YCHEXH ФИЗИЧЕСКИХ НАУК

из текущей литературы

538.945

МЕТАЛЛООКСИДНЫЙ СВЕРХПРОВОДНИК ВаРь_{1-х}Ві_хО₃: НЕОБЫЧНЫЕ СВОЙСТВА И НОВЫЕ ПРИМЕНЕНИЯ

А. М. Габович, Д. П. Моисеев

СОДЕРЖАНИЕ

2 .	Введение	599 600
	Электрические и оптические измерения	602
5.	нокристаллов	6 05
ß	п пленочных образнах	607 612
7.	Термодинамика и электродинамика сверхпроводящего состояния Корреляция нормальных и сверхпроводящих свойств. Природа сверхпрово-	
8	димости	615 618
Сп Сп	исок литературы	618

· **1.** ВВЕДЕНИЕ

Значительным достижением последних лет на пути решения проблемы высокотемпературной сверхпроводимости 1 , 2 явилось открытие органических сверхпроводящих соединений 3 , 4 . Тем не менее, до сих пор наиболее высокие критические температуры $T_{\rm c} \lesssim 23,2~{\rm K}$ и верхние критические магнитные поля $H_{\rm c2} \lesssim 600~{\rm k}$ наблюдаются в неорганических веществах: интерметаллидах со структурой A-15 и керамических фазах Шевреля 5 , 6 . Особый интерес представляют металлооксидные сверхпроводники, неподверженные окислению в процессе термоциклирования и способные выдерживать большие тепловые нагрузки без ухудшения критических параметров. Первым сверхпроводящим оксидом с $T_{\rm c} > 10~{\rm K}$ было соединение ${\rm Li}_{1+x}{\rm Ti}_{2-x}{\rm O}_4$ со структурой шпинели $^{7-9}$. Полученные в 1974 году Слэйтом твердые растворы ${\rm BaPb}_{1-x}{\rm Bi}_x{\rm O}_3$ (ВРВ) со структурой перовскита 10 , 11 , в отличие от него, обладают необходимой стабильностью свойств и имеют при x=0,25 наиболее высокую критическую температуру $T_{\rm c} \approx 13~{\rm K}^{-12}$ среди веществ, не содержащих атомов переходных элементов.

Цель настоящего обзора заключается в подведении итогов десятилетнего изучения сверхпроводящих твердых растворов $BaPbO_3$ — $BaBiO_3$, которое проводилось во многих лабораториях СССР, Японии, США и других стран.

Общефизический интерес к этой системе обусловлен ее уникальными свойствами, связанными с аномально малой для высокотемпературного сверхпроводника плотностью состояний электронов N (0) на поверхности Ферми (ПФ) 13 , наличием перехода металл-диэлектрик по составу 11 , 14 и с тем обстоятельством, что керамика BPB представляет собой множественную джозефсоновскую среду 15 , 16 . Несмотря на значительное число работ, посвя-

щенных сверхпроводимости этого вещества, природа ее остается загадочной, и в процессе изучения ВРВ возникают все новые и новые вопросы. В литературе имеется несколько небольших обзоров на эту тему ¹⁷⁻²⁰, однако в них отсутствует критический анализ имеющегося материала; кроме того, нарастающий поток информации привел к тому, что они быстро устарели.

2. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФАЗОВЫЕ ПЕРЕХОДЫ

Твердые растворы BPB получают с помощью обычной керамической технологии ¹⁰, ¹¹, ¹⁴, ¹⁷, ²¹ или методом горячего прессования ¹³, ²², ²³, причем их основные сверхпроводящие свойства при оптимизации режима приготовления

Рис. 1. Структура' типа перовскита, состоящая из октаэдров X-анионов с B-катионами в центрах октаэдров и с A-катионами ми 24 октаэдра-

не зависят от выбранного способа синтеза. Кристаллическая структура ВРВ представляет собой слегка искаженную структуру типа перовскита, схематически представленную на рис. 1 ²⁴ (общая формула — ABX₃), которая состоит из связанных октаэдров X-анионов с В-катионами в центрах октаэдров и с А-катионами между ними. При этом в позиции В в зависимости от состава часть ионов свинца может быть замещена ионами висмута различной валентности.

Структурные искажения для крайних составов BPB (x=0, x=1) были определены при рентгенографических и нейтронографических исследованиях $^{25-29}$. В большей части работ утверждается, что элементарная ячейка ${\rm BaPbO_3}$ при комнатной температуре определяет ромбическую сингонию кристаллической решетки. Однако в $^{30-32}$ структура ${\rm BaPbO_3}$ описывается как моноклинная. По вопросу

кристаллической симметрии ${\rm BaBiO_3}$ также нет единого мнения, однако следуя анализу, проведенному в работе 28 , можно считать, что для этого соединения характерна моноклинная элементарная ячейка с упорядоченным расположением ионов ${\rm Bi^{5+}}$ и ${\rm Bi^{5+}}$ 27 , $^{33-35}$.

Структура твердых растворов BPB в зависимости от x при комнатной температуре была исследована в ¹⁴, ^{27–33}, ³⁵, ³⁶. Если исключить данные ²⁷, ³³, ³⁵ и результаты рентгенографических исследований при $x \le 0,1$ ^{30–32}, ³⁶, не подтвержденные другими авторами, то следует признать установленным ¹⁴, ²⁸, ²⁹, что в области свехпроводящих составов $(0 \le x \le 0,4)$ решетка имеет ромбическую симметрию. К этой же сингонии для 0,1 < x < 0,5 приводят результаты ^{30–32}, ³⁶, полученные как на керамических, так и на монокристаллических образцах.

Наряду с фазовыми переходами по составу в ВРВ наблюдаются $^{28-32}$ структурные переходы по температуре из высокотемпературной кубической в ромбическую-І фазу и далее в низкотемпературную фазу, которая согласно 28 , 29 является ромбической-ІІ, а согласно $^{30-32}$ — моноклинной. Интересными являются результаты работ 28 , 29 , где на основании рентгеновских исследований ромбической-І фазы было показано, что вблизи состава с x=0.25 соответствующего максимальной $T_{\rm c}$ 14 , 21 , 22 , происходит упорядочение ионов Рb и Ві. Эти выводы основаны на полученных концентрационных зависимостях псевдомоноклинного угла β , температуры перехода в кубическую фазу и отошения интегральных интенсивностей дифракционных линий с различным типом четности индексов (hkl). Корреляция структурных и сверхпроводящих свойств следует также из измерений зависимости диэлектрической проницае-

мости ε от температуры T в керамических и монокристаллических образцах BPB $^{30-32}$, 36 (рис. 2). Более того, в работах $^{30-32}$, 36 делается вывод о возможности существования спонтанно поляризованных состояний в низкотемпературных фазах BPB не только вблизи x=1 37 , но и в области сверхпроводящих составов. Отметим, что на вероятное сосуществование сверхпроводимости

Рис. 2. Зависимости от состава температур фазовых переходов из моноклинной решетки в ромбическую (кривые $2, 3 - \triangle$) и из ромбической в кубическую $(1 - \triangle)$, найденные с помощью рентгеновской дифрактометрии; зависимости от состава максимумов ε (T) $(1, 2, 4: \bullet - керамика,$ монокристаллы), T_{c} (6 — керамика, +; 7 — монокристаллы, ▽), положений максимумов емкости запорных слоев монокристаллических образцов (5, 🗆) (горизонтальная штриховая прямая — комнатная температура) 30

и сегнетоэлектричества в рассматриваемой системе впервые было указано в 38 .

Взаимосвязь структурного перехода, сопровождающегося смягчением поперечной оптической фононной моды, со сверхпроводимостью наблюдалась ранее в вырожденных полупроводниках SnTe с примесью PbTe, в GeTe ³⁹, ⁴⁰,

и $SrTiO_3$ ⁴¹. Однако в теоретическом плане сосуществование сегнетоэлектри- Σ , cn чества и сверпроводимости до сих пор не доказано ⁴², ⁴³, а однозначное экспериментальное подтверждение сильно затруднено из-за того, что вырожденные носители тока экранируют как внутренние, так и внешние электрические поля в сегнетоэлектрике.

Как известно ¹, ³, ⁴, ⁶, электронфононное взаимодействие часто приводит к тому, что структурные переходы сопровождаются перестройкой электронной подсистемы вещества с образованием диэлектрической щели Σ коллективной природы на ПФ. Появление диэлектрической щели в ВРВ для

Рис. 3. Зависимость диэлектрической щели Σ в BPB от состава x, найденная из спектра поглощения ИК излучения ¹⁴

x>0.4 впервые наблюдалось в ¹⁴ при поглощении оптического излучения в далекой ИК области спектра (рис. 3). Переход металл — диэлектрик подтверждается также электрическими измерениями ^{14, 17, 22, 44}, о чем пойдет речь в п. 3. Вопрос о том, сопутствует ли этому переходу по составу структурная неустойчивость, остается открытым, поскольку проведенные рентгеноструктурные исследования не зафиксировали изменения симметрии кристаллической решетки вблизи x=0.4. Тем не менее, как видно из рис. 2, экстраноляция положения низкотемпературной аномалии $\varepsilon(T)$ по шкале x указывает на желательность структурных исследований при низких температурах в области перехода металл—диэлектрик.

3. ЭЛЕКТРИЧЕСКИЕ И ОПТИЧЕСКИЕ ИЗМЕРЕНИЯ

Зависимость критической температуры сверхпроводящего перехода от состава BPB определялась индуктивным и резистивным методами ¹¹, ¹⁴, ²¹, ²², ⁴⁴. Результаты качественно согласуются между собой, хотя абсолютные значения $T_{\rm c}$ в максимуме могут отличаться. Типичная кривая приведена на рис. 4 ²¹, причем сверхпроводимость чистого BaPbO₃ с $T_{\rm c} \approx 0.46$ К была

обнаружена на монокристаллах 45 . Высказано мнение 12 , 17 , 68 , что на самом деле сверхпроводят только составы с x=0,2; 0,25. С ним трудно согласиться, поскольку оно противоречит всей совокупности предшествующих и последующих измерений и никак не объясняет сверхпроводимость ВРВ при x=0. Максимальная $T_{\rm c}=13,4~{\rm K}$ была достигнута в работе 12 для состава с x=0,25.

 ${
m Hetpu Buaль Hhmu}$ оказались температурные зависимости электросопротивления R.

Рис. 4. Зависимость критической температуры сверхпроводящего перехода T_c керамики от x^{21} (1). Значение $T_c \approx 0,46$ К при x=0, измеренное на монокристаллах (2) 46

Рис. 5. Зависимость удельного электросопротивления ρ в керамике BPB от температуры T для различных x^{22}

В частности, для составов, близких к переходу металл—диэлектрик, наблюдался отрицательный температурный коэффициент сопротивления (ТКС) вплоть до захода в сверхпроводящее состояние ²², ³⁸, ⁴⁶. Сложность интерпретации этого факта заключается в наложении эффектов, связанных с проводимостью объема вещества, и контактных яглений, обусловленных гранулярностью структуры.

На рис. 5 представлены температурные зависимости удельного сопротивления ρ образцов BPB разного состава, полученных в работе ²² методом горячего прессования. Наблюдаемые на рисунке отрицательный ТКС и рост ρ с увеличением x, по всей вероятности, определяются собственной проводимостью вещества, поскольку использованный в ²² метод приготовления обеспечивает малую пористость и большой размер зерен керамики $d \approx 20$ мкм. С другой стороны, в образцах, полученных методом свободного спекания со

значительной пористостью ($\theta \approx 0.3$) и малым размером зерна ($d \approx 1$ мкм), отрицательный ТКС был обнаружен и для образцов с малым $x = 0.13^{-38}$, что, по нашему мнению, обусловлено определяющей ролью межзеренных границ. В пользу этого свидетельствует на порядок большее, чем в 22 , значе-

ние $\rho \approx 5 \cdot 10^{-2}$ Ом·см.

Интересная информация была получена при электрических измерениях монокристаллов BPB с x=0; 0,1; 0,12 и 0,20 ⁴⁷ (рис. 6). Сравнение данных ⁴⁷ и ²² показывает, что для составов, далеких от перехода металл—диэлектрик, характер кривых ρ (T) тот же, но величина ρ выше в поликристаллических образцах. Исключение составляет BaPbO₃, где, по-видимому, отсутствует туннельный барьер на границах зерен ⁵⁶.

Из рис. 4 и 5 видно, что T_c снижается задолго до появления при x>0.4 наблюдаемой оптическим методом диэлектрической щели ¹⁴. Для выяснения причин этого явления были проведены эксперименты, в которых измерялась

Рис. 6. Измеренные в 47 зависимости удельного электросопротивления ρ от температуры T для монокристаллов (S) и керамики (P) различного состава x=0; 0,1; 0,12 и 0,20 (указано на рисунке; ρ — в мОм·см)

Рис. 7. Плотность носителей тока n найденная из измерений постоянной Холла в керамике (кривая 1, T=300 К 44 ; 2, T=77 К и 300 К 22) и в монокристаллах (темвые кружки 47)

концентрация n носителей тока с помощью эффекта Холла в керамике 22 , 44 и в монокристаллах 47 . Результаты приведены на рис. 7, взятом из работы 47 . Как видим, концентрация носителей тока по меньшей мере на порядок ниже, чем n в хороших металлах со сравнимой $T_{\rm c}$ (например, Nb). Этот факт является удивительным, не имеет аналогов среди других сверхпроводящих систем и не нашел до сих пор удовлетворительного объяснения. Зависимости n (x) и $T_{\rm c}$ (x) (см. рис. 4) коррелируют между собой, так что критическая температура как функция концентрации электронов—монотонная 44 , в отличие от кривой $T_{\rm c}$ (n) для легированного ниобием сверхпроводящего полупроводника ${\rm SrTiO_3}$ со структурой перовскита 48 . Таким образом, спад $T_{\rm c}$ в BPB при x > 0,25 связан с уменьшением плотности электронов, и для его объяснения не следует привлекать, как в случае ${\rm SrTiO_3}$, существующие теории сверхпроводимости полупроводников и полуметаллов, основанные на взаимодействии носителей тока с продольными оптическими фононами (модель Гуревича, Ларкина и Фирсова) $^{49-51}$ или учете многодолинных эффектов 52 .

Подробное изучение природы электронных состояний в ВРВ проводилось в работах 13 , 53 , 54 . Измерения термо-э.д.с. 13 , 53 показали, что в области сверхпроводящих составов наблюдается немонотонная зависимость коэффициента Зеебека S от T. Но в высокотемпературной области (T > 50~ K) для

 $x \le 0,3$ кривые S (T) имеют линейные участки, и обработка экспериментальных данных велась на основе формулы $S = AT + S_0$, причем, по мнению авторов, первое слагаемое соответствует свободным электронам, а второе — носителям тока с малой подвижностью. В предположении параболического закона дисперсии и примесного характера рассеяния электронов в 13 , 53 получены немонотонные зависимости от x эффективной массы $m^* \approx (1-1,5)$ m_e и плотности состояний на $\Pi\Phi$ N (0) $\approx (3-9)\cdot 10^{21}$ зВ $^{-1}$ см $^{-3}$, где m_e — масса свободного электрона. Основываясь на своем выводе о наличии двух групп носителей тока с разными эффективными массами и экстраполируя его на низкие температуры, авторы 13 , 53 считают возможным реализацию в ВРВ плазмонного механизма сверхпроводимости Пашицкого 50 , 55 . Однако это допущение пока не подтверждено другими экспериментальными данными, и, кроме того, результаты 13 , 53 были получены в упрощенной модели, не учитывающей, например, влияние межзеренных границ с полупроводниковым характером проводимости 56 и эффекты неупорядоченности 57 .

В работе 54 измерялись спектры отражения света от керамических образцов состава $0 \le x \le 0.25$ в ближней инфракрасной области. Была получена зависимость плазменной частоты ω_p от содержания Ві в ВРВ, хорошо коррелирующая с холловскими данными для n^{-22} , 44, 47. Значения зонных эффективных масс оказались равными $m_b^* \approx (0.5 \div 0.8) m_e$, т. е. на порядок чем в высокотемпературных сверхпроводниках, ${\rm Li}_{1+x}{\rm Ti}_{2-x}{\rm O}_4$ 8 и ${\rm La}_3{\rm S}_4$ 18, 58, содержащих переходные или редкоземельные ионы. Согласие между оптическими данными для $m_{
m B}^*$ и величинами, полученными из измерений S^{13} , 53 , достигается в 54 введением поправочного коэффициента $1 + \lambda$, где константа электрон-фононного взаимодействия λ определялась в 59, исходя из измерений теплоемкости ВРВ и формулы Мак-Миллана для $T_{\rm c}$ 60 . Отметим, что правомерность использования последней в этом случае является проблематичной ввиду ее неуниверсальности ¹, ⁶¹. В частности, вероятное наличие низкочастотных пиков ω ≤ 2 мэВ (постоянная Планка $\hbar = 1$) в функции α^2 (ω) F (ω) для BPB с x = 0.25 68 делает простые оценки 59 ненадежными.

Несмотря на относительно большую плотность свободных электронов в сверхпроводящей керамике, в работе 62 удалось измерить зависимость коэффициента поглощения света от длины волны в пленках BPB с $T_{\rm c}\approx 7~{\rm K}.$ Из этих измерений следует существование в пленочных сверхпроводящих образдах прямой запрещенной зоны с шириной $2,4~{\rm aB}.$

Накопленные экспериментальные данные по свойствам электронных состояний в твердых растворах $BaPbO_3$ — $BaBiO_3$ вущественно дополняются результатами зонных расчетов, выполненных Матхейсом и Хаманном методом присоединенных плоских волн 63-66. Не вдаваясь в детали, отметим, что расчеты 63-66 в основном подтверждают картину, предложенную Слэйтом 10, 11, согласно которой электронные свойства ВРВ определяются перекрытием частично заполненной 6s-зоны Pb и Bi с заполненной 2p-зоной кислорода и образованием широкой, порядка 16 эВ, зоны проводимости. Из ⁶³⁻⁶⁵ следует, что моноклинное искажение кубической решетки в BaBiO_з, приводящее к появлению полупроводниковой щели, энергетически выгодно. Что же касается расчетов для случая $m{x}=0,3$, проведенных в приближении виртуального кристалла ⁶⁷ для атомов Pb и Bi, то они относятся к тетрагональной фазе ³³, в то время как на самом деле кристаллическая структура сверхпроводящей керамики при низких температурах является, по-видимому, ромбической (см. обсуждение в пункте 2). Поэтому вопрос о причинах перехода металл—диэлектрик по составу в ВРВ и после работ 63-65 остается открытым.

В работах $^{68-66}$ были вычислены также плотности состояний и плазменные частоты при $0 \leqslant x \leqslant 0,3$. Результаты для ω_p удовлетворительно согласуются с оптическими данными 54 , однако для N (0) наблюдается значительное расхождение теории с экспериментом 13 , 53 , которое нельзя объяснить только

электрон-фононной перенормировкой. Это может быть связано с трудностями обработки данных по измерению термо-э.д.с. в BPB, о чем говорилось выше. Тем не менее, теоретические расчеты, так же как и эксперимент, приводят к аномально малым для столь высокотемпературного сверхпроводника величинам $N(0) \approx 3 \cdot 10^{21}$ эВ $^{-1}$ см $^{-3}$.

4. ПОПЫТКИ ПОВЫШЕНИЯ КРИТИЧЕСКОЙ ТЕМПЕРАТУРЫ ВРВ. ПОЛУЧЕНИЕ ПЛЕНОК И МОНОКРИСТАЛЛОВ

Сразу же после получения керамики ВРВ 10 , 11 с ее высокой $T_{\rm c}$ возник естественный вопрос, нельзя ли добиться дальнейшего повышения критической температуры с помощью полной или частичной замены A- и B-катионов на другие элементы? Соответствующая обобщенная формула вещества может быть записана в виде ${\rm Ba_{1-y}A_yPb_{1-x}R_xO_3}$. В случае y=0 сверхпроводимость керамики выше 3 К наблюдалась только при ${\rm R}={\rm Bi}$ 69 , хотя свинец удалось заместить на ${\rm Ta}$, ${\rm Nb}$ и ${\rm Sb}$ 69 , 180 . Замещение ${\rm Ba}$ в этом смысле оказалось более успешным. Так, уже в первой работа Слэйта 11 было указано, что щелочные металлы при y=0.1-0.2 не снижают $T_{\rm c}$, но сужают сверхпроводящий переход. Однако это может быть связано просто с увеличением доли ${\rm Pb}$ в процессе спекания по сравнению с образцами при y=0 14 или с улучшением условий спекания 73 . Отметим, что однофазность твердых растворов в случае ${\rm K}$, ${\rm Cs}$, ${\rm Rb}$ обеспечивается лишь для $y\leqslant 0.3$ 14 , 69 .

Использование на месте Ва редкоземельных добавок приводит 53 к быстрому (Nd, Gd) и незначительному (La) падению $T_{\rm c}$ для сверхпроводящего при y=0 состава с x=0,25. В то же время для полупроводника с x=0,4 добавление La (y=0,1-0,3), Nd и Gd (y=0,2) превращает его в сверхпроводник с максимальной $T_{\rm c} < 10,5$ К в случае La. Кстати, указанный эффект служит дополнительным свидетельством против гипотезы 12 , 17 , 68 об узкой области сверхпроводящих составов в окрестности x=0,25. Единственным в настоящее время элементом, повышающим $T_{\rm c}$ ВРВ с x=0,2 в узком диапазоне y < 0,07, является стронций 71 . Дальнейшее увеличение y вызывает резкое падение $T_{\rm c}$. Однако для x > 0,25 критическая температура с ростом y падает монотонно как для объемных образцов 23 , 69 , 71 , так и для пленок 72 . Следует отметить, что твердые растворы при произвольных x с заменой Ва на Sr возможны для любого y вплоть до y=1 69 . В отличие от чистого ВРВ, симметрия кристаллической решетки отличается от ромбической, за исключением областей с $1-y \ll 1$ и $y \ll 1$, а отрицательный ТКС и сверхпроводимость сосуществуют.

Исходя из изложенных выше фактов, нельзя сделать какого-либо определенного вывода относительно причин повышения или понижения $T_{\rm c}$ при замещении, поскольку нет однозначной корреляции между изменениями $T_{\rm c}$, с одной стороны, и изменениями постоянной решетки, кристаллической структуры, температурной зависимости ρ и т. д.— с другой. Существует, однако, однозначная корреляция между $T_{\rm c}$ и дефектностью керамики по кислороду $^{74-76}$, 204 . В согласии с 27 , 34 , 35 можно предположить, что для фиксированного x при уменьшении содержания O^{2-} изменяется соотношение между числом ионов Bi^{3+} и ионов Bi^{5+} в сторону увеличения концентрации Bi^{3+} , определяющего полупроводниковые свойства керамики, так что формула вещества представляется в виде 74

BaPb_{1-x}Bi
$$\frac{3+}{x}$$
+yBi $\frac{5+}{x}$ -yO_{3(1-x)}O $\frac{5}{2}(\frac{x}{2}+y)$ O $\frac{7}{2}(\frac{x}{2}-y)$,

где $y \leqslant x/2$.

Полное изчезновение металлических и сверхпроводящих свойств для x=0.25 достигается при потере $\approx 4\%$ $\mathrm{O^{2-}}$. В недавней работе 204 с помощью измерений постоянной Холла монокристаллических пленок 84 с x=0.3

при различных температурах показано, что вакансии кислорода приводят к образованию центров локализации носителей тока, так что при низких T происходит локализация и оставшихся свободных носителей (по мнению авторов 204 , андерсоновского типа) и отрицательный ТКС возрастает. Сверхпроводимость при этом сохраняется. В этой связи следует обратить внимание на работу Булаевского и Садовского 205 , которые в рамках разложения Гинзбурга — Ландау для свободной энергии рассмотрели сверхпроводимость разупорядоченного металла за порогом локализации.

Хорошо известно, что повышения $T_{\rm c}$ высокотемпературных и структурно нестабильных сверхпроводников часто добиваются, получая их в пленочном состоянии (см. например, 77). Поэтому неудивительно, что сразу после обнаружения сверхпроводимости ВРВ 10, 11 были предприняты попытки приготовления пленок различными методами. В основном использовались варианты высокочастотного катодного распыления 62, 72, 76, 78-80, причем наибольшая скорость осаждения 400 Å/мин достигалась при магнетронном распылении 81. Применялся также метод лазерного испарения мишени BPB 82, 83, при котором уменьшается вероятность изменения состава 79. Сразу после напыления проводимость пленок носит полупроводниковый характер, и только последующий отжиг на воздухе или в кислородной атмосфере приводит к появлению сверхпроводимости с такими же критическими температурами, как и в массивной керамике. Наблюдается падение Т с уменьшением толщины пленки $d \leqslant 4000~{
m \AA}$ 76. Аналогичный размерный эффект был обнаружен при измельчении керамики ³⁸. Для полученных поликристаллических пленок значения плотности критического тока не превышают $j_c \approx 10^4 \; \text{A/cm}^2$ 81. Гораздо большая плотность

$$j_c \approx 2.5 \cdot 10^5 \text{ A/cm}^2$$

реализуется в монокристаллических пленках с $T_{\rm c} \approx 10~{\rm K}$, эпитаксиально осажденных на монокристаллическую подложку ${\rm SrTiO_3}$ (100), нагретую до $700~{\rm ^{\circ}C}$ ⁸⁴.

Важным достижением явился синтез монокристаллов ВРВ разного состава многими группами исследователей 11 , 30 , 45 , 53 , 68 , 79 , 85 – 90 , 183 . Детальное описание методики выращивания монокристаллов из расплава исходных окислов и расплава в растворе КСl содержится в работах $^{85-87}$. Максимальный размер монокристаллических пластинок составлял 15×15 мм² 87 . Критические температуры сверхпроводящего перехода монокристаллических образцов, так же как и пленочных, не превышали $T_{\rm c}$ поликристаллической керамики тех же составов.

Наличие структурных переходов и перехода металл—диэлектрик по составу (см. раздел 2) стимулировало исследование проводимости и сверхпроводящих свойств BPB под давлением. В несверхпроводящей керамике с x = 0.4; $0.5;\ 0.7$ при измерении сопротивления в области давлений Ppprox 50 кбар обнаружен переход в металлическое состояние ⁹¹. С другой стороны, в сверхпроводящих образцах с $x \ge 0.25$ наблюдается понижение T_c , j_c и величины сверхпроводящей щели Δ при повышении гидростатического давления как в объемных, так и в пленочных образцах $^{92-95}$. Такое поведение неудивительно, поскольку уменьшение параметра решетки для этих составов при изоэлектронном замещении Ва на Sr приводит к снижению $T_{\rm c}$ ²³, ⁷¹. В то же время для состава с x=0,2 наблюдаются максимум на зависимости $T_{\rm c}$ (P) при P=4 кбар 93 и резкое возрастание критического тока $I_{
m c}$ вблизи Ppproxpprox 1,5 кбар 195 . Существование максимума $T_{
m c}$ хорошо коррелирует с повышением T_c и уменьшением постоянной решетки на величину порядка 0,01 Å при замещении Ва на Sr до 10 ат. %, если при оценках использовать 71 значение сжимаемости 6.10-7 бар-1, характерное для перовскитных систем. Отметим, что такая величина сжимаемости была недавно получена экспериментально для ВаВіО, 96.

5. ГРАНУЛЯРНАЯ МАКРОСТРУКТУРА КЕРАМИКИ. ЭФФЕКТЫ ДЖОЗЕФСОНА В ОБЪЕМНЫХ И ПЛЕНОЧНЫХ ОБРАЗЦАХ

Впервые на зависимость проводимости и сверхпроводящих свойств от макроструктуры керамики ВРВ при фиксированном x было указано в ²¹, ³⁸, ⁷³. В качестве примера на рис. 8 представлена структура внутренних областей и поверхностного слоя образца с x=0.25, полученного ⁹⁷, ⁹⁸ методом свободного спекания. Было обнаружено, что сверхпроводимость существенно зависит от наличия межзеренных границ (МГ) и свойства электронных состояний на МГ, определяющих, в частности, кинетические характеристики вещества.

Рис. 8. Макроструктура внутренних областей керамического образца с x=0,25 (a) и его поверхностного слоя (б) 97,98

Решающая роль межкристаллитного потенциального барьера в электропроводности металлооксидных керамик хорошо известна для нелинейных полупроводниковых варисторов 99, 100. В частности, в ZnO под действием сильных электрических полей наблюдается 101, 102 нелинейная перколяционная проводимость в согласии с теорией Шкловского 103, причем роль компенсирующей примеси играют поверхностные состояния, локализованные на МГ. Подтверждение влияния поверхностных состояний на нормальные свойства керамики BPB было получено недавно для образца с x = 0.2 в структуре M - BPB - M (M = Al, Cu, Ag) 104 , где наблюдалось пороговое изменение вольт-амперных характеристик (ВАХ) с нелинейной симметричной на несимметричную. Температурная зависимость проводимости ВРВ, обусловленная MГ, носит сложный характер 44, 97, 98, поскольку в аморфизованной прослойке может происходить либо диэлектризация электронного спектра (например, по типу 97, 105-109 или 110), либо андерсоновская локализация носителей тока ⁵⁷. При анализе удельной электропроводности о необходимо учитывать протекательную структуру, свойственную гранулярным композитам 111, 112. Недавно для туннелирования электронов в таких системах Шкловским была сформулирована новая задача теории протекания— «протекание со штрафом» 113.

Попытка определения функциональной зависимости $\sigma(T)$ в ВРВ была предпринята в работах ¹⁸, ⁴⁴, ⁹⁷, ⁹⁸, ¹⁴⁹. Оказалось, что для измельченного, спрессованного, но вторично не спеченного образца сверхпроводящего состава (x=0.25) при $T \leq 30$ К $\sigma(T)=\sigma_0 \exp(AT^{1/4})$ и совпадает с $\sigma(T)$ хорошо спеченных образцов с x=0.4, не обнаруживающих сверхпроводящих свойств и имеющих при более высоких температурах активационный характер

проводимости. Аналогичная зависимость наблюдалась в сверхпроводящих пленках $\text{La}_{3-x} \text{S}_4^{150}$. В то же время в разупорядоченых пленках InO_x от 200 К и вплоть до перехода в сверхпроводящее состояние имеет место зависимость $\sigma(T) = \sigma(0) \, (1 + T^{1/4})^{151}$, совпадающая с приведенной выше, если учесть, что в $^{151}\sigma(T) - \sigma(0) \ll \sigma(0)$. Такой температурный ход проводимости определяется, по-видимому, как процессами туннелирования между зернами, так и эффектами разупорядочения на микроскопическом уровне.

Что же касается зависимости сверхпроводящих характеристик ВРВ от свойств межкристаллитных границ, то МГ приводят не только к размытию

Рис. 9. Переход в сверхпроводящее состояние керамики с $x = 0.2^{18}$.

1 — исходный образец; 2 — образец расколот и сжат по расколу

перехода в сверхпроводящее состояние 21 , 73 , в частности, за счет перколяционных эффектов $^{200-202}$, но в некоторых случаях даже к «двугорбому» виду кривых R (T) вблизи $T_{\rm c}$ 18 , 44 . Наиболее ярко это проявляется в экспериментах на специально приготовленных расколах (рис. 9).

Таким образом, в BPB существует сверхпроводимость в каждом отдельном зерне при $T \leqslant \widetilde{T}_{\rm c1}$ и джозефсоновская слабая связь между зернами при $T \leqslant \widetilde{T}_{\rm c2} < \widetilde{T}_{\rm c1}$, которая определяет сверхпроводящие свойства системы в целом. Это было доказано прямыми измерениями BAX для объемной керамики 15 , 16 , 95 , 114 и пленок 9 , 56 , 94 , 115 .

При T=4,2 К в нулевом поле H на массивном образце $\operatorname{BaPb}_{0.75}\operatorname{Bi}_{0.25}$ O_3 размером $5\times2\times1$ мм³ наблюдались 15,18 сверхпроводящий ток, обусловленный стационарным эффектом Джозефсона, и переключение на ветвь одночастичного туннелирования при критическом токе $I_{\mathrm{c}}=12$ мА. Величина переключающего напряжения U=0,12 В. На других образ-

цах U достигала значений порядка 1 B, т. е. вся совокупность, вообще говоря, различных переходов с джозефсоновской связью через МГ срабатывала одновременно, как один переход. Причины синхронизации, приводящие к множественному джозефсоновскому туннелированию в данной трехмерной гранулярной среде, до конца не выяснены, хотя в литературе существует ряд моделей синхронизации нескольких переходов через емкостную, индуктивную и резистивную связи 116 , либо через поле излучения 117 , 118 . Оценка эффективного числа $n_{\rm e}$ последовательно соединенных переходов, определяющих величину напряжения переключения U, может быть сделана 15 , 16 , если предположить, что она является суммой вкладов $U_{\rm s} \equiv 2\Delta$ (T)/e от каждого перехода: $n_{\rm e} = U/U_{\rm s} \approx 40$ (сверхпроводящая щель Δ (T) вычисляется по теории БКШ 119 , 124 , исходя из измеряемых значений $T_{\rm c}$, e — элементарный заряп).

Включение слабого магнитного поля $H \leqslant 5$ Э приводит к уменьшению $I_{\rm c}$. При этом на прямом ходе ВАХ наблюдались ступеньки 15 , 16 , связанные с выходом из когерентного режима части джозефсоновских переходов, имеющих малую амплитуду критического тока. Дальнейший рост H подавляет сверхпроводящее туннелирование 120 . Однако сверхток, связанный, по-видимому, с S — N — S-переходами в объеме образца, сохраняется. Кривая $I_{\rm c}$ (H) (рис. 10) не имеет квантовых осцилляций, а огибающая не описывается зависимостями $\sim 1/H$ 121 или $\sim 1/H^2$ 122 , характерными для одиночных переходов. Такая же пологая зависимость наблюдалась 56 на пленочных образцах ВРВ с x=0,2; 0,25; 0,3, где $I_{\rm c}$ являлся критическим током одиночного

перехода.

Детальное исследование температурного хода кривых Δ (T) и $I_{\rm c}$ (T) было проведено на пленках с x=0.3, где, ввиду слабой синхронизации в квазидвумерной системе зерен (толщина пленки порядка $5000~{\rm \AA}$, размер зерна $2400~{\rm \AA}$), реализуются переключения, характерные для одиночных переходов

Рис. 10. Зависимость критического джозефсоновского тока $I_{\rm c}$ объемного керамического образца с x=0.25 от магнитного поля H^{120} .

Джозефсона (рис. 11) 115 . Отметим, что вследствие кластеризации число переходов на рис. 11 существенно меньше количества зерен в пленке 10×10 мкм². Было показано, что 2Δ (T=4,2 K) $\approx 3,3$ $T_{\rm c}$ (здесь и ниже постоянная Больцмана $k_{\rm B}\equiv 1$) 115 . Однако в последующих работах этой

Рис. 11. a — Вольт-амперные характеристики (ВАХ) поликристаллической пленки толщиной, $5000~{\rm \AA}$ с x=0.3; скачок напряжения $2.2~{\rm m}{\rm >}B^{-115}$. 6 — Набор ВАХ при флуктуациях тока под действием внешнего шума 115

группы 56 , 94 утверждается, что при x=0.3 2Δ $(0)/T_{\rm c}>2\pi/\gamma\approx3,52$, где $\gamma=1.78\ldots$ — постоянная Эйлера, а $2\pi/\gamma$ — соответствующее значение теории БКШ 119 . На этом основании авторы 56 высказывают предположение о том, что ВРВ вблизи перехода металл—диэлектрик по составу 11 , 14 является сверхпроводником с сильной связью 123 . Тем не менее зависимость Δ (T), полученная в 115 , хорошо согласуется с теорией БКШ, а имеющиеся в 94 расхождения с кривой Мюльшлегеля 124 объясняются эффектами близости 125 .

С другой стороны, наблюдается 126 , 127 , 213 отклонение кривой $I_{\rm c}$ (T) от формулы Амбегаокара — Баратова для симметричных контактов S — I — S 121

$$\frac{I_{c}(T)}{I_{c}(0)} = \frac{\Delta(T)}{\Delta(0)} \operatorname{th} \frac{\Delta(T)}{2T} , \qquad (1)$$

так что экспериментальные точки ¹²⁶ при 5,5 К < T < 8 К подчиняются закону $[1-(T/T_c)]^{3/2}$, характерному для S-N-I-N-S-переходов ¹²⁸. Однако для керамики с x=0,2 критический ток I_c (T) хорошо описывается формулой (1) ⁹⁵.

Резкое отличие кривой $I_{\rm c}$ (T) от обычной туннельной зависимости ¹²¹, ¹²⁹ было обнаружено в работах ⁹⁵, ¹³⁰ на объемных образцах с x=0,25 (см.

Рис. 12. Температурные зависимости электросопротивления R и магнитной восприимчивости χ (показаны стрелками) объемной керамики с x=0,25 для разных измерительных токов и магнитных полей.

1: 11 мкА, 0,5 Э; 2: 72 мкА, 0,5 Э; 3: 94 мкА, 2,0 Э; 4: 72 мкА, 216 Э. На вставке показана вависимость критического тока $I_{\rm c}$ от T. 5 — измерения на постоянном токе; 6 — в импульсном режиме с длительностью 2,0 и 0,3 мс 180 ; сплошная кривая — расчет 180 по формуле теории 131

вставку на рис. 12) и в работе 213 при измерениях $I_{\rm c}$ (T) под давлением. Такое поведение критического тока приводит к появлению возвратной сверх-проводимости, т. е. к срыву сверхпроводящего состояния, измеряемого по сопротивлению, ниже некоторой температуры $T_{\rm c2}$ (рис. 12). Это объясняется разрывом джозефсоновских связей по току между зернами вследствие роста сопротивления барьера на МГ при сохранении сверхпроводимости в зерне, что подтверждается измерениями магнитной восприимчивости 130 . Изменение характеристик межзеренного потенциального барьера может происходить с понижением температуры в результате заполнения поверхностных состояний на МГ 101 , 102 или полупроводникового роста сопротивления межгранульной прослойки 131 . Кроме того, к подобному эффекту может привести диэлектризация керамики за счет образования пар ${\rm Bi}^{3+}$ — ${\rm Bi}^{5+}$ по механизму 110 , что более вероятно на границе зерна 132 , 133 , или за счет перехода МГ в фазу экситонного диэлектрика 134 .

Таким образом, в ВРВ наблюдается новое явление — возвратная сверх-проводимость по сопротивлению, имеющая существенно иную природу, чем аналогичные эффекты, экспериментально обнаруженные в магнитных сверхпроводниках ¹³⁵, ¹³⁶ или теоретически предсказанные ¹³⁷⁻¹³⁹ для гранулярных сверхпроводников с очень малыми гранулами, где существенна роль кулоновской зарядовой энергии.

Высокая чувствительность туннельных сверхпроводящих переходов к внешнему электромагнитному излучению вследствие существования нестационарного эффекта Джозефсона 121 , 129 особенно ярко проявляется в рассматриваемой множественной джозефсоновской среде благодаря синхронизации большого количества переходов. Это было показано как при воздействии СВЧ излучения 15 , 16 , 140 , 144 , так и излучения в оптическом диапазоне частот 142 , 145 . В частности, в пленочных образцах с x=0,3 наблюдалось появление напряжения $U\approx 2$ мВ под действием СВЧ поля частотой 1,8 ГГц, навязывание полярности U короткими импульсами тока и появление на ВАХ петли гистерезиса 140 , 143 . В слоистой структуре $\mathrm{BPB}/\mathrm{Al_2O_3/BPB/}$ сапфир, где

Рис. 13. Схема эксперимента по измерению ВАХ пленки ВРВ (x=0,3) с взаимно ортогональными токами I_x , I_y ¹⁴¹. $z-W_x$ и W_y — ширины электродов. δ — ВАХ типа I_y-V_y для образца с $W_x=20$ мкм, $W_y=5$ мкм при $I_x=0$. $\varepsilon-I_{x1}>I_{cx} \approx 340$ мкА. $\varepsilon-I_{x2}>I_{x1}$

толщина BPB составляла 0.3-0.4 мкм, а $\mathrm{Al_2O_3}-0.2-0.3$ мкм, зарегистрировано ¹⁴⁴ размытие BAX верхней пленки-приемника вследствие джозефсоновского сверхизлучения ⁷⁰, ¹¹⁷, ¹¹⁸ из нижней пленки-генератора. Это представляет особый интерес, так как в специально приготовленной двумерной системе переходов (например, из сплавов свинца ¹⁴⁶) синхронное переключение наблюдается только, если структура достаточно регулярна и однородна.

Прозрачность пленок BPB с толщиной 0,2-0,35 мкм позволила обнаружить влияние света с длиной волны 1-10 мкм на BAX при отсутствии фона СВЧ излучения 145, 203 и получить переключение на петле гистерезиса, индуцированной СВЧ полем с частотой 2 ГГЦ, под действием мощности 1 нВт гелий-неонового лазера (длина волны $\tilde{\lambda}=632,8$ нм) 142. При этом тепловое воздействие излучения было пренебрежимо мало.

Кроме BAX такого типа, как на рис. 11, в пленках с x=0.3, малым критическим током и глубоким гистерезисом напряжения наблюдались BAX с дискретными значениями тока ΔI^{-147} , причем при сопротивлении нагрузки

 $R_{\rm L}>1$ кОм скачок напряжения $\Delta V=R_{\rm L}\Delta I$ соответствовал величине $2\Delta\approx 2.8$ мэВ.

Результаты изложенных выше экспериментов свидетельствуют о перспективности использования BPB в качестве материала для элементов криоэлектронных устройств: высокочувствительных приемников электромагнитного излучения, генераторов СВЧ диапазона и различного типа переключателей. Например, в работе ¹⁴¹ на пленках при пропускании взаимноортогональных транспортных токов I_x и I_y увеличение I_x выше критического значения $I_{cx} \approx 340$ мкА приводило к сдвигу BAX $I_y - V_y$ на величины ΔV , кратные $2\Delta/e$ (рис. 13). Эта структура позволяет реализовать источник напряжения с нулевым импедансом, который можно использовать как новый логический элемент. Устройство, в котором одна токовая цепь в керамике BPB управляет переключением в других токовых цепях, было также предложено в ¹¹⁴.

6. ТЕРМОДИНАМИКА И ЭЛЕКТРОДИНАМИКА СВЕРХПРОВОДЯЩЕГО СОСТОЯНИЯ

Исходным пунктом при интерпретации приведенных выше экспериментальных результатов было предположение об объемном характере сверхпроводимости ВРВ. Естественным доказательством этого было бы наблюдение скачка теплоемкости ΔC при температуре фазового перехода в сверхпроводящее состояние. Однако (и в этом еще раз проявилась нетривиальность поведения ВРВ) измерения, выполненные методом адиабатической калориметтрии на образцах с $x=0.25^{-17}$, 148 , показали отсутствие ΔC вблизи $T_{\rm c}\approx 10^{-10}$ к которая четко фиксировалась по изменению индуктивности. Это подтвердили эксперименты 53 по измерению времени тепловой релаксации 53 в образцах ВРВ того же состава по методу 152 , в котором теплоемкость 53 пропорциональна 53 . В работах 97 , 98 , 108 , 109 , 149 ненаблюдаемость аномалии вблизи 53 была

В работах ⁹⁷, ⁹⁸, ¹⁰⁸, ¹⁰⁹, ¹⁴⁹ ненаблюдаемость аномалии вблизи $T_{\rm c}$ была объяснена уменьшением ΔC при частичной диэлектризации электронного спектра исследуемого вещества ¹⁰⁵. Согласно модели Билбро — Мак Миллана ¹⁰⁵ (см. также ¹⁰⁶, ¹⁰⁸, ¹⁰⁹, ¹⁵³–¹⁵⁵), имеются участки ПФ (1 и 2), для которых выполняется условие конгруэнтности

$$\xi_1(\mathbf{p}) = -\xi_2(\mathbf{p} + \mathbf{Q}) \equiv \varepsilon(\mathbf{p}), \tag{2}$$

приводящее к экситонной неустойчивости $^{156-158}$ и ообразованию диэлектрической щели Σ . При этом Σ определяется константой электрон-дырочного спаривания $V_{\rm e-h}=V-3U>0$, где

$$\widetilde{V} = V_{12,21} = V_{21,12}, \quad \widetilde{U} = V_{11,22} = V_{22,11} = V_{12,21} = V_{21,12}$$
 (3)

— матричные элементы эффективного четырехфермионного взаимодействия, построенные на волновых функциях квазичастиц с соответствующих участков $\Pi\Phi$. В то же время сверхпроводящие параметры порядка на вырожденных ($\Delta_{11}=\Delta_{22}\equiv\Delta_1$) и невырожденном ($\Delta_{33}\equiv\Delta_2$) участках $\Pi\Phi$, где диэлектрическая щель отсутствует, определяются комбинациями других констант электрон-электронного взаимодейстия 106 . В пределе сильного перемешивания электронных состояний с различных участков $\Pi\Phi$ 105 все эти константы равны между собой и равны $V_{33,33}=V_{\rm e-e}$, причем величина $V_{\rm e-e}$ определяет единую сверхпроводящую щель Δ на всей $\Pi\Phi$. Отметим, что в этом случае $V_{\rm e-h}=2V_{\rm e-e}>0$, так что в одном веществе осуществляются как электрон-дырочное, так и куперовское спаривания квазичастиц.

Рассмотрение термодинамики описанной выше системы в предположении $\Sigma \gg T_{\rm c}$ приводит к результату ⁹⁷, ¹⁰⁸, ¹⁰⁹:

$$\frac{\Delta C}{C_{\rm n}} = \frac{12}{7\zeta(3)} \frac{\left[\nu + (2\pi\Sigma/T_{\rm c})^{1/2} \exp{(-\Sigma/T_{\rm c})}\right]^{2}}{\left\{\nu + \left[4\pi^{2}T_{\rm c}^{2}/7\zeta(3)\Sigma^{2}\right]\right\}\left\{\nu + \left[(3\sqrt{2\pi}/\pi^{2})(\Sigma/T_{\rm c})^{5/2} \exp{(-\Sigma/T_{\rm c})}\right]\right\}} , \quad (4)$$

тде $C_{\rm n}$ — теплоемкость нормальной фазы при $T=T_{\rm c}$, ζ (x) — дзета-функция Римана, $v=N_{\rm nd}$ (0)/ $N_{\rm d}$ (0), а $N_{\rm nd}$ (0) и $N_{\rm d}$ (0) — плотности состояний на недиэлектризующемся и диэлектризующемся участках ПФ. Основной поправочный член к результату БКШ ($\Delta C/C_{\rm n}$) $_{\rm БКШ}=(12/7)$ ζ (3) $\approx 1,43$ содержится в первых фигурных скобках в знаменателе и при малых значениях v может привести к тому, что ΔC станет меньше погрешностей эксперимента, в то время как $T_{\rm c}$ останется достаточно высокой. Применимость рассмотренной модели частичной диэлектризации 105 для BPB подтверждается зонными расчетами Матхейса и Хаманна $^{63-65}$, показавшими, что условие конгруэнтности (2) точно выполняется при x=1, и экспериментами 90 , в которых для монокристаллов с x=0,27 наблюдался отрицательный ТКС.

Рис. 14. Низкотемпературная удельная теплоемкость керамики с x=0.25 через 6 дней после изготовления (1) и после 1,5-месячного хранения на воздухе (2) $^{159-161}$

Объяснение экспериментов 17 , 58 , 148 , предложенное в 97 , 98 , 108 , 109 , 149 , 7 согласуется с недавно выполненными методом адиабатической калориметрии измерениями C $^{159-161}$. Зависимость C/T от T^2 для свежеприготовленных образцов с x=0,25 показана на рис. 14 (кривая 1). Наблюдается скачок 14 скачок 14 при 14 е $^$

Калориметрические измерения твердых растворов с x=0,25, проведенные в 68 на монокристаллах тем же методом, что и в 148 , $^{159-161}$, позволили определить постоянную Зоммерфельда $\gamma_{\rm S}=1,65\pm0,2$ мДж/(моль·К²), однако скачок ΔC отсутствовал. В этой же работе его удалось обнаружить методом калориметрии на переменном токе: $\Delta C/C\approx0,025$. Указания на слабые изменения кривой C (T) при $T\leqslant T_{\rm c}$ были получены также для монокристаллов BPB 89 методом нагрева переменным током 162 и для керамических образцов с $0,2\leqslant x\leqslant0,3$ в магнитных полях $H\leqslant60$ к 3 методом тепловой релаксации 152 . Таким образом, эксперименты, выполненные различными группами, подтверждают объемный характер сверхпроводимости BPB. Кро-

ме того, в работах 53 , 59 был проведен анализ зависимости C (T) на основе полиномиальной формулы

$$C = \gamma_{\rm S}T + aT^3 + bT^5, \tag{5}$$

где а связывалась с температурой Дебая $\theta_{\rm D}$, а третий член в (5) введен ⁵⁹ для описания нелинейности кривых C/T от T^2 , которая наблюдалась также и в ¹⁴⁸, ^{159–161}. Полученные в ⁵³, ⁵⁹ противоречивые результаты для $\theta_{\rm D}$ свидетельствуют о невозможности описания теплоемкости в «мягких» перовскитных системах дебаевской интерполяционной моделью, на что указывалось нами ранее ^{159–161}. Это связано с существованием в ВРВ низкочастотных оптических фононов ^{63–65}, ⁶⁸, ¹⁶³, ¹⁶⁴.

Если интерпретация калориметрических измерений в ВРВ в рамках модели сверхпроводника с частичной диэлектризацией электронного спектра 105 справедлива, то, как было показано в 165 , 166 , зависимость верхнего критического магнитного поля $H_{\rm c2}$ от температуры должна существенно отличаться от зависимости $H_{\rm c2}$ (T) в теории БКШ 6 , 167 , 168 . А именно, в «грязном» пределе, когда $T_{\rm c}\tau_{\rm d}\ll 1$, $T_{\rm c}\tau_{\rm nd}\ll 1$, а Σ является наибольшим энергетическим параметром задачи, в предельных случаях $T\to 0$ и $T\leqslant T_{\rm c}$ имеем соответственно:

$$H_{c2} = \frac{\pi c T_{c}}{2e\gamma D_{nd}} \left(1 - \frac{\pi D_{d} T_{c}}{4\gamma \nu \Sigma^{2} D_{nd} \tau_{d}} \right) \left[1 - \frac{2}{3} \left(\frac{\gamma T}{T_{c}} \right)^{2} \right] \qquad (T \to 0), \quad (6)$$

$$H_{c2} = \frac{4c T_{c} \left[1 - (T/T_{c}) \right]}{\pi e D_{nd} \left[1 + (2D_{d} T_{c}/\pi \nu \Sigma^{2} D_{nd} \tau_{d}) \right]} \times$$

$$\times \left\{ 1 - \left(1 - \frac{T}{T_{\rm c}} \right) \frac{(1/2) - \left[(28\zeta (3)/\pi^4) + 2 \left(D_{\rm d}T_{\rm c}/\pi\nu\Sigma^2 D_{\rm nd}\tau_{\rm d})^2 \right]}{\left[1 + (2D_{\rm d}T_{\rm c}/\pi\nu\Sigma^2 D_{\rm nd}\tau_{\rm d}) \right]^2} \right\} \quad (T \leqslant T_{\rm c}); \quad (7)$$

вдесь $D_{\rm nd}$, $\tau_{\rm nd}$, $D_{\rm d}$, $\tau_{\rm d}$ — коэффициенты диффузии и времена упругой релаксации на немагнитных примесях электронов с невырожденного и вырожденного участков $\Pi\Phi$, c — скорость света. Из (6) и (7) видно, что несмотря на малость параметра $T_{\rm c}/(\tau_{\rm d}\Sigma^2)$, при малых v возможно увеличение наклона $|{\rm d}H_{\rm c2}/{\rm d}T|$ и изменение знака кривизны ${\rm d}^2H_{\rm c2}/{\rm d}T^2$ по сравнению с теорией БКШ 167 , 168 .

В настоящее время имеется большое число экспериментальных данных по измерению $H_{\rm c2}$ (T) как в керамических образдах 22 , 47 , 53 , 82 , 83 , 164 , 169 , так и в монокристаллах 47 , 68 , 90 . Результаты этих работ представлены на рис. 15. Видно, что с приближением ВРВ к переходу металл — диэлектрик по составу 14 наблюдается отклонение кривой $H_{\rm c2}$ (T) от стандартной 167 , 168 вилоть до смены знака кривизны на положительный независимо от того, является ли образец керамикой или монокристаллом. Последнее позволяет отбросить возможное объяснение экспериментальных данных на основе модели гранулярного, слабосвязанного сверхпроводника 170 с характерным межгранульным расстоянием, с которым при понижении T сравнивается радиус нормальной сердцевины вихря $r \approx \xi(T)$, где $\xi(T)$ — длина когерентности.

С другой стороны, существующее объяснение 171 положительности $\mathrm{d}^2H_{\mathrm{c}2}/\mathrm{d}T^2$ в BPB на основе представлений о биполяронном механизме сверхпроводимости не учитывает того факта, что при малых x $\mathrm{d}^2H_{\mathrm{c}2}/\mathrm{d}T^2 < 0$ (рис. 15). Таким образом, предложенная нами интерпретация кривых $H_{\mathrm{c}2}$ (T) остается пока наиболее вероятной. Тем не менее следует учитывать также возможность объяснения факта $\mathrm{d}^2H_{\mathrm{c}2}/\mathrm{d}T^2 > 0$ на основе теории 205 сверхпроводимости локализованных электронов, если, как это утверждается в 204 , в BPB реализуется фава сверхпроводник — андерсоновский диэлектрик.

 $\Psi_{
m TO}$ же касается максимальной величины $H_{
m c2}$ (0), соответствующей составу с наибольшей $T_{
m c}$, то ее оценка по известным формулам электродинамики сверхпроводников в «грязном» пределе 172 является некорректной ввиду

значительного отклонения кривой $H_{\rm c2}$ (T) от зависимости теории БКШ 167 , 168 . Так, например, $H_{\rm c2}$ (0), найденная экстраполяцией к T=0 экспериментальной кривой для BPB с x=0.27, составляет 44 к θ , в то время как расчет по формуле

$$H_{\mathrm{c2}}\left(0
ight)=-rac{\pi^{2}T_{\mathrm{c}}}{8\gamma}rac{\mathrm{d}H_{\mathrm{c2}}}{\mathrm{d}T}\left|_{T=T_{\mathrm{c}}}
ight.$$

на основе той же кривой приводит к значению $H_{\rm c2}$ (0) pprox pprox 32.5 к θ 90.

Интересными представляются измерения сопротивления ВРВ сверхпроводящего состава в магнитном поле, выполненные в серии работ 46, 83, 173, 174. Для образцов с $x \geqslant 0.25$ при $T < T_{\rm c}$ наблюдается отрицательное магнитосопротивление с двумя максимумами в области малых полей $H \leqslant 200$ Э $_{\rm c2}$ в полях $H_{\rm c2} < H < 200$ к $_{\rm c2}$ Первый можно объяснить гранулярной структурой и джозефсоновскими связями в объеме образцов, а наличие отрицательного магнитосопротивления в больших полях связы-

Рис. 15. Температурная зависимость верхнегокритического магнитного поля $H_{\rm C2}$ для керамики (a) и монокристаллов (б). Кривые 1—7 соответствуют составам x=0,1;0,12;0,13;0,2;0,25;0,27 и 0,3

вается автором ⁸³ с подавлением квантовых поправок к проводимости в магнитном поле ¹⁷⁵, ¹⁷⁶. Однако следует отметить, что применимость теории ¹⁷⁵, ¹⁷⁶, построенной для макроскопически однородных систем, к гранулярному композиту ВРВ нуждается в дополнительном обосновании с учетом перколяционных эффектов ¹¹².

7. КОРРЕЛЯЦИЯ НОРМАЛЬНЫХ И СВЕРХПРОВОДЯЩИХ СВОЙСТВ. ПРИРОДА СВЕРХПРОВОДИМОСТИ

При теоретическом анализе причин возникновения сверхпроводимости с высокой $T_{\rm c}$ в твердых растворах BPB и последующего ее срыва с увеличением концентрации Ві часто исходят ¹¹⁰, ¹⁷¹, ¹⁷⁷, ¹⁷⁸, ¹⁷⁹, ¹⁸⁴ из предположения о чередовании в кристаллической решетке ионов ${\rm Bi^{3+}}$ и ${\rm Bi^{5+}}$, которое былодоказано для ${\rm BaBiO_3}$ ³⁴, ³⁵, ¹⁹⁹. Поэтому предпринимались попытки прямого обнаружения бивалентности висмута рентгеноспектральными и резонансными методами.

Так, в работе ⁸⁸ использовалась спектроскопия рентгеновских фотоэлектронов, которая, однако, из-за недостаточной точности метода не позволила различить эти состояния даже для $BaBiO_3$. С другой стороны, из
измерений тонкой структуры рентгеновского спектра поглощения (EXAFS¹⁸¹) выше порога L_{111} -серий для BPB с x=0;0,25;0,6;1,0 были получены
радиальные функции распределения вокруг ионов Ba, Pb и Bi ¹⁸². Оказалось, что в $BaBiO_3$ пик, соответствующий положению ионов кислорода,

имеет дублетную структуру, что окончательно подтверждает результаты структурных исследований 34,35 и квантово-химических расчетов 199 . Более того, анализ длин связей Pb — O и Bi — O для составов с x = 0,25; 0,6 дает косвенные указания о возможности чередования ионов Bi^{3+} — Bi^{5+} и в твердых растворах.

Для исследования электронных и решеточных свойств BPB был также применен метод ядерного гамма-резонанса на ядрах $\mathrm{Sn^{119}}$ ³⁶ ¹⁸⁴ ¹⁸⁵. Немонотонное поведение изомерного сдвига δ при изменении состава с максимумом для x=0,22 хорошо согласуется с концентрационными зависимостями электронных свойств твердых растворов: $T_{\mathrm{c}}(x)^{11}$, ¹⁴, ²¹, ²² и $n(x)^{22}$ ⁴⁴ ⁴⁷. В то же время температурный ход величины δ и вероятности f резонансного поглощения γ -квантов в широком диапазоне температур не имеют аномалий, а их вид качественно совпадает для сверхпроводящих и несверхпроводящих образцов, что указывает на отсутствие существенных изменений в динамике решетки ¹⁸⁵.

Были проведены также измерения параметров процесса электрон-позитронной аннигиляции в BPB разного состава 184 . Зависимости от x двух характерных времен аннигиляции τ_1 (на свободных носителях) и τ_2 (на дефектах) и интенсивности аннигиляции I_2 по второму каналу являются немонотонными. При этом τ_1 (x) и τ_2 (x) имеют максимумы, а I_2 (x) — минимум при x=0,2. Вывод авторов 184 о том, что минимум I_2 (x) обусловлен уменьшением дефектности структуры, согласуется с результатами $^{28-29}$, которые обсуждались в разделе 2.

Следует подчеркнуть, что несмотря на большое число полученных экспериментальных данных, которые были проанализированы выше, имеющегося материала пока недостаточно для выработки единой точки зрения на сверхпроводимость ВРВ.

Теория сверхпроводников с частичной диэлектризацией электронного спектра в рамках модели Билбро — Мак Миллана 105 является феноменологической в той же степени, что и теория БКШ 119,172 . Причем входящие в теорию параметры λ , Σ и ν можно, в принципе, находить из эксперимента. В то же время выход за пределы феноменологической схемы, т. е. расчет параметров, исходя из свойств ВРВ в нормальном состоянии, на данном уровне наших знаний об этом веществе невозможен. Поэтому попытка 209 вычисления λ на основе формулы Мак Миллана для $T_{\rm c}$ 60 выглядит неубедительно. Действительно, как указывалось в разделе 3, формула Мак Миллана неуниверсальна 1,61 . Кроме того, в 209 использовалось описани ВРВ с помощью одной простой электронной зоны, что, во всяком случае, несправедливо вблизи перехода металл — диэлектрик по составу. Наконец, расчет кулоновского псевдопотенциала μ^* , проведенный в 209 на основе такого описания, представляется явным превышением точности, если учесть приближения, с помощью которых получают аналитические формулы для $T_{\rm c}$ 1,61,210 .

С другой стороны, имеются попытки объяснить особенности свойств твердых растворов $\mathrm{BaPbO_3}$ — $\mathrm{BaBiO_3}$ в нормальном и сверхпроводящем состоянии с более радикальных позиций. Одна попытка заключается в том, что отрицается 17,93 объемный характер сверхпроводимости BPB и предполагается, что она локализована на МГ и обязана взаимодействию электронов с поверхностными возбуждениями в аморфизированной прослойке 93 . Нет необходимости детально рассматривать предлагаемые микроскопические причины спаривания на МГ, поскольку эта концепция опровергается в данном случае наличием скачка теплоемкости в районе $T_{\rm c}$ $^{159-161}$ и эффектом Джозефсона в гранулярной керамике 15,16,115 .

Высказывалось мнение ^{13,53}, что BPB имеет столь высокую T_c при малой плотности носителей тока за счет плазмонного механизма ^{50,55}. В пользу этого приводились данные о наличии двух сортов носителей тока. Однако как указывалось в разделе 3, сам анализ результатов измерений коэффициента Зеебека в BPB, проведенный в ^{13,53}, не является безукоризненным. Кроме

того, оптимистические оценки $T_{\rm c}$ 55 для плазмонного механизма сверхпроводимости полупроводников и полуметаллов были впоследствии подвергнуты сомнению $^{1, 50, 186-189}$. Причины «снижения» $T_{\rm c}$ в теории подробно обсуждаются в этих работах.

Наконец, существует точка зрения 171 , 178 , 179 , 184 , 190 , что BPB является примером сверхпроводника, в котором происходит бозе-конденсация локальных электронных пар (биполяронов) 178 , $^{191-193}$. Биполяроный механизм представляет собой фактически возрождение концепции Шафрота, Батлера и Блатта 194 о сверхпроводимости неперекрывающихся квазимолекул. В противоположность теории БКШ 119 , в теории такого типа требуется выполнение неравенства $V\gg E_{\rm F}$, где V — характерная энергия результирующего притяжения квазичастиц, $E_{\rm F}$ — энергия Ферми. Такая точка зрения, по нашему мнению (см. также 68), опровергается зонными расчетами $^{63-65}$, из которых следует s — р-характер электронных зон в BPB. Поляронное сужение зон, рассматривавшееся в работе 195 в применении к соединениям со структурой A-15, здесь не наблюдается. Несмотря на малую величину плотности состояний, выполняется неравенство $E_{\rm F}\gg T_{\rm C}$ 13 , 53 , а оптические измерения 54 приводят к эффективным массам $m^*\approx (0.5-0.8)$ m_e , так что какая-либо аналогия с «экзотическими» сверхпроводниками CeCu₂Si₂ 196 , UBe₁₃ 197 или UPt₃ 198 не имеет места.

Существует ²⁰⁶ и иной вариант теории, основанный так же, как и работы ¹⁷¹, ¹⁷⁸, ¹⁷⁹, ¹⁹⁰–¹⁹³, на андерсоновской идее ²⁰⁷ о межэлектронном притяжении на одном узле за счет электрон-фононной перенормировки кулоновского отталкивания. В отличие, например, от посвященных ВРВ работ ⁶³–⁶⁵, расчеты ²⁰⁶ учитывают случайное расположение атомов Рb и Ві в самосогласованном приближении когерентного потенциала ²⁰⁸, а не в приближении виртуального кристалла ⁶⁷.

При этом соотношение между V и шириной зоны W (порядка $E_{\rm F}$) может быть произвольным, так что в зависимости от W/V изменяется фазовая диаграмма системы. В 206 удалось получить зависимость $T_{\rm c}$ (x), качественно совпадающую с экспериментом 11 , 14 , 21 , 22 , 44 .

Райсом и Снеддоном 110, 177 была предложена модель сверхпроводимости BPB, в известном смысле альтернативная к 171 , 178 , 179 . В 170 , 177 предполагается, что чередование $\mathrm{Bi^{3+}-Bi^{5+}}$ в $\mathrm{BaBiO_3}$ 34 , 35 , 182 , 199 является следствием взаимодействия электронов со смещениями атомов кислорода и происходит также в твердых растворах вплоть до замещения 65% атомов Ві на Рь. Теория, развитая в 110, 177, так же как и теория Билбро — Мак Миллана 105, описывает диэлектризацию электронного спектра, хотя из 110, 177 неясно, существует ли вариант с частичной диэлектризацией. Высокую $T_{
m c}$ сверхпроводящего перехода в ВРВ Райс и Снеддон считают следствием размягчения кристаллической решетки и соответствующего увеличения λ, причем сверхпроводимость обсуждается в рамках БКШ-спаривания в к-пространстве 119 , 172 . Из расчетов $^{63-65}$ следует, что кандидатами на роль фононов, ответственных за это спаривание, могут являться сегнетоэлектрические смешения атомов Pb — Ві и «дыхательные» моды кислорода. Предварительные результаты туннельных экспериментов 68, по-видимому, подтверждают существование низкочастотного фононного пика с энергией $\omega \leqslant 2$ мэВ. Фононы с несколько большей энергией $\omega \approx 6$ мэВ наблюдались в туннельных экспериментах 68 для x=0.25 и при измерениях спектров комбинационного рассеяния света (КРС) ²¹¹ в монокристаллах ВРВ с x = 0.3. Если принять во внимание также нелинейность зависимости C/T от T^{2} ⁵⁹, ¹⁴⁸, ¹⁵⁹ ⁻¹⁶¹, то можно сделать вывод о существенной роли низкочастотных оптических фононов в сверхпроводимости ВРВ.

Интересно отметить, что зависимости 211 от x интенсивностей пиков КРС с частотами 100 и 43 см $^{-1}$, так же как и многих других характеристик твердых растворов, рассмотренных в данном обзоре, хорошо коррелируют с кривой $T_{\rm c}$ (x) 11 , 14 , 21 , 22 , 44 .

⁹ УФН, т. 150, вып. 4

8. ЗАКЛЮЧЕНИЕ

В заключение следует подчеркнуть, что уникальность металлооксидного сверхпроводника ВРВ обусловлена сочетанием сильного электрон-фононного взаимодействия и малой плотности электронных состояний на ПФ. Поток публикаций, касающихся различных сторон явлений, наблюдаемых в керамике, свидетельствует об удивительном разнообразии свойств этого физического объекта. Пальнейшее изучение как монокристаллических, так и поликристаллических образцов ВРВ может оказаться весьма важным для выяснения путей получения высокотемпературной сверхпроводимости, поскольку в ВРВ существенную роль играют конкурирующие с куперовским спариванием процессы спонтанной поляризации и перестройки электронного спектра, а критическая температура, тем не менее, достигает 13 К.

Простота создания объемных структур с джозефсоновским туннелированием и систем с симметричными потенциальными барьерами делают оксипную керамику удобной моделью для изучения явлений синхронизапии в неупорядоченных джозефсоновских средах, а также перколяционного токопереноса по сверхпроводящим областям в смесях сверхпроводник нормальный металл (полупроводник) с учетом сложной топологической структуры бесконечного кластера ²¹². Большой интерес представляет исследование неравновесных явлений в сверхпроводящих туннельных переходах с естественным потенциальным рельефом либо керамического «множественного» типа, либо типа «бикристалл». Развитие указанных направлений современной физики сверхпроводников может на новом уровне понимания привести к значительному прогрессу в прикладных областях криоэлектроники слабых токов. Уже сегодня на основе ВРВ могут быть созданы различные многофункциональные устройства 114, а также малоинерционные и чрезвычайно чувствительные приемники излучения ²⁰³.

Выражаем благодарность А. Ф. Прихотько за поддержку и внимание к работе, А. С. Александрову, В. Ф. Гантмахеру, Ю. Ф. Ревенко, М. Н. Хлопкину и А. С. Шпигелю за обсуждение отдельных вопросов и М. Э. Райху за полезную информацию.

Институт физики АН УССР

СПИСОК ЛИТЕРАТУРЫ

- Проблема высокотемпературной сверхпроводимости/Под ред. В. Л. Гинзбурга, Д. А. Киржница. М.: Наука, 1977.
 Geballe T. H.//Advances in Superconductivity New York; London: Academic Press, 1983. Р. 387.
 Горьков Л. П.//УФН. 1984. Т. 144. С. 381.

- 4. Буздин А. И., Булаевский Л. Н.//Ibidem. С. 415. 5. Финкель В. А. Структура сверхпроводящих соединений.— М.: Металлургия, 1983.
- 6. Пан В. М., Прохоров В. Г., Шпигель А. С. Металлофизика сверх-

- о. нан в. м., прохоров В.Г., Шпигель А.С. Металлофизика сверх-проводников. Киев: Наукова думка, 1984.

 7. Johnston D.C., Prakash H., Zachariasen W. H., Viswana-than R.//Mater. Res. Bull. 1973. V. 8. P. 777.

 8. Johnston D.C.//J. Low Temp. Phys. 1976. V. 25. P. 145.

 9. Inamura T., Murakami T., Inukai T., Enomoto Y., Suzu-ki M.//Japan J. Appl. Phys. 1982. V. 21. Suppl. 21-1. P. 313.

 10. Sleight A.W. U.S. Patent. 1974. 3. 932.315.

 11. Sleight A.W., Gillson J.L., Bierstedt P.E.//Sol. State Commun. 1975. V. 17. P. 27.

 12. Gilbert L.R. Mossier B. Boy B.//Metar Pr. D. 1902.
- Gilbert L. R., Messier R., Roy R.//Mater. Res. Bull. 1982. V. 17. P. 467.
 Tani T., Itoh T., Tanaka S.//J. Phys. Soc. Japan. 1980. V. 49. Suppl. A,
- p. 309.
- 14. Khan Y., Nahm K., Rosenberg M., Willner H.//Phys. Stat. Sol. Ser. a. 1977. V. 39. P. 79.
- 15. Белоус Н. А., Габович А. М., Лежненко И. В., Моисеев Д. П., Постников В. М., Уварова С. К.//Письма ЖТФ. 1982. Т. 8. С. 107.

- 16. Belous N. A., Gabovich A. M., Lezhnenko I. V., Moiseev D. P., Postnikov V. M., Uvarova S. K.//Phys. Lett. Ser. A. 1982. V. 92. P. 455.
- 17. Methfessel C., Methfessel S.//Superconductivity in d- and f-band Metals/Eds W. Buckel, W. Weber. Karlsruhe: Kernforschungszenfrum 1982. P. 393.
- 18. Габович О. М., Моїсеєв Д. П.//Вісник АН УРСР. 1983. № 3. С. 22.

- 18. Гаевскис А. П., Шебанов Л. А. Структура и свойства сегнетоэлектри-ков. Рига: ЛатГУ, 1983. С. 31.
 20. Кітага w а К., Nаіто М., Тапака S.//Sol. State Phys. 1983. V. 18. Р. 535.
 21. Марченко Л. С., Моисеев Д. П., Музалевский Е. А., Уварова С. К.//Изв. АН СССР. Сер. «Неорганические материалы». 1979. Т. 15. С. 1893.
 22. Тhanh Т. D. Кота А., Тапака S.//Аррl. Phys. 1980. V. 22. Р. 205.
 23. Suzuki M., Murakami T., Inamura T.//Japan J. Appl. Phys. 1981.
- V. 19. P. L72.
- 24. Glazer A. M.//Acta Crystal. Ser. B. 1972. V. 28. P. 3384. 25. Шуваева Е. Т., Фесенко Е. Г.//Кристаллография. 1970. Т. 15. С. 379. 26. Shannon R. D., Bierstedt P. E.//J. Am. Cer. Soc. 1970. V. 53. P. 635.
- 27. Сох D. E., Sleight A. W.//Sol. State Commun. 1976. V. 19. Р. 969. 28. Шебанов Л. А., Гаевскис А. П., Калване А. И., Бородаен-
- хо Н. И.//Актуальные проблемы сегнетоэлектрических фазовых переходов.— Рига: ЛатГУ, 1983.— С. 80.

 29. Shebanov L. A., Fritsberg V. Ya., Gaevskis A. P.//Phys. Stat. Sol. Ser. a. 1983. V. 77. P. 369.

 30. Богатко В. В., Веневцев Ю. Н.//ФТТ. 1983. Т. 25. С. 1495.

 31. Богатко В. В., Веневцев Ю. Н.//Изв. АН СССР. Сер. физ. 1983. Т. 47.

- C. 637.
- 32. Богатко В. В., Веневцев Ю. Н.//Ibidem. Сер. «Неорганические материалы». 1984. Т. 20. С. 127.
- 33. C o x D. E., Sleight A. W.//Proceedings of the Conference on Neutron Scattering.— Gathlinburg, USA, 1976.— V. 1. P. 45.

 34. Thornton G., Jacobson A. J.//Acta Crystal. Ser. B. 1978. V. 34. P. 351.
- 35. Cox D. E., Sleight A. W.//Ibidem. 1979. V. 35. P. 1.
- 36. Venevtsev Yu. N., Bogatko V. V., Plotnikova M. V., Rei-man S. I.//Ferroelectrics. 1984. V. 56. P. 61.
- 37. Фесенко Е. Г., Шуваева Е. Т., Гольцов Ю. И.//Кристаллография. 1972. T. 17. C. 419.
- 38. Габович А. М., Гаврилюк Л. В., Монсеев Д. П., Пашицкий Э. А., Прихотько А. Ф., Уварова С. К., Шпигель А. С.// Укр. физ. ж. 1979. Т. 24. С. 674.

- Укр. физ. ж. 1979. 1. 24. С. 674.
 39. Grassie A. D. C., Benyon A.//Phys. Lett. Ser. A. 1972. V. 39. P. 199.
 40. Benyon A., Grassie A. D. C.//J. Vac. Sci. and Technol. 1973. V. 10. P. 678.
 41. Binnig G., Hoenig H. E.//Sol. State Commun. 1974. V. 14. P. 597.
 42. Кристофель Н. Н.//ФТТ. 1975. Т. 17. С. 1414.
 43. Lefkowitz I., Bloomfield P. E.//Ferroelectrics. 1984. V. 51. P. 173.
 44. Моисеев Д. П., Уварова С. К., Феник М. Б.//ФТТ. 1981. Т. 23. C. 2347.
- 45. Богатко В. В., Веневцев Ю. Н.//ФТТ. 1980. Т. 22. С. 1211. 46. Протасов Е. А., Зайцев Зотов С. В., Веневцєв Ю. Н., Богатко В. В. //ФТТ. 1978. Т. 20. С. 3503.
- 47. Kitazawa K., Katsui A., Toriumi A., Tanaka S.//Sol. State Commun. 1984. V. 52. P. 459.
- 48. Schooley J. F., Hosler W. R., Ambler E., Becker J. H., Cohen M. L., Koonce C. S.//Phys. Rev. Lett. 1965. V. 14. P. 305.
- 49. Гуревич В. Л., Ларкин А. И., Фирсов Ю. А.//ФТТ. 1962. Т. 4. С. 185. 50. Пашнцкий Э. А., Макаров В. Л., Терещенко С. Д.//ФТТ. 1974.
- T. 16. C. 427.
- 51. Габович А. М.//ФТТ. 1980. Т. 22. С. 3231.
- 52. Коэн М., Глэдстоун Г., Йенсен М., Шриффер Дж. Сверхпроводимость полупроводников и переходных металлов. - М.: Мир, 1972.
- Tanaka S., Kitazawa K., Tani T.//Ann. Rept. Eng. Res. Inst. Fac. Eng. Univ. Tokyo. 1982. V. 41. P. 131.
 Tajima S., Kitazawa K., Tanaka S.//Sol. State Commun. 1983. V. 47.
- 55. Пашицкий Э. А.//ЖЭТФ. 1968. Т. 55. С. 2387.
- 56. Suzuki M., Enomoto Y., Murakami T.//J. Appl. Phys. 1984. V. 56. P. 2083.
- Дэвис Э. Электронные процессы в некристаллических веществах. 57. Мотт Н., М.: Мир. 1982.
- 58. Westerholt K., Bach H., Wendemuth R., Methfessel S.// Sol. State Commun. 1979. V. 31. P. 961.
- 59. Itoh T., Kitazawa K., Tanaka S.//J. Phys. Soc. Japan. 1984. V. 53. P. 2668.

- 60. McMillan W. L. // Phys. Rev. 1968. V. 167. P. 331.
- 61. Долгов О. В., Максимов Е. Г.//Тр. ФИАН СССР. 1983. Т. 148. С. 3. Suzuki M., Enomoto Y., Murakami T., Inamura T.//J. Appl. Phys. 1982. V. 53. P. 1622.
- 63. Mattheiss L. F., Hamann D. R.//17.— P. 405.
 64. Mattheiss L. F., Hamann D. R.//Phys. Rev. Ser. B. 1982. V. 26. P. 2686.
 65. Mattheiss L. F., Hamann D. R.//Ibidem. 1983. V. 28. P. 4227.
 66. Mattheiss L. F.//Ibidem. P. 6629.

- 67. Faulkner J. S. // Progress in Materials Science/Eds J. W. Christian, P. Haasen,
- T. B. Massalski.— London: Pergamon Press. 1982.— V. 27. P. 1.
 68. Batlogg B.//Physica. Ser. B. 1984. V. 126. P. 275.
 69. Suzuki M., Murakami T.//Japan J. Appl. Phys. 1983. V. 22. Suppl. 22-2.
- Yu M. L., Saxena A. M.//IEEE Trans. Magn. 1975. V. Mag-11. P. 674.
 Sakudo T., Uwe H., Fujiwara T., Fujita J., Shiozawa J = i// Japan J. Appl. Phys. 1984. V. 23. P. L496.
 Suzuki M., Enomoto Y., Murakami T., Inamura T.//Ibidem.
- 1981. V. 20. Suppl. 20-4. P. 13.
- 73. Моисеев Д. П., Уварова С. К.//Изв. АН СССР. Сер. «Неорганические материалы». 1981. Т. 17. С. 1685.
- 74. Менушенков А. П., Протасов Е. А., Чубунова Е. В.//ФТТ. 1981. Т. 23. С. 3703.
- 75. Моисеев Д. П., Прихотько А. Ф., Уварова С. К.//Укр. физ. ж. 1982. Т. 27. С. 1427. 76. Hidaka Y., Suzuki M., Murakami T., Inamura T.//Thin Sol. Films. 1983. V. 106. P. 311.
- 77. Головашкин А. И., Печень Е. В.//Тр. ФИАН СССР. 1984. Т. 151. С. 63.
- 78. Gilbert L. R., Messier R., Roy R.//Thin Sol. Films. 1978. V. 54. P. 129.
- 79. Gilbert L. R., Messier R., Krishnaswami S. V.//J. Vac. Sci. and Technol. 1980. V. 17. P. 389.
- 80. Suzuki M., Murakami T., Inamura T.//Japan J. Appl. Phys. 1980. V. 19. P. L231.
- 81. Suzuki M., Murakami T.//Ibidem. 1983. V. 22. P. 1794.
- 82. Зайцев-Зотов С. В., Мартынюк А. Н., Протасов Е. А.//ФТТ. 1983. T. 25. C. 184.
- 83. Зайцев-Зотов С. В. Автореферат канд. диссертации. М.: МИФИ, 1984.
- 84. Suzuki M., Murakami T.//J. Appl. Phys. 1984. V. 56. P. 2330. 85. Katsui A., Suzuki M.//Japan J. Appl. Phys. 1982. V. 21. P. L157.

- 86. Katsui A.//Ibidem. P. L553.
 87. Katsui A., Hidaka Y., Takagi H.//J. Cryst. Growth. 1984. V. 66. P. 228.
 88. Wertheim G. K., Remeika J. P., Buchanan D. N. E.//Phys. Rev. Ser. B. 1982. V. 26. P. 2120.
- 89. Sato M., FujishitaH., Hoshino S.//J. Phys. Ser. C. 1983. V. 16. P. L417. 90. Зайцев-Зотов С. В., Кузнецов А. В., Протасов Е. А., Степанкин В. Н.//ФТТ, 1984. Т. 26. С. 3203. 91. Clark J. B., Dachille F., Roy R.//Sol. State Commun. 1976. V. 19. P. 989. 92. Chu C. W., Huang S., Sleight A. W.//Ibidem. V. 18. P. 977. 93. Wu M. K., Meng R. L., Huang S. Z., Chu C. W.//Phys. Rev. Ser. B. 1981. V. 24. P. 4075.

- V. 24. P. 4075.
- v. 24. P. 40/5.

 94. Lin T. H., Shao X. Y., Lin J. H., ChuC. W., Inamura T., Muraka-mi T.//Sol. State Commun. 1984. V. 51. P. 75.

 95. Lin T. H., Shao X. Y., Wu M. K., Hor P. H., Jin X. C., Lin J. H., Chu C. W.//High Pressure Science and Technology: Proc. of the 9th AIRAPT Intern. High. Pressure Conference. New York, 1984. P. 129.

 96. Sugiara H., Yamadaya T.//Sol. State Commun. 1984. V. 49. P. 499.

 97. Габович А. М., Моисеев Д. П., Шпигель А. С. Препринт ИФ АН УССР № 16. Киев, 1981.

 98. Габович А. М., Моисеев Д. П., Шпигель А. С.//ЖЭТФ. 1982. Т. 83.

- 98. Габович А. М., Моисеев Д. П., Шпигель А. С.//ЖЭТФ. 1982. Т. 83. C. 1383.
- 99. Валеев Х.С., Квасков В.Б. Нелинейные металлооксидные полупровод-
- ники. М.: Энергоиздат, 1983. 100. Сандомирский В. Б., Ждан А. Г., Мессерер М. А., Гуляев И. В./ФТП. 1973. Т. 7. С. 1314.
- 101. Винников А. Я., Мешков А. М., Савушкин В. Н.//ФТТ. 1980. T. 22. C. 2989.
- 102. Винников А. Я., Мешков А. М., Савушкин В. Н.//ФТТ. 1982. T. 24. C. 1352.
- 103. Шкловский Б. И. //ФТП. 1979. Т. 13. С. 93.
- 104. Глот А. Б.//Изв. вузов. Сер. «Физика». 1984. Т. 27. С. 123. 105. Bilbro G., McMillan W. L.//Phys. Rev. Ser. B. 1976. V. 14. P. 1887.

- 106. Габович А. М., Пашицкий Э. А., Шпигель А. С./ЖЭТФ. 1979.
- T. 77. C. 1157. 107. Pan V. M., Bulakh I. E., Kasatkin A. L., Shevchenko A. D.// J. Less-Common Met. 1978. V. 62. P. 157.
- 108. Gabovich A. M., Moiseev D. P., Shpigel A. S.//J. Phys. Ser. C. 1982. V. 15. P. L569.
- 109. Gabovich A. M., Shpigel A. S.//Ibidem. Ser. F. 1984. V. 14. P. 3031. 110. Rice T. M., Sneddon L.//Phys. Rev. Lett. 1981. V. 47. P. 689.

- 111. Хмельницкий Д. Е.//Письма ЖЭТФ. 1980. Т. 32. С. 248. 112. Аронов А. Г., Гершензон М. Е., Журавлев Ю. Е.//ЖЭТФ. 1984. T. 87. C. 971.
- 113. Шкловский Б. И.//ФТТ. 1984. Т. 26. С. 585.
- 114. Белоус Н. А., Габович А. М., Лежненко И. В., Монсеев Д. П., Уварова С. К. Авторское свидетельство 1034548///БИ. 1984. № 30. С приоритетом от 25 марта 1981. г.
- 115. Enomoto Y., Suzuki M., Murakami T., Inukai T., Inamura T., //Japan J. Appl. Phys. 1981. V. 20. P. L661.
- 116. Nere'n berg M. A. H., Blackburn J. A.//Phys. Rev. Ser. B. 1981. V. 23. P. 1149.
- 117. Tilley D. R.//Phys. Lett. Ser. A. 1970. V. 33. P. 205.
- 118. Хлус В. А., Рожавский А. С., Кулик И. О.//ФНТ. 1979. Т. 5. С. 357. 119. Абрикосов А. А., Горьков Л. П., Дзялошинский И. Е. Методы
- квантовой теории поля в статистической физике.— М.: Физматгиз, 1962.
- 120. Белоус Н. А., Костышин А. М., Постников В. М. Препривт ИФ АН УССР № 2.— Киев. 1984.
- 121. Кулик И.О., Янсон И.К. Эффект Джозефсона в сверхпроводящих туннельных структурах. - М.: Наука, 1970.
- 122. Янсон Й. К.//ЖЭТФ. 1970. Т. 58. С. 1497.
- 123. Гейликман Б. Т. Исследования по физике низких температур.— М.: Атомиздат, 1979.

- 124. Mühlschlegel B.//Zs. Phys. 1959. Bd 155. S. 313. 125. McMillan W. L.//Phys. Rev. 1968. V. 175. P. 537; 559. 126. Suzuki M., Murakami T., Enomoto Y., Inamura T.//Japan J. Appl. Phys. 1982. V. 21. P. L437.
- 127. Степанкин В. Н., Протасов Е. А., Кузнецов А. В., Зайцев-Зотов С. В.//Письма ЖЭТФ. 1985. Т. 41. С. 23.
- 128. Kresin V. Z.//Phys. Rev. Ser. B. 1983. V. 28. P. 1294.
- 129. Бароне А., Патерно Дж. Эффект Джозефсона: физика и применения.— М.: Мир. 1984.
- м.: мир. 1984.

 130. Lin T. H., Shao X. Y., Wu M. K., Hor P. H., Jin X. C., Chu C. W., Evans N., Bayuzick R.//Phys. Rev. Ser. B. 1984. V. 29. P. 1493.

 131. Ицкович И. Ф., Шехтер Р. И.//ФНТ. 1981. Т. 7. С. 863.

 132. Simanek E.//Sol. State Commun. 1979. V. 32. P. 731.

 133. Ting C. S., Talwar D. N., Ngai K. L.//Phys. Rev. Lett. 1980. V. 45. P. 1213.

 134. Ицкович И. Ф., Шехтер Р. И.//ФНТ. 1983. Т. 9. С. 5.

 135. Ruvalds J.//Advances in Superconductivity.— New York; London: Academic Press, 1983.— P. 475

- 1983.—P. 475.
- 136. Буздин А. И., Булаевский ков С. В.//УФН. 1984. Т. 144. С. 597. Булаевский Л. Н., Кулич М. Л.,
- 137. Simanek E.//Sol. State Comm. 1979. V. 31. P. 419; Phys. Rev. Ser. B. 1981. V. 23. P. 5762.
- 138. Ефетов К. Б.//ЖЭТФ. 1980. Т. 78. С. 2017.
- 139. Fazekas P.//Zs. Phys. Kl. B. 1982. Bd 45. S. 215.
 140. Ito M., Enomoto Y., Suzuki M., Murakami T., Inamura T.// Japan J. Appl. Phys. 1982. V. 21. P. L375.
 141. Enomoto Y., Suzuki M., Murakami T., Inamura T.//Ibidem.
- P. L384.
- 142. It o M., Enomoto Y., Murakami T.//Appl. Phys. Lett. 1983. V. 43. P. 314.
- 143. Ito M., Enomoto Y., Murakami T.//Japan J. Appl. Phys. 1983. V. 22. Supplement 22-1. P. 443.
- 144. Moriwaki K., Suzuki M., Murakami T.//Japan J. Appl. Phys. 1984. V. 23. P. L181.
- 145. Enomoto Y., Suzuki M., Murakami T.//Ibidem. P. L333. 146. Davidson A., Tsuei C. C.//Physica. Ser. B. 1981. V. 108. P. 1243. 147. Moriwaki K., Suzuki M., Murakami T.//Japan J. Appl. Phys. 1984.
- V. 23. P. L115.
- 148. Methfessel C. E., Stewart G. R., Matthias B. T., Patel C.K.N.// Proc. Nat. Acad. Sci. USA. 1980. V. 77. P. 6307.
- 149. Габович А. М., Монсеев Д. П., Шпигель А. С.//ФТТ. 1982. Т. 24. C. 1876.

- 150. Мельникова Л. В., Моисеев Д. П., Постников В. М.//Ibidem.
- 151. Fiory A. T., Hebard A. F. // Phys. Rev. Lett. 1984. V. 52. P. 2057.
- 152. Bachman R., Di Salvo F. J., Jr., Geballe T. H. et al. //Rev. Sci. Instr. 1972. V. 43. P. 205.

- 1572. V. 43. F. 203.
 153. Nakayama I.//J. Phys. Soc. Japan. 1977. V. 43. P. 1533.
 154. Габович А. М., Шпигель А. С.//ЖЭТФ. 1983. Т. 84. С. 694.
 155. Gabovich A. M., Shpigel A. S.//J. Low Temp. Phys. 1983. V. 51. P. 581.
 156. Келдыш Л. В., Копаев Ю. В.//ФТТ. 1964. Т. 6. С. 2791.
 157. Козлов А. Н., Максимов Л. А.//ЖЭТФ. 1965. Т. 48. С. 1184.
 158. Копаев Ю. В.//Тр. ФИАН СССР. 1975. Т. 86. С. 3.

- 159. ГабовичА. М. Моисеев Д. П., Прокопович Л. В., Уварова С. К., Ячменев В. Е. Препринт ИФ АН УССР № 14.— Киев, 1983.
- 160. Габович А. М., Монсеев Д. П., Прокопович Л. В., Уварова С. К., Ячменев В. Е.//ФТТ. 1984. Т. 26. С. 261.
- 161. Габович А. М., Моисеев Д. П., Прокопович Л. В., Уварова С. К., Ячменев В. Е./ЖЭТФ, 1984. Т. 86. С. 1727.
- 162. Sullivan P. F., Seidel G.//Phys. Rev. 1968. V. 173. P. 679.
- 163. Fukami T., Inoue N., Mase S.//Proc. of the 17th Intern. Conference on Low Temperature Physics LT-17. Karlsruhe, 1984.— Amsterdam: North-Holland, 1984.— Pt. II. Contributed Papers. P. 855.
- 164. Fukami T., Inoue N., Mase S.//J. Phys. Soc. Japan. 1984. V. 53. P. 4322. 165. Габович А. М., Шпигель А. С.//123-е Всесоюзное совещание по физике низких температур. Таллин, 23—25 октября 1984 г.: Тезисы докладов.— Таллин, 1984.— Ч. І. Сверхпроводимость. Квантовые жидкости и кристаллы. С. 174. 166. Габович А. М., Шпигель А. С.//ФТТ. 1985. Т. 27. С. 588. 167. Helfand E., Werthamer N. R.//Phys. Rev. 1966. V. 147. P. 288. 168. Werthamer N. R., Helfand E., Hohenberg P. C.//Ibidem. P. 295. 169. Зайцев-Зотов С. В., Протасов Е. А., Хлопкин М. Н.//ФТТ. 1986. Т. 26. С. 2033.

- 1984. T. 26. C. 2933.
- 170. Deutscher G.//Physica. Ser. B. 1982. V. 109-110. P. 1629.
- 171. Александров А. С. Автореферат докт. диссертации. М.: МИФИ, 1984. 172. Сан Жам Д., Сарма Г., Томас Е. Сверхпроводимость второго рода. М.: Мир, 1970.
- 173. Зайцев-Зотов С. В., Протасов Е. А., Чуркин О. А.//ФТТ. 1982. T. 24. C. 2488.

- 1. 24. С. 2488.
 174. Зайцев-Зотов С. В., Протасов Е. А.//ФТТ. 1984. Т. 26. С. 1374.
 175. Альтшулер Б. Л., Аронов А. Г.//Письма ЖЭТФ. 1981. Т. 33. С. 515.
 176. Альтшулер Б. Л., Аронов А. Г., Ларкин А. И., Хмельниц-кий Д. Е.//ЖЭТФ. 1981. Т. 81. С. 768.
 177. Sneddon L., Rice T. M.//Physica. Ser. B. 1981. V. 107. Р. 661.
 178. Кулик И. О., Педан А. Г.//ФНТ. 1983. Т. 9. С. 256.
 179. Педан А. Г. Автореферат канд. диссертации.— Харьков: Ф ТИНТ АН УССР,
- 1984.
- 180. Гаевскис А. П., Автореферат канд. диссертации. Саласпилс, 1985.
- 181. Balzarotti A., De Crescenzi M., Incoccia L.//Phys. Rev. Ser. B. 1982. V. 25. P. 6349.
- 182. Balzarotti A., Menushenkov A. P., Motta N., Purans J.//Sol. State Commun. 1984. V. 49. P. 889.
- 183. Oka K., Unoki H.//Japan J. Appl. Phys. 1984. V. 23. P. L770. 184. Groznov I. N., Ionov S. P., Kevdina I. B. et. al.//Phys. Stat. Sol. Ser. B. 1984. V. 123. P. 183.
- 185. Плотникова М. В., Рейман С. И., Богатко В. В., Венев-цев Ю. Н.//ФТТ. 1983. Т. 25. С. 2508. 186. Габович А. М., Моисеев Д.П.//ФТТ. 1975. Т. 17. С. 269. 187. Габович А. М., Пашицкий Э. А., Уварова С. К.//ФНТ. 1975. Т. 1.
- C. 984.
- 188. J h m J., C o h e n M. L., T u a n S. F.//Phys. Rev. Ser. B. 1981. V. 23. P. 3258. 189. R u v a l d s J.//Adv. Phys. 1981. V. 30. P. 677.
- 190. Кулик И. О. //УФН. 1985. Т. 145. С. 155.
- 191. Кулик И. О., Педан А. Г./ЖЭТФ. 1980. Т. 79. С. 1469. 192. Alexandrov A., Ranninger J.//Phys. Rev. Ser. B. 1981. V. 24. P. 1164. 193. Chakraverty B. K.//J. de Phys. 1979. Т. 40. P. L99.

- 194. S c h a f r o t h M., B u t l e r S., B l a t t J.//Helv. Phys. Acta. 1957. V. 30. P. 93. 195. Александров А. С., Елесин В. Ф.//ФТТ. 1983. Т. 25. С. 456. 196. Steglich F., Aarts J., Bredl C. D. et al.//Phys. Rev. Lett. 1979. V. 43. P. 1892.
- 197. Ott H. R., Rudigier H., Fisk Z., Smith J. L.//Ibidem. 1983. V. 50.
- 198. Stewart G. R., Fisk Z., Willis J. O., Smith J. L.//Ibidem. 1984. V. 52. P. 679.

199. McGuire N. K., O'Keeffe M.//Sol. State Commun. 1984. V. 52. P. 453.

200. Гальперин Ю. М., Козуб В. И., Медоева З. Г., Скал А. С. //ФТТ. 1980. Т. 22. С. 248.

- 201. И оффе Л. Б.//ЖЭТФ. 1981. Т. 80. С. 1199.
- 202. Иоффе Л. Б., Ларкин А. И.//Ibidem. Т. 81. С. 707. 203. Enomoto Y., Suzuki M., Murakami T.//Proc. IEEE Intern. Electron
- Devices Meeding. Washington, 1983. P. 482. | 204. Suzuki M., Murakami T.//Sol. State Commun. 1985. V. 53. P. 691. 205. Bulaevskii L. N., Sadovskii M. V.//J. Low. Temp. Phys. 1985. V. 59.

- 203. Витае vs вт. и., и., р. 1. 1., р. 1.
- 211. Sugai S., Ushida S., Kitazawa K., Tanaka S., Katsui A.// Phys. Rev. Lett. 1985. V. 55. P. 426. 212. Alexander S.//Physica. Ser. B. 1984. V. 126. P. 294.
- 213. Свистунов В. М., Ревенко Ю. Ф., Моисеев Д. П., Постни-ков В. М., Гаевскис А. П.//ФНТ. 1985. Т. 11. С. 1133.