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The Lienard-Wiechert field of an arbitrarily moving charge can be visualized with the aid of
electric and magnetic field lines. The system of such lines is Lorentz-invariant if a specified
motion along Poynting vectors is ascribed to them. In this note the field lines are parametrized
by light signals emitted from the trajectory. Ordinary differential equations are obtained
describing the instantaneous configuration of electric and magnetic field lines. These equations
have been solved in a general form for the magnetic field, and for the electric field in the case
when the quantity 7/2¢y is constant where ¥ is the Lorentz factor of the charge, and » and 7 are

the curvature and torsion of the trajectory.

This study of the geometric field structure of a charge in
curvilinear motion was prompted by the practical question
of stability of motion of intense, ultrarelativistic particle
beams in accelerators and storage rings. It appeared imprac-
tical to calculate the Lorentz forces between the beam parti-
cles via the infinitely broad Fourier-decomposition of the
field of a single charge. The first approximation to the space-
time field pattern of a particle in curvilinear motion was
obtained in Refs. 1 and 2 by solving the retardation equation
in Lienard-Wiechert field equations for distances compara-
ble to the radius of curvature of the trajectory. Perhaps,
further investigation of the field geometry was not practical-
ly essential, but the spatially mosaic structure of the retarda-
tion equation solution—and hence of the field itself—en-
couraged the attempt to ‘“view” the entire field of the
particle, long distances included.

This study does so by focussing on the electromagnetic
field lines as well as the Poynting vector field. The field lines
were conveniently parametrized by light signals emitted
from the trajectory at retarded times. The resulting geomet-
ric information proved useful in a number of practical prob-
lems; in particular, it became possible to evaluate the coher-
ent superposition of the fields of many particles moving
along curvilinear trajectories.

1. The intensity of the Lienard-Wiechert field at the
observation point is determined by the characteristics of mo-
tion of the field-creating charge at a single trajectory point.
Therefore it is convenient to apply the concept of a point
light signal. At the observation time ¢ (the same for all points
in space) the totality of light signals emitted at a retarded
time ¢’ forms a sphere of radius D = ¢(¢ — ¢ ') centered at the
pointry(t'), wherer,(z’) is the position vector of the charge.
The system of such mutually enveloping spheres, hereafter
referred to as light spheres, fills all space (Fig. 1) and serves
as a convenient coordinate system for this problem. A point
on a light sphere is specified by the direction of a unit vector
n from the centre of the light sphere. The quantities (D,n)
determine a unique point in space. The inverse problem, that
is the determination of (D,n) for a given point r requires the
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solution of the retardation expression |r—r,(r—D/
¢)| = D, but such a procedure is unnecessary as the Lienard-
Wiechert field equations can be naturally expressed in terms
of parameters D and n(D).

An arbitrary line at a fixed moment ¢ may be specified
by the parametrization (D(o), n(o)), such that as o
changes the radius vector R “‘unfolds” in space according to
R(o) =ry(t — D(o)/c) + D(o)n(o). The tangent direc-
tion to a given line is obtained by differentiating with respect
to o. By comparing this direction with the prescribed vector
field F (D,n) it is possible to find equations for (D (o), n(o))
that determine the line integrals of the F(D,n) field.

Omitting the intermediate steps (which are found in
Refs. 3 and 4), let us consider the principal results for the
case when F stands for the electromagnetic field of a charge

FIG. 1. The system of light spheres of a particle moving in a circle with
B=0.9. Shown are the intersections of light spheres with the plane of the
orbit. The numbers denote the light sphere centers corresponding to the
particle positions at times ¢ — f,k where k = 1,2,.... The region of mini-
mum spacing between the spheres is characteristically spiral-like; in this
so-called y-region the field attains extremal values.
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FIG. 2. The circular magnetic field lines of a charge in arbitrary motion.
The algorithm of constructing a family of lines on one of the light spheres
of radius Ris illustrated. Points Oand O’ lie on the trajectory: O represents
the particle’s position at the observation time #, O ' represents its position
at the retarded time ¢' =t — (D /c). Magnetic lines are constructed by
slicing the light sphere with a bundle of planes with a common axis I,
where 1is perpendicular to the velocity Bc and acceleration B¢ at point 0.
The position of the axis is specified by vector a originating at O, such that
the scalar product of a with B and B respectively equals:
a'B = D,a*B = ¥~ c. By varying D the system of lines can be constructed
over all space.

in arbitrary motion, and also for the Poynting vector field of
synchrotron radiation.

2, The magnetic lines lie on light spheres (obviously,
since H =nXE). On the light sphere of radius D they are
circles ““sliced” by a bundle of planes that intersect on an axis
perpendicular to the vectors (¢t — D /c) and B(t — D /c)
(where fc is the particle velocity, and B(t) =dB(t)/de).
The position of this axis in space is defined by the vector a
originating from the centre of the sphere, such that the pro-
jections of B and ¥’Df/c onto a equal D (where
y = (1 — B?*)~"2is the Lorentz factor of the particle). The
bundle axis always lies outside the sphere since S <1
Fig. 2).

Let us consider the limiting cases of the arrangement of
the spheres. As the particle approaches uniform, rectilinear
motion (—-0) the bundle axis recedes to infinity in the di-
rection perpendicular to the particle velocity (Fig. 3b). In
this case all magnetic lines become perpendicular to 8 (the
same happens as D -0, i.e. close to the charge).

The bundle axis also recedes to infinity in the case when
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the angle between 3 and 8 goes to zero (rectilinear acceler-
ated motion). There is an indeterminacy at B = ¥>D 3/c but
in this exceptional case it can be shown that the magnetic
field is zero everywhere on the light sphere.

The lines differ significantly from the rectilinear limit
when the distance of the bundle axis from the centre of the
light sphere is of the order of the radius of the sphere (Fig.
3a). For steady-state circular motion of radius R this corre-
sponds to the condition D> R (8y) 2. In the ultrarelativistic
case the quantity R (B8y) ~>~Ry ™~ ? can become small com-
pared to the average distance / between particle beams in
modern electron accelerators and storage rings. Thus for the
PETRA storagering / ~ 10™* cm, whereas Ry ">~ 10"°cm.
When calculating the effect of the beam’s field on its own
stability in such a case, the rectilinear trajectory approxima-
tion may become unacceptable.”

3. Let us now take the vector field F to represent the
total electric field, including the Coulomb term whose omis-
sion would destroy the topology of the field lines.

The scalar product n-E never becomes zero, i.e., the
electric field vector always “penetrates” the light sphere, so
the retarded time can be used for the line parameter o.

Substituting"
_ A4 By A~y 1)/BN 4 vyt
n= T5pv (D
we obtain for vector v the following equation®
) @

Formally equation (2) describes the rotation of vector v
with instanteneous angular velocity @ = (y — + )BXB/
B*

An analytic solution of equation (2) is obtained in Refs.
3 and 4 for the case when the quantity & = 7|xy is constant
along the trajectory, where 7 and x are the torsion and the
curvature of the trajectory.

Let usillustrate the electric field lines for the “‘simplest”
kind of curvilinear motion—uniform curvilinear motion of
radius R. The lines drawn in Figs. 4--6 lie in the plane of the
orbit (denoted by the arrow). Aty = 1.08 (Fig. 4) the field
is of the dipole type: the concentration of lines is uniform on
the average with no preferred directions. At two other values
¥ = 2.5 and ¥ = 6 (Figs. 5 and 6) these properties hold no
longer. Characteristic kinks in the lines demarcate the so-

FIG. 3. The characteristic magnetic line patterns for the
limiting cases of the bundle axis position. Figure 3a corre-
sponds to the distance from the axis to point O’ being of the
order of the light sphere radius (as in Fig. 2); whereas in Fig.
3b this distance is much larger than D, so that the light sphere
is “sliced” by planes that are almost perpendicular to the
direction of motion. The field in Fig. 3a is markedly different
from the rectilinear limit shown in Fig. 3b.
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FIG. 4. The “spider” illustrates the electric field lines of a charge with the
Lorentz factor y = 1.08. The charge moves in a circle in the direction
shown by the arrow. The kinks in the lines lie on a spiral, but as yet there is
no spatial redistribution of the synchrotron radiation field characteristic
of relativistic motion.

called y-region? trailing the charge. In this so-called y-re-
gion the field depends on ¥ and takes on significantly larger
values than in the neighboring regions, where the field is
entirely independent of 7. Solving the retardation equation'
yields for the field amplitude the quantity E~2y2
ey*R ~267 "% where SR is the distance along the y-region.
The dimensions of y-region are ~Ry > in the plane of the
orbit and ~Ry87 ! in the perpendicular direction. The
neutral magnetic field line that defines the y-region in the
relativistic case is also shown in Fig. 5,—it is also useful to
construct such a line for more complicated trajectories, for
example with alternating curvature® (Fig. 7).

The y-region field incident on a stationary observer
changes sign twice—it is, in fact, synchrotron radiation or,
more precisely, its high-energy component (the transverse
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FIG. 5. Synchrotron radiation electric field of a charge with a Lorentz
factor ¥ = 2.5. This figure requires a greater scale than Fig. 4 because the
transverse dimensions of the y-region characterized by the kinks in the
lines are smaller according to the formula Ry ~?, where R is the radius of
the orbit. In the y-region the field attains its maximum values and is “ra-
diative” in character (field components acting on a stationary observer
change sign at the Ry ~* wavelength). Crosses denote the neutral magnet-
ic field line which demarcates the y-region, as shown in the figure.
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FIG. 6. A Coulomb field region can be defined in the neighborhood of a
charge in arbitrary motion: there the electric lines approximate straight
lines originating at the charge. The forward extent of the synchrotron
radiation Coulomb region reaches ~ Ry ™" from the particle in the direc-
tion of motion. Behind the particle the Coulomb field extends to greater
distances ~Ry . The field pattern of a charge with a Lorentz factor
y = 6 graphically demonstrates where one may use the approximation of
rectilinear motion of the particle.

size of the y-region Ry ~* is of the order of the synchrotron
radiation wavelength limit). The detailed pattern of the y-
region field lines is clearly visible in Fig. 6( = 6). In that
same figure we see the Coulomb field region: its forward
extent ranges out to ~ Ry’ from the particle, whereas the
size of the region is ~Ry ™ 2.

4. The mathematical apparatus used to construct the
system of electric and magnetic lines yields several new char-
acteristics of the field. One such quantity is the phase of the
electric field lines

t
O =c(1+byi2 S Bxy de”. (3)

g

In the b = const case the direction cosines of vector n can be

FIG. 7. The neutral magnetic line of a charge (¥ = 2) in sinusoidal mo-
tion. The angle of rotation along a curve with curvature of a given sign is
chosen large enough to form a piece of the y-region. Such pieces are joined
near the inflection points with field components changing sign. In fact, an
understanding of the regions in which the field of a charge in arbitrary
motion attains extremal values may be obtained by constructing the line of
zero magnetic field only.
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expressed as trigonometric functions of the phase, i.e., they
are periodic in ®. For uniform circular motion of the charge
the passage of the electric line through the y-region corre-
sponds to a change in ¢ ” by the quantity Rc~'6 ~'y~"'. The
corresponding trajectory length Ry~ coincides in order of
magnitude with the introduced synchrotron radiation for-
mation zone length (see, for instance, Ref. 6). If the trajec-
tory changes smoothly this quantity retains its meaning,
which permits one to introduce a formally exact definition of
the formation zone length as the trajectory length that corre-
sponds to a phase change of exactly 27.

In order to characterize roughly the field of a charge
moving along a trajectory with alternating curvature it is
sufficient to evaluate the phase integral

=00
O, = S d® 4)

$'=—co

(the observation time is chosentobe z = + oo ). If §y> 27
the radiation has the properties of synchrotron radiation (in
certain regions of space the field is identical to a synchrotron
radiation field). All electric lines complete many (~®,/
2m) revolutions about the charge. If 27> ®,> ¥~ ' an almost
full revolution about the charge is completed by several elec-
tric lines -- these lines number many more than one and the
situation corresponds to the bremsstrahlung regime. If
¥~ '> @, not a single electric field line changes its direction
after scattering of the particle, and the pattern remains as
that of a Coulomb field.

In fact, the integrated phase is determined by the angle
of rotation @ of the trajectory: ® ~y6. The range of the an-
gles of rotation is broken up by the critical values 8, ~y ™,
6,~7v~? in particular, if 8 €8, the curvature of the trajec-
tory does not alter the Coulomb nature of the field (transi-
tion through the value €, which marks the onset of brems-
strahlung is well-understood.

Using the field geometry of a single charge it is possible
to find the interference maxima of the fields of many
charges. One considers a coherent superposition of fields in
bounded spatial regions during a finite time interval for par-
ticular trajectories or trajectories arranged in a certain pat-
tern. In Ref. 7, for example, such a superposition is studied
for synchrotron radiation fields.

5. Let us consider the field lines of the Poynting vector
(FLPY for short) which define the local energy flow of the
electromagnetic field. FLPV are orthogonal to the electric
and magnetic fields.

In order to construct FLPV one employs the methods
discussed above. The (D,n) equations become complex,
however, and we shall consider only a qualitative description
of FLPV for synchrotron radiation.

The neutral magnetic field line plays a special role in
FLPYV, for on it one finds the poles of FLPV. In the case of a
charge in uniform rectilinear motion the lines originating
from one pole fall onto a sphere with the center at ry(z)
(where ¢ is the observation time). This is not the case in
synchrotron radiation. Close to the charge, where the neu-
tral magnetic field line is almost straight, FLPV are spirally
wound about the charge in the plane of the orbit, with the
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FIG. 8. A mutually orthogonal net of electric field lines and Poynting
vector lines for synchrotron radiation of a charge with Lorentz factor
¥ = 2. This figure illustrates the behavior of the field lines of the Poynting
vector (FLPV) close to the charge. The bold line is the unstable FLPV.
The directions of FLPV are not shown.

spacing of the winding tending to zero (the result is a line
composed of smoothly-joined pieces of FLPV pointing in
various directions and ending up at the poles). At certain,
sufficiently large distances, each FLPV no longer crosses the
neutral line, but uncoils in its vicinity along a curve that
resembles the Archimedean spiral. There exists an unstable
FLPV which radiates FLPV that fill the y-region at arbitrar-
ily large distances.

The fact the FLPV do not close upon themselves in the
plane of the orbit implies that the area of the surface “made
up” of FLPYV originating from one of the poles is infinite.
The energy flow integrated over any closed surface enclosing
the charge is non-zero, i.e., there is radiation.

The structure FLPV for a charge with the Lorentz fac-
tor of y =2 is schematically depicted in Fig. 8. Figure 9

FIG. 9. The y-region is filled by the field lines of the Poynting vector far
from the orbit. The value of ¥ is not specified. The dashed lines mark the
branches of the neutral magnetic field line. The bold lines mark the unsta-
ble FLPV, the branches emanating from which form the y-region.
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illustrates the filling of the y-region at large distances.

6. The mutually orthogonal system of electric and mag-
netic lines, as well as Poynting vector lines, was considered
at a single fixed observation time. For a given trajectory it is
a simple matter to obtain a “‘snapshot” of the field at any
moment in time (for example, in synchrotron radiation the
whole field undergoes uniform circular motion together
with the charge). The motion of the lines on different ““snap-
shots” can be followed by considering that certain marked
lines move one onto another. For instance, in synchrotron
radiation such moving lines can be marked according to
their location with respect to the orbit. However, beginning
at a certain distance these lines would move faster than light.

The following method of following the motion of elec-
tric and magnetic lines as long as they are orthogonal (the
Lienard-Wiechert field obviously satisfies this condition) is
discussed in Ref. 8. Each line element is taken to move along
the Poynting vector with a certain*‘drift” velocity. For the
electric field this velocity is Wy = c(ExXH)/E* (always
smaller than ¢ in the Lienard-Wiechert field), for the mag-
netic field it is Wy, =c(EXH)/H*(Wy >c¢). It is proven
that such local motion does not affect the physical meaning
of the lines, and that after such a procedure a system of lines
moving slower than light becomes Lorentz-invariant (equa-
tions describing the element dx* = (dr,dr) of a magnetic or
electric line are written in the form F,dx* =0 and
F*dx* =0, where F,, is the electromagnetic field tensor,
and F'% isits dual tensor).

Applying this mechanism to the Lienard-Wiechert field
one obtains that if the moving electric lines are Lorentz-
transformed as material objects, in the new coordinate sys-
tem they will still be tangent to the transformed electric field.
Possibly this “materialization” of electric field lines of a
charge in arbitrary motion will satisfy the *“string” concept
of the development of electrodynamics (see, for instance,
Ref. 9).
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""This substitution represents the Lorentz transformation of the light sig-
nal velocity nc from the laboratory frame to the comoving inertial frame
associated with the trajectory at the retarded point r,(¢").

*'By expressing B in (2) in terms of external fields E, and H,, that deter-
mine the trajectory, we can rewrite equation (2) in the form

dv e fy—1

dt” = me Y

v
VXH()"“-m‘ BXxXv(B-H,)

+ vXE,xB} )

N
¥+1
This equation coincides with the equations of motion of a spin in external
fields E, and H,,,” if the intrinsic magnetic moment is taken as z = 0, and
the anomalous magnetic momentis takenasu’ = — efi/(2mc). Possibly
this coincidence is due to the same Lorentz invariance considerations
imposed on the equation of the @" 4-vector, whose components in the
comoving coordinate system are equal to (0,v): linearity and homogene-
ity with respect to the external field tensor and dependernce on the 4-
velocity of the charge. The Lorentz invariance of the electric field line

system will be discussed below.
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