantum number)
each of which has its own damping constant. Consequently,
the overall profile represents a superposition of several Lor-
entzians of different width.32 It should be pointed out that
none of the published investigations has revealed a fine
structure in the form of a dip at the center of the depolarized
scattering line of gases.

A second series of experimental investigations29'12"39

has been concerned with the detailed form of a polarized
triplet observed at different gas densities, beginning from the
lowest pressures (kinetic regime) and ending at high pres-
sures, when the hydrodynamic approximation is valid. No
anomalies have been found in the profile of a polarized trip-
let of the investigated almost spherical symmetric molecules
H2, CH4, SF(1, He, and Fe.

Very few experimental investigations26"32 have been
made on asymmetric molecules (for example, CS2, CO2, N2,
and others) in which one would expect new effects in the
scattering spectrum. However, we shall report later that
very careful investigations of the spectral line profile are
needed to observe these effects.

The first theoretical prediction of a fine structure in the
depolarized scattering spectrum of a liquid was made by
Leontovich.40 Leontovich showed that the fine structure in
the JVH scattering spectrum appears because of an
allowance for the relationship between the strain tensor and
low-frequency shear waves. The phenomenological ap-
proach to the description of the fine structure was developed
fully by Rytov41 and by Romanov and Solov'ev.42 Rytov's
theory agrees better with the experimental results than
Leontovich's theory because of introduction of a larger num-
ber (in most cases two) of tensor relaxation parameters. The
theories of Leontovich, of Rytov, and of Romanov and Solo-
v'ev are based on the Maxwellian representation of the vis-
coelastic behavior of liquids which at high frequencies can be
regarded as amorphous solids. Other types of viscoelastic
properties of media are considered in Refs. 19-21 and 43.

Numerous phenomenological theories of the scattering
of light1*'17'44"56 reduce to different selections of the relaxa-
tion parameters and their relationship to hydrodynamic
variables. These parameters are most frequently the molecu-
lar orientation tensor and the stress tensor, both related to
shear waves.4546 Theoretical investigations*-47'48-52-"'56

based on modern statistical physics methods57'51* are recently
attracting the greatest interest. Application of these meth-
ods to the theory of light scattering reduces to microscopic
justification of the equations of phenomenological theories.
For example, the theory of Pecora and Anderson47 based on
the Mori method44'57'5** is a microscopic analog of the hydro-
dynamic theory of Volterra,45 and the theory of Ailwadi41* is
a microscopic analog of the theory of Rytov.41 It seems to us
that the most interesting work from the point of view of

transition to the kinetic description of the Rayleigh scatter-
ing of light is that of Tsay and Kivelson.H The Mori method
is used also to obtain the equations of motion in which the
slow variables are the molecular orientation tensor Dik and
the momentum vector p.

For this selection of the variables, which is essentially
phenomenological, the parameters of the spectrum includ-
ing the dip contrast R are expressed in terms of the Liouville
operator projected on the subspace of selected variables.
However, these expressions are fairly complex and in the
case of specific situations there is a need for further simplifi-
cation. The most important theoretical conclusion is a direct
relationship between the depth of the dip and the contribu-
tion of the molecular rotation to the shear viscosity of the
medium.

Further development of the work of Tsay and Ki velson1*
based on the use not of the exact Liouville equation, but of a
truncated chain of equations for the Bogolyubov-Born-
Green-Kirkwood-Yvon (BBGKY) distribution was put
forward recently by Cole, Hoffman, and Evans.56 They used
the same set of variables {Dik ,p} as in Ref. 8 and applied the
Enskog transport equation for hard ellipsoids to obtain nu-
merical values of the depth of the dip R for a number of
molecules. Their calculations showed that: 1) the depth of
the dip increases on increase in the gas density and reaches
saturation at densities close to those in liquids; 2) the depth
of the dip depends weakly on the shape of the molecules. The
latter conclusion is supported by the experimental data on
liquids17 (Table I) .

It should be pointed out that in all the theoretical papers
on the scattering of light, whether phenomenological or sta-
tistical, the selection of the relaxation parameters responsi-
ble for the scattering of light is somewhat arbitrary, i.e., a
phenomenological element remains in the description of the
scattering spectrum. On the other hand, the parameters of a
medium in the form of a molecular gas are indeed deter-
mined by the parameters of the individual molecules such as
the polarizability aik, linear momentum p, angular momen-
tum M and others, and the kinetics of the molecular gas is
described accurately by the transport equation for the one-
particle distribution function/. Therefore, in developing a
theory of the scattering of light in gases we can provide a
rigorous microscopic justification for the selection of the
"slow variables" and thus avoid the phenomenological inde-
terminacy of the description.

A microscopic theory of the broadening of spectral lines
due to the influence of a buffer gas on one- or two-photon
transitions in a molecular gas was developed by Gordon.59'60

The transport equation method was used by Hess6''62 to de-
scribe the spectrum of depolarized Rayleigh scattering in a
gas. Hess used a transport equation of the Boltzmann type to
describe the profile of the wide depolarized component of
the spectrum and related the nature of the spectrum to the
gaskinetic characteristics of the medium. A fine structure of
the depolarized light spectrum is not predicted by this meth-
od because of the limited nature of the distribution function
/ We shall concentrate our attention on the fine structure of
the scattering spectrum.
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The present authors6' used a transport equation to cal-
culate the spectrum of the Rayleigh scattering of light in a
dense diatomic gas. The spectrum had an additional fine
structure in the polarized and depolarized components. In
particular, the fine structure of the JVH spectrum corre-
sponded to the pattern observed experimentally for low-vis-
cosity liquids and its appearance was due to the contribution
of the rotational degrees of freedom to the transport coeffi-
cients. All the parameters of the scattering spectrum of a gas,
including the transport coefficients, can be expressed in
terms of the eigenfunctions and eigenvalues of the Boltz-
mann collision integral.

The present review will be based on the authors' own
paper6' and its development in later papers64'65 dealing with
the influence of a magnetic field on the Rayleigh scattering
spectrum and with changes in the spectrum because the gas
is nonideal.

2. KINETIC METHOD FOR THE DESCRIPTION OF THE
SPECTRUM OF LIGHT SCATTERING IN A GAS

The usual macroscopic theory of the scattering of light
in gases or liquids is based on a calculation of the correlation
function of fluctuations of the permittivity of a medium66:

6e,m 2, r2)>, (1)

where 8eik (t,r) is the deviation of the permittivity of the
medium from its equilibrium value eik ; the angular brackets
(...) denote averaging of fluctuations over a statistical en-
semble of averaging over the initial time t2 for a given value
off = ?, — t2. In view of the spatial homogeneity of the medi-
um the correlation function hiklm depends only on the differ-
ence r = r, — r2.

In the case of specific calculations the deviation
SEik (/,r) is expressed in terms of fluctuations of thermody-
namic parameters [ for example, the pressure 8P(t,r) and the
entropy 8S(t,r) ] and in terms of fluctuations of phenomeno-
logically introduced relaxation parameters <5£?,v< (t,r) (both
scalar and tensor) responsible for the scattering of light (see,
for example, Ref. 41 ). The next stage is the solution of the
system of linearized hydrodynamic equations (or equations
of the theory of elasticity ) for fluctuations of thermodynam-
ic parameters and of coupled relaxation equations for fluctu-
ations 8Qik ( t , r ) . These equations are supplemented by the
relevant initial conditions (f , — r, =0) , i.e., by the values of
simultaneous correlation functions of the selected param-
eters.

The nature of the scattering spectrum is described by
the Fourier transform of the correlation function hiklm :

<x 2Re etlezkeite2 d r ] d f /7 i f t i m exp( - J (oH-Jq r ) , (2 )
o

where e, and e, are unit vectors of the polarizations of the
incident and scattered waves, respectively; q = k2 — k, and
&> = &>, -co| are, respectively, the difference between the
wave vectors and between frequencies of the scattered and
incident waves. The repeated indices in Eq. (2 ) represent
summation.

In this approach the fluctuations of the thermodynamic
quantities and scalar relaxation parameters lead to the ap-
pearance of a narrow polarized triplet, whereas the fluctu-
ations of the tensor parameters are responsible for the wide
depolarized component of the scattering spectrum. The fine
structure of the depolarized scattering spectrum appears be-
cause of the coupling of the fluctuations of the tensor param-
eters 8Q,k (t,r) to the fluctuations of the components of the
displacement <5«, or of the velocity <5u, (t,r) = ££/, (t,r) in
the equations of elasticity or hydrodynamics.K'4I~47

The transition to the kinetic description of the scatter-
ing of light in a gas is made by replacing the correlation
function of fluctuations of the permittivity with the correla-
tion functions of the distribution functions of the gas. The
equations for these correlation functions are obtained from
the transport equations applicable to the relevant distribu-
tion functions.67'6K In the simplest case of an ideal gas, the
state of which is described well by a single-particle distribu-
tion function/, the fluctuations of the permittivity reduce to
fluctuations of the distribution function 8f:

(t, r) = 4n (Q) 6/ (t, r, Q) AQ, (3)

which is a consequence of the well-known relationship appli-
cable to an ideal gas E— 1 = 4-n-Na (Ref. 69); here, N
(cm~ ') is the density of the spatial distribution of the num-
ber of particles, which by definition is
N(t,r) = $ f (t,r,Q)dQ; aik is the polarizability tensor of a
single molecule; Q is the set of parameters representing the
internal degrees of freedom of a molecule. In the case of a
monatomic gas the parameters Q are the components of the
velocity of a particle vt , whereas in the case of polyatomic
gases the set Q should include the rotational and vibrational
degrees of freedom; 8f =f—fn 's the deviation of the distri-
bution function from the equilibrium Boltzmann function/,.

It follows that the correlation function of the permittiv-
ity hlk,,n reduces in the case of an ideal gas to the correlation
function of a single-particle distribution function

(t (Q,) alm (Qt) 4> (t, r, Qlt

(t, r, <?!, <?,) = <«/ (t, r, Q,) 6/ (0, 0, Qt) }.

(4)

3. STRUCTURE OF THE SPECTRUM OF LIGHT SCATTERING
IN AN IDEAL GAS

We shall consider an ideal gas consisting of diatomic
molecules and allow for the rotational and translational de-
grees of freedom. We shall assume that the vibrational de-
grees of freedom are "frozen out," i.e., we shall consider
those molecules for which the energy of the vibrational
quantum satisfies fevib > T, where 7" is the temperature of
the gas in energy units. An allowance for vibrations in the
kinetic method will be made later when considering the
mechanisms of the dispersion of sound.

The rotation of molecules can be described classically,
because for the majority of molecules (with the possible ex-
ception of hydrogen) the rotation is known to be classical so
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that B<^T, where B is the rotational constant. In this case the
distribution function depends on the following parameters:
/=/( t,r,n,Q), where n is a unit vector directed along the axis
of the molecule; the quantity Q = (p,M) includes the linear
momentum p and the angular momentum M of a molecule,
which are canonical conjugates of the variables r and n, re-
spectively.

It will be now convenient to adopt a new unknown func-
tion^-:

X (t, r, Dl, <?,) = /o1 (<?i) j O (t, r, ni, n2, Qit <?2)

X euUih (n2, M2) e^ dcp2 d<?2.

Here, integration with respect to n2 for a fixed M, re-
duces to integration with respect to the rotation angle <p-, of
the vector n: in a rotation plane perpendicular to the vector
M2.

Using the smallness of the fluctuations of the distribu-
tion function/relative to the equilibrium value/,, we find
that x is described by the following linearized transport
equation65-68:

(5)

where

) + x(n20, <?»)! dr d<p2, d<?8,

subject to the initial condition

X (0, r, nu Qj) = eit aih (nlt Mj) eah& (r). (6)

The presence of the delta function in the simultaneous corre-
lation function denotes the absence of spatial correlation
between simultaneous fluctuations, which corresponds to
the approximation of an ideal gas and is associated with the
equilibrium nature of the state relative to which the fluctu-
ations are measured.

The operator /„ is the linearized Boltzmann collision
operator, which allows additionally for rotation of the vec-
tors n, and n2 in collisions (this is known as dephasing59);
U[2 = t / i : ( r ,n, ,n2) is the electrostatic interaction potential
of the gas molecules; the index "0" denotes the variables nl ( ) ,
2,,,, n:o, and Q2U which would have been obtained at the
moment t instead of n, , Q,, n2, and Q2 if the particles had
been moving freely without interacting with each other.
Usually this transformation is described by introducing an
operator S I 2 ( Ref . 68 ) ; Jl = M/7 is the rotation frequency of
a molecule and / is its moment of inertia.

The polarizability tensor of a diatomic molecule
aik (n,M) can be represented in the form

(7)

where M(} = (r/)"- and eikj is an antisymmetric unit ten-
sor.

larizability are related to the geometric structure of the mol-
ecule itself, whereas the antisymmetric part ( proportional to
a , ) appears only for a rotating molecule and for ordinary
molecules it is very small: a,/aH~ 10"4 (Ref. 70).

In the Fourier representation Eq. (5 ) , subject to the
initial condition (6) , has the form

i (qv4 - co) Xag (nlt <?i) + |Si,nJ -^- -/U7

= fl(n,, M,), (8)

where

B (n, .M) = eltaik (n, M) e2h.

The form of the scattering spectrum J mq is expressed in
terms o f , . , as follows:

oq Re B (n, M) /„ «?) , (?) drf AQ. (9)

In this expression the scalar (proportional to a<>) and
symmetric (proportional to a2) parts of the molecular po-

The expressions (8) and (9) describe in classical lan-
guage the complete scattering spectrum of light in a diatomic
gas, including the unshifted Rayleigh component and two
rotational Raman components shifted relative to co = 0 by
± 2 f t = ±2(7Y/) I / 2 .

When the Rayleigh and the Raman components are
spectrally separated, i.e., when the average rotational fre-
quency of the ftjpolecules is higher than the gaskinetic colli-
sion frequency fl§>\' (free rotation condition), the solution
of Eq. (8) should be sought in the form of an expansion in
terms of eigenfunctions of the operator [ fin ] c9 /dn which are
of the form ̂  = exp(//c<p), where k is an integer and <p is
the angle of rotation of the vector n in the rotation plane. The
corresponding eigenvalues are ikCl. In this basis the zeroth
harmonic (k = 0) is separated spectrally from all the other
harmonics and describes the Rayleigh scattering. The rota-
tional Raman scattering is described by harmonics with
k = + 2 and is manifested in the scattering spectrum be-
cause of the symmetric component a2[(nink — (1/3)<S,A ]
in the polarizability of a molecule given by Eq. (7) . The
spectrum of rotational Raman scattering represents two in-
homogeneously broadened lines, the structure of which is
similar to the structure of a Doppler-broadened line, and the
frequency shift is associated with rotation and not with the
velocity of a molecule. The width of these lines is equal to fl
as long as the condition fl > v is satisfied. When the density is
increased further, so that fl^v, the spectrum of the rota-
tional Raman scattering becomes narrower in accordance
with the mechanism analogous to the narrowing of Doppler-
broadened lines by collisions. However, we shall not consid-
er these topics in the present paper.

3.1. Rayleigh scattering spectrum

We shall now consider the unshifted Rayleigh compo-
nent in the spectrum. In this case the function x,,>q is inde-
pendent of the vector n, and Eq. (8) can be integrated with
respect to the angle of rotation d<p\. Then, the second term
describing the shift of the scattering frequency of a molecule
because of rotation disappears from the left-hand side of Eq.
(8) . The integral 70r [seeEq. ( 5 ) ] reduces after integration
with respect to dtp^ by the familiar procedurehx to an ordi-
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nary linearized Boltzmann collision integral:

Q2 d
2p dq>, dcf2vrel fn (Q2)

X (X (Ci) + X (<?2) -X (<?io) - 1. (10)

where p is the impact parameter and yrcl = |v, — v , is the
relative velocity of the colliding particles.

Integration of the right-hand side of Eq. (8 ) gives

j B(n, M)d<p = .Bo-f #2(^-) ,

where

( I D

In the expression for the scattering spectrum (9) the
process of integration with respect to dip , reduces to integra-
tion of the quantity B(n,M) with respect to d<p ,.

Therefore, the transport equation and the expression
for the unshifted Rayleigh scattering of light assume the fol-
lowing final form:

(8')

(9 ' )Jag a Re j (B0 -f Bt) /„ «?,) x., (Qi) dft.

The nature of the Rayleigh spectrum or the solution of
the system (8')-(9') depends strongly on the properties of
the collision integral /„,, [see Eq. (10 ) ] . In Eq. (10) the
collision integral is given in terms of the impact parameter p
of collisions. The quantities Qw and Q2U represent colliding
particles before impact and Qt and Q2 after impact.

The most convenient from the point of view of the phys-
ical interpretation is the expression for the Boltzmann colli-
sion integral in terms of the transition probability
w(Qt,Q2,Q\,Q2), where Q't = QMandQ2 = Q2Q, which is
equivalent to Eq. ( 10) (Ref. 68). In this form the collision
integral becomes6*:

= ] d<?2 AQl dQ, [x (<?,) + X (<?2) -X (<7i) -X (<?;)!•

(10')

It should be noted that the collision integrals (10) and (10')
differ in respect of the sign from the generally accepted ex-
pressions.68 Selection of this sign shows that the operator/,,
is positive definite and, consequently, all its eigenvalues are
positive.

The symmetry properties of the operator /,, written in
the form of Eq. (10') are governed by the symmetry proper-
ties of the function w(Q\,Q2,Q\,Q'2). It follows from the
symmetry of the equations of mechanics on reversal of the
sign of time that the function w has in its most general form
the following property (see, for example, Ref. 68):

where QT = TQ = ( — v, — M), and T is the time-reversal
operator. If the interaction between gas molecules is invar-
iant under spatial inversion and does not contain terms of the
rotational-orbital type, Eq. (12) reduces to the simplest var-
iant of the principle of detailed balancing

This case corresponds to a gas free of stereoisomers, the mol-
ecules of which interact with one another in a purely electro-
static manner. An analysis of the Boltzmann transport equa-
tion for gases with rotational degrees of freedom was made
by Kagan and Maksimov71 using the most general form of
the principle of detailed balancing of Eq. ( 1 2 ) . They found
that in this case the collision operator may relate functions
with different spatial and temporal parity, so that a number
of interesting effects can be observed particularly in the case
of stereoisometry. For example, the presence of a tempera-
ture gradient creates an average angular momentum, i.e., it
causes the gas to rotate. For this reason a change in the trans-
port coefficients on application of an external field may be in
the form of a reduction or an increase, whereas Eq. (12 ' )
predicts only a reduction in the transport coefficients on ap-
plication of the field.

The simplest case of the principle of detailed balancing
(12') corresponds to the case when the collision operator is
self-adjointi.e.J <p *(Q)fH(Q)Il,il>(Q)dQ = S <£*(£?)/,((?)
I(}(p(Q)dQor (tf /oil/1} = {i/ ' j /ojcp ), where tp and [/'arearbi-
trary functions of Q.

In the case of this operator we can, as is known, con-
struct an orthonormal basis of eigenfunctions and then seek
a solution of Eq. (8 ' ) in this basis.

It is known (see, for example, Refs. 58, 59, and 68), that
among the eigenfunctions of /,, there are five functions with
zero eigenvalues which correspond to five laws of conserva-
tion of the following quantities in collisions: the number of
particles, three components of the momentum mvx, mvv,
and mv.,, and the energy //, where // is understood to be the
sum of the rotational and translational energies.

We can easily show that the functions x = 1, mv, /,
cause the collision integral of Eq. (10') to vanish. In the case
of a sufficiently dense gas, when the mean free path obeys
/</l = 2ir/q, the principal term in Eq. (8') is thecollisional
term and it is then convenient to solve this equation using
perturbation theory with a parameter qv/v~l//I < 1. Then,
in the first order of perturbation theory, out of five functions
with zero eigenvalues we can derive such linear combina-
tions in which the operator of free motion /q-v is diagonal. If
thex axis in the selected coordinate system is directed along
q, the corresponding eigenfunctions and eigenvalues of the
operator ;'q-v + /„ can be written as follows"'™:

2c
1/2- -?- -TT+ Afc - ] •

, I /2

*2=U7
_Cp_yl* _Vx_

C,, / Vo

(13)
Xs = -HiL,A3 V, '

Xi v,
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where u() = ( T / m ) ' / 2 is the thermal velocity of a molecule;
~f> = c, ,randA£' = (c , , ) l / 2 rare the average energy and the
scatter of this energy for a molecule; c,, and cp are the specif-
ic heats of a molecule at constant volume and pressure, re-
spectively, calculated allowing for the rotational and trans-
lational degrees of freedom.

These five functions form a set of hydrodynamic modes,
of which the functions ^, and %2 correspond to acoustic
modes, the functions %} and %4 to shear modes, and the func-
tion ^ to a heat conduction mode.

It is clear from the system (13) that acoustic waves
travel in a gas at the velocity of sound uat. = (cp/c,.) l / :u ( ,
and the other three modes do not propagate. The finite decay
time of hydrodynamic modes proportional to q2 is obtained
in the second order of perturbation theory.57-ss

We shall seek the solution of Eq. (8') as an expansion in
eigenfunctions of the operator /,,-.

oo

X.W9(<?)= 7. aa(M, q)-/„(<?),
<z=l

where ylt (Q) with a> 5 are eigenfunctions with nonzero
eigenvalues, i.e., they are called nonhydrodynamic modes.
We can go over from Eqs. (8') and (9') to Eqs. (14) and
(15) for the coefficients a,,:

(14)

0>5)

i 2 (
a>5

i 2 (
a'

where
a>5,

a>5
(15)

is a matrix element of the operator <7fx between the states^,,
and ,,

It follows from the system of equations (14) that the
solutions for the functions tf,(<y,q), a2(ty,q), and o s ( f t> ,q)
describe the familiar scalar scattering triplet, whereas the
integrated intensities of these components obey the Landau-
Placzek relationship

•'douhl Cn

where/d<)uh l is the integral intensity of the Brillouin doublet
and / tot is the integral intensity of the whole triplet.

It is clear from Eq. (14) that the symmetric part of the
polarizability tensor or the function 5-, governing the de-
polarized part of the scattering spectrum does not contribute
to the integral density of the triplet, whereas the hydrody-
namic modes are independent of the direction of the vector
M. On the other hand, it follows from the orthogonality of
the functions 1 and %„, where a > 5, that the scalar part of
the polarizability tensor (or the function B(l) does not affect
the integral intensity of the wide depolarized component of
the operator. Therefore, two terms in the expression for the
intensity given by Eq. (15) integrated with respect to the
frequencies correspond to the scalar and symmetric types of
scattering.

However, the scalar and symmetric scattering spectra
are not independent, since the equations for the coefficients
a, , ..., a, of the system (14) are linked to the equations for
aa , where a > 5, by the matrix elements of the operator /q-v.

In solving the system (14) by perturbation theory in
respect of the parameter qv/v we can simplify the equations
with a > 5 by dropping the terms ( g v f ) , , , , ' a t t - compared
with v,,a,t and solving them for the coefficients atl:

(16)

Substituting this expression in the first five equations (for
the hydrodynamic mode) of the system (14) , we obtain

- i (co + Qj) a} + Tjdj = Bj — iM3j, j = 1, . . ., 5,

(17 )

where II, = qu.K, f!2 = — qu.K, and (1,4 ,, =0. The widths
of the hydrodynamic modes P7 obtained in the second order
of perturbation theory are

ce>5

a>5

(18)

The quantities in the above expressions have the values
F, = T2, r_, = r4, - 9, = 0 because of the
symmetry properties of the operator /(l under time reversal
and under rotation. It should be noted that the contribution
to the quantities A5, representing the "spectral mixing" of
the scalar and symmetric scattering is made only by the sym-
metric part of the polarizability of a molecule a2 because of
the orthogonality of the functions 1 and x,< . where a > 5.

The quantities F, and A5, can be described in a form
which is equivalent to that given by Eq. (18) , but this time in
terms of the inverse operator /„" ' (see, for example, Refs. 57
and 58):

r, = <30?^l/Vl<?^30>, ^Bj = (K)qvx\l-
l\B2), ( 19 )

which is convenient to use in the derivation of the depen-
dences of the spectral characteristics on the polarizations of
the incident and scattered waves.
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It should be noted that the widths of the modes F,-,
wherey'<5, can be expressed—in accordance with the ordi-
nary hydrodynamic theory—in terms of the transport coeffi-
cients such as the shear viscosity r/, the second (bulk or dila-
tational) viscosity g, and the thermal conductivity x (Refs.
57,58,66):

** ~ -p
i r" fli ls = - •x; (20)

here/s = mN is the density of the investigated gas.
The comparison of the expressions in Eq. (20) with

those in Eq. (18) enables us to express the transport coeffi-
cients in terms of the eigenfunctions of the Boltzmann colli-
sion integral:

= -£?r <v* (i" C"T)

_ _
mT \ 3

(21)

It is clear from the above formulas that the second vis-
cosity f represents the contribution of the scalar nonhydro-
dynamic modes to the attenuation of sound in a gas, the
thermal conductivity x represents the vector modes, and the
shear viscosity 17 represents the contribution of the second-
rank tensor modes. The advantage of this form of the trans-
port coefficients is that it can be used to separate explicitly
the contributions of the various degrees of freedom. Rela-
tionships of this kind for the transport coefficients of a mon-
atomic gas (without rotation) were first obtained in Refs. 57
and 58.

The general solution of the system of equations (16)-
(18) yields the following expression for the Rayleigh scat-
tering spectrum:

/a, = /o (co, q)+/2(o>, q),

2 r» 1e, o>*+ r§ J

1f J '

S
a>5

r.

Here, yo(«,q) describes the narrow polarized part of the
Rayleigh scattering spectrum, which consists of the familiar
triplet and small asymmetric corrections at the frequencies
of the Brillouin doublet (1B = qua{. of intensity proportional
tOjBuA^,, i.e., a(1a2. The signs of these corrections are oppo-
site for the Stokes and anti-Stokes components.

When the polarizations of the incident and scattered
waves are orthogonal, so that e,-e2 = 0 and B(t = 0, we find

that /n(<y,q) = 0 and the depolarized scattering spectrum is
described by the function / 2 (^>q)- It is clear from the
expression in Eq. (22) for ,/2(<u,q) that in the depolarized
scattering spectrum there is a background of a wide profile of
width ~ v,, and narrow dips at the frequencies of the acous-
tic components <y = !!„ and at the line center because of the
mixing of the acoustic (\'} and ^2) and shear (^, and ^4)
modes with the nonhydrodynamic modes x,, •

The dependences of the intensities of the dips on the
polarizations of the incident e, and scattered d waves are
obtained from Eq. (19) when an allowance is made for the
spherical symmetry of the operator I „ ';

2eixezx —

AZ?3

Consequently, the intensity of the dips in the depolarized
scattering spectrum in the e, -e2 = 0 case is given by

exex
(23)

Therefore, if the polarizations e, and e-> lie in the scat-
tering plane defined by the wave vectors k, and k:, the fine
structure of the depolarized scattering spectrum consists of
two narrow dips at the shifted frequencies co = + ilt], This
case corresponds to the HH component of the depolarized
scattering spectrum.

In the case of the VH scattering the fine structure con-
sists of a single dip at the unshifted frequency a = 0. This
case corresponds to the fine structure in the depolarized
scattering spectrum of low-viscosity liquids first discovered
by FabelinskiT et al.' and then confirmed by many others.:~'x

This fine structure is shown in Fig. 1.
It is worth considering specifically the case of a small

departure from the condition ei-e2 = 0. In this case we find
that in the HH polarization there is a background profile
described by the function J2 (w,q), as well as a spectral struc-
ture described by the function J(,(a>,q) [see Eq. (22 ) ] . In
this case the fine structure in the depolarized scattering spec-
trum is supplemented by a triplet and asymmetric correc-
tions at the Brillouin frequencies a> = + (llt. In particular,
we may encounter the case illustrated in Fig. 2 correspond-
ing to A.5} = B t,c,./2cp, when the fine structure at the Bril-
louin frequencies is in the form of purely asymmetric profiles
governed by the second term in the expression fory, ,(w,q).

FIG. 4. Scattering ( 7 V n ) spectrum recorded for a slight deviation from
orthogonality 61-617^0; B ] = B^c:/2cr.
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An analogous departure from the orthogonality for the VH
polarization (A52 + AT?2. = B 2

Q / c p ) results in disappear-
ance of a dip at the line center and the fine structure profile at
the shifted frequencies becomes a superposition of a peak
and an asymmetric profile, in accordance with Eq. (22). It
should be pointed out that the case shown in Fig. 4 corre-
sponds to the following estimate of the deviation from the
orthogonality: (e,-e,) ~ ( qv/v)a2/a0^ 1. Hence, it follows
that as the gas density increases, the orthogonality condition
must be satisfied by the gas more and more rigorously in
order to observe the fine structure.

3.2. Theory of perturbations based on the anisotropy of the
interaction potential

Usually in the case of simple molecules collisions ac-
companied by a change in velocity occur more frequently
than collisions accompanied by a change in the rotational
momentum, i.e., the anisotropic part of the potential is rela-
tively small compared with the isotropic part.72'73 In this
approximation the collision integral 7() can be divided into
two terms:

70 = 7-fA7, (24)

where 7 refers to the isotropic part of the potential, i.e., it
describes only the change in the velocity in collisions, and
the small correction A7 associated with the anisotropic part
of the potential represents collisions accompanied by
changes in the rotational momentum of the molecules. The
characteristic frequencies of these operators will be denoted
by v and Av, respectively, and we shall assume that the con-
dition qv4, Av<v is satisfied.

An analysis of the transport equation with the collision
operator of the (24) type was made by Kagan and Maksi-
mov in Ref. 74. It follows from this analysis that the set of
eigenfunctions of the operator can be divided into three
classes:

a) x'i, are the functions which depend only on the veloc-
ity v;

b) x« are the functions dependent only on the angular
momentum M;

c) x™' are the functions dependent both on v and on M.
The angular dependences of these functions on the vec-

tors v and M can be represented by bipolar harmonics or
spherical polynomials:

where Ylm is a spherical harmonic and (lll-,lm\l]mll-,m->) isa
Clebsch-Gordan coefficient.

The eigenvalues of the functions x'a
 are of the order of v,

the eigenvalues of the functions x^ are of the order of Av,
whereas the functions x%" have eigenvalues of the order of v
and of Av.

Using these properties, we shall analyze the main pa-
rameters of the Rayleigh light scattering spectrum. The de-
polarized light scattering spectrum considered in the zeroth
approximation of perturbation theory in terms of the param-
eter Av/v can be described by a single eigenfunction

Xa = Y2m (M/M) with the eigenvalue Av = 0. The finite
width of the depolarized spectrum is obtained in the next
order of perturbation theory by solving the secular equation
in the degenerate space of the functions Xa-

Let us assume that %% = ca (M) Y2m (M/M) is the ei-
genfunction of the operator A/ with the eigenvalue Ava ob-
tained from the secular equation. Then, the depolarized scat-
tering profile is a superposition of Lorentzian profiles of
widths Ava with intensities proportional to | ( c a j l ) | 2 . It
then follows from the normalization condition that

^T |{c n | l ) ] 2 = 1 = (ca\ca). As already pointed out in the
a

Introduction, there have been several theoretical and experi-
mental investigations24"32 in which calculations and mea-
surements were made of the deviation of the line profile of
the depolarized Rayleigh scattering from the pure Lorent-
zian profile for gases of simple molecules.

The coefficients A.B, considered in the first order of per-
turbation theory in respect of the parameter Av/v are given
by the following expressions which allow for the admixture,
to the eigenfunctions %%, of the functions xl

a '•

ARAS = — (25)

We can see from Eq. (25) that the coefficients A.8, are
independent of the parameter Av/v, but are proportional to
the hydrodynamic small parameter qv/v. Hence, it follows
that the integral intensity of the dip in the depolarized scat-
tering, proportional to A/?2, is also independent of the pa-
rameter Av/v, i.e., it is independent of the degree of anisot-
ropy of the potential of the interaction between molecules.

The following results are obtained for the widths of the
hydrodynamic modes (or of the transport coefficients) from
perturbation theory.

In the first order of perturbation theory the width F5 or
the thermal conductivity is independent of the rotational de-
grees of freedom of a molecule, because the spatial inversion
invariance of the operator A/ means that this operator can-
not link the polar v and axial M vectors. Consequently, the
expression for F5 becomes

6~ (26)

where the condition / = 1 in the parentheses of the denomi-
nator means that the summation should be carried out over
the vectors of the nonhydrodynamic functions. Nonzero
corrections to F5 (or to the thermal conductivity x) because
of the molecular rotation appear only in the second order of
perturbation theory in respect of the parameter Av/v (Ref.
74). In spite of the smallness of these corrections, which in
the case of nitrogen amount to \K/K ^ 10 ~~2, they are experi-
mentally detectable from the change in the thermal conduc-
tivity of gases on application of external fields75"81 and will
be discussed in detail in the next chapter.

The expression for the width F, (or the shear viscosity
coefficient) obtained in the first order of perturbation theory
is
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(27)

The notation (1 = 2) corresponds to summation over
the tensor nonhydrodynamic functions of the second rank.
The first term on the right-hand side of Eq. (27), equal to
T](V), is entirely due to the contribution of the translational
degrees of freedom to the shear viscosity, whereas the second
( A?/) allows for the contribution of the rotational degrees of
freedom and is of the order of Av/v compared with the first
term.

A comparison of Eqs. (25) and (27) makes it possible
to estimate the contrast or depth of the dip at the unshifted
frequency from perturbation theory:

™
Av
v (28)

Using the explicit expression (13) for the hydrodynam-
ic functions^,, where/'= 1,..., 5 we can express the width of
the acoustic mode F, in terms of the widths F3 and Fs and in
terms of the second viscosity £. Retaining in f the principal
terms (in the first order of perturbation theory), we obtain

r —1 l~~

r= A v a ( / =

(29)

(30)

In Eq. (30) for the second viscosity £ we sum only over the
correct scalar (1 = 0) nonhydrodynamic functions in the ze-
roth order approximation, which in the first order of pertur-
bation theory relax at a frequency Ava. This expression forf
differs from the familiar definition of Eq. (21) (see, for ex-
ample, Ref. 68) only in respect of the form in which it is
expressed. A comparison of Eqs. (26), (27), (29), and (30)
shows that the main contribution to the attenuation of sound
comes from the term with the second viscosity £ if the condi-
tion Av < v is obeyed. Using this result, we obtain the follow-
ing estimate of the contrast of the dips at the shifted frequen-
cies:

AB? Av
R («) = 0B ) :

Therefore, the contrast of the fine structure in the VH
and HH scattering cases is independent of the density of the
gas and represents the relative contribution of the rotational
degrees of freedom to the shear viscosity. The precision of
this conclusion is limited only by the validity of the Boltz-
mann transport equation in the case of a gas with the rota-
tional degrees of freedom. Within this framework, the de-
scription provided above is purely microscopic and does not
contain phenomenological elements known to occur in the
published statistical theories, including those based on the
Mori method.8-47-48-52-53-36

It follows from the above that interpretation of the ob-
served fine structure of dense gases is simpler and more cer-
tain than in the case of liquids. Consequently, it would be

very interesting to carry out experiments designed to detect
the fine structure of gases. For example, in the case of such
molecules as N2O or CO-,, the anisotropy of the potential is
sufficiently strong, Av/v~0.8 (Refs. 72 and 73), so that we
can expect a higher contrast of the fine structure.

We shall conclude this chapter by analyzing the Ray-
leigh scattering spectrum of a gas obtained by the kinetic
method from the point of view of the general symmetry
properties of the scattering tensor hikhn (ft>,q) allowing for
the spatial dispersion of the medium.44 It is known44 that in
the case of an isotropic medium the spectral dependence of
the scattering tensor hiklm (&>,q) obtained allowing for the
spatial dispersion is given by five independent functions

(32)

where

\

MlMm = -j (̂  Am + Si

I 4- 5fc(<7i<?

We can determine all five functions crt, . . . ,<75foragasin
the case when v, Av>gx> if we know simply the spectral de-
pendences of three components of the scattered light:
Jvv(a,q), JVH(co,q), and JHH((o,q). It is known44 that
these functions are related to the functions &„ ..., as by the

/ v vv

, HH
0

VH

aB o nB

FIG. 5. Structure of the Rayleigh scattering spectrum of an ideal gas.
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following expressions:

' ,-m(33)
/HH (w, q) = y CTI + -£- g4<r4, /VH («t q) = -y cr2 -f -g- <?2a5.

The frequency integrals of the functions cr, 4 , vanish.
A comparison of the expressions (33) and (22) makes

it possible to determine all five functions a | , ...,crv It is found
that the function cr, (<y,q) describes the polarized scattering
triplet; the function cr,(<y,q) represents the wide part of the
depolarized scattering spectrum, the width of which is of the
order of Av. The functions a4(cj,q) and <75(&>,q) determine
the fine structure in the depolarized scattering spectrum,
whereas the function a,(&>,q) describes asymmetric correc-
tions to the polarized scattering spectrum at the shifted fre-
quencies, Figure 5 shows the complete picture allowing for
the fine structure. It should be noted that the integral inten-
sity of the dips in the depolarized spectrum does not vanish
because we have ignored the frequency dispersion of the
quantities A.B,, i.e., the terms tea in the denominators
(id) + va ) ~~ '. When an allowance is made for this frequency
dependence, the integral intensity of the fine structure van-
ishes identically because the negative contribution of the
dips in the narrow frequency range (o~qu,K is compensated
by positive corrections at frequencies a> ~ Av.

4. SPECTRUM OF THE RAYLEIGH SCATTERING OF LIGHT
OF A BOLTZMANN GAS IN A STRONG MAGNETIC FIELD

We shall now calculate the spectrum of the Rayleigh
light scattering in a gas consisting of anisotropic diatomic
molecules subjected to an external sufficiently strong mag-
netic field. We shall show that the structure of the spectrum,
both polarized and particularly depolarized, is very sensitive
to the presence of a magnetic field. This is due to partial
freezing of the rotational degrees of freedom of molecules by
a magnetic field.7 l-74-82-83 ln their turn the rotational degrees
of freedom are manifested actively in the structure of the
scattering spectrum (see Sec. 3), both in the polarized com-
ponent via the dependences of the transport coefficients on
the rotational degrees of freedom, and in the depolarized
component of the spectrum, the width of which is governed
by collisions that alter the rotational moment of the mole-
cules. Moreover, in the depolarized part of the scattered
light there is a fine structure in the form of three narrow dips
(at the unshifted frequency and at the Brillouin frequen-
cies), the intensities of which are governed by the collisional
coupling of the translational and rotational degrees of free-
dom, and the width of a dip at the unshifted frequency is
determined solely by the shear viscosity rj. Therefore, the
dependence of the width of a dip at the unshifted frequency
on the magnetic field direction makes it possible to study
directly the changes in the shear viscosity as a result of appli-
cation of a magnetic field.

After the first theoretical paper of Kagan and Maksi-
mov,83 in which it was shown that the magnetic and electric
fields affect the gas transport coefficients via the rotational
degrees of freedom, a large series of investigations of this
interesting effect has been published. 74~X2 The dependences

of the transport coefficients on external electric and magnet-
ic fields have been studied under conditions of nonequilibri-
um gases and in most of the experiments the attention has
been concentrated on the thermal conductivity at various
gas pressures. 75~IU

Precision investigations of the structure of the Rayleigh
scattering spectrum of a gas subjected to a magnetic field,
which have become possible recently because of the use of
lasers and high-resolution techniques, |y can provide infor-
mation on the magnetic-field dependences of all the trans-
port coefficients, icluding the shear and second viscosities,
which are difficult to study under nonequilibrium gas condi-
tions.

All the parameters of the scattering spectrum of a gas in
a magnetic field (including the transport coefficients) can be
expressed in terms of eigenfunctions and eigenvalues of the
linearized Boltzmann collision integral. In the approxima-
tion of a small deviation of the interaction potential of gas
molecules from the isotropic law the angular dependences of
the spectral characteristics of the scattering make it possible
to determine explicitly the contribution of the translational
and rotational degrees of freedom to all the transport coeffi-
cients.

4.1. Structure of the depolarized component of the
spectrum

When a magnetic field H is applied, molecules begin to
interact with the field because a rotating molecule has a mag-
netic moment /z, which is given by n = yM, where the gyro-
magnetic ratio Y depends on the internal structure of a di-
atomic molecule.74 In the case of paramagnetic molecules we
have 7^/i,,/-fi, where/*,, is the Bohr magneton amounting
to 0.93X 10"" 2" erg/Oe. For the majority of molecules the
ground state is nondegenerate and the spin is zero: they are
nonparamagnetic molecules. In this case the magnetic mo-
ment of a molecule is associated with the rotation of the
nucleus and the gyromagnetic ratio is governed by the nu-
clear magneton (for example, in the case of nitrogen we have
Y = Q.25/un /ft, where//,, is the nuclear magneton amounting
to 5.05 Xl(T-4 erg/Oe).

In the presence of a magnetic field the left-hand side of
the transport equation (8') should be supplemented by the
term y [MH]<?^/<?M, describing the precession of the mag-
netic moment of a molecule in an external field, so that this
equation becomes

i (qv — v) x«, + V

The eigenfunctions of the operator y [ MH ] d /d M are spheri-
cal harmonics Y"m (M/Af) with the quantization axis 2 di-
rected along H. The corresponding purely imaginary eigen-
values are imyH.

In this chapter we shall consider mainly the case of a
sufficiently strong magnetic field satisfying the inequalities

><7i-. ( 35 )

In the case of paramagnetic molecules ( such as oxygen )
these inequalities are satisfied for the following values of the
parameters: H> 5 X 102 Oe, p ~l atm, 7#/r~5x 10 4 or
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H> 5X 103 Oe,px 10 atm, yH/T~5X 10~3; in the case of
nonparamagnetic (such as nitrogen) molecules, we have
H> 106Oe,/>~ 1 atm, yH/T~ 1(T4.

When the inequalities of Eq. (35) are satisfied, the main
term in the transport equation (34) is that containing the
magnetic field: y[MH]d^ral>/dM. When only this term is
allowed for, the depolarized scattering spectrum (e,-e2 = 0)
represents five resolved components located at frequencies
u==0 (m = 0), cu= ±yH (m=±l), o}=±2yH
(m= +2). The integrated intensity of each component de-
pends on the magnetic field direction as follows:

4 (he,)2 (he2)2
2
3

* = •§-•

(36)

Naturally, the total integrated intensity of all five compo-
nents is independent of the magnetic field H [as is easily
demonstrated by summing all the components in Eq. (36) ],
but is governed by the square of the symmetric component
a\ of the polarizability tensor. Figure 6 illustrates the spec-
trum of depolarized scattering of light for certain relation-
ships between the vectors h, e,, and e2.

ZyH yH

2}>H

-Av

FIG. 6. Depolarized Rayleigh light scattering spectrum of diatomic gases
in a strong magnetic field yJJ$> A v. Here, yH is the precession frequency of
the rotational momentum about the direction of the magnetic field and Av
is the width of the depolarized component of the scattering spectrum, a)
Vector h parallel to one of the vectors e, and e2; b) vector h in the plane of
the vectors e, and e2 oriented at an angle of 45°; c) vector h perpendicular
to the vectors e, and e2; d) nature of the spectrum in the absence of a
magnetic field (H = 0).

An allowance for the collisional term in the transport
equation gives rise to a finite width of each component of the
depolarized scattering equal to Avm :

(37)

We recall that Avm < v is related only to the anisotropic part
of the interaction potential of the molecules.

We shall now consider the fine structure of the scatter-
ing spectrum associated with an allowance for terms ;'q-v in
Eq. (34). The operator y [ MH ]d /d M splits the whole space
of the functions^ into five subspaces, each of which corre-
sponds to a specific eigenvalue imyH, where m = 0, +1,
+ 2. These subspaces are spectrally independent, because

they are not coupled by collisions because of the condition
v4,yH, In such a strong magnetic field we can calculate the
fine structure of the spectrum simply by solving Eq. (34) in
the subspace of the functions with zero eigenvalue. Any
function from the zeroth subclass can be represented in the
form:

(38)

It should be noted that the restriction of the complete set of
functions to the subclass (38) is physically equivalent to a
transition from a variable M precessing in a magnetic field to
the average bet ween collisions (M) = (Mh)h. The situation
is fully analogous to the splitting of purely rotational Raman
scattering from the Rayleigh component, when a transition
is made from a description by means of the vectors M and n
to the average (over a rotation period) description using
only the angular momentum vector M [see Eqs. (10) and
( l l ) , andEqs . (8') and (9 ')] .

WhenEq. (34) is splvedin the subspace of Eq. (38), the
collisional operator is /„ = PItf0, where P is the operator
describing projection to the space of the functions (38). The
eigenfunctions /„ can be selected in the form:

(39)
I, s

where <p £m (v,M) are real functions. Since the operator /„ is
real, the functions %am and j n_m are related by
X*m = ( — l)'"Xa-m

 ar>d tne corresponding eigenvalues
are vam =va_m. Further calculations in the selected space
( 38) are practically fully analogous to the calculations in the
absence of a magnetic field (see Sec. 3). It should be noted
that in the problem with a magnetic field the most conven-
ient coordinate system is that in which the x axis is directed
along the vector q, they axis lies in the plane of the vectors q
and H, and the z axis is perpendicular to this plane. We shall
denote the corresponding unit vectors by

e* = y. e^tfejijej, cI = [e,h]. (40)

Equation (34) is then expanded in terms of the basis of
the eigenfunctions of the collision operator 70 using the coor-
dinate system (40).

It therefore follows that in calculation of the fine struc-
ture of the spectrum in a magnetic field we can use the sys-

1108 Sov. Phys. Usp. 29 (12), December 1986 T. L. Andreeva and A. V. Malyugin 1108



tem of equations ( 8' ) in which the nonhydrodynamic modes
are taken from the subspace (38), whereas summation in the
range a > 5 has to be understood as summation in the space
(38).

It should be noted that the operator 70 has axial symme-
try relative to the vector h, in contrast to the spherical sym-
metry of the total operator /0. Consequently, the parameters
of the scattering spectrum depend on the angle between the
scattering vector q and the direction of the magnetic field h.
In particular, in the presence of a magnetic field the quanti-
ties F3 and F4 are not identical and in the selected coordinate
system (40) the modes x?, and X>, are n°t coupled.

4.2. Dependence of the spectral characteristics of the
polarized scattering on a magnetic field

It is known57'58 that the widths of the narrow compo-
nents of the scattering spectrum are governed by the damp-
ing of the hydrodynamic modes and can be expressed in
terms of the transport coefficients (shear and second viscos-
ities, and thermal conductivity). In the presence of a mag-
netic field these coefficients become anisotropic and, there-
fore, they are described by tensor quantities.

We shall begin our analysis starting with the quantity
F
tensor

5 which is determined only by the thermal conductivity

r> V "** 5 — x i y i y j ' t i j i
a p '

where p is the gas density (g/cm3) and

0 1̂

ct^>5,h

(41)

Substituting in Eq. (41) the explicit expressions for the
eigenfunctions %ah from Eq. (38) and separating the angu-
lar dependence on the velocity v, we obtain

(42)

S / vi
\~

ft-0, ±1

1_ VI p

a>5

Since the coefficients <p ^° and the eigenvalues vak depend
only on the modulus k, the constants Ck in Eq. (42 ) have the
property Ck = C_k. Using this property, we find the fol-
lowing expression for xtj :

+ x = = C9 — <7,. (43)

The antisymmetric part of the thermal conductivity
tensor appears in the moderately strong fields74 when
yffccv, but we can see from Eq. (41 ) that it makes no contri-
bution to F5. Using the explicit form of the dependence of
the thermal conductivity tensor on the magentic field of Eq.
(43), we shall determine the corresponding dependence for
the width of the central component of a polarized triplet F5:

cos 6 (44)

depends on the angle 9 between the direction of the magnetic
field and the scattering vector q. Variation of the angle &
makes it possible to separate experimentally the isotropic
and anisotropic parts of the width F5 and thus determine the
coefficients x and x, representing the thermal conductivity
tensor. It was shown by Kagan and Maksimov74 that in the
case of a weakly anisotropic potential characterized by Av/
v<l the ratio of these coefficients obeys ^,/^cc (Av/v)2,
i.e., the ratio of the anisotropic part of the line width F5 to its
isotropic part is of the order of (Av/v)2. Experimental in-
vestigations of the thermal conductivity of gases in external
fields involving measurements of a heat flux in the presence
of a temperature gradient are reported in Refs. 75-81. In
most cases the thermal conductivity of gases decreases on
application of a magnetic field and becomes an anisotropic
function of the direction of this field. These changes in the
thermal conductivity (for example, in the case of nitrogen)
amount to a few percent.84

We shall now consider the quantities F3 and F4 which
determine the width of shear modes. These coefficients are
related to the shear viscosity tensor Tjijkl by the following
expressions:

ijhl

ijfc!

(45)

where

a>5, *'

Separating in Eq. (45) the explicit angular dependence
on the velocity v, we obtain

i\uhi = S
h'—O, ±1 , ±2

(46)

Using the property of the coefficients dk = d _ k , we can
represent the tensor r}ijk, in the following form74'82'83:

, ± 1 , ± 2
i = di — c20, Ti2 = d2 — (47)

It follows from the above expression that the width F5

In the zeroth order approximation the coefficient rj in
Eq. ( 47 ) is identical with the scalar viscosity in the absence
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of a magnetic field, whereas 77, and 7/2 vanish. (The coeffi-
cients dk are then equal to one another. ) The anisotropic
part of the viscosity tensor appears because zeroth order ei-
genfunctions of the type^a0 <x Y "0 (M/M) acquire admix-
tures in the form of the functions %a0 <x Y %, ( v/v ) . This gives
rise to a correction to the coefficient d0 and the correction is
of the first order in Av/v. Corrections to the coefficients
dk ^0 appear only in the second order of perturbation theory
in respect of the parameter A v/v. Consequently, in the first
order of perturbation theory the coefficients 77, and rj2 are
equal and are of the order of ^Av/v. In the absence of a
magnetic field the viscosity tensor includes contributions of
additional terms because zeroth order eigenfunctions of the
type Yfm (M/M), where m^O, acquire admixtures in the
form of the functions 7"m (v/v). This contribution is again
of the order of 17 Av/v.

Since for elements of the tensor 77,̂  the above contribu-
tion is positive, we can say that the application of a magnetic
field reduces the tensor component 77 ̂  by an amount of the
order of T?Av/v and thus reduces the widths F3 and F4 by
r3Av/v.

It should be noted that the observed changes in the
widths T3 and F4 on application of a magnetic field are
greater than the change in the width F5> because the former
appear in a lower order of perturbation theory in respect of
the parameter Av/v. This is due to the fact that, because of
invariance of the collision operator under spatial inversion,
the operator I0 couples the functions Ylm ( v / v ) and Y!m (M/
A/) only if / is even. Therefore, in the case of the thermal
conductivity ( /=! ) , such a matrix element vanishes,
whereas for the shear viscosity (1=2) it differs from zero.
Consequently, the change in the shear viscosity in a magnet-
ic field is proportional to Av/v, whereas the change in the
thermal conductivity is proportional to (Av/v)2.

Using the expressions for rji]kl from Eq. (47), we can
now calculate F3 and F4:

j — TI,) sin29],

Equations (18), (19), and (39) show that in the pres-
ence of a magnetic field the depths of the dips at the unshift-
ed frequency (co = 0) in the depolarized scattering spectrum
are described by

ABJ oc (hey)
2 (bq)2 (he,)2 (bea)2 oc (be,)2 (he^2 sin2 26.

It is clear from Eq. (49) that the dip in the unpolarized
spectrum appears only for the mode %3 and its maximum
depth corresponds to the angle 6 = 45°. The dip disappears
in the case when h is parallel or perpendicular to q. The dip
contrast R in the presence of the field is

#(<o=:0) oc sin2 26.

The dependence of the depth of a dip on the polarizations of
the incident and scattered waves [Eq. (49) ] is the same as
for the intensity of the main component of the depolarized

scattering [see Eq. (36) ]. Therefore, the contrast of the dip
at the unshifted frequency is the same for the depolarized
VH and HH scattering components, whereas in the absence
of a magnetic field there is no dip for the HH component.

An investigation of the dependence of the width of the
dip on the direction of the magnetic field makes it possible to
separate the isotropic and anisotropic parts in the expression
for the width of the dip F3. According to perturbation theory
in respect of the parameter Av/v (accurate to the first order)
this is sufficiently accurate for a complete description of all
the components of the viscosity tensor. In fact, in this case
we have T?, = 7?2 = — AT?, where AT? > 0 is the change in T?
due to the rotational degrees of freedom T? = 77(u) + AT?,
and the width of the dip F3 is described by the following
simple expression

(50)

For comparison, in the absence of the field the same quantity
is

Therefore, the part of the width of the dip independent
of the angle & determines the part of the viscosity which
depends only on the translational degrees of freedom. The
anisotropic part of the width F3 can be used to find the posi-
tive correction AT?, so that all three viscosity coefficients can
be obtained (77! = rj2 = — AT?, 77 = rj(v) + AT?) and thus
describe completely the magnetic-field dependence of the
viscosity tensor. We shall now consider the dependence of
the width of an acoustic mode Pl on the magnetic field. Us-
ing Eqs. (18) and (39), we can represent Ft in the form

•p ^o 1 _

a (51)

a>5, k

Using the explicit form of the function x\ from Eq.
( 13), we can separate in Eq. ( 51 ) the terms associated with
the thermal conductivity and viscosity tensors, which are xtj

and ijjjk , respectively. In this way we obtain

m M --- •!-} + i\lx}x
\ *•() *-jj /

where

a>5

is the usual second viscosity describing the kinetic energy
dissipation independent of the magnetic field direction,
whereas

-f- 4 S T ̂ -o1 !»>>

is the second viscosity describing the effects which are aniso-
tropic in respect of the magnetic field.
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Using Eqs. (51)-(52), we obtain the following final
expression for the width F, of acoustic modes in the presence
of a strong magnetic field:

presence of a magnetic field is

+ -r|-(-|-T]-fT]1sin22e + -|-Tl2sini9). (53)

It is clear from Eq. (53) that the width F, includes
contributions from the isotropic and anisotropic compo-
nents of the thermal conductivity, from the shear viscosity,
and also the terms associated with the second viscosity. Esti-
mates of all the transport coefficients occurring in Eq. (53)
give the following results:

Av
—

Av Av \ 3

It is clear from this estimate that within the perturba-
tion theory framework the main contribution to the depend-
ence of the width of an acoustic mode (or the attenuation of
sound) on the magnetic field direction comes from the shear
and second viscosities rj ,, r]2, and f,. As in the case of the
widths F3 and F5, the width of an acoustic mode F, de-
creases on application of a magnetic field by an amount
~Av/vF, because of a corresponding reduction in g. The
dependences of F,, F3, and F5 on the magnetic field direc-
tion are shown in Fig. 7.

The contrast of the dips at the shifted frequencies in the

x

0,5

(p/12)rs

0 0,5 1,0

0 0,5 1,0
FIG. 7. Dependences of the values of F5, F3, and F, on the angle 9
between the direction of the magnetic field and the scattering vector q: a)
x = xi is the thermal conductivity in the case when H is perpendicular to
a gradient of the temperature Tandx + x, = xlf is the thermal conductiv-
ity in the case when H|| VT, x, <0; b) ?7(u) and A 77 are the components of
the shear viscosity associated with the translational and rotational degrees
of freedom, respectively, c) f, is the anisotropic part of the second (bulk
or dilatational) viscosity.

(54)

and it is independent of the polarizations of the incident and
scattered waves. It is clear from Eq. (54) that the quantity
R (a) = flB) is maximal if h is parallel or perpendicular to q,
i.e., it is maximal when there is no dip at all at the center.

4.3. Influence of effects even in respect of a magnetic field
on the structure of the scattering spectrum

It is known that the application of a magnetic field gives
rise to terms odd in respect of the field in the transport coeffi-
cients74 and these terms disappear in the limit of sufficiently
strong fields y//>v. We can easily demonstrate [see Eqs.
(41) and (51)] that the widths of the Rayleigh F5 and Bril-
louin F, components of the polarized scattering are insensi-
tive to these effects. In the scattering spectrum the odd ef-
fects may appear only in the fine structure of the depolarized
part of the scattering at the unshifted frequency.

In the case of moderately strong magnetic fields
(7//~Av) the shear viscosity tensor rfijkl is characterized by
five independent components.74 These components can be
the complex quantities dk, where k = 0, + 1, +2 and the
expansion (46) for these components satisfies the relation-
ship (dk )* =d_k (Ref. 74). The values of t/0, R e d t , and
Re d2 represent the effects which are even in respect of the
field, whereas Im c?, and Im d2 represent the odd effects.
These terms appear most clearly in the spectrum in the case
when the magnetic field is directed along the scattering vec-
tor (h || q). In this case the solution of the secular equation for
the modes J3 and ̂ 4 gives two complex-conjugate eigenval-
ues:

(55)

The existence of two complex-conjugate eigenvalues means
that the fine structure of the depolarized part of the scatter-
ing has two dips with identical widths F displaced relative to
the unshifted frequency by an amount A. The order of the
ratio of A and F is as follows:

Av \2 |»

~) T+f

Therefore, determination of the value of A from the
splitting in the spectrum makes it possible to find
Im dt + (1/2 )Im d2 and thus estimate the contribution of
the odd effects to the shear viscosity tensor. In the case when
h||q the depolarized scattering spectrum in a magnetic field
consists of four components at frequencies + yH and
+ 2yH for the VH polarization of the scattering and of three

components at frequencies + 2yH and a> = 0 for the HH
scattering. The splitting of the fine structure pointed out
above should appear for the VH scattering polarization, be-
cause the fine structure in the h||q case appears solely be-
cause shear waves ̂ -3 and %4 are admixed to functions of the
Ylk (M/M) type that contribute to the depolarized scatter-
ing at the frequencies + yH. The intensities of the two split
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2j>H yft O yH 2yH

FIG. 8. Fine structure of the / VH component of the depolarized scattering
spectrum in a magnetic field satisfying 7#~Av(h||q). Here, 2A is the
splitting between the shear modes ̂ -3 and x*. due to the effects which are
odd in respect of the magnetic field.

profiles are the same. A qualitative appearance of the spec-
trum expected for this case is shown in Fig. 8. In the HH
polarization case the fine structure does not appear at all
because there are no components of the polarized spectrum
at the frequencies + yH. It should be pointed out that the
spectrum is symmetric relative to the frequency co = 0.
Therefore, reversal of the direction of the magnetic field,
equivalent to the reversal &> -» — a>, does not alter the spec-
trum.

5. DISPERSION OF SOUND AND ALLOWANCE FOR
VIBRATIONAL DEGREES OF FREEDOM

An analysis of the Rayleigh scattering spectrum is made
above subject to the condition qv 4 Av,v, where v and Av are
the frequencies of the collisions representing relaxation in
respect of the translational and rotational degrees of free-
dom, respectively. This condition implies the absence of the
dispersion of sound, because the frequency of sound in a
medium which is governed by the parameter qv is much less
than the relaxation frequencies v and Av. All other relaxa-
tion frequencies Av,, exhibited by a medium (for example,
those associated with the conversion of the vibrational or
electronic energy into the translational energy) are assumed
to be very low compared with the frequency of sound:
Avj. <<7t>. Therefore, only the translational and rotational
degrees of freedom can particpate in the formation of hydro-
dynamic modes in a medium, particularly of acoustic modes.

If one of the relaxation frequencies Av^. approaches the
frequency of sound, i.e., if Av4 ~qv, the situation changes
radically. It seems that a new degree of freedom character-
ized by a frequency Avfc is activated in the formation of hy-
drodynamic modes. For example, the velocity of sound in an
ideal gas on transition (on the gas density scale) through a
dispersion region Av^ ~qv changes from
u_ = v0(c~/c~ ) l / 2 to u+ = v0(c + /cv

+ )1/2, wherec~ and
c~ are the specific heats of the gas at constant pressure and
constant volume deduced ignoring the k th degree of free-
dom, whereas c£ and cu

+ are the corresponding specific
heats found allowing for the k th degree of freedom.

In describing the dispersion region in the kinetic ap-
proach it is necessary to supplement the set of quantities
Q = (p,M) by new parameters which describe the activated
degrees of freedom and are averaged over the appropriate
period of motion. In the case of the vibadonal degrees of

freedom of a diatomic molecule this parameter is the vibra-
tional energy ^"v > 0. The scalar parameter ^v can be treat-
ed classically or by quantum theory. In the latter case the
integration with respect to dQ is understood to be summa-
tion over the energy levels ^v.

By way of example, we shall consider in greater detail
the dispersion of sound due to activation of the vibrational
degrees of freedom in a diatomic molecule. In this case in the
transport equation for the correlation function of the one-
particle distribution function the collisional term can be sep-
arated into two components 70 = / + A/A, the first of which
describes collisions without a change in the vibrational ener-
gy i?v and the second those accompanied by a change in <<?„.
The characteristic frequencies of the operators / and A/,, are
Av and Avk, respectively, and they satisfy the inequality
Av> Avj.. It follows from this inequality that the operator
&Jk together with the operator /q-v can be regarded as a
small correction to / and we can use perturbation theory in
terms of the parameter (/q-v + Av* )/Av.

In the zeroth order approximation of perturbation the-
ory the space of the eigenfunctions of the operator / splits
into hydrodynamic eigenfunctions without allowance for
the vibrations j, (\,M), where; = 1,..., 5, and the vibration-
al eigenfunctions jv (§?v) dependent only on i?v.

The functions Xi (v,M) and ̂ v (^v ) represent the ze-
roth order subspace in which the eigenfunctions of the oper-
ator/vanish.

In constructing the correct hydrodynamic modes in the
first order of perturbation theory in respect of the parameter
(;'q-v + Avfc )/Avit is necessary to solve the secular equation
and to find the corresponding eigenvalues in the zeroth sub-
space. The simplest case of a secular equation is obtained
when the collision frequency accompanied by resonant
transfer of the vibrational energy Avres is many times greater
than the collision frequency accompanied by the transfer of a
vibrational energy Av^ to other degrees of freedom (rota-
tional or translational). In this case a vibrational tempera-
ture is established in a system quite rapidly (in a time
T~ Av^1) and this temperature relaxes relatively slowly (in
a time r~AvA71) to the equilibrium gas temperature T.
From the point of view of the transport equation this de-
scription means that among all the vibrational modes the
one that plays the dominant role is the mode <pk

= (&v - Wv )/A^v, where Wy = T is the average vibra-
tional energy and A£?v is the dispersion (scatter) of the vi-
brational energy describing relaxation of the_yibrational en-
ergy of the system to the equilibrium value ̂ v.

In deriving the secular equation it is sufficient to consid-
er just one mode <pk. In this approximation, which corre-
sponds to Avres > Av^, the secular equation is of the third
order:

where u _ and a + are the values of the velocity of sound
obtained ignoring and allowing for the vibrational degrees of
freedom, respectively:
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FIG. 9. Dispersion of the velocity of sound uac (a) and of the
absorption coefficient of sound F, (b) due to vibrational de-
grees of freedom. Here, u _ and u + are the velocities of sound
deduced ignoring and allowing for the vibrational degrees of
freedom; \vk is the frequency of transfer of the vibrational
energy to other degrees of freedom (translational or rota-
tional); Av is the frequency of the rotational-translational
exchange of energy.

where cu is the specific heat of a molecule without
allowance for the vibrations.

Equation (56) can be reduced by a simple substitution
of the variables /I = — /ft and Av^ = 1/r to the familiar
dispersion equation of the MandePshtam-Leontovich relax-
ation theory of propagation of sound in a liquid with one
relaxation time r (Ref. 85). It is known that Eq. (56) has
three roots, two of which /I, and A2 are complex-conjugate
and correspond to two traveling acoustic modes, whereas
the third root A.3~ &vk is real and it determines the frequen-
cy of conversion of the vibrational energy to the transla-
tional or rotational forms. Although Eq. (56) is quite famil-
iar in the case of liquids, it would be of interest to consider its
solution for a gas when the variable is the gas density. If we
solve the secular equation (56), we can obtain an explicit
expression of Im A, = — Im A2 or for the velocity of sound
throughout the full range of variation of the gas density. This
dependence is shown in Fig. 9a. Calculations of the absorp-
tion of sound or of the width of hydrodynamic modes
Re A, = Re A2 showed that in the range of low gas densities
corresponding to Av^ <%qv the second-order corrections
~ ( gy)2/Av exceed the first order corrections Av^ and de-
termine the widths of acoustic modes. Figure 9b shows the
dependence of the width of acoustic modes on the gas den-
sity. We can see from this figure there are three characteris-
tic parts of this dependence.

In the range of low densities (^rw_)2 /Av> Av^ the
width of acoustic modes is inversely proportional to the den-
sity and is independent of the vibrational process. In this
case we can calculate the spectrum ignoring the vibrational
degrees of freedom.

In the second part of the dependence in Fig. 9b the at-
tenuation of sound varies linearly with the density

which is known to decrease gradually on activation of an
increasing number of degrees of freedom and its value is
maximal for the dispersion due to the rotational relaxation.
In the case of a diatomic molecule this factor is

This rise continues until Avfc $<?«_. The maximum value of
the width is (F,),,,.,,. zz2q(u_ — u+), i.e., it is twice the dis-
continuity of the velocity of sound because of dispersion
(Fig. 9a). A further increase in the gas density has the effect
that the vibrational mode <pk becomes nonhydrodynamic,
Avk^qu_, and the linear rise changes to a fall in accordance
with the law

- l- =0.08

We recall that here, as in region II of Fig. 9b, there is a scale
factor

_^
2

for the rotational degrees of freedom and 0.04 for the vibra-
tional ones.

It follows from the above analysis that in the dispersion
region A vk ~ qv the width of acoustic modes (or the absorp-
tion of sound) depends strongly on three parameters: \vk,
u_, and u + . Such a simple result is a consequence of inclu-
sion in the secular equation of only the <pk mode. In general,
if we allow for the contribution to the attenuation of sound of
all the other vibrational modes, we encounter small correc-
tions of the order of (Av^/Avres) (Ref. 3) to the second
viscosity or to the width of an acoustic mode Fj in the region
where Avk >?M_. Then, the slope of the linear part of the
dependence of F, on the density (region II in Fig. 9b) is still
governed only by the relaxation frequency of the vibrational
energy Avfc.

It therefore follows that deviation of the dispersion law
of sound from the simple Mandel'shtam-Leontovich relaxa-
tion theory is manifested by the dependence of the absorp-
tion of sound on the density of gas in region III of Fig. 9b and
it may be significant if the parameter Av^. /Avres approaches
unity. This case may be encountered, for example, for mole-
cules which are at high vibrational levels where because of
the anharmonicity the probabilities of the vibrational-trans-
lational A.vk and resonance vibrational-vibrational relaxa-
tion Avres processes become of the same order of magni-
tude.73'86 Clearly, the parameter Av^/Avrcs is close to unity
if the dispersion of sound is related to the rotational degrees
of freedom for which the ratio of the rotational-translational
and rotational-rotational relaxation frequencies is of the
same order of magnitude.73'86

The maximum of the dependence of the absorption o f
sound on the gas density (Fig. 9b) at gas pressures of the
order of atmospheric corresponds to ultrasonic frequencies
if the dispersion of sound is due to the vibrational degrees of
freedom and changes greatly with the nature of the mole-
cule. For example, in the case of oxygen this frequency is
~ 10 Hz, whereas for the CO2 molecules it is ~ 5 X104 Hz
(Ref. 86). If the dispersion of sound is due to the rotational
degrees of freedom, the corresponding frequency is consid-
erably higher. For example, in the case of molecular hydro-
gen at atmospheric pressure the resonance frequency is
~ 107 Hz (Ref. 86). In this case the dependence of the ab-
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FIG. 10. Dispersion of the transport coefficients x, r/, and g due to the
rotational degrees of freedom of a molecule. Here, Av is the frequency of
the rotational-translational energy exchange; u_ is the velocity of sound
deduced allowing only for the translational degrees of freedom; x ( v ) and
77 ( v ) are the thermal conductivity and the shear viscosity associated solely
with the translational degrees of freedom.

sorption of sound on the gas density can be deduced from the
width of the Brillouin components and the frequency of
sound corresponding to the absorption maximum fima!t ~qv
can change because of a change in the scattering angle 6,
since q~2ksm(0/2).

Since the widths of hydrodynamic modes are related
uniquely to the transport coefficients [see Refs. 57 and 58
and the formulas in Eq. (20) ], the dispersion of the widths
of these modes can be regarded as the dispersion of the corre-
sponding transport coefficients. In particular, activation of
additional vibrational degrees of freedom results in the dis-
persion of the second viscosity f. Then, neither the thermal
conductivity nor the shear viscosity show dispersion, be-
cause they appear due to the coupling between hydrodynam-
ic modes and nonhydrodynamic modes of the vector and
second-rank tensor types, respectively [see Eq. (21) ].

However, if the dispersion of sound is due to the rota-
tional degrees of freedom characterized by the vector param-
eter M, the dispersion may be exhibited both by the shear
viscosity and the thermal conductivity. It should be pointed
out that an increase in the thermal conductivity in this case is
hindered by the selection rules relating to the spatial parity.
This case is illustrated in Fig. 10.

6. CHARACTERISTICS OF THE RAYLEIGH SPECTRUM OF
LIGHT SCATTERING IN A NONIDEAL GAS

The description of the Rayleigh light scattering spec-
trum given in preceding sections is based on the Boltzmann
transport equation, which is valid in the case of an ideal gas.
Essentially the concept of an ideal gas implies the following
restrictions: 1) collisions are binary or they can be described
in the impact approximation; 2) gas molecules are free to
rotate. The first restriction is satisfied ifrc-gr= l/v, where
TC is the collision time, T is the time between collisions, and v
is the frequency of gaskinetic collisions (sec~~'). This condi-
tion can be rewritten in the form rc /T ~ Nd3 < 1, where d is

the range of the molecular forces and N is the density of the
particles in the gas (cm"3). The small parameter Nd3 is
usually called the gaseous state parameter.

We can easily demonstrate that when the second re-
striction relating to free rotation of molecules in a gas is
obeyed, the angular velocity of rotation of a molecule ft must
be higher than the collision frequency v. Since fl ~ l/rc , this
condition reduces to the previous one rcv<^l or we have
Nd 3 < 1 . In the case of simple molecular gases we have
d~ 10~7, which gives the following familiar restriction on
the gas density associated with the impact approximation:
N < 1021 cm~3 or the gas pressure at room temperature
/><30atm (Ref. 87).

When the gas pressure is increased ( p~ 100 atm), the
effects associated with the mutual correlation of particles or
deviation of the gas from its ideal behavior begin to be felt.
The spectral composition of the scattered light depends on
the nature of the equation describing the kinetics of a non-
ideal gas. In the first order of the gaseous state parameter
Nd 3 the corrections to the transport equation are known to
reduce to an allowance for nonlocal pair and local triple
collisions.68'88'89 The contribution of triple collisions simply
increases slightly the eigenvalues of the Boltzmann collision
operator, because these collisions do not disturb the local
laws of conservation of the number of particles and their
momentum and energy. More interesting results for the
spectrum are obtained when nonlocal corrections to the col-
lision integral are considered.

It is shown in Refs. 65, 88, and 89 that the linearized
transport equation for the function x^g is

i (qv, - co) x., + (J0 + A/,,) xug + /V (qvt — (o) x<o<7 + *qi|X»9

(57)

where

BO =a0(e1e2),

- * „ I (Me1)(Me2) 1
--- -« - -- -

and a, is the antisymmetric part of the polarizability tensor.
We have retained here the antisymmetric component of the
scattering of light; /0 is the Boltzmann collision operator;
A/o is the correction of the order of AW 3 to the Boltzmann
integral due to triple collisions; the nonlocal part of the colli-
sion integral /q-I, is in fact a correction of the order of Nd 3 to
the nonlocal free motion operator iq-v. The operator /q-I,
violates the local laws of conservation of energy and momen-
tum: (i'l/qlj^O, (u\iqii^0, but conserves the number of
particles { 1 |/qi, = 0. The operator I2 is related to the finite
nature of the collision time (of the order ofNd3 on 70) and
violates only the local law of conservation of energy
{ & |/2 7^0, but conserves momentum and the number of par-
ticles (v|/2 = <1 1/2 = 0. The most interesting qualitative dif-
ference between Eq. ( 57 ) and the equation for an ideal gas is
that the nonlocal correction /q-I, couples shear modes
%3 = vy/v0 and #4 = vz/v0 to the modes Ylm (M/M) de-
scribing the antisymmetric scattering. An explicit calcula-
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tion of the normal and inverse matrix elements of the opera-
tor /q«I, gives the relationships

t^'i-8-»•<*>>
(58)

My

~Ml

These relationships are consequences of the law of conserva-
tion of the total angular momentum M 4- [ rp ] written in the
form of matrix elements of the total collision operator in the
Fourier representation in respect of the coordinates. The
fact that the law of conservation of the total angular momen-
tum, i.e., the sum of the rotational and orbital momenta of
the molecules, is obeyed rigorously only when we allow for
the nonlocal nature of the collision integral was considered
by Kagan and Maksimov.90 They allowed for a new integral
of motion and supplemented the usual equations of hydro-
dynamics with an equation for the total angular momentum.

Since the normal and inverse matrix elements of Eq.
(58) are purely imaginary and have opposite signs, it follows
that the fine structure appears in the antisymmetric scatter-
ing and it is manifested by a narrow peak of width F3 and
intensity Ia:

a>5

(59)

oca'?"

where / and m are the moment of inertia and the mass of a
molecule.

Physically the appearance of a peak is associated with
the process of relaxation of vortices in a dense gas, i.e., con-
version of the orbital momentum of the vortices [rp] into the
internal angular momentum M. In the Boltzmann approxi-
mation the orbital angular momentum is conserved.

The contrast of a peak ( relative to the wide antisymme-
tric part of the scattering) is a small quantity of the order of
~(Nd3)2 and it rises significantly only on approach to the
liquid state.

One should seek this peak in the HH polarization of the
depolarized scattering, when at the unshifted frequency
there is no contribution due to the fine structure of the sym-
metric scattering. This case is represented in Fig. 1 1 . Experi-
mental observations of antisymmetric scattering of mole-
cules are usually very difficult because of the smallness of the
relevant scattering cross section (a,/«10)2~ 10~8 (Ref.
91). However, as demonstrated by Baranova and Zel'dovich
in Ref. 91 this cross section may be increased greatly to val-

nB nB

FIG. 11. Depolarized (HH) spectrum of light scattering in a nonideal gas:
1) peak in the antisymmetric component of the spectrum associated with
the exchange of angular momentum between the internal M and orbital
[rp] momenta; 2) dips in the symmetric component of the spectrum due
to the contribution of the rotational degrees of freedom to the shear viscos-
ity 97.

ues (a!/a0)
2~ 10 2 by approaching an electronic absorp-

tion band of molecules.
Other changes in the scattering spectrum due to the

nonideal nature of the gas are manifested as follows. Firstly,
the dependence of the velocity of sound on the gas density
gives rise to a similar density dependence of the splitting of a
Brillouin doublet. The relative change in the doublet fre-
quency is proportional to the paramter Nd3. The dependence
of the velocity of sound wac on the gas density in the absence
of dispersion is described by the virial coefficient

where C/n is the potential of interaction of molecules in the
gas:

N
2cpcv

In the case of a van der Waals gas we have B( T) = b
T) and the relative shift of the doublet frequency is

dr2 AB \
AT AT I'

(60)

(a/

For example, in the case of the N2 molecule variation of tem-
perature alters the virial coefficient from 5(7=300
K ) = - I X 10-" cm3 to .5(7= 1000 K) = 5X 10-"cm3,
and in the case of H2 the change is from 5(7=50
K) = -7X10-" cm3 105(7= 1000K) = 3xlO~"cm3

(Ref. 92). Hence, it is clear that the shift of the doublet
frequency (or the dispersion of the velocity of sound) can be
positive or negative, depending on the actual temperature.
An estimate of the order of magnitude of the ratio Aft/fl for
simple molecules gives Afl/£l~ 10~3 when the gas pressure
is altered by one atmosphere, which is readily observed when
modern laser spectroscopy methods are used.93

Secondly, the contrast of narrow dips in the spectrum of
the depolarized scattering is a function of the gas density.

Using Eq. ( 57), we can obtain expressions for the con-
trast of the dips R (<a = 0) and R (co = flB ) (Ref. 65 ) which
in the subsequent analysis can be represented conveniently
in the following simple form using perturbation theory in
respect of the parameter Av/v:
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fl(w = 0)==

-. 0 1 Afli Av Av + (A/0)MM D ,„ „,= SIB) =—53--p— ~ ; ft (co = U);
"» *i V4-/AM-.

. + 2NB(T)),

(61)

here, (A/0)MM and <A/0)U1J are positive corrections to the
collision frequencies Av and v, respectively, and they are due
to triple collisions; B ( T ) is the virial coefficient. It should be
noted that the expressions in Eq. (61) represent an estimate
of the order of magnitude of the contrast so that we have
omitted numerical factors of the order of unity, which follow
from a more rigorous microscopic expression for R. A cor-
rection proportional to the virial coefficient B(T) is asso-
ciated with the operators 7j and 72, which allow for the spa-
tial and temporal nonlocality of double collisions. In the case
of a van der Waals gas we have B = b — (a/T), where the
parameter b is proportional to the molecular volume d3 and

oo

a a \\Ui2\ drdonidona
d

is governed by the long-range part of the potential. Then, at
high temperatures when Ut2/T^ 1 the main role in the inter-
action potential is played by the repulsion region B^b,
which increases the contrast R (co = 0) on increase in the gas
density N. If we ignore the contribution of triple collisions,
this case corresponds to models of the Enskog type.58 Specif-
ic numerical calculations of R (ca = 0) carried out using the
Enskog model for hard ellipsoids were given by Cole, Hoff-
man, and Evans.56 As already mentioned in the Introduc-
tion, these authors found that the dip depth is independent of
the shape of the molecule and that this depth rises linearly
with the gas density. In our view, the contrast of a dip in this
model does depend on the shape of the molecule via the pa-
rameter Av/v. (In particular, in the case of weakly aniso-
tropic molecules, we have Av/v->0, i.e., the contrast of the
dip is small.)

In the region of sufficiently low gas temperatures, when
U12/T~ 1 and the main role is played by the long-range part
of the potential, the virial coefficient B (T) may become neg-
ative: B(T)^ — a/T. This reduces the dip contrast on in-
crease in the gas density.

The contribution of triple collisions which effectively
reduces to redefinition of the collision frequencies Av and v
is manifested directly in the gas-density dependence of the
ratio of the dip contrasts R (ca = flB/R(ca = 0) and, there-
fore, can be found experimentally.

7. CONCLUSIONS

The above kinetic approach to the calculation of the
light scattering spectrum of molecular gases is very promis-
ing because it makes it possible to provide a completely mi-
croscopic description of the structure of the spectrum. In
particular, in the case of the Boltzmann gas it is possible to
calculate completely the fine structure of the Rayleigh scat-
tering spectrum in the polarized and depolarized compo-
nents, i.e., to find all the components of the scattering tensor
(Fig. 5). Within the framework of this method it is conven-

ient to allow for the influence of external fields, particularly
of the magnetic field H, on the internal degrees of freedom of
molecules. In the case of rotating molecules the application
of a magnetic field gives rise to a dependence of the param-
eters of the spectrum on the intensity and direction of H,
which makes it possible to identify the contribution of the
rotational degrees of freedom to all the transport coefficients
(Fig. 7).

The application of the kinetic method to the description
of the dispersion of sound provides a criterion of validity of
the Mandel'shtam-Leontovich phenomenological theory.
An allowance for corrections due to the nonideal nature of a
gas gives rise to a narrow peak in the antisymmetric compo-
nent of light scattering, associated with the exchange of the
angular momentum between the translational and rotational
degrees of freedom. The parameters of the spectrum of a
nonideal gas can be expressed in terms of the virial coeffi-
cient B ( T ) .

We shall conclude by noting that the kinetic approach is
used above only for the unshifted pure Rayleigh scattering
subject to the simplest assumptions on the structure of the
collision integral and on the simultaneous correlation func-
tion of the distribution, namely, the collision operator is re-
garded as self-adjoint and the simultaneous correlation func-
tion applies to an equilibrium ideal gas. Dropping of the first
assumption makes it possible, for example, to study a gas
consisting of stereoisomeric molecules.71 An allowance for
the nonideal nature of the gas in the case of simultaneous
correlation functions renormalizes the polarizability, which
no longer reduces to the polarizability of a single molecule
and this corresponds to the Lorentz-Lorenz effect for the
permittivity of a medium.69 These corrections alter the inte-
grated intensity of the scattered light. The same method can
be used to study the rotational Raman scattering spectrum
of gases. One can expect interesting features in the spectrum
associated with the interference between hydrodynamic and
nonhydrodynamic modes if one considers a nonequilibrium
gas in which single nonhydrodynamic modes are excited ex-
ternally. For example, an external laser can be used to in-
crease considerably the vibrational temperatures of a gas,
which corresponds to the excitation of a vibrational mode
<pk, the flow of a gas along a tube can be used to excite shear
modes, etc.

The published theoretical calculations of the scattering
spectrum for a nonequilibrium medium, associated with the
presence of temperature and velocity gradients, give am-
biguous results94""97 and the available experimental results
are still few and far between. We know of only two studies of
the polarized scattering spectrum in the presence of a tem-
perature gradient in water and in fused quartz.98'99

All these features of the scattering spectrum of a gas can
be readily observed by modern laser spectroscopy methods
and experimental investigations in this field would in our
opinion provide very interesting results.

The authors are grateful to V. L. Ginzburg and I. G.
FabelinskiT for valuable discussions.
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