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The basic ideas of the superstring approach in the physics of elementary particles are presented
at a rather simple theoretical level. The theory of interacting superstrings with dimensions of
the order of the Planck dimension is presently regarded as a fundamentally new and extremely
promising approach to a unification of all the fundamental interactions (strong,
electromagnetic, weak, and gravitational) in a common theoretical framework. Although th is
field is still in a stage of rapid development, several results of defini te interest have been
obtained. The classical dynamics and the quantum dynamics of boson and spin strings are
described. Such strings arise primarily in hadron physics. How a critical dimensionality of
space-time and tachyon states arise upon the quantization of string models is demonstrated. A
superstring is a supersymmetric generalization of very simple models of a relativistic string.
The total action of a superstring is examined. The field theory of superstrings is discussed, as
are various methods for introducing internal symmetries in string theories. The low-energy
(field) limit in superstring theory is studied. The cancellation of anomalies and the problem of
divergences are discussed. Compactification in superstring theories is discussed, as is a
phenomenology which arises here for the modern physics of elementary particles. Some
cosmological consequences of the superstring approach are outlined.
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It can be shown convincingly that reality can-
not at all be represented by a continuous field.
A. Einstein
(as translated back from the Russian)

1. INTRODUCTION

The construction of physical theories always includes
two stages: First, new theories are developed to describe a
new region of physical phenomena; then, different theories
or models are combined into a common theoretical frame-
work. The second stage reflects the physicist's conviction

that the physical world is a world of a universal relationship
and uni ty . Success in combining several physical theories on
a common basis requires penetrating deeper into the nature
of the physical phenomena and identifying the more funda-
mental behavior. The classic example here is Maxwell's elec-
tromagnetic theory, which combined electrical and magnet-
ic phenomena in an orderly framework.

In the first third of this century, physicists made a ma-
jor effort to combine gravitation and electromagnetism on a
geometric basis.:-' Einstein's theory of gravitation linked the
gravitational field with a geometric characteristic of the
space-time continuum: its curvature. It was therefore natu-
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ral to attempt to relate also the electromagnetic field with
geometric characteristics of space-time. Efforts in this direc-
tion were the conformally invariant theory of gravitation
and electromagnetism developed by Weyl4 and Einstein's
unified field theories.3 A new idea in this area was proposed
by Kaluza and Klein.'1 In their approach, space-time was
regarded not as four-dimensional but as five-dimensional;
the fifth dimension was compactified: M ^ ~ M 4 x 5 ' . The
curvature of the four-dimensional submanifold, Af4 , was, as
before, identified with the gravitational field, while the com-
ponents of the metric tensor g//5 with/* =0, 1,2,3 were iden-
tified with the electromagnetic potential. The isometry
group of the compact manifold 5"' determines a gauge group,
in this case the U{ 1) group of a Maxwell field.

Developments in quantum mechanics and elementary
particle physics demonstrated the limitations of this ap-
proach in the construction of a unified field theory. It be-
came clear that a unified theory of the fundamental interac-
tions would actually have to incorporate not only
gravitation and electromagnetism but all fields whose quan-
ta are elementary particles.

The following four types of fundamental interactions
(or four types offerees) are presently known": the strong
interaction (in which hadrons are involved), the electro-
magnetic interaction, the weak interaction, and the gravita-
tional interaction. Let us briefly characterize each of these
interactions.

According to the present understanding, hadrons are
made up of quarks, of which there are six in the energy range
presently attainable ( ~ 102GeV). These quarks are grouped
in pairs: (u ,d) , (c,s), ( t ,b) . The u, c, and t quarks have a
charge of + 2/3, while the d, s, and b quarks have a charge
of — 1/3. Baryons consist of three quarks; e.g., the proton is
p = uud, the neutron is n = udd, and the A_ particle is
A = uds. Mesons consist of two quarks: n *" = ud, K^ = us,
J/il> = cc. Each quark can be in one of three color states
according to the SU(3)C group (yellow, blue, red). The phy-
sically observable hadrons are singlets in terms of the color
quantum number. A dynamic theory describing hadron
physics is quantum chromodynamics (QCD).7'S In this the-
ory, the interaction between quarks is mediated by gluon
fields: massless vector mesons with a non-Abelian gauge
group SU(3) . Within the framework of QCD, it is possible
to explain successfully a fundamental feature of the behavior
of quarks: the fact that they essentially do not interact with
each other at short range (asymptotic freedom). The reason
for this situation is a decrease in the effective chromodyna-
mic interaction constant with increasing energy. A question
which remains unresolved in QCD, however, is whether
quarks exist in a free state.

The hypothesis of quark confinement is used in order to
carry out specific calculations in QCD. This hypothesis
eliminates the question of why the strong interactions,
which are mediated by massless gluons, have a finite radius
of action. The use of asymptotic freedom and the hypothesis
of quark confinement makes it possible to construct a QCD
description of processes with large transverse momenta, the
production of lepton pairs, and string processes in e + e~

annihilation, i.e., reactions in which the details of the forma-
tion of the final states from the quarks and gluons are not
important. A description of the mass spectrum of hadrons
and of exclusive processes turns out to lie beyond the capa-
bilities of QCD as it exists today.

The electromagnetic and weak interactions have been
successfully combined into the Glashow-Weinberg-Salam
unified theory of the electroweak interaction"7"'"' on the
basis of the SU (2) X U ( 1 ) gauge group. The observation of
intermediate vector bosons W +, W and Z" in colliding pro-
tions are regarded as the "square roots" of translation trans-
formations.

Supersymmetry combines bosons and fermions into
common supermultiplets. At present we have no experimen-
tal confirmation of supersymmetry (i.e., it can only be
broken), but from the theoretical standpoint the supersym-
metric field models have several indisputable advantages.
Foremost among them is the mutual cancellation of many
ultraviolet divergences in these models.

In theories with a dimensional interaction constant,
such as gravitation, the only way to remove divergences is to
have them cancel each other out. In supergravity this cancel-
lation has been demonstrated at the single- and two-loop
levels. In higher-order perturbation theories, this cancella-
tion of divergences probably does not occur. The supersym-
metric grand unified theories also incorporate gravitation.
Figure 1 shows the ranges of applicability of the fundamen-
tal physical theories and the corresponding symmetry
groups.

Recently, Kaluza and Klein's ideas that all the internal
symmetries (including gauge symmetries) in four-dimen-
sional Minkowski space are generated by generally covar-
iant space-time symmetries of a Z)-dimensional world
(D = 4 + k) have been revived in the framework of super-
symmetry." Supersymmetry imposes a natural restriction
on the dimensionality D: D < 11.

E, GeV Symmetry
group

M,,

Theory

QCD,
• electroweak theory

("standard model")

GUT,EK.so(m>,sm'<5) ,
". -\ f supergravity

Superstrings

FIG. 1. Basic theoretical models in the physics of elementary particles,
their ranges of applicabili ty ( in terms of energy £"and distance K). and the
corresponding fundamental symmetry groups.
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The theoreticians are presently being attracted to su-
perstring theories'5'"1 as extremely strong candidates for the
role of unifying all the fundamental interactions, including
gravitation.

Superstrings are one-dimensional relativistic entities
with a length on the order of the Planck dimension (10~"
cm). In addition to their linear dimensions, superstrings are
characterized by spin (fermion) degrees of freedom, which
are distributed along the strings. The number of physical
fermion degrees of freedom is precisely equal to the number
of boson degrees of freedom, so that the overall theory has
supersymmetry.

A systematic quantum theory of superstrings is formu-
lated in a ten dimensional Minkowski space-time. For sever-
al reasons, for which the detailed mechanisms are not yet
completely clear, six of the dimensions undergo a compacti-
fication to a Planck level: M ]<]-^M4XK'\ An extremely at-
tractive idea here is that the theory of superstrings will make
it possible to choose a compact manifold K(1 in an essentially
unambiguous way and that the topological properties of this
manifold will determine the basic features of the low-energy
dynamics of superstrings, which describes the modern phys-
ics of elementary particles. In the low-energy limit (E< 1019

GeV), the superstring theories become supergravity and the
Yang-Mills supersymmetry theory.

Superstring theory thus organically incorporates super-
symmetry, Kaluza and Klein's idea regarding the multidi-
mensionality of our space-time world, and also the idea of
nonlocality of the entities which are the mediators of the
ton-antiproton beams1' is direct experimental confirmation
of this theory. A characteristic feature of this theory is the
presence of chiral fermions (fermion fields are eigenvectors
of the projection operators 1 + ys). This circumstance is
manifested as a breaking of P-invariance in weak processes.

A unified description of three interactions—strong,
electromagnetic, and weak—is the goal of grand unified the-
ories (GUT)."'•" In these theories, one chooses a sufficient-
ly large gauge group—SU(5), SO( 10), or Eft—as a funda-
mental group, and QCD and the electroweak theory are
"installed" in this gauge model. The fundamental fermion
fields are quarks and leptons, which are grouped in genera-
tions. A pair of leptons is added to each of the pairs of quarks
listed above; the u and d quarks with the electron and the
electron neutrino form the first generation; the c and s
quarks with the muon and with the muon neutrino form the
second generation; and, finally, the t and b quarks along with
the tau lepton and the corresponding neutrino are grouped
in a third generation. The masses of the quarks and leptons
increase with increasing index of the generation. An impor-
tant consequence of a GUT is the prediction that the proton
is unstable.115'1"1

With increasing energy, the effective constants of the
weak and electromagnetic interactions should increase,
while the chromodynamic interaction constant should de-
crease, so that at an energy of 1015 GeV (the energy scale of
grand unification) all three constants should become equal.
According to the GUT, we cannot expect to find any funda-
mentally new physics over the vast energy range from 10: to

10" GeV (the "grand desert"). Unfortunately, the GUT
give us no principle for immediately choosing among the
various possible gauge groups. Furthermore, these theories
generally contain a large number of numerical parameters
which are related to the Higgs sector, to the constants of the
Yukawa interaction.

The masses which arise in GUT span a hugh range,
from a few electron volts (the possible mass of neutr inos) to
10'5 GeV. So far, the unified theories give us no satisfactory
explanation for this hierarchy of masses. Gravitation does
not fit into a GUT in a natural way, since the mediators of
the interaction in these theories are gauge vector fields of
spin 1, while the quanta of the gravitational field (gravitons)
have spin 2.

Incorporating gravitation in a unified theory of the fun-
damental interactions will first require deriving a quantum
theory of gravitation. In this arena, definite hope is pinned
on supergravity.

Supergravity is a theory with a localized gauge super-
symmetry. The transformations of supersymmetryi : l 4 mix
boson (B) and fermion (F) fields: SB = eF, 8F = dB-e,
where E is a spinor transformation parameter. Supersym-
metry is a space-time symmetry, since the repeated applica-
tion of a transformation results in a translation:
(8,8 2 + 82

S\)B = a1' dfl B where a1' =e2f'£\^ and f are the
Dirac matrices. On this basis, supersymmetry transforma-
fundamental interactions. Important properties of superstr-
ing theories are the absence of anomalies (i.e., a breaking at
the quantum-mechanical level of classical symmetries in the
theory (gauge symmetry and Lorentz invariance) and the
possibility of el iminating divergences in the theory. Remark-
ably, superstring theories leave us essentially no lat i tude in
choosing a fundamental gauge group. There are only two
possibilities: the SO(32) group and the E s xE K group.

The list of papers devoted to superstrings is extremely
long. l 7 - '* It is thus impossible to discuss them all completely.
The purpose which we do intend to achieve in this review is
to present, at a rather simple theoretical level, the basic ideas
of the superstring approach in elementary particle physics.

2. RELATIVISTIC STRINGS IN HADRON PHYSICS

2.1. Nambu-Goto action for a boson string

The superstring is a natural generalization of the rela-
tivistic string model which originally arose in hadron phys-
ics (see, for example, the reviews in Refs. 19-21) as the dy-
namic basis of dual-resonance models.2"3 Superstring
theory is based on an apparatus which was developed for
describing hadron string models. In the dual approach it is
assumed that the hadron spectrum in the tree approximation
is equidistant and consists of an infinite number of reson-
ances of zero width. This spectrum is generated by a denu-
merably infinite set of creation and annihilation operators
an,t > an,, >

 n = 1,2,3,..., each of which is a Lorentz vector. A
set of operators of this sort can be found by quantizing a
relativistic entity of finite size which is extended in one di-
mension (strings or filaments). A direct generalization of an
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ordinary linear string to the relativistic case would not be
appropriate from the standpoint of the dual models, since in
this case the quadratic Lagrangian does not yield limitations
on the physical vectors of states which could be identified
with the Virasoro conditions in dual models. Accordingly,
Nambu24 and Goto25 have proposed for a relativistic boson
string an action which is proportional to the area of the
world surface in space-time which is swept out by the string
as it moves:

=-v UT \ da(detpo(J '/* (1 )

where hrl/i = d,,x''d/:ixt< is an induced metric on the world
surface of the string; x1' (r,cr) are the coordinates of the
string; a, /3 = 0, 1,/u = 0, \,...,D — 1, D is the dimensionality
of the space-time with the metric signature ( + , — , — , . . . ) ;
and 7 is a constant with a dimensionality [M]2, which is
determined in the dual models by the universal slope of
Regge paths, a': y = (2ira') ~ '. The parameter u" = r is an
evolution parameter, while the variable u ' = a numbers the
points along the string. By virtue of the reparametrized in-
variance of action ( 1 ), orthonormal gauge conditions can be
imposed on the dynamic variables of the string:

(2)(x ± xY = 0, x = x = dax.

As a result, the equations of motion of the string are linear-
ized:

(3)

(4)

should hold at its ends. For a closed string (0<0-<27r), the
coordinates of the string obey the periodicity condition

If the string is open, the boundary conditions

) = ̂ (x, u) =0

(T, 0) - a* (T, 2.-i). (5)

2.2. Covariant quantization; Virasoro algebra; critical
dimensionality of space-time; tachyons

A solution of equations of motion (3) which satisifies
boundary conditions (4) can be represented by the Fourier
series

(6)

where P" is the total momentum of the string, and Q1' are
the coordinates of the "center of mass" of the string at r = 0.
Since the.x'' (r,a) are real, the amplitudes a1', obey the con-
dition a „,, = a*,. In the quantum theory, these ampli-
tudes are interpreted as Fok operators which obey the com-
mutation relations

\QI(, (7)

wheregt,,. = diag (1, — 1, — 1, ...).
Orthonormal gauge conditions (2) lead to the Virasoro

operators

n=0, ±1, ±2, .. .

which satisfy the algebra

(8)

(9)

The operators LWL ± , form a subalgebra in the Virasoro
algebra which is isomorphic with the Lie algebra of the
SU( 1,1 ) group. An important point here is the appearance
of a c-number term (central charge, Schwinger term) in
commutation relation (9) . In the classical theory, where
Poisson brackets play the role of the commutation relations,
there is no such anomaly:

Lm} = (—0 (n — m)Ln. (9')

The algebra ( 9' ) is isomorphic with the Lie algebra of a con-
formal group on a plane. In classical mechanics, the L,, gen-
erate holomorphic mappings z->/(z) and can be represented
as differentiation operators L,, ~ie'zd/dz. If the anomalies
in (9) do not cancel out, the conformal symmetry is broken
in the quantum theory (Subsection 2.3).

The appearance of the anomalous Schwinger term in
(9) is a consequence of the switch to the normal product of
the operators #'„' in Ln . The simplest way to derive this term
is to use the Wick theorem to calculate the expectation value
over the vacuum of the commutation relation ( 9 ) , if we note
that the pairing of the operators a%aj is equal to
-g"v6(k)k8k+J.0.

The temporal components a,;J,,n>0, acting on the
vacuum, will lead to vectors of states with a negative norm.
Only those states \<t>) are physical which satisfy the condi-
tions

| L,, =0,

(10)
It has been shown:7'2S that the solution of these equations
does not contain states with a negative norm if 1 <Z><25,
while «(0) < 1. A physical space of states with a positive
norm (i.e., if we eliminate states with a zero norm) can be
constructed only in a space-time with dimensionality D = 26
and if a(0) = 1 (the Veneziano dual model). This result
means that the ground state of a string is a tachyon, since for
the square mass of the string we find from ( 10)

Ma = p j = _ n T 2 :o_mam:-2nYo(0). (11)
m^=0

Infinite-dimensional Virasoro algebra (9) belongs to
the Kac-Moody affine algebras, the theory of which has re-
cently undergone a development.24 These algebras may be
thought of as a generalization to the infinite-dimensional
case of the classical theory of Lie algebras. This expansion
preserves to a maximal extent such concepts in the theory of
Lie algebras as root diagrams, senior weight, the Cartan ma-
trix, etc. The results derived in the theory of Kac-Moody
algebras have made it possible to construct a new proof of the
theorem that there are no "ghosts" in a relativistic string
model.10
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The theory of a closed boson string contains two inde-
pendent sets of oscillator operators a,, and /?„:

, a) = 1

hadron states with large spins ( the quantum string theory
leads to the limitation /<a'A/2 for an open string or
2J<,a'M2 for a closed one). These properties of the hadron
spectrum are supported by experiment.

+ 2(HV)V2 2 7ei"Mafc-in<IT p>ino)- (12) 2.3. BRST formalism in a covariant quantum string theory

Accordingly, the set of Virasoro operators is also doubled:
-T-iA*

'jn ~~ "o~ / [ • ^n-m^m • > '^n o

where a(! = /?'! = P'' /2(?ry) ":. The physical state vectors
obey the gauge conditions

Ln \$) = L n | ^> = 0, «>1, (14)

A covariant quantization of a relativistic string without
gauge fixing is set forth in a simple and compact way in Refs.
31-33 by means of the Becchi-Rouet-Stora-Tyutin tech-

: pi( mjjm = i nique'"1 '5 (the BRST formalism). This formulation of the
quantum mechanics of a string proves useful in deriving a

(13 ) covariant quantum field theory of interacting strings.
This formalism can be described as follows. In gauge

and in generally covariant theories, constraints 6U ( q.p) in
which there are "primary" constraints in Dirac's termono-
logy,'6

and the mass-shell condition

(L0 + L0-a (0)] | ^> = 0. (15)

The Virasoro-Shapiro dual model22'2' corresponds to a
closed string. There are no ghosts states in this model if we
haveD = 26 and a (0) = 2. The ground state is thus again a
tachyon. The first excited state describes a massless spin-two
particle.

From (14') and (15 ) we find [L,,- ( a ( 0 ) / 2 ) ] | a > > =0
and [L(,~ ( a (0) /2) ] \6) = 0. Condition (14 ' ) may also be
thought of as a requirement that the theory be invariant un-
der finite shifts of the parameter a:a^a + <rlt. This interpre-
tation is based on the equality

exp [2ia0 (£„ — £„)] x» (T, a) exp [ — 2iaa (L0 —

^^(T, a + a0). (16)

In the theory of closed strings one can introduce the
concept of oriented and unoriented strings. If we require that
the theory be invariant under reflection of the parameter
<r(cr— — u), then a closed string of this sort would be called
"unoriented." In view of ( 1 2 ) , this approach is equivalent to
requiring invariance under replacement of the operators a1',
by 13 '', and vice versa. The theory of an unoriented string
thus has only states which are symmetric with respect to a
and/? ( a bounded Virasoro-Shapiro dual model). The the-
ory of an oriented string includes a complete set of states
(both symmetric and antisymmetric with respect to the op-
erators a and/9).

The constant a' = ( 2-y) ' specifies the energy scale in
dual strings. Hadron physics requires a' ~ 1 (GeV) ~ ~. The
same quanti ty determines the length scale of a dual string:
L~ ( a 1 ) l / 2 ~ 10~ " cm. In the tree approximation, string
models predict a linear relationship between the spin of aJ-
state and the square of its mass, M ~ (linear Regge paths).
The energy of a relativistic string is proportional to its
length, E ~ L , so that we have M 2 ~ L ~ . The angular momen-
tum of a rotating string which is a straight line segment is
proportional to L 2. We thus have J~M~. The linearity of
Regge paths forbids (in particular) the existence of light

it is necessary to introduce dynamic variables (f ields) which
correspond to Faddeev-Popov ghosts in the derivation of a
covariant quantum theory. With each constraint <pa one as-
sociates a canonically-conjugate pair of ghost fields c.,
and c.,:

[ca, cb\ = dab, \ca, cb] ^ [ca, cb}--^- 0. ( 1 8 )

If some of the constraints are fermion constraints, the alge-
bra ( 1 7 ) is a gauge algebra. The ghost variables are fermion
variables if the corresponding constraint is a boson con-
straint, and vice versa. We then introduce a BRST-charge
operator, 17-''s

19)
it, b, c

This is a nilpotent operator; i.e., its anticommutation rela-
tion (or its Poisson brackets in classical mechanics) vanish-
es by virtue of Eqs. (17) and (18) and the Jacobi identity for
the structure constants/;,,, (for simplicity, we are assuming
that the/;,,, do not depend on the canonical variables q and
p ) . We use Q to construct some new constraints <fu , which
take into account the presence of ghosts in the theory

The constraints cfa again satisfy the algebra ( 1 7 ) and are
BRST-invariant:

( 2 1 )(Q, q>0] = '

since

Q"- - 0. (22)

In going over to a quantum theory, we must order the
operators in cpa ( q,p) and Q. Equations (17) and (22) must
then be rechecked, since anomalies may appear.

At the classical level, the constraints L,, = 0 in string
theory are primary constraints, since they satisfy the closed
algebra (9 ' ) . We denote c,, and cn the corresponding fer-
mion operators of the ghosts,
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[cm. cn]+ = 6 n 4 m , ( l , [cm, cn] = [em, cn] =0. (23)

The operators c and c are individually Hermitian:

Cm--=c.m, cn^=c_m. (24)

The BRST charge in the theory of a boson string is given by
the expression

Q~y L-mcm—~ y (m — n) : c_mc_ncm+n : — a (0) c0.

(25)

As before, the term width a(0) in (25) has arisen from the
normal ordering of the operators a,, in/.,,. The square of the
Hermitian operator Q must vanish, according to (22). This
vanishing is obviously possible only in a space of states with a
nonpositive-definite norm.

The quantum Virasoro operators are now defined by

Lm = - {Q, cm} •-- Lm 4- y\ (m— n) : c'm+nc_n : — a (0) 6m 0-

(26)

The anomalous term in the algebra of the operators L,n is

_L D (m3 — 771) + -g- (771 — 137?i3) + 2a (0) ?TJ . (27)

This term vanishes if D = 26 and a (0) = 1. Consequently, it
is only in this case that the quantum theory of a boson string
is conformally invariant.

The infinite number of conditions on the physical state
vectors of the string, (10), are replaced by a single condition
in the BRST formalism:

(28)

2P+
(30)

All solutions (28) which do not contain excitations of ghosts
satisfy conditions (10) . We can thus use the "no-ghosts"
theorem from covariant string theory.

2.4. Lightlike gauge

If we do not require explicit relativistic invariance, we
can derive a quantum string theory by eliminating depen-
dent dynamic variables from the theory.'4 For this purpose,
orthonormal gauge conditions (2) should be supplemented
with lightlike gauge conditions,

/> T , n (29)nx^-nP—^ + nQ,

where n is a constant isotropic vector with ir = 0. Orthonor-
mal gauge conditions (2) do not yet completely fix the set of
parameters T, uon the world surface of the string. Equations
(2) and (3 ) allow a transformation to the new variables, T, a
in accordance with the formulas T ± a =/, (r + or), with
arbitrary functions f { . Using these transformations, one
can always satisfy gauge conditions (29). Using (2) and
(29), we can express two components of the vector x1' (r,a)
in terms of the remaining transverse components, which are
quantized as independent dynamic variables. We assume
that the vector «'' has the components 77'' = 1,0, ...,0, — 1);
in terms of the light-cone variables x ' = (x" + x'} ' ) / v 2 ,
x1' = (x ' ,x , ) we then find

The dynamics of the independent components of x, (r,a) is
determined by the quadratic action of the string in the light-
like gauge:

T2 -T

The transverse components in expansion (6) , /* = 1,2, ...,
D — 2, constitute a solution of equations of motion (3) for
the independent variables x, ( ~,a) . In terms of Fourier am-
plitudes, Eqs. (30) can be rewritten as

2
(32)

where the LnL are Virasoro operators constructed from
transverse Fourier amplitudes:

I +°° pi
•^nj. = - - •' «n-ml«mj. :. «0^ = it~ '

(33)

In particular, for the mass of the string as a whole we find the
following expression from (32) for n = 0:

Yl/2 = pz = - Pi + 2P+P- = KY 2 : «_mlamx : - 2n\ai (0).
m?tO

(34)
In the case in which we are interested, the norm of the

state vectors is evidently positive, since these vectors are
constructed by the action on the vacuum exclusively of the
operators a,,1, ,«>!.

The basic problem in the noncovariant approach is in
proving the relativistic invariance of the theory in the quan-
tum case. To construct this proof it is necessary to show that
the generators of the Poincare group, Pfl and./,,,, construct-
ed by means of the dynamic string variables satisfy the well-
known commutation relations. The generator of translations
is the total momentum of the string, P f l , while the angular-
momentum tensor of the string,

L ^ - L / o c « _« a (35)

is the generator of Lorentz rotations. It turns out that all the
commutation relations have the correct values except for™

X(a ' m a^ —ai ,„«;„), (36)
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where i,j = 2,3, ..., D — 1, and D is the dimensionality of
space-time. An algebra of the Poincare group requires
[/~' , J~J ] = 0. Consequently, the only possibility for rec-
onciling a given theory with relativistic invariance is to re-
quire a (0) = 1 and D = 26. It follows in particular that the
ground state of the string has an imaginary mass (is a ta-
chyon) according to (34). The first excited state, a'_ , |0),
describes a massless vector particle with spin 1. In the real
hadron spectrum there is no such state. This fact, along with
the nonphysical dimensionality of space-time and the ta-
chyon states, is a basic disadvantage of the dual string ap-
proach to hadron physics.

Methods have been proposed for quantizing a relativis-
tic string without restricting the dimensionality of space-
time and without tachyon states.40'41 In that approach, how-
ever, one loses the connection of the string models with the
dual-resonance approach.

2.5. String model of hadrons and quantum chromodynamics

The concept of a relativistic string arises in hadron
physics, in addition to dual models, and also within the
framework of quantum chromodynamics. It is extremely
likely that when the distance between quarks approaches the
size of a hadron (~10~ 1 3 cm) the configurations of the
gluon fields which are favored from the energy standpoint
are those in which these fields do not fill the entire space (as
in electrodynamics) and are instead concentrated along
lines connecting quarks.42"44 The energy of two quarks cou-
pled by a gluon-field tube of this sort is proportional to the
distance between the quarks. The attractive forces between
quarks thus do not fall off with distance; they instead remain
constant. Accordingly, no external agent of any sort can
break this bond and produce a free quark. The reason for the
appearance of gluon-field configurations which are localized
along a line is the existence of vacuum fields in QCD,45

which create an external pressure on the gluon tube. Such
localized configurations of the gluon field are modeled by a
relativistic string (the transverse dimensions of the gluon
tube are assumed to be infinitely small). A relativistic string
is considerably simpler than such a complex quantum-field
model as chromodynamics. Furthermore, the string model
reproduces the basic predictions found in the field approach.
In particular, a relativistic string coupling massive particles
gives rise to a potential between the particles which increases
linearly with the distance46 (the quark confinement poten-
tial).

2.6. Spinning string; dynamic variables and covariant
quantization

The dual-resonance models incorporating fermion op-
erators (the Neveu-Schwarz model47 and the Ramond mod-
el48) were historically the first to be constructed. Later on, a
spinning string was proposed as a dynamic basis for these
models.

In a spinning string, the boson coordinates x^ (T,CT) are
supplemented with spin variables S^(r,a), which are
Grassmann (anticommuting) quantities already at the clas-
sical level. With respect to the index /n, they transform as a

Lorentz Z>-dimensional vector while with respect to the in-
dex a they transform as a two-dimensional spinor in (r,a)
space. Physically, one can interpret the variables S1^ (r,a) as
variables describing the spin distribution along the string.

Equations of motion (3) and orthonormal gauge condi-
tions (2) are generalized in the theory of a spinning string in
the following way:

2H x^ — Q S1? — S^ S%= Sty (37)

(38)

/ , \ OH f\ t' \ pH f\ ( 1O \

Consequently, x* and SF obey the free d'Alembert and
Dirac equations, respectively; they interact only by virtue of
auxiliary conditions (38) and (39). The boundary condi-
tions in the theory of a spinning string are written as

T, 0) = 58 (T, 0), 5? (T, n) = sS% (T, n),
(40)

where e = — 1 for the Neveu-Schwarz dual string and
e = + 1 for the Ramond model.

Equations of motion (37) are found from the following
action in orthonormal gauge (38), (39):

n

5=—1_ I dr \ da^z^Zu-t-^VdA). (41)i J J > \ * v * > » . w, n/

Tl 0

where pa, a = 0,1 are two-dimensional Dirac y matrices for
the space T,cr, given by

po = _ja2, p1 = al5 p6 = 03, p«pf» = T)as + p5ea|3,

T)ap = diag (1, —1), e01 = 1. (42)

The spin variables S1,S% can be represented as a two-com-
ponent column S^, where 5M = S^ p°. Auxiliary conditions
(38) and (39), which do not follow from the action (41),
mean that the symmetric energy-momentum tensor Ta/3

vanishes in the r,a parameter space,
1 ' "c /

as does the supercurrent density,
Ja = (dgx») p»Pa^ = 0. (44)
The solution of the equations of motion for x1* is given

as before by expansion (6); for the spin variables we have

I a)=T^T ^ bl exp [ ~ik (T+6)1>
* (45)

If £ = — 1 in boundary conditions (40), then the summa-
tion in (45) is over half-integers, while if e = + 1 it is over
integers.

Constraints (38) and (39) lead to the gauge operators
+ =0 +00

,-, 1 <ri 1 \n

+T" ^^ (46)

k=~oo m'
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As in the boson case, the algebra of these operators is un-
closed at the quantum level because of the appearance of
anomalous terms which depend on the dimensionality of
space-time. In the case of Ramond's dual model (e — + 1),
for example, we have

t-— «36,1+m,0,

[ H n , (47)

«?„,#»]-= (-£-- i»)//n+m.

Those state vectors which satisfy the conditions

G,, $ } = 0, / / „ ! < £ > = 0, n - 0, 1, . . . , (48)

are regarded as physical. A Hilbert space of state vectors
with a positive definite norm can be constructed only for
D = 10. In the theory of a spinning string, the operator rep-
resenting the square of the mass is given by

m = 0, 1, . . ., if e = l,
a'Mz=m, 1 . 1 , . . (49)' 1 . 1 ,771= — - , 0, -j, 1, . . . , .r .i f e = — 1.

Consequently, there are no tachyon states in a spinning
string corresponding to the Ramond dual model.

The spectrum of a spinning string can be pruned so that
the numbers of bosons and fermions are equal at each mass
level, i.e., the spectrum becomes supersymmetric.4''

2.7. Noncovariant quantization

In the theory of a spinning string, as in the boson case,
one can separate the dynamic variables into groups of depen-
dent and independent variables, and one can construct a
quantum theory in terms of exclusively the independent
(transverse) degrees of freedom.15 For this purpose, light-
like gauge (29) is also extended to the spin variables:

S = ? = 0. (50)

It follows that

, o) = 0. (51)

It turns out to be possible to introduce this gauge because
Eqs. (37), (38), and (39) are invariant under (pseudo-)
conformal transformations of the parameters r and a:

T ± O = /±(T±CT), ZH(T, a) = x* (T, a),

S?(T, a) = 5f (T, a) (/+)-«/*, 8% (T~ a) == S£ (T, a) (/>' '» ,
(52)

and under supersymmetric transformations of a special type
which mix boson and fermion variables,

(53)

where f (T,CT) andg(r,a) are functions which anticommute
with S1' and obey the equations

(54)

Equations ( 38 ) , ( 39 ) , and ( 5 1 ) can be used to express
the variables x * (r,<r) and 5 ," (T,O), S,' (r,a) in terms of
x, (T,<J) and S,, (r,a), S12 (r,cr), in complete analogy with
(30). The dynamics of the independent variables is specified
by the action of a spinning string in the lightlike gauge, as in
(41):

= -f j ck J (55)

The solution of equations of motion (37) for the indepen-
dent variables consist of the transverse componentSjU = 1,2,
. ..,D- 2 in (6) and (45).

The Lorentz generators J ' are given by

(56)

where Gni and //„, are gauge operators (46) for the trans-
verse variables. The condition that the theory be Lorentz-
invariant requires

(57)

This condition holds only if D= 10 and a(0) = 0(f = 1)
anda(O) = - \/2(e= - 1).

The mass of a spinning string is expressed in terms of
the independent variables as follows:

2= V

71 >0

n. : b_ n l b n l :)

f 0, 8= +1,

i _i , _ . _ !
I 1 ' fc — 1-

(58)

Tachyons appear in the spectrum of dual strings be-
cause of the incorporation of the energy of the zero-point
vibrations of the harmonic oscillators which describe the dy-
namics of the string.50 When these vibrations are taken into
account, the classical expression in the formula for the
square of the mass of a boson string, (21) , i.e.,

S 2 «1X=S S na^al (n)«/»o; = aj,

(59)

must be replaced in the quantum theory by the operator

s n ( ^ j 4
71=1 i=l

We thus have
(60)

2a(0)=— (D— 2) S «•

This divergent series must be regularized. Comparing it with
the Riemann g function51

which can be analytically continued to the point s = — \,
and which has the value £( — ! )= — 1/12, we find
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(62)

A renormalization procedure of this sort is consistent wi th
the relativistic invariance of the quan tum theory of a boson
string, which requires D = 26 and a(0) = 1, as was shown
earlier.

We now see why the theory of a spinning string yields a
quantum solution without tachyons. The energy of the zero-
point vibrations of the fermion operators b,,', ,b „ is negative
and equal in magnitude to the energy of the zero-point vibra-
tions of the boson operators a,;, ,a,,, (Ref. 52 and 53). As a
result, they cancel out, since the number of independent bo-
son and fermion degrees of freedom in a spinning string is
identical and equal to 8.

2.8. Total action for a spinning string

A shortcoming of the spinning-string theory described
above is that only equations of motion (37) are derived by a
variational approach from action (41) ; gauge conditions
(38) and (39) are postulated additionally. We are interested
in the total action for a spinning string, from which we would
be able to obtain the entire dynamics by means of a variation-
al principle, i.e., equations of motion (37) and gauge condi-
tions (38) , (39) or (43) , (44). Such an action has been
constructed^4"™ by expanding the symmetry of the theory
under transformations (52) , (53) to generally covariant
transformations in the two-dimensional space r,a and under
local supersymmetric transformations. Nambu-Goto action
( 1 ) proved inconvenient for this generalization, since the
coordinates of the string appear in it in a nonpolynomial
form. For a boson string, a new action has been proposed
which is quadratic in the coordinates of the string'14:

d'u \g
(63)

U —

Here x1' (u) are as before the coordinates of the string,
g,,fi (u} is an auxiliary field of a second-rank symmetric ten-
sor, specified in 11, and the constant 7 has the dimensionality
of a mass square. Below we will set it equal to 1. Action (63)
is invariant under global Poincare transformations

6^R=0, (64)

under generally covariant transformations of the parameters

and under Weyl transformations

6£a, = M " * a i , 6*11=0.

(65)

(66)

At the classical level, S' is completely equivalent to
Nambu-Goto action ( 1 ) . A variation of 5' with respect to*''
and gltli yields the equations of motion

= 0, (67)

0; (68)

here T,,IS is a symmetric "metric" energy-momentum tensor
of the fields x1' ( u ) . From (68) we find tha t the a u x i l i a r y
field g,,ii(u) is equal ( w i t h i n an arbi t rary factor) to the met-
ric on the world surface of the s t r ing:

(69)

In this case, (67) reduces to the equations of motion found
from Nambu-Goto action ( 1 ), and (63) becomes the same
as ( 1 ) .

It is of interest to see how orthonormal gauge condi-
tions (2) arise when we work with action (63 ) . Making use
of the invariance of 5" under transformations ( 6 5 ) we can
always put the second-rank tensor field g,l/t in diagonal
form: gtll! (u) = e\p[(f(u)]r),l/l,t)lttl = d i ag ( l . - 1). The
equations of motion fo rg , , / ; (w) . (68) , then reduce to ( 2 ) .
The tensor field gIt/! (u) in a classical string theory based on
action (63) thus plays the role of Lagrange mul t ip l ie r s . At
the classical level, actions ( 1) and (63) are therefore com-
pletely equivalent . Upon quant iza t ion of action ( 6 3 ) , how-
ever, as Polyakov4" has shown, it becomes possible in pr inci-
ple to construct a noncontradictory quan tum theory of a
relativistic string which differs from the standard approach
at D 7^=26. At the quantum level, we can give up the invar-
iance of the string theory under Weyl transformations (60)
[ Nambu-Goto action ( 1 ) does not have this invariance ] and
take into account the conformal anomaly. As a result , the
conformally planar part of the metric <f(u) becomes a dy-
namic variable which obeys a nonlinear two-dimensional
Liouville equation, d ~<f + /Li^c"1 =0.

Volkov and Zheltukhin'1" have proposed yet another ac-
tion for a closed Nambu-Goto string, one which is quadratic
in the coordinates of the string and which allows a supersym-
metric generalization.

The total action for a spinning string''4-'17 is found by-
introducing fermion fields in a supersymmetric fashion in
(63) . The metric tensor gll/t (u) is "split up" in the standard
way with the help of moveable-reference vectors
V\'l(u):g"" = K;;^r/"'V'' = d iag( l , - 1). The action is
written

=- A-uV

(70)
where V= det|| V"\\, and i!>,, (u) is a spin 3/2 field. This ac-
tion is invariant under local two-dimensional Lorentz trans-
formations in the r,a space; under Weyl transformations,

V (71
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and under local supersymmetric transformations,

dx» = ie (u) 5™-, 65 = (dax + zSt|:a) p
aF"e (u),

where /)„ is a covariant derivative of the spinor in two di-
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mensions. The Rarita-Schwinger field i/>,,(u) and the move-
able reference V"(u) serve as auxiliary variables. By virtue
of the invariance of the theory under supersymmetric trans-
formations (72) , we can always choose a gauge in which the
relations

hold (asuperconformalgauge). Asa result, the equations of
motion for x1' and S1' which follow from (70) reduce to
(37) ; the equations of motion for the moveable reference V"
give us gauge conditions (38) in the form in (43); and the
Euler equations 6S$p/6i!>" = 0 reduce to conditions (39) in
the form in (44).

3. DYNAMICS OF SUPERSTRINGS AND THEIR
RELATIONSHIP WITH ELEMENTARY PARTICLE PHYSICS

3.1. The superstring; action functional and dynamic variables
in the lightlike gauge

A superstring15•lh-M-'1 ' is a modification of a spinning
relativistic string. In this model, a different description is
used for the spin variables which are distributed along the
string.62 In a spinning string, this description is made by
means of the Grassmann variables S'1, (r,cr), // = 0,
1 D — 1, A = 1,2 which constitute a Lorentz vector in a
Z)-dimensional Minkowski space and a Majorana spinor in a
two-dimensional space which is tangential to the world sur-
face of the string. The supersymmetry in the spinning string
actually refers to the two-dimensional space T,a, rather than
to the enveloping ten-dimensional Minkowski space. We can
attempt to expand this supersymmetry. A direct construc-
tion of an (jV = 2) -supersymmetric string theory through a
doubling of the number of fields™ leads to a model with a
critical dimensionality D = 2. This case is obviously of no
physical interest.

Another approach is to seek new representations of a
fermion field specified along a string. For supersymmetry in
the theory, the number of physical degrees of freedom of the
fermion field must be equal to the number of boson degrees
of freedom, i.e., to the number of transverse components of
the vector x'1 (r.a) (this number is eight in the case of a ten-
dimensional space-time). The simplest way to construct a
superstring theory in the lightlike gauge is to work exclusive-
ly with the independent dynamic variables. The Lie algebra
of the SO(8) group has three real, nonequivalent, eight-di-
mensional representations, one vector representation, and
two spinor representations. Consequently, a switch from a
spinning string to a superstring is made by means of the sub-
stitution

Sl
A(n, a ) -*Ci (T , a), (74)

where/ = 1,2,.... D — 2; A = 1,2 is the spin index in the two-
dimensional space r,a\ and a is an eight-digit spin index with
respect to the SO(8) group. Substituting (74) into (55) , we
find61

All the equations from the noncovariant quantum theory of
a spinning string are brought over to superstring theory by
substitution (74). Again, there is relativistic invariance only
in a ten-dimensional space-time, and the ground state of the
theory is massless (there are no tachyons). We use boundary
conditions as in the case of Ramond's spinning string.40 Con-
sequently, the expansion of the Grassmann variables is car-
ried out in terms of integer modes:

<R(T, a) = -L= 2 <?"exp[- ik (T + O)],
£i y n

n

Q\ (T, a) = -L= 2 <?" exp [ - ik (t - a) ].
(76)

In the quantum theory, the operators Q "„ obey the anticom-
mutation relations

The operators Q" „ , n>0 are creation operators. When
they act on boson states, they convert the latter into fermion
states; the numbers of boson states and fermion states are the
same in each supermultiplet with a fixed mass.

To test the relativistic invariance of the theory of Ref.
15, we need to construct the dependent operators x ' , Q ' ,
and J ' and to make sure that the Poincare algebra is satis-
fied with D = 10.

3.2. Total action for a superstring

A total action''4 from which both dynamic equations
and gauge conditions follow has been constructed for a su-
perstring, by analogy with a spinning string [see (70)] . The
complete set of dynamic variables for a superstring consists
of the space-time coordinates x'' (r,a) and theanticommut-
ing Grassmann variables B"A (r,a). A = 1,2. The action is
constructed in a ten-dimensional Minkowski space. The
spinor index a takes on 25 = 32 values, since the dimension-
ality of the Dirac y matrices in a ZJ-dimensional space-time is
2k, where k is the greatest integer in D /2.

It is required that the variables 9 "4 be a Majorana-Weyl
spinor in the index a:

where h represents the Weyl projection operator
h = (1 + y\ i )/2- A condition of this sort can be satisfied
only in a space-time with D — 2(mod 8), i.e., D = 2,10, ....
Under conditions (78), we have two possibilities: 0" and 0"
may have the same chirality or opposite chiralities. The com-
plex variables 6"A(r,a),A = 1,2, contain 27 independent
real functions. Conditions (78) and also the boundary con-
ditions and the Dirac equation for d"A reduce the number of
independent fermion degrees of freedom to 2' = 8.

The dynamics of a free superstring is determined by the
action

= -|- J J

where

(79)

(80)
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(a) ] = {<p (x) + A™ (x) al (x) c£ ia
v. ,

a, (3 = 0, 1, [1 = 0 ,1 , . . . ,9 . ( 8 1 )

In addition to local reparametrized invariance, this ac-
tion has global (,V = 2) supersymmetry under the transfor-
mations

(82)

The boundary conditions on #., lower this symmetry to
N = 1. Action (79) is also invariant under local supersym-
metric transformations.

The total action of the superstring, (79), leads to pri-
mary and secondary constraints. An important point is that
it is not possible to identify explicitly all the primary con-
straints by a Lorentz-invariant method.64"'* An analogous
situation prevails for a supersymmetric massless point
particle.""

Local supersymmetry and a reparametrized invariance
nevertheless make it possible to go over to the lightlike
gauge, x ' ~ r,y+ 9., = 0. In this gauge, the remaining inde-
pendent variables satisfy free equations of motion generated
by action (75) .

The second term in the total action of the superstring,
(79) , which is generated by L2, is analogous to the auxiliary
Wess-Zumino term in the action for nonlinear sigma mod-
els."9 This increment leads to an additional local fermion
symmetry in superstring action (79); this local symmetry is
characteristic exclusively of two dimensions.

To unify all the fundamental interactions on the basis of
a superstring theory we need to consider the fact that the
dimensional constant Tin the superstring action (75) or
(79) satisfies the order-of-magnitude relation 7"~"2

~ 10~" cm, i.e., the superstrings must have dimensions in
the Planck range.

3.3. Field theory of superstrings

Up to this point we have been talking exclusively about
a first quantization of string models, i.e., about the quantum
mechanics of strings. A complete quantum theory of strings
requires a description of the processes by which strings are
created and annihilated and of their mutual conversions; in
other words, we need a second-quantized field theory ofrela-
tivistic strings.

Attempts to reproduce dual loop diagrams in string
models have shown that the interaction of strings may be
exceedingly specific: The strings must interact in a strictly
local way, at one point. For example, the ends of an open
string can be joined together, with the result that an open
string becomes a closed string, etc.

The second-quantized string functional ty[x(cr)} is
conveniently expanded in the eigenstates of the operator rep-
resenting the squared mass of the string, M2. For an open
boson string we have79

The coefficients in this expansion are ordinary local fields.
Conditions (10), brought over to the field theory of strings,

/VI' [x (a)] = 6n,(,Y [x (a)], n = 0, 1, 2, . . .,
give us equations of motions for these fields:

f. ,9 (.r) — — a'/'>?cp (x) — a' r'Ap (x) = <p (.r!,

(a'c?2 _ 1 + «) A™ (x) = 0, d'Mli ' U) = 0 ,

(a'ff2 + l ) / / , , v (x) -- 0,

etc. Accordingly, scalar field q>(x) is the field of a tachyon
with a squared mass (a') '; Afl (x) is the electromagnetic
field, etc. In a field theory of open strings there is no symmet-
ric, massless second-rank tensor field which can be identified
with the gravitational field. Gravitation is described by
closed strings.

A complete quantum field theory of interacting strings
has yet to be derived. The first efforts in this direction were
taken™~7~ back in the early 1970s, at which time relativistic
strings were regarded as the dynamic basis of dual-resonance
models in hadron physics. The analogs of Feynman dia-
grams in a field theory of strings are two-dimensional sur-
faces (the world surfaces of the strings), which may in gen-
eral have a complicated topological structure. In terms of
Feynman path integration it is necessary to carry out a sum-
mation over all these surfaces for given initial and final con-
figurations of the strings (Fig. 2). This step requires deter-
mining the measure in the space of two-dimensional
surfaces. 4"J1"~": This problem has been solved'" in general
form for surfaces of type p in the theory of closed boson
strings. A Riemann surface of type/? is topologically equiva-
lent to a sphere with/) handles. It describes a/>-loop string
diagram. For p = 2,3, explicit expressions have been de-
rived."0""' In this approach we must deal with the funda-
mental question of which weights we should assign to the
contributions from the surfaces of various types to an ampli-
tude or to a partition function. A guiding principle here
should be the requirement that the string amplitude be uni-
tary.

A simpler situation is that in which the functional inte-
gration is carried out only over physical transverse variables
of the string. It was in the lightlike gauge that the theory of

FIG. 2. Interaction of open and closed relativistic strings, describing the
process a + b-^c + d + e. The two open strings a and b, whose ends on
becoming connected, form a single open string, which generates a closed
string c and two open strings d and e.
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FIG. 3. Tree dua l diagram.

interacting strings was constructed in the earliest pa-
pers,7"'7' 7J which used a functional integration for this pur-
pose. A shortcoming of that approach is that the explicit
Lorentz invariance is lost.

Practical calculations are carried out in the field theory
of strings by making use of rules for calculating dual tree
diagrams and loop diagrams with corresponding corrections
for the supersymmetry of the theory. These rules can be out-
lined schematically in the following way: The A-particle tree
amplitude (Fig. 3) is of the form::':i'75

. . . A . F W _ ,

where the propagator

(83)

(84)

describes the propagation of the string, and K is a vertex
operator. Loop diagrams are constructed from the tree dia-
grams by closing the external lines. We should point out that
this method can be used to construct string amplitudes only
on the mass shell.

Attempts have been made7''77 to derive a covariant field
theory of strings by the BRST formalism, i.e., to carry out a
second quantization of a string quantum mechanics con-
structed in the BRST formalism (Subsection 2.3). The com-
plete string field incorporates dynamic and ghost fields and
also some auxiliary fields which are required to close the
BRST algebra on the mass shell. Functionals of Grassmann
variables arise in this approach. A noncommutative geome-
try may prove useful here.7s

Some other approaches to a field string theory are de-
scribed in Refs. 80 and 81.

3.4. Internal degrees of freedom in string models

Superstring theories, like the simpler string models, do
not allow a deviation from the properties of uniformity along
the string, since such deviations would immediately lead to a
loss of parametrization invariance of the theory and to a
violation of the gauge algebra (in the boson case, this is the
Virasoro algebra). As was mentioned earlier, in hadron
physics the strings are associated with tubes or braids of a
gluon field which connect quarks. It would thus appear to be
completely natural to attempt to introduce some auxiliary
terms in the action of the string to describe point masses,
charges, and spins at the ends of a string. However, even
such a minimal violation of the uniformity of relativistic
strings leads to a fundamental change in their dynamics; e.g.,
the relationship with dual models is immediately lost.

Internal degrees of freedom are introduced in string
models in a purely kinematic, rather than dynamic, way. For

this purpose one uses the Chan-Paton mechanism, which
was developed in dual-resonance models. This mechanism
can be summarized by the following recipe. N:

With each vertex in the string diagram we associate a
generator/,, of group G. The factors Aa are mul t ip l i ed in the
order in which the corresponding vertices appear in the dia-
gram, and a trace is taken over the entire product of
matrices:

(85)

For dual amplitudes, the factorization

tr (>.„,*„. . . . Aaw)

= S t r ^ a X a . . . A a t r (\A •

of product (85) was an important property; it guaranteed
conservation of the dual i ty properties of the ampl i tude upon
the introduction of an internal symmetry. Property (86) is
not satisfied by just any arbitrary group G. Chan and Patons:

proposed this mechanism for the group G = SU(A'). In a
quantum field theory of strings, however, this method for
introducing internal quantum numbers tu rns out to be con-
sistent only for the groups G — SO(A') and G = USp(A').

Bardakci and Halpern*1 examined a method for intro-
ducing internal q u a n t u m numbers in dual models which
differs from the Chan-Paton technique, but that method has
not proved popular. Higher-order representations of the in-
ternal symmetry group appear in the amplitudes.

A fundamental ly new mechanism for in t roducing an
internal symmetry in a string theory was proposed in Ref. 84
in the construction of a heterotic string (Subsection 3.8).
That mechanism is based on the theory of representations of
infinite-dimensional Kac-Moody algebras for which the the-
ory has recently been developed.2''

3.5. Low-energy (local field) limit in the theory of interacting
strings

A fundamentally new way of looking at string theories
was suggested in 1974 by Scherk and Schwarz.'10 Analyzing
the low-energy l imi t , a'->0, in the theory of closed strings,
which model the path of a pomeron, they showed that a
massless spin 2 state behaves in this l imi t in exactly the same
way as a graviton would, i.e., it obeys the same dynamic
equations which follow for the quanta of the gravitat ional
field in Einstein's theory. String models are thus candidates
for the role of unified theories incorporating gravitation.

In contrast wi th a local field theory in which each field
describes quanta (particles) of only one type, a free super-
string carries an inf in i te number of supermultiplets corre-
sponding to normal vibration modes of the string. The super-
multiplet of the ground state is massless; the excited states
have masses and angular momenta (spins), which increase
without bound. The mass scale here is the tension T of a
superstring with the dimensionality [A/] 2; the value of T ' 2

is of the same order of magnitude as the Planck mass,
r"2-~ 10|l< GeV. This situation is quite natural fora model
which is to incorporate a quantum theory of gravitation. In
the limit in which the energy is considerably smaller than
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T'/:, the states of a superstring with a nonzero mass drop out
of the picture, and the effective low-energy field theory in-
corporates only the massless ground supermultiplet. It is
specifically these multiplets that should be filled by the ele-
mentary particles which are presently observed experimen-
tally, since they should all be regarded as massless in com-
parison with the Planck mass ( ~ 10"5 g).

The low-energy limit in a string theory is constructed in
the following way. One first uses the tree approximation to
calculate an Appoint string amplitude with massless external
states in the limit a' —0 (Subsection 3.3). One then chooses
an action for the local field theory which reproduces the
string amplitude at the level of the tree Feynman diagrams.
The loop diagrams in the field theory constructed in this
fashion should reproduce the loop corrections in the string
theory. It is not obvious at the outset that a local quantum
field model of this sort exists. The existence requires special
proof.x'lX7 In practice, one usually calculates the vertex for a
gauge interaction in the lowest nontrivial order, and a high-
er-order vertex is reconstructed from gauge invariance.

This procedure is somewhat ambiguous, since the dual
diagram technique (there simply are no other developed
methods) can be used to calculate string amplitudes only on
the mass shell. Consequently, the corresponding low-energy
field theory can be derived up to terms which do not contrib-
ute to string amplitudes on the mass shell.

Yet another way to find a low-energy field limit in a
string theory is based on the method of a background field.xs

One examines the interaction of a string with massless back-
ground fields (a graviton, a gravitino, a dilaton, etc.) . One
then calculates an effective Lagrangian for these fields under
certain consistency conditions.

3.6. Classification of superstring theories

The superstring theories1'41)5 of type I describe open
strings and closed unoriented strings (see Subsection 2.2.
regarding the concept of orientation in a theory of closed
strings). The ends of open strings carry the quantum
numbers of the gauge groups G = SO(7V) or G = USp(AO in
accordance with the Chan-Paton formalism. The unitary
groups SU(AO do not allow a quantum analysis. The theory
is locally invariant under two supersymmetries, but the
boundary conditions allow only one. The massless states of
these strings are states of a Yang-Mills supersymmetric the-
ory in a ten-dimensional space-time, with a gauge group G.

Superstring theories of type II describe only closed ori-
ented strings. In the theories of type Ha, the supercharges
have opposite chiralities. The low-energy limit of such theor-
ies is a nonchiral (N = 2) supergravity in a ten-dimensional
space-time. In superstring theories of type lib the super-
charges have the same chirality. In the low-energy limit
these superstring theories reduce to a chiral (N = 2) super-
gravity, m^- which has recently been shown91 to be free of
gravitational anomalies. A shortcoming of superstring the-
ories of type II is the absence of any non-Abelian gauge sym-
metry. It is thus unlikely that these theories would be able to
give us a chiral compactified field theory of physical interest.

A heterotic string (Subsection 3.8) furnishes two more
examples of noncontradictory superstring theories with the
gauge groups SO(32) and Es X Es.

The fact that string models incorporate gauge theories
and a generally covariant theory of gravity is rather unex-
pected, since neither gauge invariance nor general covar-
iance is built into these models. The basic properties of invar-
iance in a string theory is a reparametrization invariance of
the action of the string (a two-dimensional general covar-
iance in r,a space). This question would probably have been
resolved if it had been found possible to formulate a quantum
field theory of strings in a general covariant fashion in the
space of string configurations, e.g., in the space of loops in
the case of closed strings.

There can be two types of local interactions of super-
strings.

Two free ends of two open strings or of the same string
may join together. The result is a single open or closed string
(Fig. 4). The inverse process is also possible, i.e., the break-
ing of one open string in two or the breaking of a closed
string. Such an interaction of superstrings is a "Yang-Mills"
interaction.

A second type of interaction of superstrings is of a
"gravitational" nature, when two interior points of two
strings or of the same string come in contact (Fig. 5).

Significantly, superstring theory has no contact interac-
tions of a higher order—involving the interaction of three or
more points. Vertices containing a large number of gravitons
are reproduced in the string approach as low-energy effec-
tive vertices which arise in the exchange of massive string
modes.

In the low-energy field theory which follows from su-
perstrings with the gauge group SO( 32), the Yang-Mills in-
teraction constant g and the Newtonian gravitational con-
stant x are related by

x = const -g-T, (87'

where 7" is the tension of the superstring.

3.7. Cancellation of anomalies and the problem of
divergences

A remarkable property of superstring theories is the ab-
sence (i.e., the cancellation) of gauge and gravitational
anomalies. This fact, which was established96 in 1984, at-
tracted even more interest to these theories.

Anomalies in quantum field models stem from the
breaking of classical symmetries47""" (gauge invariance,
Lorentz invariance, etc.) at the quantum level. Anomalies of
this sort were first discovered as an inconsistency in the de-

\

/

FIG. 4. "Yang-Mills" interaction of superstrings, characterized by the
constant g.
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FIG. 5. "Gravitational" in teract ion of superstrings. character-
ized hv the constant;:.

scription of the decay of the 77° meson into two y rays in field
theories with a pseudoscalar and pseudovector interaction in
the calculation of a single-loop diagram with three virtual
fermion lines. It was later established that in gauge theories
with chiral fermions anomalies are generally manifested as a
noninvariance of an effective fermion action F, [A ] under
gauge transformations of the vector potential A.

Gravitational anomalies are evidence of a disruption at
the quantum level of the general covariance of the theory or
of a local Lorentz invariance. Gauge and gravitational
anomalies may be thought of as the violation upon quantiza-
tion of corresponding conservation laws: the law expressing
the conservation of a gauge current or a covariant conserva-
tion law for the energy-momentum tensor. Anomalies make
a theory inconsistent, since they lead to a violation of unitar-
ity because of the interaction of physical transverse modes of
the gauge or gravitational field with nonphysical longitudi-
nal modes. The requirement that there be no anomalies iden-
tifies those field theories which will be viable at the quantum
level. For example, when quarks and leptons are combined
in a generation, anomalies cancel out in the Weinberg-Salam
model.

In a Minkowski space of even dimensionality D = 2«,
gauge anomalies arise in single-loop Feynman diagrams
with n + 1 and with a larger number of external lines of
gauge fields (Fig. 6). Chiral fermions circulate around the
loops. If D = 4k + 2, the theory may also have gravitational
anomalies. A significant point is that the anomalies corre-
sponding to diagrams of higher order are unambiguously
determined by the contribution of the lowest anomalous dia-
grams.

In superstring theories formulated in a ten-dimensional
Minkowski space, gravitational, gauge, and mixed anoma-
lies arise in six-vertex loop diagrams. The cancellation of
anomalies in superstring models with the SO (32) internal

symmetry group has been verified in two ways: at the string
level, by a direct calculation of the six-vertex string diagrams
and in the low-energy limit at the local quantum field level.

Figure 7 shows some single-loop string diagrams of
sixth order. The external wavy lines correspond to Yang-
Mills states. These diagrams can have topologies of three
types: 1) planar ring diagrams with the topology of a cylin-
der, in which the external lines are linked with only one
boundary (Fig. 7a); 2) nonplanar diagrams with the topol-
ogy of a Mobius sheet (Fig. 7b); 3) planar diagrams whose
external lines approach both boundaries (Fig. 7c). Dia-
grams of the third type have no anomalies at all.

The contribution of ring diagrams (Fig. 7a) is written
(Subsection 3.4)

Nli (Mt . . . Xe) j d> Tr [A-F( l ) A-F(2) . . . A-r ( l i ) ] ,

(88)
where tr means the trace of the matrices in the fundamental
representation of the group G of the internal symmetry of the
string theory, and Tr means the trace of the matrices in the
associated representation of group G. The group factor in
front of the integral in (88) is the Chan-Paton factor, and the
Ai are the generators of group G in the fundamental repre-
sentation (they areanti-HermitianA' xNmatrices). The in-
ternal boundary provides a factor N = tr( 1), i.e., the dimen-
sionality of the fundamental representation of group G. A
correct calculation requires regularization of the integrand
in (88). Two regularizations were used in Ref. 96: a Pauli-
Villars regularization and a Gaussian regularization.

The nonplanar diagrams in Fig. 7b contain, instead of
the factor N, a factor /, which takes on different values for
different groups G:

I +1, USp(TV),
z = J o, V(N), (89)

1-1, SO (A).

FIG. 6. Single-loop Feynman diagrams which give
rise to gauge anomalies for various dimensionalities
of space-time, D.
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FIG. 7. Single-loop str ing diagrams wi th six external lines of
massless gauge bosons, a—Planar ring diagram; b—diagram
with the topology of a Mobius sheet; c—nonplanar oriented dia-
gram wi th external lines approaching both boundaries. Gauge
anomalies give rise to diagrams of the types in parts a and b.

A mutual cancellation of the anomalous contributions from
the diagrams of the first two types is thus possible only for
G = SO(N). The contribution of single-loop string dia-
grams of sixth order turns out to be proportional to N -f 32/
so that only superstring theories with the SO(32) group are
free of anomalies.

In the low-energy field limit, a superstring theory of
type I reduces to a (D = 10, N = 1 ) supergravity and a
(D = 10, N = 1 ) supersymmetric Yang-Mills theory. A su-
pergravitational multiple! contains the following fields. A
moving «-hedral e'f", an antisymmetric second-rank tensor
B f n . , a scalar field <p (adi la ton) , a spin-3/2 gravitino ibj , a
spin- 1/2 field A ( the + represent the chirality of the cor-
responding field), the vector potential A1' , and its spin- 1/2
fermion partner \ + (A'1 and % * belong to an associated
representation of the gauge group). The boson sector of the
low-energy superstring theory is described by the action

Sn =

where

e ----- det | F ̂ Ax* =

(90)

A,

and R is the curvature. The 1-form Afl (a potential) is a
matrix representation of the gauge algebra A = A ",A" dx1'
where A" are anti-Hermitian matrices in the fundamental
representation of the internal symmetry group of the string
theory. As Green and Schwarz'"1 have shown a cancellation
of anomalies at the field level occurs for two gauge groups:
SO ( 32 ) and Es X Ex which have the same rank, 1 6.

An important point in the anomaly cancellation mecha-
nism is the need to modify the ordinary (N = 1 ) supergrav-
ity which is interacting with an ( j V = 2 ) supersymmetric
Yang-Mills theory. In a determination of the intensities H of
gauge field B, some additional topological terms must be
introduced:

ff = (91)

where a,, is the Yang-Mills Chern-Simons 3-form, and <u,L

is a Lorentz Chern-Simons 3-form. For the SO(32) group
we have

co3Y =--. A] , (92)

where tr is the trace of the matrices in the SO(32) vector
represenation, and A means the outer product. For <y,v

there is an alternative way to write this:

= 4fTr(F f \ F ) . (93)

This version is valid for the two groups SO(32) and E8 X Ex.
In ( 93 ) , Tr means the trace in the associated representation
of these groups.

The Lorentz Chern-Simons 3-form <uai is given by

co3L = tr (co A R—^<» A w A A ft),
(94)

where a> = o>/( dx'' is a local Lorentz connection, which takes
on values in the Lie algebra of the SO (1,9) group and
R = d<y + co A u> is the curvature 2-form. In (94), tr means
the trace in the SO( 1,9) vector representation.

The anomalous contributions of the single-loop six-ver-
tex diagrams (Fig. 6c) turn out to be proportional to the
difference (« — 496), where n is the number of chiral fields
with spin 1/2. We thus need 496 spin- 1/2 fields to cancel the
anomalies. However, the dimensionality of the associated
representation of the SO(32) and E X X E X groups is specifi-
cally 496; for the Ex X Ex group, the fundamental representa-
tion has the same dimensionality. Consequently, for any of
these groups there is a cancellation of anomalies at the quan-
tum field level.

An increase in the dimensionality of space-time makes
the situation worse regarding ultraviolet divergences in a
local quantum field theory, since it increases the degree of
the momenta in the numerator of the Feynman integrals.
Single-loop calculations10" furnish some basis for suggesting
that superstring theories with the SO( 32 ) and Ex X Es gauge
groups are finite in a ten-dimensional Minkowski space; i.e.,
the divergences in the individual diagrams cancel each other
out when the contributions of all diagrams are summed. An
important point is that this cancellation occurs exclusively
because of the properties of the SO (32) and E K X E X gauge
groups; i.e., these groups are again special cases.

The only type of divergence which might in principle
not cancel out upon the summation of individual diagrams is
the string analog of ordinary "tadpoles" (lines which
emerge from and terminate at the same vertex) in a local
field theory. ""-"^ In this case, a closed string is emitted into
vacuum with a zero momentum and a zero mass (Fig. 8).

1091 Sov. Phys. Usp. 29 (12), December 1986 B. M. Barbashov and V. V. Nesterenko 1091



side independent boson variables and also eight each of
right-side and left-side real fermion variables in the two-di-
mensional r,a space: S" (T — a) and 5" (7 + a), respective-
ly. The boson variables are determined by the following
Fourier expansions:

FIG. 8. Single-loop string diagram: an analog of Feynman diagrams
with closed lines which begin and end at the same vertex.

We know quite well that the divergences which are genera-
ted by "tadpoles" in a local field theory are evidence that the
perturbation theory is constructed with respect to a nonphy-
sical vacuum. The vacuum must be redefined by eliminating
the contributions of such diagrams.2'1 In supersymmetric lo-
cal field theories, the contribution of such diagrams is auto-
matically zero. If a superstring theory has no anomalies its
supersymmetry remains unbroken at the quantum level. We
can therefore expect a corresponding situation in super-
string theories with the gauge groups SO(32) and ESXEX.
In superstring theory we thus see a close relationship
between the absence of anomalies and the finiteness of the
theory. In an ordinary local field theory this relationship is
not unambiguous: The absence of anomalies definitely does
not mean that the field theory is finite, although there will
clearly be no anomalies in a renormalizable theory.

Interestingly, a local field theory with an N = 4 super-
symmetry which is ultraviolet-finite in all orders of pertur-
bation theory was first found as the low-energy limit of a
fermion string model.4"-""1*1"1'

3.8. Heterotic string

The anomaly cancellation mechanism which was estab-
lished by Green and Schwarz in a superstring model leans
heavily on the properties of the SO(32) group. These prop-
erties are shared by another semisimple Lie group, E K XE S .
This gauge group, however, cannot be introduced in a string
model in the standard way, by means of Chan-Paton matrix
multipliers. A new theory of closed strings was derived in
Ref. 84. In the low-energy limit, that theory reduces to a ten-
dimensional (JV = 1) supergravity which is interacting with
a supersymmetric Yang-Mills field with the gauge group
Spin (32 )/Z2 or EK X Ex [ the Spin (32)Z2 group has the same
Lie algebra as the orthogonal group SO(32) ]. This theory,
which has come to be called the "heterotic string," is a chiral
hybrid21 of a relativistic boson string in a twenty six-dimen-
sional space-time and a superstring model in a ten-dimen-
sional space-time.

This hybridization is based on the following observa-
tion. States of closed oriented (type-II) strings (boson or
fermion strings) are the direct product of modes which are
moving to the left (left-side) orto the right (right-side). The
physical variables in a closed boson string are the twenty
four transverse components of the position vector of the
string, which describe right-side, x' (r,cr) and left-side,
x' (T + a), modes. The functions x' (a) and x' (a) satisfy
periodic boundary conditions on the interval 0<a<77. A
closed superstring contains eight right-side and eight left-

T S - - e x p [ - 2 i n ( T - o ) ] , (95)

0) =•%-+%-(•* + O)

where

For the fermion variables we have

S"(-t-or)= 1 S£exp[-2(«(T-a) ] ,
T1=-OC

where

Y+Sn = hSn - 0, (Sa
n, Sb

n\ = (Y^)a66m+n. 0 >

(96)

(97)

(98)

and there is an analogous expression for the left-side vari-
ables S" (T + a).

Independent dynamic variables of a heterotic string are
combined from the variables of the boson string and of the
superstring in the following way. From a boson string we
take only the left-side variables: eight transverse coordinates
x' and sixteen internal coordinates x', I = 1, ..., 16. From
the superstring we take only the right-side variables: eight
transverse boson coordinates x', i=\, ..., 8, and eight Ma-
jorana-Weyl fermion variables S". It is then assumed that
the internal boson coordinates x', 1= 1,..., 16, arecompac-
tified on the special torus T "\ whose basis vectors e', i = 1,
..., 16, generate an even integer self-dual lattice.""""2 By
this we mean that the metric

16

j=i

is an integer metric, that it has even diagonal elements, and
that its determinant is det g — 1. Only two lattices of this
type exist: a lattice constructed on the root vectors of the
EK X Ex group and the lattice of weights of the Spin (32 )/Z2

group.
The components of the total momentum of the string,

P', I = 1, ..., 16, which correspond to internal compactified
boson variables, x1, can take on strictly defined values:

16

pl=- 2 nte\, (99)

where the «, are integers.
A hybrid string model of this sort has no tachyon states,
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it is relalivistically invariant in a ten-dimensional Minkovv-
ski space, and has supersymmetry. The massless states in
this theory form an irreducible multiple! for ( A ' = l ,
Z ) = 1 0 ) supergravity and an irreducible multiple! for
(A' = 1. D= 10) supersymmetric Yang-Mills theory with
the gauge group Spin(32)/Z2 or E S XE X . It is because of
these strictly definite group properties of states that the cor-
responding gauge symmetry arises in a heterotic string.

This mechanism for generating an internal non-Abelian
gauge symmetry, as a result of compactification, is unique to
string theories. In the compatification of a local field model
on the torus T"\ only the trivial Abelian symmetry
[U( I ) ]" 1 could arise.

In the theory of interacting heterotic strings, the gauge
constant g and the Newtonian constant x satisfy a relation
different from ( 8 7 ) :

x = c o n s t - g ( 7 ) - 1 / 2 - (10°)

3.9. Compactification in superstring theory; Calabi-Yao
manifolds; low-energy phenomenology

Superstring theory, originally formulated in a ten-di-
mensional Minkowski space, can be a realistic theory only if
a dynamic compactification of six dimensions occurs in it. In
other words, the vacuum space-time manifold must be of the
form M 4 X K '\ where M4 is a four-dimensional Minkowski
space, and K'' is some compact six-dimensional manifold. At
the present state of superstring theory, it is not possible to
derive this assertion as a consequence of a solution of dynam-
ic equations. Furthermore, we do not even have proof that a
ten-dimensional Minkowski space is the solution of the com-
plete quantum field theory of superstrings. Consequently,
the compactification concept must be regarded for the time
being as a hypothesis which will have to be justified in the
future.

Some simpler questions are presently being stud-
ied "•'~"y: What might the vacuum state be in principle in
superstring theories? How can some grand unified theory or
other be inserted into a superstring model? The groups
which are being examined as gauge groups in GUT are
SU (5) , SO( 10), and E6, with respective dimensionalities 24,
45, and 78. None of these groups could occur as the isometry
group of a compact manifold K'\ whose dimensionality12"
cannot exceed 21. Accordingly, the gauge groups of a GUT
must be built into the string groups of symmetry SO(32) or
t-x X t-x-

We first consider superstrings with the SO(32) group.
The group E(, is not a subgroup of SO (32). Various ways of
fittingSU(S) andSO( lO) intoSO(32) were studied in Refs.
115-117. Some difficulties are unavoidable here. One ques-
tion, for example, is how to arrange a nontrivial unification
of generations.

More attractive from the standpoint of applications is a
superstring theory with the gauge group Ex X EK (the hetero-
tic string). The group Ex contains SU (3) X E(, as a subgroup.

It turns out that the latitude in the choice of the com-
pact manifold K 6 can be cut down significantly by requiring

that the following conditions be satisfied by the compactified
superstring theory1 ' ':

1) The geometry must be of the form M*xK'\ where
M4 is a maximally symmetric space-time.

2) In four dimensions, an unbroken (Ar = 1 ) supersym-
metry must exist.

3) The gauge group and the fermion spectrum must be
realistic.

The second requirement is dictated by the important
role played by supersymmetry in solving the problem of hier-
archies and the problem of Dirac's large numbers. ' 2 ' • ' ::

As was shown in Ref. 1 13, the satisfaction of conditions
( l ) - (3 ) requires that AT6 be a six-dimensional Calabi-Yao
manifold, i.e., a complex three-dimensional Kahler Ricci-
planar manifold with the holonomy group SU(3). The exis-
tence of such manifolds was proposed by Calabi'2XI24 and
proved by Yao.125

Not just any real manifold of even dimensionality 2n
can be thought of as a global complex manifold of dimen-
sionality n . For example, the two-dimensional sphere S 2 is a
complex manifold. Complex coordinates are introduced on
S~ by means of a stereographic projection. The four-dimen-
sional sphere S4, however, is not a complex manifold. Fur-
thermore, a complex manifold is called a "Kahler" manifold
if all the components of the metric tensor gt-fi (z) are deter-
mined by a single function (the Kahler potential) in accor-
dance with

g ( z = dadKz,'z. (101)

The Ricci tensor Raj3 for a Kahler manifold is

If the space is Ricci-planar, then we have

(102)

(103)

The holonomy group126 is generated by a connection which
acts on the manifolds31; for a six-dimensional Riemann
manifold this group is a subgroup of O(6) . For a Calabi-Yao
space, the curvature 2-form R ™£ takes on values in SU(3).

Proving the existence of a Calabi-Yao space required
proving the existence of solutions of some nonlinear partial
differential equations which follow from ( 101 ), ( 102), and
(103). There is no complete classification of Calabi-Yao
spaces.

Structural methods for constructing Calabi-Yao spaces
consist of examining submanifolds of a projective complex
space CP " or a factorization of tori. This approach usually
leads to Calabi-Yao manifolds with a large (in modulus)
Euler characteristic %. This result is physically unaccepta-
ble, since the number of generations in this compactification
scheme would be |j|/2. One possible way to lower |^| is to
switch from A"6 to Kh/G, where G is a discrete symmetry
group of AT'1.

Since Calabi-Yao manifolds are Ricci-planar, they do
not have continuous symmetries; i.e., for them there are no
nonzero Kill ing vector fields.41 Consequently, the mecha-
nism of generation as a result of the compactification of the
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gauge symmetry, which holds in Kaluza-Klein field mod-
els,6'" will not work here.

The need for a modification by means of Chern-Simons
terms of the local supersymmetric field theory which follows
from string dynamics in the low-energy limit leads to an
interesting relationship between the gravitational field and
the gauge field. Specifically, for an unambiguous determina-
tion of the intensity in (91 )-(94) a necessary condition1" is
dH = 0, i.e.,

Consequently, the curvature of space-time in string theories
requires the existence of a nontrivial gauge field, and vice
versa. As was shown in Ref. 113, condition (104) can be
satisfied by requiring that the gauge field be equal to the spin
connection which is embedded in a corresponding way in
SO(32) o rE x xE x .

In a string theory with the gauge group E K xE x , after
compactification,' ' ( one of the groups Es will be broken to
Eft. Quarks and leptons are massless excitations of a su-
perstring. They are described by the zero modes of corre-
sponding wave equations on a Calabi-Yao manifold, and
they transform in accordance with representation 27 of the
E6 group. With respect to the unbroken group Ex they are
singlets. The quantum numbers of fermions are determined
by the topological invariants of A"6. The number of genera-
tions turns out to be |^|/2, where^ is the Euler characteris-
tic of A"6. In this compactification scenario, the cosmological
constant in Af 4is zero. Interestingly, the Yukawa interaction
constants, which are adjustable parameters in GUT, are also
related to topological characteristics of a Calabi-Yao mani-
fold.

Then comes a breaking of E6 to SU(3), X S U ( 2 ) L

X U ( 1 ) X G , where G = U ( 1 ) , U ( l ) x U ( l ) ,
S U ( 2 ) X U ( 1 ) , etc."4 In addition to the standard model
S U ( 3 ) C X S U ( 2 ) L X U ( 1 ) , the group G implies the exis-
tence of additional Z" bosons in the low-energy superstring
theory. There is no basis of any sort for assuming that their
mass should be greatly different from the mass of the Z°
boson in the Weinberg-Salam theory ( ~ 10: GeV).

The prediction of additional Z° bosons may run into
conflict with the phenomenology of neutral currents. In oth-
er words, the E6 groups of GUT which follow from superstr-
ings are probably too large. These problems could apparent-
ly be avoided by using the SO( 10) group.

The SO( 10) group can be reached in a EK X Ex superstr-
ing theory in the following way. ' l 4 As A"6 we take not a Ca-
labi-Yao space but a Ricci-planar compact six-dimensional
manifold with holonomy group SO(6). In principle, such
manifolds may exist, although specific examples have yet to
be constructed. In this case the low-energy phenomenology
is determined by the subgroup in Ex which commutes with
SO(6), i.e., the SO(10) group. The supersymmetry is
broken even at the tree level; the number of generations re-
mains |^|/2; and the cosmological term in M4 is zero.

Other compactification mechanisms,' ' * • ' l 9 in which K 6

is not a Ricci-planar space and instead has a nonzero torsion,

have also been discussed. In this case the number of genera-
tions is not determined by the Euler characteristic \.

3.10. Cosmological consequences

In a superstring theory with the gauge group ExX Ex (a
heterotic string), the real world is described by the group EK,
while the second group, £„-, describes a "shadow" world.5'
This shadow world interacts with ordinary matter only
through gravitational forces.'29 As a result, the two worlds,
existing in parallel, essentially do not perceive each other

(104) after the Planck epoch (the age of the universe is < 10
and its temperature > 1019 GeV). In each world, a separate
thermodynamic equilibrium is established by virtue of the
internal nongravitational interactions of each world. If the
ordinary matter and the shadow matter are init ial ly well-
mixed, this state of affairs will persist unt i l the nongravita-
tional forces become important on a macroscopic scale. In
standard cosmology this time corresponds to a late stage in
the formation of galaxies.

Later on, the equilibrium in the spatial distribution of
ordinary matter and shadow matter may be disrupted be-
cause of the random nature of nongravitational perturba-
tions which are acting independently in each type of matter.
In other words, there may be a spatial separation of ordinary
matter and shadow matter. In principle, therefore, there
may exist galaxies in which either ordinary matter or shad-
ow matter is predominant. A further possibility is the exis-
tence of binary stars made up of an ordinary star and a shad-
ow star. Such an entity would be perceived as a single star
with a periodic motion. In fact, there are some nearby stars
(within <5 pc) which are thought to have invisible part-
ners. There are of course some less exotic explanations here;
e.g., the invisible partner might be a neutron star, a black
hole, or even an object of planetary size.

The gauge group of the shadow world, E8 , may be
broken in precisely the same way as the group of the ordinary
world, Ex, is; i.e., the shadow world may be an identical twin
of the observable world. However, incorporating shadow
matter in an analysis of the primordial nucleosynthesis for-
bids a complete symmetry between our world and the twin
world.129

4. CONCLUSION

Superstrings are an organic part of the modern theory
of elementary particles. From the standpoint of predictions,
they transform into supersymmetric grand unified theories
in the low-energy field limit. The primary advantages of the
superstring approach are as follows:

1. Superstrings make it possible to unify all the funda-
mental interactions, including gravitation.

2. They essentially unambiguously fix the fundamental
gauge group in a grand unified theory.

3. The four-dimensional nature of our world is treated
in the superstring approach as a consequence of the dynamic
equations of this theory.

4. In the ideal case, the theory would include only two
fundamental parameters: the string tension T and one of the
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constants of the Yang-Mills or gravitational interaction of
the superstrings.

We should also list the fundamental questions in su-
perstring theory which will have to be solved if that theory is
to have a solid basis:

1) Finiteness or renormalizability will have to be
proved rigorously in all orders of string perturbation theory.

2) The compactification process requires a dynamic
basis.

3) The mechanism for the breaking of supersymmetry
at energies E < 102 GeV must be determined.

4) More-fundamental reasons for the vanishing of the
cosmological constant of our four-dimensional world must
be found.

Resolving these questions will first require the deriva-
tion of a second-quantized field theory of superstrings to
make specific calculations possible. A shortcoming of the
existing formulations of field theories of strings is that a defi-
nite background metric (usually the metric of a ten-dimen-
sional planar Minkowski space) is built into the theory at the
outset. However, excitations of superstrings also contain, in
particular, the graviton; i.e., the observable physical metric
of space-time must be determined dynamically through a
solution of the equations of a field theory of superstrings.

In the formulation of a field string theory it would prob-
ably be useful to call upon a principle analogous to the equiv-
alence principle in the general theory of relativity, but for-
mulated in the space of string configurations. It has been
established quite well that the dynamics of "old" hadron
strings was determined to a large extent by the requirement
of the duality of the string amplitudes. No analog of the
duality principle has been found for superstrings.
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