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In a quantum system with an infinite number of degrees of freedom, loop corrections may
break symmetries of the original Lagrangian. This phenomenon, a “‘quantum anomaly,” arises
from the need for a “‘regularization”: a supplemental definition of the theory in the ultraviolet
region. A supplemental definition of this sort unavoidably runs into a contradiction with
certain symmetries of the classical theory. In particular, it causes a nonconservation of
corresponding Noether currents. Reasons for the appearance of anomalies and their place in
the structure of modern field-theory models are discussed in this review. An emphasis is placed
on anomalies in the internal currents of gauge theories. These anomalies may disrupt the
invariance under infinitesimal or global gauge transformations, with the result that the theory
is no longer self-consistent. The condition which must be met for the cancellation of internal
anomalies severely restricts the composition of fields and the choice of interaction in realistic
models. Methods for calculating anomalies are discussed in detail. Emphasis is placed on the
nonconservation of axial and chiral fermion currents. The hierarchy of anomalies is
introduced. A special section is devoted to global anomalies, in particular, Witten’s SU(2)
anomaly and a corresponding phenomenon in odd-dimensional Yang-Mills theories.
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This review is devoted to quantum anomalies. Anoma-
lies were first observed by Steinberger’ and Schwinger? but
did not attract widespread interest until the 1969 papers by
Adler, Bell,” and Jackiw.* Many new results on anomalies
have recently been obtained,’~*’ and the interest in this field
is constantly growing. Although anomalies have not yet
found a wide variety of applications, one might suspect that
such a profound phenomenon will eventually assume a more
prominent place both in the structure of a future fundamen-
tal theory and in the dynamics of specific complex physical
systems.
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1. INTRODUCTION

In the first few sections of this introduction we would
like to review some elementary aspects of anomalous sym-
metries. We will first state just what such a symmetry repre-
sents in general in a field theory and why conserved Noether
currents are linked with all global symmetries. Second, we
will point out the role played by Noether currents in a transi-
tion to a gauge theory which is invariant under local trans-
formations, and we will explain why an unbroken gauge in-
variance requires a (covariant) conservation of these
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currents. Third, we will show what can cause a breaking of
classical (tree) symmetries at the quantum (loop) level and
how a true breaking of symmetry (anomalies and current
nonconservation) differs from a spontaneous breaking (in
which case the Noether currents are conserved). All these
questions are discussed in Subsections 1.1 and 1.2. In Sub-
section 1.3 we offer a general classification of anomalies. We
conclude this introduction with a brief outline of the con-
tents of the remaining sections (2-4) of this review, which
are devoted to calculations of anomalies.

1.1. Symmetries in general

By “anomalies’ we mean nonspontaneous breakings of
classical symmetries by quantum effects. To explain this
statement, we would naturally begin by recalling just what
we mean by

Symmetries and conserved currents

Any local field theory is described by a Lagrangian
L(&,4,, ), which depends on the fields ¢ (x) and their deriva-
tives 3, d=4,, with respect to the coordinates and the time.
For most substantive theories the Lagrangian contains no
derivatives higher than the first (otherwise, the situation re-
garding unitarity would not be clear), and we will consider
only such theories here. There are always several fields &, but
for the most part we will omit the index i, which specifies the
particular field ¢, and also the summation over this index.
A fundamental concept is that of the action § = fL (#)d” x,
which is found by integrating the Lagrangian over the entire
D-dimensional space-time. By varying the action S over the
fields, we find equations of motion

d oL

0= o= =0 () + 55 - (1.1)
Symmetry transformations ¢—¢ + 8.4 do not alter the
equations of motion; they accordingly leave the action invar-
iant. The Lagrangian, on the other hand, can, despite the
invariance of the action, change by a total derivative:

L($) — L, ($+8.8)=L ($) +0,A 40 (7).

The equations of motion do indeed remain the same as be-
fore. The equality

(1.2)

oL oL 92L 2L

oL S .
0= —0 56506,y OB

36 035 = T " Fede, TuT
which is linear in L, becomes the following when we replace
Lbyd A, = (dA,/34)é,.:

a2, 62y

5ar #v g Bupu=0

(We have assumed here that A, does not contain derivatives
of the fields ¢; otherwise, we would have to use equations of
motion with terms dL /3¢,,,,., etc.)

An important point is that the change in Lagrangian
(1.2) must be a total derivative without the use of the equa-
tions of motion. Taking the equation of motion into account,
we see that the action is invariant under any changes in the
fields,

S{¢+8¢}— S{é}- 5¢ 0,
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while the change in the Lagrangian is a/ways equal to a total
derivative:

L($+88)— L (¢) =5 86+ 55— (62) 4
_ aL Al A
= (o, o ) g+ uuagﬁ:au(muag)), (1.3)

If we are instead dealing with a symmetry transformation,
then (1.2) holds along with (1.3), and from these two rela-
tions we ﬁnd the equation

9, (52 —~AP) =,

In other words, taking the equations of motion into account,
we see that the current is conserved:

) oL
T =2 8, — A

5o s (1.4)

This assertion is known as the first Noether theorem: Invar-
iance of an action under a global transformation of fields is
equivalent to the existence of a current whose divergence is
equal to a linear combination of the equations of motion.

It was in the formulation of this theorem that the dis-
tinction between global and local symmetries was first point-
ed out. The two differ in terms of the arbitrariness regarding
the choice of the transformation parameter £. If £ = const,
the transformation is global, while if £ can depend on the
coordinates x in an arbitrary way we speak in terms of a local
or gauge transformation. A global transformation may itself
affect the coordinates. For example, the displacement
x, —~x, +¢€, corresponds to the field transformation
(15 & + £, 8“(15 If we have £, = const here, this is a global
displacement, while if £, (x) is a variable this is a local coor-
dinate-independent transformation. Why is it specifically a
global transformation which appears in the Noether
theorem? We single out from &, the parameter ¢:
8.6 = edé. Correspondingly, we have A" =¢A,. What
happens if we assume that (1.2) holds for arbitrary ¢, includ-
ing an ¢ which depends on the coordinates in an arbitrary
way? From §,_L = J, (¢A,, ) we find in this case

e[ 5o 8¢+ 75 681, ] + e (52— 04)

=ed A+ A0E (1.5)

Equating the two expressions after multiplication by d,, € on
the left and right sides, we find A, = 6édL /34, . Compar-
ing the coefficients of &, we then find

8¢ (4= —) =0.

We now recall that equality (1.2) must hold identically;
without the use of equations of motion. We therefore see that
if the action is invariant under /ocal! transformation then
some linear combination of Lagrangian derivatives (3L /
d¢) —d,(dL /dé ,, ) is identically zero. The Noether cur-
rent (1.4), is not present (it is zero) in this case, as can be
seen from (1.5). The identical vanishing of certain Lagrang-
ian derivatives in a gauge-invariant theory is the content of
the second Noether theorem. {In the more general case with
A =€A, +0.€A,,. + .., whatvanishes is a linear combi-

o
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nation of Lagrangian derivatives and their derivatives:
3,1(3L /3¢) — 3, (3L /3, )], ...}

We turn now to global symmetries, which correspond
to Noether currents ( 1.4). An important class of such sym-
metries is associated with field transformations which do not
containderivatives, i.e., 8¢ = f(#) butd f /3 , = 0. Wecall
such transformations “internal” transformations. The ap-
pearance of derivatives of the fields in 8¢ would mean that
the coordinates transform along with the fields, as we have
just seen in the example of a displacement. Most internal
transformations leave not only the action but also the La-
grangian itself invariant; i.e., for them we have A, =0. In
such cases the Noether current is J, = (JL /d¢ , )o¢. It is
easy to see that, after quantization, the integral of the time-
varying component of this current over space is the gener-
ator of a global transformation & — ¢ + £6é. The component
J,(x) itself generates local transformations ¢ — ¢ + £(x)5é.
The commutator (in a quantum theory; in a classical theory,
we would talk in terms of Poisson brackets) of the canonical
momentum 7 = dL /dé,, and the field ¢ is a S-function:
[7(x),d(y) =i§'°~ " (x —y). Here we have

i “ 4" T (%), ¢ () |

i DA x (0 8,0 (), ¢ ()] = 48 (3)-

On the other hand, there exist internal symmetries
which change the Lagrangian and for which we have A, #0.
In such cases we will say that the Lagrangian is implicitly
invariant, and those parts of it which change under internal
transformations are ‘“‘Wess-Zumino terms.” "' Let us as-

sume, for example, L = ¢ ¢'d, &/, where ¢/ is a constant
which is antisymmetric with respect to the indices /, j, so that
Lisnotatotal derivative. This Lagrangian changes by a total
derivative under the transformation §,¢" =¢' = const:
SL=cled, & =4, (c}, €'¢;). A Noether current exists and
is €, J,, = (L /3, )8, — A, = — 2cie'd. The condi-
tion of current conservation is the same as the equation of
motion: d, c);¢# = 0. A more substantive example is an abe-
lian electrodynamics of odd dimensionality. The simplest
case of such an electrodynamics is in three dimensions
(D =3): L= —(V&)F, +ce,,A4,F, F,.=3d.A4.

-- d.A,,. This theory is invariant under the transformation
6,4, =€, =const: 6L =4, (¢,2¢,,,4;). The Noether

g

current is e, =(IL/3A.,)6.A. — A
=¢,(F,. +4ce,,,4,;). The conservation law 4, J,,,. = O is
again the same as the equation of motion:

8;,(1: + dce,,;A;) =0.

I35 < pevA

The increments in the Noether currents due to the
Wess-Zumino terms are proportional to antisymmetric &-
symbols in a multidimensional field theory, so that the O-
components A, do not contain time derivatives of the fields
and thus do not contain canonical momenta. For this reason,
the addition of — A{” to 78,4 in the O-component of the
current, J§’, does not alter the computation relations
betweenJ " and @, and §d° ' xJ i’ remains a generator of
a transformation. We note that {d? ~ ' xJ {*’ remains a gen-
erator of this transformation even if it is not a symmetry
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transformation. In this case, however, the variations of the
Lagrangian and the action are nonzero and are totally unre-
markable.

Before we take up gauge-invariance theories, we would
like to say a few words about global transformations which
contain derivatives of fields. As we have already mentioned,
the corresponding symmetries are associated with replace-
ments of coordinates, so that they are called “space-time”
symmetries. The most important for our purposes are the
displacement transformation 5.¢=¢,0,4,6L
=¢,d,LA" =¢,L and the dilatation

S.6=¢e(x,0,+d, )0 6 Le(x,d, + D)L =¢d,(x,L);
here d 4, is a number, the “conformal dimensionality” of
field ¢. In classical field theory, this number is usually the
same as the physical dimensionality of the field. (In the
quantum arena, the fields acquire anomalous dimensionali-
ties, and d 5, changes—it is represented as a power series in
the coupling constant and the Planck constant.)

The Noether current corresponding to displacements is

the energy-momentum tensor

L

ealhia =t (55— $.u—Eanl’) . (1.6)

The superscript C in T}, means “canonical.” At this point
we should recall that the conservation of any current J,, is
not disrupted if we add to J,, an arbitrary expression of the
type d, C,, with antisymmetric C,,, = — C,,,. Exploiting
this arbitrariness, we can always convert a canonical energy-
momentum tensor Ty, into a symmetric one: T'5, = T3, ,.
One of the advantages of Tfm is its simple relationship with
the rotation generator: M, = T,Smx,, - Ti,, x,. Further-
more, it is specifically a symmetric energy-momentum ten-
sor which is associated with a graviton in the (classical)
general theory of relativity. It is that tensor which is found
from the Lagrangian by a variation with respect to the met-
ric:

S 2 falglirL o a gl L
Y gty (T*”l ‘-—'fﬁ?‘)l ) (L.7)
The dilatation Noether current, on the other hand, is
« aL o
DH:‘ FERN (lu(ja¢ - duﬂ‘)‘b) — I)ll‘
" ﬁL ‘ //L
=5 (—m /J,L#)——-,tﬂm/,:t - d g Jo.r =y
I3 oL
- .l'qT“a ';‘m (\(;,)(f). (18)

It turns out that by making use of the arbitrariness in the
choice of the conserved current one can choose the dilatation
current in the form D" = x, T, where T is the so-
called conformal energy-momentum tensor. In four-dimen-
sional theories of vector and spinor fields, this tensor is the
same as the metric tensor (1.7), and the difference between
7% and T completely “absorbs” the contribution with the
conformal dimensionality d,,, to D, In spaces of other di-
mensionalities or for scalar fields, this is not the case. For
scalars, for example, we have T3 = T'$ and”

Hy uv

o s 1—2 P sy g o s
[LI.U\?\ . lu\‘"“ _/‘(/):17 (Uu{/v-‘gu\'du) ¢— )

(1.9)

A. Yu. Morozov 935



[Possibly we should point out that (d,d, —g,.d%)¢>
= 04 (8av9y —8,,d,)¢°, and a change of this sort in the
energy-momentum tensor would not disrupt its conserva-

tion. The increment in the dilatation current,

on the other hand, is 21) x“ X (3,0, — 8,,.07)¢’
D-2 -2

:maﬂ(xﬂa,,— 308 — (3,4)¢. The

first term on the right side is unimportant, while the second
completely cancels the contribution

6L

d(cp)ﬁi’ 9” W

toD$ in (1.8).]

The redefinitions of the Noether currents carried out
above affect neither the conservation of these currents nor
the commutation relations of the integrals of the 0-compo-
nents. To illustrate this point, we assume J,—J, + d,C,, -
The index v here cannot take on the value O because of the
antisymmetry of C,,. The integral §J,d°~'x is therefore
unchanged by this redefinition. {The local commutator
[/o(x),8(y)], however, changes by a total spatial deriva-
tive.}

The 0-components Ty, and D, of course generate trans-

lation and extension transformations. In these cases, the
presence of A, in the definition of the current J, = 76¢ — A,
is important. For a scalar field, for example, we would have
L = (1/2)(d,4)? and the energy-momentum tensor would
be T5,=T,,=03,00,6 — 8., (1/2)(34)*>. For a#0
we would have I[T (x),0(y)] =i[7d.4(x),d(y)]
=68(x —y)d,é(x). If, on the other hand, we had a =0,
then we would have (JL /3¢, )¢, = 77, and the commuta-
tor would be twice as large as necessary except for the term
—Ap= — 8o (1/2)(4)?, which contains — (1/2)7.
Taking this contribution into account, we find
i[T6%(x)8(0)] =il(1/)7(x),8(y)] = 8(x — y)7(x).
The commutators of the dilatation current can be discussed
in a corresponding way:

i a2 xiDi 9, ¢ 1=t § d“"x{xilr‘éi, $1

+ 25 Z60, ¢1+[n L5 2) 6 ).

(We are dealing here with single-time commutators, so that

we have x, = y,,.) In exactly the same way we find

i ng lleconf (X ¢(y

-l/uu

i 4Pt e IR, 91+ m T, 6D

= ng 1 [x‘?¢+ 2(D 1) (D—i)éT%n] ()8 (x—v)

Having dealt with global symmetries, we can move on
to local symmetries. Before we get intimately involved with
gauge transformations, we wish to point out the following
important circumstance: If a theory has a global symmetry,
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then a changeinits action under a corresponding /ocal trans-
formation with a parameter ¢ which depends on x is, if the
equations of motion are ignored,

88 = \ dPx [e ( oL

— 0¢). + 508

Lae (=2 5g) ] 1.10
- d“&(aiﬁ.u 6¢)_| ( )
The expression in the first set of square brackets in the inte-
grand “knows nothing” about the x dependence of ¢, so that
it is equal to 58# A, , as it would be for a constant value of ¢.

As a result we find
) ‘ aL
e e e 2]

(1.11)

< = | dPzeo o § aP e ”‘;’ju 5.
When the equations of motion are taken into account, we have
8# J, =0, and the action turns out to be invariant (within
surface contributions) under local transformations also. We
wish to stress that, in contrast with Jocal invariance, the rela-
tion §,.5 = 0 holds not identically in this case, but only on
the equations of motion (or, as is often said, on the mass
shell).

Gauge symmetries do not correspond to any Noether
currents, as we have already mentioned. Nevertheless, it has
been established quite well that gauge invariance requires a
covariant conservation of matter currents. What is the origin
of this requirement? Why do we need precisely a covariant
conservation instead of an ordinary conservation, as for
Noether currents? For definiteness we will talk about Yang-
Mills theories, although all the arguments hold both for anti-
symmetric tensor fields and for gravity.

The Lagrangian of a free Yang-Mills theory,”
L=Tr(l/4)F.,,F, =3,4, — 3.4, + [4,.4,],isinvar-
iant under local ﬁeld transformations 64, =3d, e+ [4,¢]
=D, ¢, so that we have A, =0. Equation (1.5) is not valid
for the variation of the Lagrangian in this case, since the
transformation of §, 4,, contains a derivative of £. However,
there is still no nontrivial Noether current, of course. In-
deed, on the equations of motion, the quantity

Tr

aA — 84, = TrF,.Dge

is conserved. To find the current from this result, we need to
transfer the derivative for ¢ to F,,: TrF,D,e

= + TreD,F,, + d,(TrF_,¢). The total divergence can
be omitted, since it does not affect the conservation of the
current, because of the antisymmetry of £, . However, the
*“Noether current” D, F,ua which results in none other than
an equation of motion; i.e., when the equations of motion are
taken into account, it is not simply conserved but is actually
equal to zero, in complete agreement with the second
Noether theorem. This conclusion does not depend on the
particular form of the Lagrangian. For example, the identity

condition
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O==8L=Tr [ jja Dye+ jL (95Da8) ]
=Tr7;’—j—aaﬁe +[ 1 ,Aa])aﬁe
+7r ([ 5 4 ]+[ a;’f : Aa-s])e

implies (first) antisymmetry of the derivative dL /94,4
with respect to the indices a and S and (second) two identi-
ty relations for the matrix commutators:

oL ~ AL oL

adg =L6Aa.s ! A“]' [aAa.ﬂ ’ AM]
, [ oL
+ 3 Aa]=0.

Together, these results imply

aL
[ aAa, B ! Faﬂ] - O’

(1.12)

i.e., that the Lagrangian may depend on the derivative 4,, 4
exclusively through F,;. The “Noether current,” on the
other hand, is found to be

84, =Tr 52

Aa.u. b

Tr 5 D.e

=TreD +6 (Trs

aL )
84g,n /"
The total derivative is inconsequential because of the anti-
symmetry of dL /0A and we have

“6A

[e NTIR4
aL aL aL
= - —_
Da' 04y, o f)a 04y, o , [Aa, 04y, o ] !

which, according to the first equation in (1.12), is equal to
the Lagrangian derivative
8, 2k oL

e GA, o 34, *

The Noether current thus vanishes on the equations of mo-
tion.

Gauge invariance is necessary in Yang-Mills theories if
they are to have a physical meaning: No other way is known
to achieve unitarity (and, in the case D = 4, renormalizabi-
lity also) in theories with vector fields.** Consequently, a
Yang-Mills theory which is interacting with scalar and
spinor fields (collectively called “matter fields”) must
therefore also have gauge invariance. The interaction of
gauge fields with spinor fields* is constructed in accordance
with

L4, §) = Ly {4) + L, () + Trd,J, @). (1.13)

We are interested in invariance under transformations
A, ~A, + D, e(x), ¥—¢, for which the Yang-Mills action
L,(A) and the spinor action L,(#) do not change, while we
have 8Trd,J,(¥) =Tre(D,e)J, (&) =38, (TreJ, (¥))
— TreD,,J, (¥). In other words, a theory of vector (gauge)
ﬁelds will be meaningful only under the condition

D,J, (¥) = 0. It is sufficient that this equation hold on the
equations of motion of matter fields. The need for a covar-
iant conservation of the matter current in a gauge theory can
be seen even in the equations of motion of a Yang-Mills field
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D,F

[TEairTay

= J.. Acting on this equation with the covariam de-
rivative D, we find D D F, = — (1/2) [FoFn1=0
on the left side and D,.J,. on the right.

The currentJ,, (), which determines the interaction in
the Lagrangian (1.13), must thus be conserved covariantly.
An important point is that it is often possible to choose this
current to be a Noether current corresponding to a globa!
symmetry of the action of the matter, L,(¢). This symmetry
must of course be described by the same group as the gauge
symmetry of a Yang-Mills field. In the theory of L,(¥) mat-
ter fields without Yang-Mills vector bosons, the Noether
current is conserved, but not in a covariant fashion:
3,7, (¢) = 0. This equation, however, holds only when the
equations of motion are taken into account. When we switch
to the theory in (1.13), the equations of motion of fermions
change and lead to the covariant conservation law

D, J, (¥) = 0. This point can be demonstrated in a very gen-
eral form by means of simple but comparatively lengthy cal-
culations. The current J,, (¢) is determined from the matter
Lagrangian Lo(¢): J |, = JL,/d;8,¢". The invariance of
Lagrangian L, under global transfcrmations -y’

+ £6,¢” means

9L, b 9L, 5 L

The divergence of the current J ; in a theory (1.13) which s
interacting with a vector field 4,, is found from this relation
and the equation of motion

L aL e Oy

Yoyb, oy ooy

to be

OMJZ =0, < r’:pL bap }

AR

aL,

~ dLg
A

(6a'l1bb)- + al-—
g < ! (w?u

. 8]

R e
We can now show that this combination is equal to
— 1 f“* A" J . Hence there is a covariant conservation of
J,iD I8 = 3,00 4+ (A0, 1 =8,J4 +if AL =0,
Here we need to make use of the group structure of the trans-
formations &, 3* = £°5,". We first recall that a variation of
the Lagrangian L, under a transformation with a variable
parameter g isequal to 6, L, = d,&J, [see (1.11); A = 0].
We can write the group law (8.6, —6,68,)L,
= —&8,....; Lyor, interms of currents, 7 ‘

{0,e5) e¢ “ Salp —(1++9

— [0, (i7%°e2e8)) S = -+ (0,88) e2if TG ~ (1 <> 2).

Making use of the arbitrariness in the parameters £, and ¢,,
we then find the relation which we need:

aJ
” 6a‘Lp

v = ifere)y.

We have thus shown that the symmetries of a theory are
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unambiguously related to the conservation of currents. Con-
served Noether currents correspond to global symmetries.
Local invariance requires a covariant conservation of the
matter currents describing the interaction with gauge fields.
These currents may in turn, by virtue of the Noether
theorem, correspond to some global symmetry of the La-
grangian of matter fields.

There are some interesting classes of covariantly con-
served currents which are not associated with either a global
invariance or a local invariance. An example is a non-abelian
Yang-Mills theory with massless fermions:

L (@, A) = L, (4) + $Dy. (1.14)

The color axial current J %* = iy, ¥°t “  is covariantly con-
served in it. The Lagrangian of the theory is noninvariant
under the global transformation ¢ —&*“" " "¢ because a com-
mutator term ¥ [ 4£ ]y S which arises here cannot be elimin-
ated by the field transformation 4, = —i4 17, since 47 is
related exclusively to a vector (color) current ¥y, 1°¢.
(This theory has the standard y ° invariance, according to
which ¢ is multiplied by a color-singlet factor e’".) Never-
theless, it is easy to see that the equation D,/ }° = O holds on
the equations of motion. From the standpoint of anomalies,
this current is just as interesting as a Noether current, and we
will discuss it on the same basis.

1.2. Quantum anomalies

In discussing symmetries we have so far drawn no dis-
tinction between classical physics and quantum physics.
There is a good reason for this approach: The quantum oper-
ators satisfy the same equations of motion as are satisfied by
the classical variables, and the symmetries of the theory cor-
respond to conserved currents in both classical mechanics
and quantum mechanics.

We find a different situation when we turn to quantum
field theory. When there are an infinite number of degrees of
freedom, regularization becomes necessary. There are var-
ious (equivalent) ways to interpret this operation; the fol-
lowing way is particularly convenient for our purposes. In
the quantization of a field theory it may be necessary to in-
troduce some new—‘‘regulator”—fields and to alter the
classical action and the equations of motion in a correspond-
ing manner. We will discuss here only an ultraviolet regular-
ization, in which case the rule for introducing regulator
fields has a very simple formulation. For each physical field
we introduce a certain number of regulator fields. The num-
ber depends on the dimensionality of the space and on the
index of the quantum correction (i.e., on the number of
loops in the corresponding Feynman diagram; if the number
of regulators required does not increase with the index of the
loop, the theory is renormalizable). The interaction of the
regulators with each other and with the original fields is con-
structed in exactly the same way as the interaction of the
corresponding physical fields, with one exception: The regu-
lators have a large mass M., . Furthermore, an additional
minus sign is assigned to each regulator loop. Such a regular-
ization is called a *“Pauli-Villars regularization.”” Remark-
ably, the symmetry of the resulting action may be narrower
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than the symmetry of the original action. The symmetries
which are characteristic of massless particles—conformal,
axial, and gauge symmetries and supersymmetry—cannot
be generalized to the case of massive regulator fields. Be-
cause of the quantum corrections, the noninvariance of the
regulator part of an action may change the interactions of
physical fields; furthermore, the noninvariance may persist
even in the limit M., — «c when the regularization is “'re-
moved.” In this case we speak in terms of a quantum anoma-
ly which breaks a classical symmetry. An anomaly in a glo-
bal symmetry is manifested as a nonconservation of the
regularized Noether current J[*=J (¥) — J, (V) (v
are regulator fields): 4, J 7 = — a,,J,, ) —ﬁA{é} An
anomaly in a local symmetry is associated with a nonzero
covariant divergence of a regularized matter current which
is interacting with gauge bosons. In other cases, the diver-
gences of the currents are expressed in terms of physical
fields because of quantum effects, so that they are propor-
tional to the Planck constant; in terms of diagrams, we
would say that they are associated with single-loop dia-
grams. We will discuss a very simple example, which demon-
strates a mechanism for the appearance of an anomaly,
slightly further on.

The anomaly in chiral symmetry has been studied most
thoroughly in the theory of elementary particles. This invar-
iance is exhibited by the classical Lagrangian of massless
fermions in any even-dimensional space-time, in which it is
possible to separate left-hand and right-hand spinor fields by
means of projection operators™ (1 +¥")/2. The general
chiral transformations rotate independently the phases of
left-hand and right-hand fermions: ¥, = (1/2)(1 —y *)¥,
—eY e = (1/2)X (L +y g —ePy. In the case

a = f3 we call these “vector transformations,” and in this
case the entire bispinor
_ ‘PL)
v (ﬂm
rotates as a whole: ¥ — e ¢. In the case @ = — 3, the trans-

formations are “‘axial,” and we have ¢ —¢e'®"" ¢. Finally, the
condition @ = 0 or 8 = Oselects respectively right-hand and
left-hand chiral transformations:
1—y
P ) ¥

+ys)1p. q;—»exp('

The simplest example which we will discuss here is an
anomaly in the axial symmetry of a two- dimensional theory:
L(y) = th// (3 +A)11/ Itis regularized by adding a
Pauli-Villars field L(¥) = vDWY + MVV. The regularized
axial current corresponding to the transformation
Ve Y, W W s J T = wyl,y Y — Wy, y V¥, and
its divergence is c?“J_Z’eg =—4dJ,(¥)=— MYy Sy,
Finally, the product MWy V¥ is related to the field 4 p by the
diagram in Fig. |, which is described by the expression®

ZNW}*JWQ;\:.W‘AF

FIG. 1. Divergence of an axial current in an external field. Regulator
fermions propagate in the loop.

P = exp (ia

v
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FIG. 2. Correlation function of two vector fermion currents. By virtue of
the relation J, = ¢,,J,; in two dimensions, the same diagram represents
an axial current in an external field. Physical fermions propagate in the
loop.

1 ‘:1 1 d2p

MTry® | = —
M p—gdm GO

1
= —n—suvquA\. **),

(1.15)
Since an anomaly is associated with a regularization of
the theory, however, one could be forgiven for suspecting
that the results might be ambiguous. Is it impossible to avoid
an anomaly through an appropriate choice of regulariza-
tion? We have already mentioned that a symmetric regular-
ization may not exist. However, this is only part of the an-
swer. To reach clearer conclusions, we seek an expression
not for the divergence (?“Jf, but for the current itself, /. In
two dimensions we have Jfl =¢€,,J,,and we can restrict the
analysis to an evaluation of the diagram in Fig. 2 for the
vector current J, = Jy(, Y

dtp 1 1
o) =\ =g T (Vo= Vo5
2= T (e

i 1
—Ya X Yo == >AB
piM p—aq-+iar

1
1 (1—3%
=5 ( K dg ?%1—__—:)—:,2— (29098 — 8apd”)
0

1 e e
E(1—2) (29098 —8apg®) — gapM?
o Y a EI—9 ¢+ ]Aﬂ'
’ (1.16)
Letting the regulator mass M go to infinity, we then find
1 Gaqh
<Ja>:?(_q—z"‘_gaﬁ)‘4ﬁ' (1.17)

[When we multiply this expression by g, ¢,,,, i.e., take the
divergence of the axial current, we find (1.16).] Looking at
this expression, it is easy to see that by changing the regular-
ization (e.g., by using a separation of points instead of the
Pauli-Villars procedure) it is possible to vary the coefficient
of g, in an arbitrary way, but the coefficient of ¢, g, is
singular in ¢° and therefore universal—independent of the
choice of regularization. The existence of a structure g, ¢,/
g’ is totally objective: It results from a nontrivial imaginary
part of the diagram in Fig. 2. An evaluation of the diagram in
terms of its imaginary part relates it to the amplitudes for the
production of real particles by virtue of the unitarity relation

ImgyiiNE { IZ

) 5 Yin

In the evaluation of the diagram in Fig. 2 in terms of the
imaginary part, we need an infrared regularization; it can be
specified by, for example, introducing a small mass m of a
physical fermion. We then write
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I (J) = 4 | iy » 2000 {p2=-m2) - 20d (p— )~ )
X Try, (}H— m) vy (p—q+m) 4

. m? 0 (g2 —4m?)
={2 5 T

—9 m? 0 (g2 —dm?)

@ —@megy|it (1.18)

gaﬁ} Aﬂ'
To remove the regularization, we need to let m go to zero. In
this case, the right side of (1.18) does not vanish; instead we
have
2 2
lim 272 _B@i—am) (@,

moy 4 (T—GmE P

as can be seen by taking the integral of this expression over
dg’. As for the coefficient of g5 in (1.18), we note that it is
less singular at small values of ¢? and vanishes in the limit
m~0. For a massless fermion in two dimensions we thus
have

Im J, =8 (¢*) qagpdp (1.19)

The real part of the polarization operator is reconstructed
from the imaginary part in an ambiguous way. The coeffi-
cient of the structure g, g, is

Lf8Ghds 11

75 g —s  n ¢*°

There is no particular interest in the arbitrary constant
which might be added here, since it would be dimensional.
The coefficient of the structure g4, which has a zero imagi-
nary part, can be an arbitrary constant ¢, so we can write

1 ( 9298
ReJ, = — (—r- 4 cZan) 45 (1.20)
For an axial current we find
1 Eapudugd
ReJ&:aauReJu:T{ (_ﬂ‘?‘._ﬁ_ +03ar3)f43~ (1.21)

The arbitrariness in the sole parameter ¢ is not sufficient to
achieve the simultaneous conservation of the vector and axi-
al currents:

—_
S
4!<

[
~
)
Q

s
Q

(1.22)

The Pauli-Villars regularization guarantees conservation of
the vector current, so that we find the completely definite
value c = — 1 for it, instead of an arbitrary c.

Three conclusions which follow from this discussion
are important for our purposes.

a) An anomaly is usually linked with a pair of symme-
tries and contains a definite arbitrariness, which makes it
possible to break either of these two symmetries without af-
fecting the other.

b) If these symmetries are continuous (i.e., if infinitesi-
mal transformations exist), the ““objectiveness” of the anom-
aly stems from the nonvanishing imaginary part of some cor-
relation function. The anomaly is actually not removable.
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¢) A Pauli-Villars regularization always conserves in-
variance under “vector” transformations; in particular, it
conserves all vector:currents.

These three points require further discussion, to which
we now turn.

1.2.1. Anomalous symmetries

Five pairs of anomalous symmetries are known.

1) Vector phase transformations of fermions,
v—explichy: axial, Y—expliey’f, or chiral, Y—exp
X [ie(1 — ¥°) /214, transformations. Here € can be either a
number (abelian transformations) or a matrix (non-abe-
lian, color transformations). The example of the ° anoma-
ly, which we discussed above, is of this type.

2) Gauge invariance (covariant conservation of a matter
current in a gauge theory): Bose symmetry. This anomaly
arises if Yang-Mills fields interact with, not a vector current,
but with a chiral (left-hand or right-hand) fermion current.
In this case, several single-loop fermion diagrams at whose
vertices these currents are found (Fig. 3) disrupt the conser-
vation. More precisely, if we require symmetry of the corre-
lation function (J5J;J%...) under an interchange of cur-
rents, then we have (D,J %,/ 5/ L, ...) #0. We might also
note that a Pauli-Villars regularization guarantees Bose
symmetry of the correlation function. In Sections 2 and 3 of
this review we will discuss this class of anomalies in great
detail. Yet another important anomaly of this class is the
gravitational anomaly. It stems from the correlation func-
tion not of chiral currents but of energy-momentum tensors.
It describes a violation of the overall covariance of gravita-
tional theories due to the nonconservation of the energy-
momentum tensor. (The original paper by Alvarez-Gaume
and Witten™ on gravitational anomalies is also a splendid
review of this subject, so we will not discuss gravitational
anomalies in the present review.)

3) Gauge invariance: a discrete inversion transforma-
tion. This anomaly, which is associated with breaking of a
discrete symmetry, occurs in odd-dimensional Yang-Mills
theories, e.g., in three-dimensional electrodynamics, where,
after an integration over the fermions in the effective action,
a Wess-Zumino term ¢,,,4,d,.4; appears. This term vio-
lates the P, and T invariance. On the other hand, in the non-
abelian case a Wess-Zumino term is necessary for invariance
of the theory under topological nontrivial (“major’”) gauge
transformations. This anomaly will be discussed in Section 4
of this review.

4) Displacement transformations: dilatation. This is a
well-known conformal anomaly. While the classical theory
is gauge-invariant, i.e., the dilatation current D, = T 5"'x,,
is conserved (8# D, = T;‘;"f = 0), in aregularized quantum

Y]

R FIG. 3. Correlation function of chiral
gk currents. If there is an anomaly, this
r v contribution to the effective action ei-

* ther is not gauge invariant or does not

-7;.-{' have Bose symmetry.
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theory T,"l‘,’l"r is nonzero provided that we require conserva-

tion of the energy-momentum tensor: d, T = 0. A well-

FZa N
known example is the conformal anomaly in a Yang-Mills
theory with L = (1/4a) F?

I

P pa.

T““= e

The appearance of anomalous dimensionalities for the oper-
ators in a regularized theory may also be thought of as a
consequence of a conformal anomaly. We will return to
anomalies of this type in the following section.

5) Gauge invariance: supersymmetry. We see no reason
why an anomaly would not appear in the supercurrent,
d,.8,, #0, in certain supersymmetry theories (an anomaly of
such a nature that it could not be converted into a supercon-
formal anomaly). Such an anomaly, if it exists, could appar-
ently be removed at the cost of violating gauge invariance
(7). Aside from this brief comment, we will not discuss
anomalies in a supercurrent here; the reader is referred to
Refs. 49 and 5S0.

1.2.2. Imaginary parts and anomalies

In this regard we should point out that anomalies have
been recognized which are not associated with nonzero
imaginary parts of any correlation functions. The best exam-
ple is Witten’s global SU(2) anomaly (Ref. 46; see also Sec-
tion 4 of the present review). This anomaly consists of a
noninvariance of a fermion determinant under topologically
nontrivial gauge transformations which cannot be reduced
to infinitesimal transformations. Anomalies of this sort
(their general label is “global”’; see Subsection 1.3) are not
related to divergences of currents or in general with pertur-
bative Green’s functions of any sort.

Another example is a Redlich anomaly in an odd-di-
mensional gauge theory.****' On the one hand, this anomaly
is similar in meaning to Witten’s SU(2) anomaly, and on the
other it is directly related to a fermion determinant itself,
rather than its change caused by some field transformations.
In the simplest case—three-dimensional electrodynamics—
an anomaly is found from the same diagram as that from
which the two-dimensional Schwinger anomaly is found: the
diagram in Fig. 2 for the vector current J,, . Calculating the
loop—now in a three-dimensional space—with the help of a
Pauli-Villars regularization, we find that the regulator fields
make a finite contribution, which is equal to (J,, ) minus the
contribution of the physical fermion, i.e.,

as 1
= S o TV p—iM

1 i
Ag= o

sgn |MY equpvapdy-

0 (e
P p—aq—iM
This result corresponds to the appearance of an anomalous
term (i/8m)€,5,A,Fp, in the action. In calculating the
same diagram in terms of its imaginary part, however, we
would find the following result for the coefficient of the

anomalous structure £,,, ¢ @, :
m
0 (g2 — 4m?).

(@2 —=m2)1,2

Letting the mass of the physical fermion, » (introduced for

A. Yu. Morozov 1000




the infrared regularization), go to zero, we find that the
imaginary part is zero. Correspondingly, the real part of the
diagram is proportional to an arbitrary constant. In other
words, Redlich’s anomalies do not correspond to any imagi-
nary part of a polarization operator, so that they cannot be
removed by a suitable choice of regularization. Neverthe-
less, the Pauli-Villars regularization leads to a nonzero re-
sult for this anomaly. This is an important circumstance,
because there may be physical requirements which select a
Pauli-Villars regularization.

1.2.3. Pauli-Villars regularization

The primary advantage of this regularization for fer-
mion fields is the conservation of vector currents, which we
have already mentioned. This is a very important property
since all the vector currents with which we have had to deal
so far are conserved (while the conservation of chiral cur-
rents in the Glashow-Weinberg-Salam model would have to
be deliberately arranged by choosing an appropriate quark-
lepton composition of the matter fields in order to cancel the
corresponding anomalies ). Furthermore, Bose symmetry is
automatically ensured for all the correlation functions in
this regularization. This Bose symmetry is again a physical
requirement which is imposed on the choice of regulariza-
tion. We will state without proof that the results for the
anomalies are the same in all other regularizations which
conserve vector currents and the Bose symmetry. One such
regularization is a dimensional one. It is a particularly in-
structive regularization, because in this case the appearance
of the e-symbol in the expressions for all the anomalies be-
comes obvious immediately. In a dimensional regularization
the only source of symmetry breaking (other than dilatation
symmetry and supersymmetry) is an uncertainty regarding
the analytic continuation of the £-symbol and of the ° ma-
trix into spaces of arbitrary dimensionality.” Unfortunately,
I do not know of any simple and understandable method for
calculating anomalies in a dimensional regularization, and it
will not be used here.

The last point which will be discussed in this subsection
1.2 is the difference between an anomaly and a spontaneous-
ly broken symmetry. After a spontaneous breaking, the dy-
namics of a theory retains the corresponding invariance:
Only the choice of basis states is asymmetric, while the Ward
identities—the relations between the Green’s functions
which follow from the symmetry of the Lagrangian—remain
valid. In particular, the Noether currents are again con-
served. In the Glashow-Weinberg-Salam theory, for exam-
ple, spontaneous breaking changes the equations of motion
of fermions; they acquire a mass, and as a result the
current J;fu [(1—9°)/2)¢p ceases to be conserved:
3,9y, [(1 —¥*)/21¢ = miy*y. The chiral current with
which the Z-bosons interact, however, incorporates not only
fermions but also the phase of a Higgs field (goldstone):
Jy =1y,[(1 —¥")/21¢ + 3, . The goldstone itself is re-
lated to fermions: 8y = + my°¢ (this is an equation of
motion). We thus have d,J /; = 0, providing gauge invar-
iance.
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The situation is different with anomalous symmetries.
Here it is the dynamics itself which is invariant—not the
states. Let us say that ° invariance in a chiral model**
implies conservation of the number of pseudoscalar 7 me-
sons (G-parity). Because of the anomaly 4,J;
+ (i/87°)F,F,,, the decay 7°— 2y becomes possible and
violates this selection rule.

In a spontaneous symmetry breaking, massless gold-
stone particles necessarily arise. This effect is an unambigu-
ous consequence of the existence of asymmetric vacuum ex-
pectation values in a theory with a conserved Noether
current. Interestingly, goldstones do not necessarily acquire
a mass in a theory with an anomaly, in which we have
d,J, #0. The point here is that the anomalous divergence of
the Noether current is equal to a total derivative (Section 3):
d,J, =3d,K,. (Inthe case of the ¥° anomaly with D = 2, for
example, we would have K, ~¢,,4,,.) Because of this cir-
cumstance, there is again a conserved current
(J, —J, —K,), although this is no longer a Noether cur-
rent; i.e., it is not of the form (JL /3¢ , )5é. To determine
whether the goldstone has become heavy we need to examine
the eigenenergy diagram in Fig. 4. The contribution of an
anomaly has the structure

[ ©10uK, @ 2.k, (0)]0) eiexdls

~ 0ty § O 1K, @ K, 0) 10) e0ea®.

Consequently, if the correlation function (0|XK |0) has no
pole in g7, the anomaly will not contribute a mass term to the
eigenenergy diagram of the goldstone. In particular, the
anomalous decay 7% — 2y generates no correction of any sort
to the mass of a pion. However, there are correlation func-
tions (0|KX |0) which donot contain a pole. The best-known
example is the Veneziano ghost in quantum chromodyna-
mics, which makes the ninth pseudoscalar goldstone 7’ me-
son heavy.”' The pole in the correlator in this case stems
from instanton fluctuations of gauge fields. In the abelian
case, there are no such fluctuations, so that the anomalous
decay 7° - 2y generates no correction of any sort to the mass
of a pion. The virtual process 7° —2W — 7" involving W bo-
sons, however, adds to the mass of 7° a vanishingly small
quantity ~M , exp[ — const/a (M )], by virtueof instan-
ton effects. Instantons in quantum chromodynamics have a
strong effect not on a 7° but on U, (3) flavor-singlet " me-
sons.

1.3. Types of anomalies and their physical consequences

We begin this section with a few specific examples of
physical theories with anomalies.

FIG. 4. Eigenenergy diagram for a
Goldstone field. The appearance of a

i 4 mass for this field corresponds to a
momentum-independent contribution
to the expression for this diagram.
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1.3.1. Quantum chromodynamics in the chiral limit
Here we have L = Zi(;?\ + 2C I3

B

is a triad of quark fields, and 4. is a gluon field. For the time
being we will not discuss the color degrees of freedom [in
terms of the color group U (3), u,d,s are singlets, while 4,
is an octet], so will not write the corresponding indices. We
are interested instead in the flavor symmetry group U, (3)
among u, d, and s quarks. According to this group, ¢ is a
triplet, while 4, is a singlet. In the chiral limit, in which
there are no quark masses in the Lagrangian (this is in many
cases a reasonable approximation of real quantum chromo-
dynamics) the classical theory in fact has the symmetry
U;(3) XU:(3), determined by the transformations
e, h—e™ ¢ with matrices a from a U;(3) algebra.
The group U, (3) X U;(3) is global in quantum chromodyn-
amics; this statement means that no gauge bosons of any sort
are related with Noether currents E;/#r" ¥ and _l/;%‘ iy
[7° are the generators of U, (3)].

In quantum chromodynamics there is a spontaneous
breaking of the symmetry, U; (3) X U; (3) = U, (3), since a
vacuum condensate (¢,¢,) = (1/3)8, (¢4) forms which is
not invariant under the replacement ¢ — ¢ ¢. The dynam-
ics of the theory, of course, still has the complete
U (3) XU, (3) symmetry, but its axial part is realized in a
nonlinear way on fields which describe elementary particles:
Among these fields there is a nonet of pseudoscalar gold-
stone mesons II (7% ,7°,K < ,K £ ,3,7"), which transform
under the action ¢—e” ¢ in accordance with the rule
{11 + £. The fields II are usually called “pseudogold-
stone” fields, because when the masses of quarks are taken
into account these fields also acquire a small mass
~(m, (Pyy/f2)"* [while the masses of all the other
non(pseudo)-goldstone mesons are determined exclusively
by the condensates of gluon and quark fields and are essen-
tially independent of m ].

A spontaneous breaking of an axial flavor symmetry
has entirely perceptible physical consequences. In addition
to each meson and baryon, the spectrum of physical states
has some other mesons and baryons which are degenerate
with the former in terms of the vector U, (3) symmetry and
which have the same masses (more precisely, they have
nearly the same masses, since there are mass corrections
~m, and electromagnetic corrections which explicitly
break this symmetry). They also have the same quantum
numbers. For example, associated with a proton in terms of
U, (3) is the octet of baryons (p,n,A,2%°,=°=7). How-
ever, there are no such particles with the other parity. For
example, the resonance with spin and parity 1/2~ has a mass
which is 600 MeV greater than that of p(1/27 ). Instead, the
spontaneously broken axial U (3) symmetry relates a parti-
cle with “‘a particle plus a pseudogoldstone meson with zero
momentum.” For example, in the chiral limit a proton is
degenerate with the pairs p+ 7, p+K, ..., E+ 17, ..., and
also with the triples p + 7 + 77, etc. An axial symmetry
which actually is broken spontaneously is manifested not in

1002 Sov. Phys. Usp. 29 (11), November 1986

the particle mass spectrum but in the existence and proper-
ties of (pseudo)goldstone mesons. In particular, any inter-
actions of these particles should vanish at zero momentum.
This circumstance guarantees that no forces will lift the de-
generacy of the proton with the p + 7 state. The assertion
that all the interactions of pions are of a gradient nature [i.e.,
that the potential ¥'( ¢) is proportional to the momentum
g, ] is important for all nuclear physics.

Still, all this is not an anomaly. Anomalous in chiral
quantum chromodynamics is a flavor axial U, (1) symme-
try, determined by the transformations ¥ —e®” ¢ with
a unit matrix £. The corresponding Noether current,
J =¥y, Y'Y=y, v’u +dy,y’d+5y,y’s, is not con-
served:

OuTh == Tro FEVFLY

[Tr, is the trace in the SU_ (3) color algebra]. Because of
the anomaly there is no axial symmetry, not only in the spec-
trum of one-particle states but in general in the dynamics of
the theory. The SU(3)-singlet 7' meson, which has the
quantum numbers of an anomalous U, (3)-singlet current
J,isnolonger a goldstone boson or even a pseudogoldstone
boson. Its mass is determined not by the quark masses m,
but, as in the case of all non-goldstone mesons, by nonpertur-
bative vacuum condensates of the fields of quantum chromo-
dynamics. Actually, we have m,, ~958 MeV; this figure is
considerably larger than the masses of the octet of pseudo-
goldstones: m_, =~ 140 MeV, my =498 MeV, m, =~ 549 MeV.
For the same reason, there is no degeneracy among the states
pandp+7',pandp + 7', etc.

From the standpoint of the spectroscopy of elementary
particles, the role played by an axial anomaly in quantum
chromodynamics is actually not very important. The reason
is that the mass of an s quark is actually extremely large,
m, =150 MeV, and the U;(3) flavor symmetry is broken
quite strongly without any anomaly. Essentially the only
place where it is possible to distinguish the effects of an
anomaly and m, #0 is in the properties of . [ At one time,
the question of the large value of the ratio m,. /m, was
called the “U(1) problem” *': the problem of the promi-
nence of the U, (1) subgroup in axial U (3). This problem
can be resolved only by taking an anomaly into account. ]
This is, of course, a very fundamental point. Furthermore,
an analysis of this problem will help us reach an understand-
ing of how the consequences of spontaneous and anomalous
breakings of symmetry will differ in a realistic theory incor-
porating both of these effects. We turn now to another anom-
aly, again in quantum chromodynamics, with some experi-
mental consequences which are much more apparent. For
this purpose we wish to discuss

1.3.2. Chiral quantum chromodynamics in an externai
electromagnetic field .

The Lagrangian hereis L = Z_Jri(g + 25 + er;l\em VY5,
7

Incorporating an electromagnetic field results in new anom-
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alies. In particular, anomalies appear in currents which do
not contain s-quark fields.” The masses of the u and d
quarks, in contrast, are very small (of the order of 10 MeV),
and in this case the anomalies stand out in stark contrast
with the background of mass corrections.

The electromagnetic interaction breaks the flavor sym-
metry: Different quarks now have different electric charges.
We will discuss here the two-quark theory:

L="i (6+Ac+—— em)u—{-dl (a+A —-—Am)d

= Ei (é + Ac + Qlaem) P3
here

¥ is the doublet (),
is a Ug (2) singlet, and

c

2
ty 0 1 1
0: 0 1 == +-—6— [+‘2—.13

3/

The Lagrangian has not the complete U;(2) X U;(2) sym-
metry but only (U(1) xU(1);) X (U(1) xU(1));. As be-
fore, the axial symmetry is broken spontaneously by the
{tiu) ={dd) condensates, and (pseudo)goldstone mesons
70~ (1/v2)(@u — dd), 7 * ~ud, id form. There is no point
in discussing the fourth meson ~ (1/v2) (Gu + dd) in a two-
quark model. The solution of the U( 1) problem shows that it
is completely mixed with Ss and forms a heavy 7’ meson.
Because of the electromagnetic interaction, which breaks
U (2) to (U(1) xU(1));, the masses of 7 and 7% , which
are proportional to [ (m, + my){uu)]'/?/f,, are slightly
different: m, = 135.0 MeV, m_, =139.6 MeV. The anoma-
ly which we wish to discuss here disrupts the conservation of
one of the axial U(1) currents J) ., = ¢y, 7°m5¢
= u*y,‘y u— dy ¥°d, which i is associated with the transfor-
mation ¢—»e’”‘” Y:iu—et® y d—e " d. This current is
orthogonal to the singlet axial current which we discussed in
Subsection 1.3.1. In pure quantum chromodynamics with-
out electromagnetic interactions, this current is conserved
exactly. It is with this current that the 7" meson is associated
by the hypothesis of partial conservation of axial-vector cur-
rent (PCAC):

<n°|...=_,_ S A3y 0] [y (§)r - - 1e

The anomaly in the current, d,,J ), 5, ~F® Fr gives rise to
a nonvanishing amplitude for the transition of one 77 meson
to zero 7 mesons ( + 2 photons):

1120 = - § &%y 0173, (), 1120)
= — [ a2y 010730 (91290
= _;—n S dBy (018, 5s (¥)127)
~t g &y (O 1F, Fo () 129

1 (1), (2) (l) (2)
~ (@i trvabPu Py e fh
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Here % is the Hamiltonian of the interaction of the pions
with the photons, and p'"?,»""?', and £'"*' are the momenta,
frequencies, and polarlzatlons of the photons. We have
used the equation d,J,=i[J, %] and the identity
§d3y(|dJ|) = 0, because of which we have {d’y{|d/,])
= fd’y{|d,J, |). In principle, the decay 7°—2y might oc-
cur even without an anomaly, because of the mass terms of
the quarks in the Lagrangian, which also violate conserva-
tion of the current Jflm . However, the contribution of those
terms to the decay amplitude differs from the contribution of
the anomaly by a factor ~m?/o* (cf. Subsection 2.5). The
typical value of the photon frequencies isw ~m . /2, and this
factor is very small. We can thus assert that the width of the
decay 7° -2y is determined entirely by the anomaly in the
axial current.

We should perhaps point out that an anomaly in the
currentJ ;, ;, does not violate spatial parity. As before, there
is even a one-parameter transformation which generalizes a
discrete parity transformation. The only difference is that in
the present case the generator of this transformation is not
J&yS s, but fdy(J 5, — cegyd wmd;A4%5,). However,
while this Jaw also required conservation of the parity of the
number of 7 mesons (G-parity) in the case without an anom-
aly, in the present case there is no requirement of this sort.

The next example of a theory with anomalies is the Gla-
show-Weinberg-Salam (GWS) model, This model has two
interesting anomalies. We will begin with that which leads to
the decay of the proton.

1.3.3. Proton decay in the Glashow-Weinberg-Salam model
(Anomaly in the baryon current)

The fermion part of the
L=T4i(d+ Were + BY)u, + S 4,4, contains fields

if
¥, which belong to singlet and doublet representations of the
SU(2) group and which have definite values of the U(1)
hypercharge,Y;. The left-hand and right-hand components
of ordinary particles have different quantum numbers in the
GWS model:

(a).

which is an SU(2) doublet with hypercharge ¥ = 1/6, and
ug and dg, are SU(2) singlets with respective hypercharges
+2/3 and — 1/3. The electric charges of the particles are
Q=174 Y. Here ¢,Y-J,~ ¥; represents Yukawa terms of the
Lagrangian, which describe the interaction of fermions with
Higgs fields. The matrix ¢, is, of course, not arbitrary. The
requirements of SU(2) x U, (1) covariance are imposed on
it. In addition, the Yukawa terms change the chirality of the
fermions. Of the many properties of the GWS model only
one is of interest to us at present. The Lagrangian has not
only the gauge “flavor” SU(2) X U, (1) symmetry but also
a global symmetry U, (1), specified by the transformations
¥, —e“¢;: multiplication of all the fermion fields by the
same factor. The Higgs fields are not changed by this trans-
formation [in contrast with Uy (1) ]: 8, — ¢, . More precise-
ly, the GWS model has not one but two global U (1) symmie-
tries. The reason is that the Yukawa terms do not mix quarks

GWS Lagrangian,
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with leptons (because the Higgs fields are colorless). The
quarks and leptons can therefore be transformed in accor-
dance with the rule ¢, —e“ ¢, separately. These two U(1)
symmetries correspond to the conservation of baryon and
lepton charges. For example, the quark U(1) symmetry cor-
responds to the Noether current J) = Uy, ug
+ gy, up +d y,d, +dry,dx + terms with other
quarks = uy,u +dy,d + ... The conservation of baryon
current ensures the stability of the lightest of the baryons—
the proton— and forces all the other baryons to decay into
precisely one proton plus an even number of leptons ( + pp
pairs). The even number of leptons is in turn provided by
conservation of the lepton current J 7. In the GWS model,
however, the conservation of both currents J; and J " is
disrupted by an anomaly:

0 n=aTe W, W,,+bB,B,,
0,1\ = a Tr W, W, 4 bB, B,

Only the difference J;—J ;° is conserved (this is the so
called B-L law). As a result the proton in the GWS model is
in principle unstable: It should, even if only very slowly,
decay into 7% ™, etc.

We wish to emphasize that in most of the grand unifica-
tion theories the instability of the proton is related to non-
conservation of the baryon current in the c/assical Lagrang-
ian. In the SU(5) theory, for example, we do not have invar-
iance under rotation of the phases of exclusively the quarks
in the 5-plet

e o R AR
.

In contrast, the classical Lagrangian of the GWS model has
this invariance, but it is anomalous: It is violated at the quan-
tum level. This distinction not only is of fundamental impor-
tance but also leads to very different physical predictions. In
the GWS model the proton decays only in the presence of the
topologically nontrivial gauge field

AB= 5 dJudiz=a S Tr W, W, dtz+b S B, B, d%

=c S FEMFE™dag 4 contributions
of Z and W* bosons.

Inorder to achieve the relation AB 70 we need a field config-
uration with a nonzero topological charge. In a grand unifi-
cation theory, nothing of the sort is required: The proton
decays spontaneously, through virtual X and Y bosons.
The decay of the proton in the GWS model has no
“practical” importance. It might be caused by static parallel
magnetic and electric fields. These fields, however, would
have to be unattainably strong: E,H > m: . (Wehave omitted
from our equations all terms which stem from the masses of
quarks, so that these equations are reliable only in this limit.
For weaker fields, the baryon current is conserved, and the
FF contribution is cancelled by the formation of an induced
fermion condensate m(%}z) ~FF.y Furthermore, the fields
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would have to be classical: The decay p— (7,e * )y, for ex-
ample, also would not occur. Although F,U,I?H,, may not van-
ish for a pair of photons, the integral fFu,,T'"“,, d*x will always
vanish because of oscillations of the photon fields over time.
An external gauge field with a topological charge can be
produced by, for example, a dyon: a hypothetical particle
which carries magnetic and electric charges simultaneously.
Near a dyon, a proton would be unstable. Actually, we
would not need even a dyon—just a magnetic monopole. An
electric field which contributes to the integral fF,“,E“,d"x is
then produced by the proton itself. The decay of a proton in
the field of a monopole (monopole catalysis) is known as the
*“Callan-Rubakov effect” it is usually discussed in the wider
context of grand unified theories, but all that is required of
them is a monopole; the decay process itself can also be ex-
plained in the GWS model).

In principle, there is also a spontaneous decay of the
proton in the absence of external fields in the GWS model.
This decay is caused by instanton fluctuations. However, the
probability of such fluctuations and the contributions of
electroweak instantons to the amplitudes of physical pro-
cesses are usually vanishingly small:

4 - sin?0 \ 410

exp(- P )~up (———————)\10 .

Cem

It may be that instanton effects and the proton decay which
they induce become important at high temperatures.

These three examples are unified by a common proper-
ty: anomalies violate the conservation of “‘external ”* Noether
currents, with which no gauge bosons of any sort are inter-
acting. Asaresult, the anomalies lead to perceptible physical
consequences, but not pathological events. Because of these
anamolies, there are breakings of global symmetries: Mass
spectra become deformed, a degeneracy of states is lifted,
forbidden decay channels open up, and reaction amplitudes
change. However, no new physical states arise, unitarity is
not disrupted, and the ultraviolet properties of the theory do
not change.

There are, however, anomalies which radically change
the physical content of a theory. These are the “‘internal”
anomalies, which violate gauge invariance. In gauge theories
the space of states of vector lines is obtained from an infinite-
dimensional space of fields 4 by identifying the gauge-
equivalent fields 4 and G4 which are found from each other

by transformations from the group G = HG(x) of all gauge

transformations. The topology of this “‘space of orbits of the
gauge group” is extremely complex in the general case: Not
all the transformations from G reduce to superpositions of
infinitely small—infinitesimal—transformations. Discrete
sets of topologically nontrivial transformations may also ex-
ist which are not reducible to infinitesimal (uncontractible)
gauge transformations. Anomalies may violate invariance
under transformations of both types. The consequences of
these violations, however, differ.

If a theory is noninvariant under uncontractible gauge
transformations (in which case one would say that thereis a
global anomaly), this circumstance may present some insur-
mountable difficulties in a quantum description of the the-
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ory. For example, if the action S varies by 7 under uncon-
tractible transformations, then we would have

(over gauge transformations)

o5 ~ @8- S+ = (),

As a result, a generating functional is not determined for
such a theory and it is quite likely that an S-matrix is also
undetermined: For it we find an expression of the 0/0 type.
Another global anomaly, which arises frequently, appears in
the case 7, (G) = Z, where d specifies the dimensionality of
the space-time, and G is the gauge group. The effective ac-
tion then usually changes by na under uncontractible gauge
transformations with a topological charge neZ. The theory
can be formulated in a noncontradictory way only in cases in
which « is a multiple of 277. Global anomalies therefore fre-
quently impose severe restrictions on the form of any per-
missible theory; for example, they may require quantization
of certain charges in the Lagrangian. In many ways, global
anomalies present a situation analogous to that regarding
Wess-Zumino terms in odd-dimensional Yang-Mills
theories:

L—— - TrFy,

+ceqy.. .y Tr Ay, (Ougduy - a“qu“d‘l" cel)e
The condition that such theories be gauge-invariant requires
quantization of the coefficient of the Wess-Zumino term. We
will return to this analogy for a more detailed discussion in
Section 4.

The loss of invariance under infinitesimal gauge trans-
formations stems from the violation of the covariant conser-
vation of the fermion currents which are interacting with
gauge bosons. This situation could not occur in the case with
vector currents, and nonvector gauge interactions arise in
chiral theories where the left- and right-hand matter fields
have different quantum numbers. The simplest example of
the theory in which there is a potential internal anomaly is
the Glashow-Weinberg-Salam model. In example c) above
we ran into an anomaly in an external baryon current which
breaks the global symmetry responsible for the conservation
of baryon charge. At this point we are interested in an inter-
nal anomaly.

1.3.4. Internal anomaly in the Glashow-Weinberg-Salam
mode/

We can write the action in terms of left-hand fermion
fields (a right-hand particle is the same thing as a left-hand
antiparticle). We denote by y, the right-hand fermions, i.e.,
the left-hand antifermions, which are SU(2)-singlets, €, ,
i,, d;, ..; and we denote by ¥, the left-hand doublets
(e”,v)y, (u,d), ... Furthermore, as everywhere else in this
review, we will add to the action some “sterile’” right-hand
fields yr and ¢ , which do not interact with gauge bosons.
This approach makes it possible to formally write a Lagrang-
ian in terms of Dirac fields y = (y.,yr ) and ¢ = (¥ ,¥g ).
We choose the Higgs sector in accordance with the so-called
standard GWS model: the only scalar ¢ which is an SU(2)-
doublet. The Lagrangian of the fermions and scalars is then
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L= 3% [6— 0V +¥B) 25 |,

S 5

7

— 41—,
+Zci1¢c‘,bi ZV xgt+ &

1)

o 0 W LY B) 12V (1819
For our purposes, the particular choice of Yukawa constants
¢, is unimportant. The matter currents which interact with
the gauge bosons are

wae . — 1 —
Juo=1i Z Pivn

S g, + 41" D — c.c.

(Dy=0+W,+Y,B, W, = —iWit),

. R S a—
JE:Z 2 Yi'LPi‘Vu. 275 P+ 2 YjXJ"Vu- —EELXJ‘

J

+Y.¢*D, ¢ — c.c.

We see that these currents are not purely fermion currents;
they also contain Higgs fields. This circumstance is crucial
to the Higgs effect in general and to the GWS model in par-
ticular. Because of it, a spontaneous symmetry breaking due
to the formation of a condensate (¢#) and the generation of
masses for fermions and gauge bosons does not violate the
conservation of the currents /% and J® and therefore does
not disrupt the gauge invariance of the theory.

On the other hand, this modification of the currents
does not affect the anomaly. The reason is that for scalars the
mass terms do not disrupt the conservation of /*'® [an arbi-
trary potential ¥'(|¢|?) already plays a role in the Lagrang-
ian], so that scalar regulator fields to not contribute to an
anomaly. The mass terms, on the other hand, for fermion
regulator fields, MW, ¥, + MX,X,, give rise to an anomaly.
A very important point here is that the large masses of the
regulators cannot arise in the same way as the masses of
ordinary physical fermions, i.e., as a result of Yukawa cou-
plings with Higgs particles. In fact, it is impossible to write
expressions of the type C,,-¢W,-XJ + c.c. with very large con-
stants C;; in the Lagrangian of the regulators. After the field
@ is separated out into a condensate, such terms would lead
tothe formation of masses M ~ C (¢), of the regulator fields,
but this event would not be a regularization. The simplest way
to understand this situation is to recall that the ultraviolet
properties of the theory do not depend on the choice of a
vacuum for the perturbation theory, and near an unstable
vacuum, ¢ = 0, the fields ¥ and X would have no masses at
all. An explicit infinity is present in the case of this “regular-
ization” in, for example, the effective potential of scalars,
@ =¢~ — (¢) which is generated by single-loop diagrams
with fields ¥ and X which propagate in a loop:

Verr () ~ In det (id-+C ($) -+ Cqp)

~ 2 e Tr _ dp
n j (P+C (b))
n=4

n cs
~ MG 2 g O
n=5

n=0
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here A, 4 are the ordinary divergent parameters of the
effective potential, which are free parameters of the theory
(the vacuum energy and the mass and the self-effect con-
stant of the scalar field). All the difficulty stems from the
circumstance that the other terms in the expansion of V4
also diverge in the limit C— oo . It is this circumstance which
permits us to say that the theory would be unregularized.

The regularization rules require that all the interaction
constants of the regulator fields (including the Yukawa con-
stant C) must be the same as for physical fields (i.e., C;
= ¢; ), and the masses of the regulators—and they alone—
must be large. In the case at hand, this requirement means
that terms MYV, ¥,, MX, X, must be incorporated in the La-
grangian of the regulators. Mass terms of this sort violate the
conservation of the chiral currents J® and may, generally
speaking, lead to a quantum anomaly which violates the
gauge invariance of the theory at the single-loop level. Ac-
cording to the general rules (Sections 2 and 3), this anomaly
is of the form

a a 1
(Dud )" ~ gy Tr 199,  ApdyAs+ + AgdyAs)

i
(0, J5) ~ 2 Y iaprs Tr 0 (Ag0yds + 5 Apdyds) ;

here A4 represents the field 4, = —i(Wt°+Y.B,),
which corresponds to the gauge algebra SU(2) xU(1)1,
and the trace is taken with respect to this algebra. The t“ are
the generators of an SU(2) subalgebra. In terms of the fields
W” and B we would write

0T~ taanda [ (3 Y1) (3 WhoWi— FWEWI)
i

+( 2 Y1) BdyBs ).
i

As regards (D, J
1
eanvs Tr 19, (Wg0,Ws+ 5 WoW,Ws)

( 2 Y1) eapyoda | By Tr e (0,Ws+ W) .

~)°, this divergence contains two terms:

The first is proportional to d°*° and therefore vanishes for
the SU(2) algebra. Consequently, if there is to be no anoma-
ly in the current J )} due to SU(2)-gauge bosons in four di-
mensions, the sum of the hypercharges must vanish. The
conservation of the U (1) current J ? requires that the hyper-

charges satisfy one more condition: 'Y, =0, EYf =0.

These so-called anomaly cancellation conditions are re-
quired for the validity of the ordinary treatment of the GWS
theories with a single Higgs doublet. In the standard GWS
model these conditions hold separately for each generation
of fermions when the three-color nature of the quarks is tak-
en into account:

Yo= — 2, Yp=+1, Y,=—=,
2
Yo= +4, Yy=—o,
Ya=+5, Yo=+5,
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EiYi=O+3-O=O,
In=[r+2 ()]
2 (=)' (-3 + (+)']-4-1 -0

A more complex example of a theory with a cancellation of
anomalies is

1.3.5. Four-dimensional grand unified SU(5) model

Each generation of fermions in this model belongs to a
5- or 10-plet according to the SU(5) gauge group. An
anomaly is found by summing expressions

1
camBu T (4 )
~ 3aﬁvbaa (dabcAgayAg +_Z_ dabmfcdmAgA;Ag)
for fermions in all representations of the group; here
-é— (dab"' + ifabc) 1,
fabc — _fbac’ dabc___ +db“°.

1t = const. 82

Since the structure constants " do not depend on the
representation, the condition for a cancellation of anomalies
in a four-dimensional theory is

d;zzbc — 0.
(over all representations R which contain chiral fermions
This condition is satisfied for the SU(5) model, by virtue of
the relation d § + d “ = 0.

A violation of the anomaly cancellation conditions
would have many unpleasant consequences and might even
make the theory internally inconsistent. The most important
of these unpleasant consequences occurs because the inter-
action with an unconserved current would “‘give life” to
gauge degrees of freedom of vector bosons. As a result, at the
quantum level the theory would have more degrees of free-
dom than it would in the classical limit. This situation would
contradict the standard understanding of the unitarity of a
quantum field theory. We will return to unitarity later on,
but at this point we wish to explain that there is a simpler
way to build in a mechanism for removing anomalies and to
restore the unitarity of the theory in its ordinary sense than
the approach of the GWS and SU(5) models. Instead of
choosing the composition of fermion fields in such a way
that their contributions to the anomaly cancel out, one could
compensate for the noninvariance of the effective action
which stems from the anomaly in the fermion determinant
by means of explicitly noninvariant terms in the original ac-
tion. For example, in the case of abelian theory one could
add to the action of a four-dimensional theory an expression
of the type

B 9y 55 FuFudse

~ 1 | @32 a%0, 4, (@) o FuFun -
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Under gauge transformations 4, —4,, + J,, € the variation
of thisincrement is #ifeF, ., F}W d*x, and it can cancel the vari-
ation in the fermion determinant. This is a quantum modifi-
cation of the action, since the invariance of the fermion de-
terminant is manifested in only first order (not zeroth
order) in #i, and the compensating term in the action must be
proportional to #. The difficulty is, however, that it is neces-
sary to add to the action a nonlocal expression, whichisnota
counterterm in the standard sense of this word. A nonlocal
situation can be avoided if there is a scalar field which varies
in an inhomogeneous way under gauge transformations
A, —»A, + 3d e:y—y + £ The compensating term will then
depend on the fields in a local way: § yF,,, F,,d*x. The role
of the scalar y can be played by the phase of an ordinary
U(1)-charged scalar ¢ = |¢le”t . In this case, the transfor-
mation ¢ — e ¢ will not change |¢|, and we have y»y + €.
The only problem is in writing the kinetic term for the field
v- There are two possibilities of interest. First, one could
write a gauge-invariant expression (d, y — 4, 2. A kinetic
term of this type has the shortcoming that it leads to an
unrenormalizable four-dimensional theory: It is simple to
recognize in this expression a (gauge-invariant) mass term
for the vector boson. Nevertheless, in theories on which the
requirement of renormalizability is not imposed a mecha-
nism of this sort for removing anomalies is very useful. This
comment applies, for example, to the ten-dimensional field
theory which is found from certain versions of superstring
theory. In this case the field theory describes only the low-
energy limit of the complete theory and may be unrenormali-
zable. The anomaly cancellation mechanism which was dis-
covered in these models by Green and Schwarz®” is a direct
generalization of this example, except that the role of the
field y is played there by an antisymmetric field 8,,,..

The second possibility for generating a kinetic term for
the field arises in non-abelian theories. A non-abelian gener-
alization of the expression XFf‘—the so-called Wess-
Zumino-Witten  Lagrangian L, (y,4)—is  not
linear in y, and it contains derivatives of y, including
contributions of the type £, Tryd, ydsxd, xdsx,
Eapys 1T X0, ¥Apd, As, ... Accordingly, L yzw describes a
certain dynamics of the field y even at the single-loop level.
Attempts have been undertaken—so far without success—
to prove that there are no pathologies in a model of this sort.
If such a proof were to be found one might also suspect that
renormalizability is conserved since L w,w , in contrast with
(d.x — A4, ) contains no dimensional parameters.

At any rate, even if a noncontradictory theory with an
internal anomaly is constructed through the introduction of
auxiliary fields y, which are not present in the classical limit,
models without anomalies would remain quite special. A
particular case of this situation is the celebrated problem of
the critical dimensionality in string theory. Away from the
critical dimensionality, the theory is either meaningless
(d>d.. ) or contains an additional degree of freedom
(d <d. ). At the same time, the massless excitations disap-
pear: A gap appears in the spectrum. Other dynamic charac-
teristics become much more complicated. In the discussion
below we will require cancellation of internal anomalies.

1007 Sov. Phys. Usp. 29 (11), November 1986

Now, summarizing this brief review of the most impor-
tant applications of anomalies in the physics of elementary
particles (although we have not taken up string theory,
where the anomalies are simultaneously the most important
and the most interesting entities), we wish to offer some-
thing in the way of a classification of anomalies. We see three
possible principles for such a classification.

a) Anomalies: local and global. Examples of global
anomalies are the Witten SU(2) anomaly*® and the corre-
sponding Redlich anomaly in an odd-dimensional non-abe-
lian Yang-Mills theory.*>*' These anomalies correspond to
a noninvariance of an action under topologically nontrivial
gauge transformations and are not manifested by a noncon-
servation of currents of any sort. All other anomalies which
describe a violation of invariance under infinitesimal trans-
formations and which are associated with the nonconserva-
tion of Noether currents are “local.” There should be no
global anomalies in gauge theories. This statement means
that if some field contributes to a global anomaly, then it is
necessary to choose the complete set of fields in such a way
that this contribution is cancelled out. In the case at hand,
the change in the action under topologically nontrivial gauge
transformations { which satisfy the condition g(x) — 1 at in-
finity ] must be a multiple of 27i. Otherwise, the generating
functional of the theory, proportional to e ~*, would not be
determined.

The entire classification below pertains to local anoma-
lies alone.

b) Anomalies in global and local (gauge) symmetries. We
discussed the difference between these two classes of anoma-
lies in detail in Subsection 1.1. At this point we note that an
anomalous divergence of the same current can be described
as a breaking of either a global or local symmetry. The situa-
tion depends on whether gauge bosons are associated with
this current in the Lagrangian or not. If not, then global
invariance is violated; if yes, then it is local invariance. The
violation of a local (gauge) invariance would seem to be
forbidden, and the contributions of different particles to an
anomaly would have to cancel out in a consistent theory.
The condition that the anomalies of currents which are inter-
acting with gauge bosons must cancel out imposes some se-
verely restrictive selection rules on realistic theories. Here
we will mention only the two leading examples: the predic-
tion of the existence of a c-quark and, more generally, the
prediction that the numbers of quarks and leptons are equal,
on the basis of the cancellation of anomalies in the Glashow-
Weinberg-Salam theory; and the unambiguous fixing of a
chiral (D = 10) supergravity without matter fields as a con-
sequence of the cancellation of gravitational anomalies.**
An even more important example is the fixing of the gauge
group in superstring theories.”?

A violation of a global symmetry, in contrast, poses ab-
solutely no danger to the self-consistency of a theory, and it
is not necessary to require that such anomalies cancel out.
An important application of global anomalies was proposed
by ’t Hooft.?® His comments are based on two facts. First, an
anomaly (axial or chiral) is determined by a single-loop dia-
gram and does not depend on the subsequent corrections
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associated with the interaction between fermions; this is the
Adler-Bardeen theorem.*> Second, an anomaly is associated
with the existence of massless excitation; this is a result es-
tablished by Dolgov and Zakharov.® The Adler-Bardeen
theorem follows immediately from the circumstance that a
regularization which breaks no symmetries other than dila-
tation and supersymmetry exists in two loops and above.
This regularization might be, for example, a regularization
by higher derivatives.>* Adler and Bardeen themselves dis-
cussed the situation in electrodynamics and used a regular-
ization which introduces a mass for the photon but not for a
fermion. (See also Ref. SO regarding this theorem.) This re-
lationship between anomalies and the existence of massless
excitations can be seen simply from the circumstance that
the anomalous symmetries are precisely those which are
characteristic of massless fields, and they do not survive
when a mass is introduced. Otherwise the Pauli-Villars regu-
larization would not break the symmetry, and there would
be no anomaly. Dolgov and Zakharov generated a clearer
assertion: An anomaly is associated with a nonzero imagi-
nary part of some correlation function (Subsection 1.2),
and, furthermore, this imaginary part is proportional to
8(s), i.e., is due entirely to massless excitations [see, for ex-
ample, Eq. (1.19) in the preceding section ]. The conclusion
which ’t Hooft reached from these assertions is that the
anomalies in a theory with an interaction must be the same as
when the interaction is excluded (i.e., the anomalies must be
the same as the anomalies of the corresponding fundamental
fields, which appear directly in the Lagrangian). Conse-
quently, even in the strong-coupling region we know some-
thing about the spectrum of the theory. If the anomalies for
fundamental particles are nonzero, the spectrum will a/ways
have massless excitations. These excitations must have
quantum numbers such that they reproduce the results for
the fundamental anomalies. An important point is that if a
theory has a symmetry of some sort, but the Lagrangian does
not contain the corresponding Noether currents, the consis-
tency condition still holds: It is sufficient to introduce an
infinitely weak interaction of these currents with nonphysi-
cal (“spectator”) gauge bosons. As an example we might
cite quantum chromodynamics. The fundamental fermions
in this theory are quarks. If they are assumed to be massless
(the chiral limit) then the theory at the classical level will
have an axial symmetry, but the symmetry will be broken by
an anomaly. The physical hadrons are constructed from
strongly interacting quarks and are generally massive. Nev-
ertheless, the consistency condition guarantees that massless
hadrons will exist in the chiral limit. These are the pseudo-
scalar mesons 7, K, v, whose masses are proportional to the
masses of the quarks. (The masses of the baryons, in con-
trast, are essentially independent of the quark masses.)
Pseudoscalar mesons interact directly with the axial current
J, = d,m, and they reproduce (Fig. 5) an axial anomaly. In
quantum chromodynamics we have a good understanding of
the actual mechanism for the appearance of the masses of
hadrons: In the chiral limit, this mechanism is due entirely to
the spontaneous breaking of axial invariance; the masses of
all the hadrons are proportional to the breaking parameter,
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FIG. 5. Example of the 't Hooft consistency relation. The axial anomaly in
terms of fundamental quark fields (a) coincides with the axial anomaly
which is expressed at the anomalous vertex y (b). The results for the
anomalous divergence of an axial current calculated for fundamental
fields (quarks) and physical fields (7 mesons) are the same.

which is the asymmetric fermion condensate (); and the
pseudoscalar mesons are goldstone particles which arise in a
spontaneous breaking of symmetry. The °t Hooft condition,
however, makes it possible to draw the conclusion that mass-
less bosons exist even without this understanding of the dy-
namics: They exist exclusively because of the form of the
Lagrangian and the massive nature of the physical fermions,
in this case, baryons. For a more detailed discussion of the
consistency conditions we refer the reader to the original
paper by 't Hooft*® and the many subsequent papers.>’

¢) Basic classification of anomalies. This classification
of course involves an enumeration of the various anomalous
symmetries. We already mentioned, back in Subsection 1.2,
that we will not be taking up supersymmetric or gravitation-
al anomalies. We should still say a few words about a confor-
mal anomaly. Dilatational invariance usually stems from the
absence of dimensional parameters in the classical Lagrang-
ian. In a regularization of a divergent theory, a parameter of
this sort—a normalization point—unavoidably appears
(this phenomenon is known as a “dimensional transmuta-
tion”). There is accordingly no dilatational invariance in
theories with divergences. Bearing this source of symmetry
breaking in mind, we can easily calculate the anomalous
trace of the energy-momentum tensor, which is equal to the
divergence of the dilatation current: 7, = d,D,,. For ex-
ample, a Yang-Mills theory L = (1/4a) Tr F2, becomes the

py

following when quantum corrections are taken into account:

L (? = TrFi,.

4
4o (g%/p?)
The breaking of dilatational invariance results entirely from
the appearance of the dependence of the effective charge
a( ¢*/u?) on the momentum transfer which arises here.
Correspondingly, we have

2g"Y  a|gl'/t L 28"V da

no_ [
Tu- BTIRE 6g“'v o? ag“V L.
the dependence of @ on g*” is very simple:
o (guv v ) gloa ¢ _da___ da
T Y pf a(e2/py)  dlng ’

Here T, is expressed in terms of the B-function B(a) = da/
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The broadest class of anomalies stems from axial and
chiral currents. These currents are usually fermion currents,
but we also know of some anomalies which stem from chiral
bosons: self-dual tensor fields.”® In the present review we
will discuss only spin-1/2 fermions. The anomalies which
arise in this case differ in two other characteristics: the na-
ture of the interaction of the fermions with gauge fields and
the choice of current whose divergence is to be calculated.
On the basis of the first of these characteristics—the form of
the Lagrangian of the theory—we distinguish between a
Dirac anomaly, with

Lyge = gyt A;
and a Weyl anomaly, with

t“‘PAu

= A,

Liypy = “PYu
Eachis a particular case of the general Bardeen anomaly
Ling = i0put WV + it pdi =0 (V + 4¥) ¥,

The Bardeen anomaly will be discussed only briefly here,
since I do not have a clear picture of its place in the overall
formalism of the hierarchy of anomalies (Section 3). As usu-
al, if 1 is replaced by unity in a Lagrangian, we will speak in
terms of an abelian theory.

In these theories we may be interested in the diver-
gences of various currents, primarily vector, axial, and
chiral currents. The currents themselves may or may not
contain color generators, depending on how the Lagrangian
of the theory is constructed.” We will call the corresponding
currents and the anomalies associated with them “‘non-abe-
lian” and “‘abelian.”

Two sections of the present review (the second and
third) are devoted to calculations of anomalies, i.e., calcula-
tions of the expressions on the right sides of equalities of the
form D, J, =.&. Here .«/ is some function of the gauge
fields, 4, =it°4 ;. We will derive expressions for &/ (4) in
three different cases.

1) Abelian axial anomaly in a Dirac theory (abelian or
non-abelian) in a 2n-dimensional space. The expression for
this anomaly is very simple in form:

G A —y Tr F, F

B Al (1.23)

100 e%on L AR P P
2) Non-abelian axial anomaly in the same Dirac theory

(abelian or non-abelian). The entire difference from the pre-

ceding case is the appearance of a covariant derivative on the

left and of a color generator on the right

D)= Trt°Fq o, F, (1.24)

€ ineaty, %on-1%2n

(2ﬂ)"

We have stipulated that we will use a Pauli-Villars regu-
larization which conserves vector currents everywhere.
Consequently, the expressions for the axial and chiral anom-
alies in the same theory are the same. To avoid the appear-
ance of a difference in the normalization, we adopt the con-
vention that we will always calculate the divergence of the
current Jf,“ =9y, (1 — )t (while the Lagrangian of
Weyl theory contains
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5 i),

A

The chiral anomaly in a Dirac theory is thus the same as the
axial anomaly in (1.24):

2 " ga
D Ju)Drr—"“ €q ..aznrlrt Fonloc2 F

——— a [¢ N
(2m™ nl 1 on~1%2n

(1.25)

3) Non-abelian chiral anomaly not in a Dirac but in a
Wepl theory. This case, in contrast, is the most interesting for
modern theories. It is in this case that gauge invariance is
violated: The “‘internal’” current with which the gauge bo-
sons interact is not conserved. In a transformation to a Weyl
theory, the expression for the chiral anomaly changes mar-
kedly. In particular, it ceases to be gauge-covariant, and it is
not written in terms of the intensities F,;. The derivation of
a general expression for the chiral anomaly in a Weyl theory
is based on the Wess-Zumino relation,® which arises specifi-
cally because we are considering an anomaly in an internal
current. We consequently have &, (4)=Tr uD/LJﬁ

=8,5.q{4}; i.e., this quantity is equal to the variation of
the effective action (which incorporates single-loop correc-
tions) for a gauge transformation of the fields A:
5,4, = [4,u] +d,u=D,u. Since the gauge transforma-
tions form a group, it is easy to see that the relation
6,9, -6, , =, holds. This is a consistency condi-
tion. There are various ways to make use of this relation.
Wess and Zumino themselves used it to reconstruct
o, (4)y from the well-known ‘“leading term”
True, . 040, - O o Aa, - The consistency condition

I
does not determme &, (A) unambrguously, but only within
a variation of some arbitrary local functional of the fields 4.
The addition of such a functional to the effective action,
however, is allowed by the renormalization procedure; this
step is a so-called addition of local counterterms. The consis-
tency condition therefore unambiguously fixes only that
part of the anomaly which is independent of the choice of
local counterterms, i.e., independent of the choice of regu-
larization. However, it is precisely this “‘truly anomalous”
contribution to ./, (4) which is of physical interest. It is
easy to see that all structures which contain the £-symbol,
and only such structures, are “‘truly anomalous.”

A method for deriving a general expression for =7, (4)
on the basis of a so-called hierarchy of anomalies, rather
than through an iterative solution of the consistency solu-
tion (the approach taken by Wess and Zumino), is now
available. This question is examined in Subsection 2.4 and
Section 3; at this point we will simply outline the basic idea.
Instead of constructing nonlocal functionals which generate
&7, (A) one can make use of a local functional, but one
which depends on one additional field. If the dependence on
this field drops out under the gauge transformation, we ob-
tain a possible candidate for the role of .o/, (4). It turns out
that when we take this approach we can find a structure with
anée-symbolin &, (4). The functional which is found, how-
ever, cannot be accepted as a counterterm, since it depends
on an additional nonphysical field. (It may turn out to be a
counterterm in a theory in which there are scalars in an asso-
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ciated representation of the gauge group. In such a case, the
additional field can be identified with a gauge degree of free-
dom: the phase of these scalars. In such a case, the anomaly
turns out to be removable.) In general, the functional ac-
quires a natural meaning in a space with a dimensionality
one unit larger, where the additional field is interpreted as
the (2n 4 1)st component of 4,, . In this case this functional
is the same as the Wess-Zumino term, which, as we have
already mentioned, itself arises in the fermion determinant
of a (2n 4+ 1)-dimensional theory. The relationship between
a (2n + 1)-dimensional Wess-Zumino term and a 2p-di-
mensional function 7, (4) could naturally be called the
“relation among anomalies” of their “hierarchy.” Further-
more, the hierarchy of anomalies continues even further: up-
ward, to 2n + 2 and downward, to 2n — 1, etc., dimensions.

We have one more comment regarding chiral anomalies
in Weyl theories. One might ask why we use a Pauli-Villars
regularization in a discussion of such anomalies. One might
recall the example of an axial anomaly [see (1.22)], in
which an appropriate choice of regularization would make it
possible to conserve an axial current by virtue of the noncon-
servation of a vector current. In a Weyl theory, we should
strive to conserve chiral currents, while there is no need to
conserve vector currents. The situation is, however, that it is
not possible to achieve the conservation of chiral currents
and simultaneously achieve Bose symmetry. Under these
conditions, the conservation of vector current is a totally
harmless additional condition which has no effect of any sort
on the existence of an anomaly. We will clarify this assertion
in the by now familiar example of a two-dimensional field
theory. From (1.20) we easily find the following equation, in
addition to (1.22):

i . 1 v i
r]a']"l g B — IEgy) "3 ( i% B CgMV) (8py — iegy) Ap

;% (QaAa+ ieaﬂquﬂ)' (126)

As promised, the dependence on the arbitrary param-
eter ¢ has dropped out of the expression for the Weyl
anomaly.

Let us outline the rest of this review. Section 2 is devot-
ed to a calculation of anomalies. In Subsection 2.1 we use
diagrams in a two-dimensional field theory to demonstrate
the difference between Dirac and Weyl anomalies. In con-
trast with the calculations which we already presented in the
Introduction, we will also discuss non-abelian contributions
to anomalies in that subsection. In Subsection 2.2. we de-
scribe the calculation of anomalies by the Vergeles-Fujikawa
method. This method is a particular case of the operator
formalism, now used widely (e.g., Ref. 54), which dramati-
cally simplifies the calculation of diagrams in gauge theories.
The Vergeles-Fujikawa method immediately points out the
relationship between the nonconservation of an axial current
and the index of the Dirac operator, ind (/D) =Sp #°. It
allows us to find expressions for the Dirac anomalies in their
most general form. In the case of a Weyl anomaly, this meth-
od can be used to calculate the anomaly in each individual
case, but it is difficult to find results of a general nature
(which hold in all dimensionalities). We will list the general
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principles for calculations by the Vergeles-Fujikawa meth-
od. We hope that where necessary the reader will be able to
use this method without any difficulties to calculate any
anomalies. In Section 2.3 we studied the relationship
between Dirac anomalies in even-dimensional theories and
Wess-Zumino terms in odd-dimensional gauge theories. Un-
fortunately, it has not yet been possible to put the corre-
sponding relationship between Wess-Zumino terms and
Weyl anomalies in a simple form. (Alvarez-Gaumé and Gin-
sparg™® have proposed a very instructive method; unfortu-
nately, that method is too long to be included in the present
review while in a summary it would require appealing to new
methods.) In the brief Subsection 2.4 we will accordingly
discuss a different method for deriving a Weyl anomaly: on
the basis of Wess-Zumino consistency relations. Finally, in
Subsection 2.5 we calculate an axial anomaly on the basis of
the imaginary part in a four-dimensional Dirac theory. To-
gether with the example of this calculation for D = 2 which
we already discussed in Subsection 1.2, this yields a complete
idea of the relationship between anomalies with massless ex-
citations, and more generally, how an anomaly is construct-
ed at the level of currents, rather than at the level of their
divergences.

The following section, Section 3, is devoted to the hier-
archy of anomalies. In that section we will not refer to fer-
mions; we will discuss only boson expressions or, more pre-
cisely, differential forms which stand on the right sides of
anomalies. The differential forms here are simply a laconic
language for writing convolutions of fields 4, with ¢-sym-
bols. The relationship between the right sides of the anoma-
lies is of course the same as that between the corresponding
fermion determinants (Subsections 2.3 and 2.4). Zumino®'
can apparently be credited with the greatest contribution to
the discussion in the physics literature of the relations
between the right sides of anomalies. Corresponding ideas
date back to papers by Gabriélov, Gel’fand, and Losik.>*> We
should also mention the important papers by Novikov et
al.,”® Faddeev et al.,’* and Witten and Alvarez-Gaumé.** In
Subsection 3.1 we will briefly recall the definition of the dif-
ferential forms and the operation of external differentiation,
d. Subsection 3.2 is devoted to the general structure of the
“inverse” operation d ~'. More important for the hierarchy
of anomalies is a modification of this operation which is ap-
plied to abounded set of differential forms, which wecall k , .
Zumino®' appears to have been the first to use this operation
in the literature on anomalies. In the present review, this
operation is introduced in Subsection 3.3. The hierarchy of
anomalies itself is described in Subsection 3.4. In the same
place, we derive a general result for a chiral Weyl anomaly.

In Section 4 we return to the calculation of the fermion
determinant in odd-dimensional gauge theories. The appear-
ance of a Wess-Zumino term is treated here as a phenome-
non analogous to Witten's global SU(2) anomaly. The
meaning of this analogy is explained in a brief introduction
to this section of the review. In Subsection 4.1 we then take
up global anomalies, and in Subsection 4.2 we examine the
origin of the Wess-Zumino term. At this point we simply
note that global anomalies exist in many theories, including

A. Yu. Morozov 1010



gravitational theories.*>*’ So far, we have no general classifi-
cation of them.

We do not have space in this review to include applica-
tions of anomalies. At present we may distinguish among
three types of such applications. First, there is the question
of the cancellation of internal anomalies or their removal by
local counterterms in specific physical theories. Second,
there is the question of extracting ‘“dynamic” information
from anomalies by means of the ’t Hooft conditions,® which
we mentioned in Subsection 1.3. Third, there is the question
of calculating the anomalous contributions to fermion deter-
minants (i.e., the anomalous contributions to ¢ S""). The
latter problem is particularly useful in cases in which the
determinant has no nonanomalous part. Such cases usually
arise in two dimensions, but they may also occur at D = 4,
in, e.g., a study of the chiral Lagrangians which describe the
interaction of pseudoscalar goldstone particles.

In concluding Section 1, the introductory section of this
review, I wish to thank Yu. A. Simonov, whose initiative led
to a series of lectures on anomalies at the Institute of Theo-
retical and Experimental Physics and to the writing of the
major part of this review. I thank L. B. Okun’ for suggesting
publication of a shortened version of this review in Usp. Fiz.
Nauk. I also thank V. M. Belyaev, A. 1. Vainshtein, I. M.
Gel’fand,,R. Jackiw, A. D. Dolgov, V. 1. Zakharov, B. L.
Ioffe, R. E. Kallosh, D. R. Lebedev, V. A. Novikov, M. A.
Ol’shanetskii, A. M. Perelomov, A. V. Smilga, L. D. Fad-
deev, S. L. Shatashvili, A. S. Shvarts, M. A. Shifman, and M.
1. Eides for discussions of various questions taken up in the
text. T wish in particular to thank M. B. Voloshin, V. G.
Knizhnik, Ya. I. Kogan, and A. A. Roslyl, who influenced
essentially the entire contents of this review.

2. CALCULATION OF ANOMALIES

2.1. Calculation of anomalies from diagrams in two-
dimensional theories

The simplest way to derive anomalies in currents which
are conserved at the classical level is to calculate diagrams
for (covariant) divergences of currents through the use of a
Pauli-Villars regularization. We write the current in the
form J=; ~j. D, =0, DI = — Dy, ~M,.,#0; from
the technical standpoint the anomaly is associated with a
contribution of regulators which survives in the limit
M, ., — . We will make use of this approach frequently. We
will use the capital letter M in this section of the review to
mean the regulator mass: M =M, .

In a Pauli-Villars regularization, vector currents are al-
ways conserved (covariantly):

Jf'- = ‘?Yuta‘lﬂ - W'Vutaqr’
(DuJu)a = (au.']u. —+ [Ap.Ju.Da
= (Dpj)* — (D) *)*=0—-0=0.

On the
current

other hand, the _divergence of an axial
S =4y, Yty — Yy, 'tV is  nonzero:

(D, J )" =2imyy t “dh — UMY 1Y - — 2iMVyS o,

nt-—0
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FIG. 6. Divergence of the current in terms of diagrams.

In terms of diagrams, these assertions are arrived at in the
following manner. For simplicity we consider an abelian the-
ory, in which the covariant derivative is the same as the ordi-
nary derivative. The expression for any diagram (Fig. 6)
which contributes to a divergence of the vector current then
contains the combination

1 q — 1 - 1 — } .
pt+g—im

pta—im  p—im (2.1)
here jp is the integration variable in the loop. We now consid-
er the particular case in Fig. 7. If we shift the integration
variable { p—p + k,) in diagram b, this diagram cancels out
with diagram c. Similarly, the shift p—p + &, causes dia-
gram d to cancel out with diagram a. In the case of a diagram
with an arbitrary number of external ends it is necessary to
sum over all permutations of the external momenta and to
introduce shifts of the integration variable to all possible
linear combinations of them. It is sufficient to consider only
single-loop diagrams, since the other loops are fixed by pho-
ton lines, whose virtuality has no effect of any sort on the
cancellation of diagrams. An important point is that we are
working with regularized currents. It is this circumstance
which allows us to shift the integration momenta freely, al-
though on the other hand we need to take account of the
regulator contributions explicitly. In the case of a vector cur-
rent, the cancellation of diagrams does not depend on the
mass of the fermion, so that in the Pauli-Villars regulariza-
tion vector currents are always conserved (covariantly).
For the vector current in (1.1) the matrix y° also appears:

g
V4 PHg=p—ky -k,
ﬂ/ 7 N2
O,
. 1% 4 s
> b
a
z AYG=p=hy=hy
+ -
p~ky Dk,
Pk, Stk c d

FIG. 7. Exampie of the calculation of a divergence of the current (see the
text proper for an explanation).
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FIG. 8. Divergence of an axial current in an external field (D =2). The
contribution is linear in the external field.

. 1 1 W
W= g ———
ptgq—im p—im pt+g—Iim p+im
=—(A1 - = Ili )YS—A } 2im ,..1 Ys

p+im ptg—im ptg—im p+im

=-.—-Ti‘—"2im?s = L +[Y5 = L + = ,1 75]
pt+q—im p—im p—im pt+q—im
(2.2)

The expression in square brackets drops out of the result for
the same reasons as in the discussion of the vector current;
the first term stays. Consequently, the diagrams for the di-
vergence of the axial current are the same as the diagrams for
2imyyy.

In order to calculate the axial anomaly we thus need to
find the average of 2IMWy°t* ¥ in the external field. The
result will of course depend on the nature of the interaction
of the fermions with the external field, and it will be different
in the Weyl and Dirac theories. We can demonstrate the
situation in the very simple example of two-dimensional fer-
mions. At D =2 we need to consider only biangular and
triangular diagrams. The expression for a four-tail is

d? 1

m | =0 (ar)

i.e., it vanishes in the limit M — o0 . The two diagrams which
we need to calculate are shown in Figs. 8 and 9. We can write
expressions for these diagrams.

Dirac theory:

21 20 j

2

Tr M9 (p+iM) Yo (p+g+ 1) d%p
P (e F L M7 @

= — M5 (Try*y,9) | %f—l;—,;:)% -%0(—;7)
= +—62:t—b3aﬁi95+0 (%) .
[ All the equations are written in Euclidean space, so that the
fermion propagator is (p—iM)~', and we have
v, =ie.gvg-1 The contribution of this diagram corre-
sponds to the term

1 1 .
o eaﬁé‘aAE = ) €qp Tr »‘“0“/15

(2.3)

o 4o 5 Tr MY (P4 iM) Yo (p4-iM) vs (b+1M)  gep
- 4

(2 M2 @EmE

2MT ";{7
d 4,6

F1G. 9. Divergence of an axial current in an external field (D = 2). The
contribution is quadratic in the external field.

in the divergence of the axial current (D,J},)“. We also
note that in order to go over to an abelian theory we would
have to not simply discard the indices a, b, ¢, ..., but also
multiply all the expressions by 2. The reason is the normali-
zation of the generators ¢: Sp t“¢* = 6 /2.

Weyl theory. All that we need to do in order to derive an
expression for the diagram in Fig. 7 is to replace y, by
¥« (1 — ¥°)/2. We again recall that the Pauli-Villars regu-
larization explicitly conserves a vector current, so that in
this regularization an anomalous divergence of a left-hand
current

—_ 1 _:vb
Juf =¥ —— 1
is the same (aside from the sign ) as the divergence of an axial

current,

P — b
—Try* (p+ M) y, —57

(p -+ q-+iM)
1., ~ - N .
= = 5 M Trviyeq—Tr (p—iM)y, (p+q-+id)y,

and the result for the overall diagram is

ab

—‘%n— (eapigs —qa) =i;:: (‘Saﬂ—'isaﬂ) 9p- (2.4)
There is a difference in the normalization of the Weyl and
Dirac anomalies. In D = 2n dimensions, the leading dia-
gram contains an extra factor of — 1/(n + 1) in a Weyl
theory. The term without £ in (2.4) is not truly anomalous
but in two dimensions, by virtue of the relation J |, = ig,;J,,
the field 4 satisfies the relation 4y = (8,5 — ig,45)4,, SO
that there is no point in discarding this term. In the multidi-
mensional case we do not write out such contributions [they
are characterized by the circumstance that one obtains
through a gauge transformation an expression which is local
in terms of the fields 4, e.g., u9, A4, = — 8,(1/2)47.

We turn now to the calculation of three-tails.

Dirac theory. The external momenta can be immediate-
ly set equal to zero. Furthermore, the result for the diagram
turns out to be symmetric under an interchange of external
lines, and we do not have to be concerned about this point.
The expression for the diagram is

jabe 5 MATr 9oyoy— M2 Tr ¥ pYopvp— M2 Tr ¥ pya¥pp— M2 Tr ¥¥¥aPiup  d2p

2

4

FRNTE
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We now need to take an average over the directions of the
vector p, i.e., to make the substitution p,, p, —=p°5,,/2. We
then need to use the identities

YuVatu = (2— D)ve =0,

. (D .
YuyaYﬂYu:DéaB‘f‘ (T - 2) Oup == '7_2\’5?@- (2.5
We find
fabc dzp M‘—}—;Izpz

= 4 i'_;;‘ fabcefxﬂ'
(2.6)

Weyl theory. Here we need to evaluate the expression

) T”w‘”f‘g T (P MR

]abc
4

—2i

5

- - 1—p - 1—5 -
(Tr[M-Yb(p—}—z'M)‘Ya——2L(p{-iﬂ])?ﬁ 2Y (r— m])]

s 7T

We begin by transforming the central structure within the
trace: (1 — ¥ )X (Pp+iMyz(1 =) =2(1 — ¥ )py;
carrying (1 — ¥*) even further through to the left, we find
V(B +iM)y, (1 =y =y (P +iM)y, — (p—iM)y,.
As a result, the original expression is proportional to
V(P +iMyy, — (p—iM)y, 1pysp( p +iM). Using re-
lation (2.5), we easily see that this expression vanishes.
At D = 2 the anomaly in the Dirac theory is thus

(DT = o g (0,48 4 jea245) = Lo, Trrn Lo

(2.7)
while that in the Weyl theory is
(D)= (eapdadh+ 9a45)
= i (e Tr 0,4, + Tr 19, 4,). (2.8)

Diagrams for an anomaly in spaces of any dimensionali-
ty can be calculated in a similar way, but such calculations
are exceedingly tedious and hardly worth the trouble (al-
though four-dimensional anomalies were originally found in
precisely this way). We turn now to a method for calculating
anomalies directly. It was proposed by Vergeles (but not
published; see Ref. 16) and then developed in a series of
papers by Fujikawa.'” Romanov and Shvarts'® took a simi-
lar approach. The use of this method to calculate non-abe-
lian Weyl'""'? and gravitational anomalies has been the sub-
ject of many papers.

2.2, Calculation of anomalies by the Vergeles-Fujikawa
method

The original idea of Vergeles was that an anomaly could
be interpreted as the result of an invariance of the measure in
a path integral. Specifically, if in the expression

L DBy exp (¢ | PDpd="2) g
we make the change of variables

P > gie¥igp, (2.9)
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then we find in the integral first exp(i Tr eD,, J},), and sec-
ond the Jacobian (Y’ ) of transformation (2.9). If we re-
quire that the integral not change upon a change in integra-
tion variable, we find the relation

sy'®
8 |e=0'

D,J3 = (2.10)
In other words, an anomalous divergence of a current is un-
ambiguously related to the nontrivial nature of the Jacobian
Y, “Naively” we have Y@ = 1, but strictly speaking we
need first to regularize the Jacobian:

(In Y™, 0p = (In det e227)
= (Sp 2ie7%) peg = lim Sp (2iey°) P/
Moo

here we have used a “‘proper-time” regularization. The 2
results from the fact that both fields ¢ and ¥ change under
transformation (2.9). We turn now to a calculation of the
regularized determinant. We first consider the y-matrix
trace. For this purpose we note that we have

D2=D,D, G,y + 9yv)

1 1
=D?+ =z Fuquv (Uu.v =% (Vu.Yv — V) ) .
If the trace with the matrix ¥° ~¥,¥,...75, _; in 21 dimen-
sions is to be nonzero, we need to take at least the nth term of
the expansion of the exponential function in a Maclaurin
series:

2 Sp iey® exp ( D2 —}—% Fuquv) Mz

2.11)

The remaining functional trace in momentum space incor-
porates an integration over d*" p/(27)*":
5 d*"p e=PHM? M2 Qn_g (n—~ D!
(2 2 (2m)En .

The M " which appears in the numerator cancels the 1/M *"
in (2.11), but this cancellation is not sufficient to make the
contributions O(1/M?*" *?), which stem from the higher-
order terms in the expansion of the exponential function,
finite in the limit M — « . Furthermore, we need to know the
area of aunitsphere $2' ~':Q,, _, = 27)" /2"~ ' (n = 1)}
[for 2" Q,, = 2(27)" /(2n — 1)!]. As a result we find

oY®
(DI = S

g={

HnVp

F e,
L 2" Tr e Bupvy vt vy
TR En PR

_ 2"Qon-1 apn ___
- e Ty t'F' =

_(z_n)ims;) 12F, (2.12)
The last two equalities are written in terms of differential
forms (see Subsection 3.1 below): here F,.=d,4,
—d. A4, + [4,4. ], while the form Fis F=dd4 +A4°. An
additional factor of 2" is associated with this circumstance.
Yet another factor of 2" occurs because the dimensionality
of the y matrices in a 2n-dimensiona) space is 2" X 2".
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Two comments are in order here.

a) It is not absolutely necessary to use specifically an
exponential function in the regularxzatlon We could write
any arbitrary function f( — D*/M? ) which falls off more
rapidly than a polynomial at infinity. The result includes an
integral of the nth derivative of this function:

[ d2"p 1 Qe ‘
1 110 (3 ) ek = 2 [0 @t da
an

=51 (0).

Consequently, all that we require of the function f'is that its
derivatives fall off sufficiently rapidly at infinity and also the
condition £ (0) = 1: This function becomes equal to unity at
an infinite regulator mass, i.e., when the regularization is
removed. Actually, it is sufficient that the condition
F(x)Sconst/(1 +x)" " hold in the limit
x—- w0 (n>0).

b) The derivation of (2.12) turned out to be as simple as
it was because only a single term in the expansion of the
regularizing function was important. This situation is ex-
plained in turn by the absence of an explicit dependence of
the coefficients of the matrices o,,, on the momenta. Here
they have turned out to be equal to c-numbers (1/2)F,, . Ina
Weyl theory this is no longer the case: The o, are multiplied
by not only c-number expressions but also by, say, the g-
numberid,d, —A4,p,. The appearance of a momentum here
makes it possible for the following terms in the expansion of
the regularizing function to survive as M goes to infinity; the
result is to complicate the calculations in an exceedingly se-
vere way. In other words, while the Vergeles-Fujikawa
method has an indisputable advantage over a simple calcula-
tion of diagrams in an application to Dirac anomalies, in the
case of Weyl anomalies this advantage is less obvious. We
will discuss two examples in this Subsection 2.2: the calcula-
tion of a two-dimensional Weyl anomaly and the calculation
of the coefficient of the leading term in the expression
for the Weyl anomaly in an arbitrary dimensionality.
(“Leading term” here is understood as the structure
Eqpa, TT1°0, Ay, . 04, A, , Which contains no matrix
commutators.) While the first of these two examples will
give the reader the chance to evaluate the complexity of the
method in application to Weyl anomalies, the second exam-
ple has a more “practical” purpose: A calculation of the
Weyl anomaly on the basis of the hierarchy of anomalies in
Subsection 2.4 and Section 3 does not make it possible to
determine the overall normalization of the anomaly. We find
this normalization in our second example.

2.2.1. Two-dimensional Wey! anomaly

The difference between the Dirac and Weyl theories
stems from the replacement of the operator D=3+ Ainthe
Lagrangian by D=4 + (41— °1/2). Accordingly, in a
calculation of a Weyl anomaly by the Vergeles-Fujikawa
method we find an expression

(D) =2 Dy (-

o) [ =2 A

& A
=22 Sp [t (1— )]s |_,

e=0

(2.13)
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Using the same regularization as in the Dirac case, we find

(D=2 lim Sp t* (1—79) bz, (2.14)
M-

We now consider the operator D*:

A A A A

De=Ao¥ 554 14 B3,

where D = J + 4 is the ordinary Dirac operator. The trace
which must be calculated is therefore

2 Sp 1o (1 — %) ed Dine2,
As we have already mentioned, the appearance of a structure
A,0,—-0,4,0, in (9D dD 4+ [(d,4,) —4,3d,]
qu (HD = (9” D,=03%+ (d4) + 49) is an important
point. We turn now to the consequences of this modification.

We begin by calculating only the “‘truly anomalous”
part of the trace, which contains a ° matrix:

2 Sp e (1 . ,YS) e(';f)/Mﬂ - =2 Sp tayseé rj,';u:' (2. 1 5)
As before, the y-matrix trace with ¢° is nonzero only if at
least n of the matrices o,,, drop out of the exponential func-
tion. The trace with the larger number o,,,., however, is also
nonzero. In the Dirac case, the higher-order terms in the
expansion vanish in the limit M — «. The reason is that the
exponential function contains an expression — Fo/2M ? and
integrals

g d2"pe-p¥n? ( _ FAC/;{_)Z )" ~O

( W(h—m ) ‘
In the Weyl case, the exponential function has terms which
are linear in p:

z (Ap—o0dp)4 (8440 6A)
M2

The behavior of the 4 th term of the expansion is now

g 42" pe-p¥/m? [__

i
o

i(Ap—o0Ap)+(0A+c dA) R
E ]

¥ : . k 1
~0 (| dpeei ) ~ O (e ).

so that terms of the expansion with integer values of 1, from
n to 2n, can survive in the limit A/ — . In a specific calcula-
tion we need to consider two other points: the accurate ar-
rangement of the differentiation operators (which do not
commute with the fields 4) and the y-matrix traces. In par-
ticular, the structure of these traces is such that after an

-average is taken over the directions of the vector p the terms

of the expansion from n to 2n-1 lead to integrals ~O(1),
while the contribution of the 2nth term vanishes. As for the
ordering of the derivatives, we first write the entire exponen-
tial function, including the highest-order term d%/M 2, in a
series. We then carry all the operators d through to the right,
and we then recollect factors e?? /M 2. The calculation for
D =2, for example, is as follows:
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[w k3

56‘1(5

) M

@SB /M2 . a —
2§pixe") 2Sp t%y [M2 "3

o]

'Y

Ouy (udv)

=28p t“ys{

1 )
e + 2 M3 [(9“O'uv ((auAv) - Auav) + Ouv ((auA v)

—A,8,)0

+ GHV ((GHAV) - AH-()\) ((0a‘4a) + Aaaa) + ((aaAu) + Aaaa\ qu ((auAV) - Auav)

+ 0y ((9,45)

We begin with the expression which we have underscored.
We put it in the form

[(Ou.Aw) - Audv] o* + [02; qu ((ouAv) - Auav) ”

(2.17)

1
T[4 {2Gu

In exactly the same way, we run into a combination

{30, 1(0,4,) — A,8,] ¥ + commutator terms}

3'M°
(2.18)

in the third term of the expansion of the exponential func-
tion, etc. All these structures are summed in the expression

Ound, 4 )
{+ e®/M2 1 commutator terms }.

(2.19)
(Thetermso,,.4, .37, etc., have been omitted; they disap-
pear when an average is taken over the directions of the vec-
tor p: 9,,A4,0,.0°>~ — i, A, p. p>—~0.) Let us ignore the
commutator terms for a moment and return to (2.16). The
first term of the expansion, part of the underscored expres-

sion, etc., are written in the form in (2.19):

‘”a”A" pUNM?

2 Sp y3¢”

In the momentum representation this expression becomes

- d%p —p2/M2 1ay5 quUuA\, _
2 | e P T

—Euv Tr 199, A4,.
(2.20)

We now turn to the commutator terms in (2.17) and
(2.18). They also make a finite contribution to the anomaly.
Here, however, we need to carry the maximum number of
operators d through to the right. We then have

f}aaﬁ PaPp 1 o5
A o P

and after an integration over d’p/(27)”> with a weight
e~ "/M" we find the final result in the limit M — co:
_ \~ piﬁaﬂ —pea dzp 1

o ¢ e T Bn Oap-

In this manner, we find from [d7; 0, ((3,4,) —
(2.17)

2 S ZIM“ Sp Yﬁta( Ouv (a 4 ) 0v0a)

4,3,)]in

a2 o L, oo
PEp Tl‘i(? vy PP

— —4g,, \

- e Tr o, A, (2.21)

2m

The commutator terms in (2.18) and in the following terms
of the expansion lead simply to the appearance of the factor
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- Auav) Uarl ((amAﬁ) -

Aggl+ ..} (2.16)
r
€M in the expressions which are written out explicitly in

(2.16);all the othc;r contributions vanish in the limit M — «.
The factors ¢? “* " have already been taken into account in
our calculations. We thus find two contributions to the two-
dimensional Weyl anomaly, (2.20) and (2.21):

(D)=

ey Trt*d A, — 5—e,, Tr 1%, 4,

ZZ—;—SMTr 170, Ay, (2.22)
As a result, the normalization of the right side differs from
that in the Dirac case. We shall see below that in 2» dimen-
sions the normalization differs by a factor of n + 1.

However, we have not yet completed our calculation of
the two-dimensional anomaly. Why do we need the other
terms (not underscored) in (2.16)? As we have already
mentioned, the only terms which are important in the limit
M — o« are those in which the derivatives are carried through
the fields 4 without acting on the latter. In the remaining
part of (2.16) there are several terms of this type:

56,y (A0 A 0, + Ao
— Y0,y (A, 4000, + AgAd ,0,0,)

aAuav) + YsGuVGaBA uOVAa()B

+ V20,0, 54 wAnd g
Their contributions to the anomaly cancel each other out.
Tr t* [—vPa,, (4, Ay - AA ) + V30,404, 44,1

= 2Tr 1% [—e,, (4,4, + A4,4,) + 01 =0,

As a result, structures of the type €,,.4, 4, do not occur in
the case of a two-dimensional Weyl anomaly, and (2.22) is
the complete result. Nevertheless, in higher dimensionalities
contributions of similar origin do survive and do contribute
to the Weyl anomaly. In all cases, the only structures which
cancel out are those which are constructed from the same
fields A, without derivatives d4.

It is a very simple matter to understand the latter asser-
tion. Terms without derivatives arise when all the differenti-
ation Operators in D are replaced by momenta:
dD- —p’ +iA, p, + 0,54, p,. In 2n dimensions, the
2nth term of the expansion of the exponential function in a
Maclaurin series is important here:

A2y AT (AaPo + OapAppa)®™
~ § g e ey SRR
- C dzip e~ D3/M2 o -
= \ G o Tri PV, . PYB_ZnAﬁl - Aﬁ_m_

The p-matrix trace is proportional to
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Tev*pyve, --. pvs,, ~ €8,...p,, Tt p*"
—2neap,...p,,Po T p2"iyg,

= 2" (p™ep,.. .p,, — 2N€ap,. . .5, PaP?" Pp),

and this difference vanishes after an average is taken over the
directions of the vector p: p, pg — (1/2n)p°8,5. The ab-
sence of terms ¢, TrA, ..A,, in the expression for
the Weyl anomaly is an extremely important point: It serves
as an indication that this expression is a “‘total derivative,”
and the operation k, can be applied to it (Subsection 3.3).

pee €2

2.2.2. Leading term in the expression for a Weyl anomaly
We can now show how the term
1 a
—_ nT”aalAaz”'a

7l €, ...,
which arises in the expression for a Dirac anomaly is re-
placed by

al a
n’lrzt(?mlAm2 ... 0

S A
(n+1)! Baypeenay %yn-1""%n

in the case of Weyl anomaly. We have already demonstrated
the appearance of 1/2 in two dimensions (n =D /2 = 1).
We will not discuss the normalization of the other non-abe-
lian terms (~g, .., Tr 1A, Ay 0, Ay, O Aans
etc.) at n# 1 in this section.

All the important aspects of the calculation were al-
ready discussed in the preceding example. We now need to
formalize them slightly. A difference between Dirac and
Weyl anomalies is that the expression D’=D?
+.( 1/2)F,.0,, in the former case is replaced by
dD=9%+ (04) + 40 + 0, X ((8,4,) —A,d,) in the
latter case. Since we have decided to consider only the lead-
ing abelian term in the expression for the anomaly, we can
replace F,,0,,/2 by 0,,(3,4,). The difference between
the two anomalies is then related to the presence of “free”
derivatives in the Weyl case. It is convenient to work with
these derivatives, writing d, + ip,, in place of d,. An aver-
age is carried out over the vector p,,, while the d,, carried
through all the 4 to the right, are assumed to be zero for this
choice of actions. We then have

oD + p*— (2ipd + & + (9A) + 4,0, + iAypy)
+ ouy ((0,44) — A0, + ip4 v)- (2.23)

Inderivinga Weyl anomaly, this operator is raised to the & th
power, divided by M? k!, and integrated over d *" p with a
weight exp( — p*/M ?). If the trace with the y° matrix is tobe
nonvanishing, the power of & must be no smaller than n. If
the result is not to vanish in the limit M- o,
precisely 2(k —n) momenta p must ‘‘operate” in
[(2ip, 8, +3%+ (84) + 4,3, +id, p,) +0,,((3,4,)

—A4,d, +ip,A,)]. Since weare following the contribution
~(d4)", and a field 4 is necessarily associated with each
matrix g, in(2.23), we need to consider only those terms
which contain o, ((d,4,) — 4,9, +ip,A,.) precisely n
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times. We now recall that after we take the y-matrix trace the
quantity o, converts into an £-symbol, We can thus take
io,, p, A, nomore than once, for otherwise the convolution
of the momenta p with the e-symbol will give us zero. Conse-
quently, the remaining k — n cofactors without o, matrices
must contain at Jeast 2(k — n) — 1 momenta p. On the other
hand, each of these cofactors contains p raised to at least the
first power. From 2(k —n) — 1<k —n we find k=n or
k =n 4 1. In other words, a contribution ~ (d4)" to a
Weyl anomaly is found in the Vergeles-Fujikawa method
from only two terms of the expansion of the exponential
function:

1 Onyd 10 n | d¥np e PHME
A Tr2vt° (0,0 )" | i

1’ [t1 . .
o Tr 208" [ 1200, + Gy (0u4,) — Ao+ ip, Ay

demp o= P?/M2

(2m)zn TMaImee

In the Dirac case we have only the first of these two terms,
[2/(2m)"1]Tr t*dA" . In the second term, only the two fac-
tors with p are important, as we have already mentioned; the
other n — 1 factors do not contain p. After an average is
taken over the directions of p we find 2ip,, ip; — — 28,5 p*/
2n, and the integral over d *" p is, when we take the factor of
2/(n 4+ 1)!into account,

28ap 2n o 2
2 @A @A

We will show below that a combination of fields 4
which is equal to n Tr ¢* dA" also arises when, in collecting
all these factors and terms, we find the following expression
for the leading contribution to the Weyl anomaly:

2 n 2 a n
R Trt*dA4 ~ GO IO nTrt®dA
2 a "
NP ELES) Trt*dA".

The origin of n Tr #* d4" can be understood most sim-
ply by looking at some examples. We will present these ex-
amples without repeating the explanations given earlier:

n=1:

Tr tays [2ipa(9a + Gu.v ((auAv) _Au.av + ipu.Av)]z

= Tty (219, 060,y Pudy + OuyiPudy - 2ipody)
— (2ip,ip,) Tr ity [a,, (3,4,) +0]

- _ng-[TrtadA] — Tr1°d4
(the 2 from the y-matrix trace was taken into account ear-
lier);

n =2

TI‘ ta‘fa [2ipaaa + ouv ((auA v) - Ap.av + ipu,A v)]3

— Tr ta'Ys [QiPaaaouv ((011‘4 v) - Au.av + ipuA v)

X Opy((0pd o) + ippdg)

+ Ouv (0,A4,)-2ipadaps ((0p44) + ippd)l.
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there is nothing new regarding the second term in the trace:
2ip,,ip,, — 8., p*. The quantity d, acts on J,,4,. The first
term, on the other hand, gives us, in addition to two contri-
butions of the same type, yet another contribution, with a
minus sign: p,d,(—A4,9,)p,4,)— —(3,4,)(3,4,)
— —d4 2. As a result, the overall coefficient of Tr #d4 ° is
[RQ-D+1}=2=n

n=3

Here there are 3 4 2 + 1 contributions of the type
PO PuA,—(3,4,),

2+1)+1 contributions of the
Pu0,(—A,0)(p,A,)— —(3,4,)(3,4,)

and 1 contribution p,d,(—4,9.)(~4,3,)p.4,
- +(d.4,)x(3,4,)(3,4,).

The complete coefficient of Tre“d4* is [(3+2+1)
—(C+H+ H+1]=3=n

The combination (2 + 1) + 1 has the following origin.
We multiply the four identical parenthetical expressions
(2ipd + ((8,4,) — 4,3, —id, p,)o,.). In one of these
expressions we take a structure {J, 4, ), and in the three
others we take, from left to right, — 2ipd, —4,4,, and
—id,, p... The only question here is which three of the ex-
pressions of the four are to be selected.

Let us assume that we have taken 2ipd from the first
parenthetical expression. If we now take — 4,3, from the
second, we can take — id,, p, from the third or the fourthin
two ways. If we take — 4,d, from the third, then we can
take — i4,, p, only from the fourth, hence we have (2 + 1).

We now assume that we have taken 2ipd from the sec-
ond parenthetical expression. We then have no variants: We
can take only —4,d, from the third expression and
—id, p, from the fourth. Again we have + 1,
and the total number of variants for the combination
2ipd( — A4, 0,)(—id, p,)is [(24 1) +-1].

Working by the same principles, we can calculate the
combinatorial factor in the case

type

n=4:
2ipd (—iAupy): () 14 +3 + 2 + 1],
2ipo (—AL0y) (—iAupy):
(= B+2+1)+@+1 +1)
2ipd (—A,0,) (—Au0,) (—idupy):
(+H e +1+1 +1i,
2ipd (—A04) (—Au0y) (—4Audy) (—Aupy): () L
Combining all these terms, we find + 4 = n.
It is now simple to see how we find the result for any n.

Denoting by S* the coefficient in the k th row, we find the
recurrence relations

2ip0 (—iAupy): Snar=Sn+(n+1),
2ip0 (— Au0) (—idypy): (—) (Shgs = Sa-+ Sy
If we take 2ipd from the first expression, we can take the two

other structures, — A4, d, and —id, p,, from the n expres-
sions in S, ways. If we instead take 2ipd not from the first
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expression but from any of the n remaining others, the num-
ber of versions is by definition S2. In exactly the same way
we find

21‘00 (_Auav) (_Auav) ('—iAqu)3 (+) [S'?z+1 =S% +S‘?‘l]v
in general,

SKH =Sk 4 Sk+1 with§0 = (n + 1).

n+1
We now see that S* are the binomial coefficients,
Bkl (n~1)!
Sn=Crii= FEFD n—r)1 °
and the sum which is to be calculated is
n n+1

2 Si(—)’“‘=k§2 Crir(—)"

h=—=

-

===y + Crpr =0, (2.24)

2.3. Relations among the anomalies of fermion currents

An anomaly corresponds to the contribution of regula-
tors to fermion loops which describe the interaction of exter-
nal currents and gauge fields. All can thus be written in
terms of determinants or propagators of regulator fermions.

For an abelian Dirac anomaly in 2» dimensions we have

(B3 = 2Sp Myp ———

S WeED (4) d2'z. (2.25)
iD—iM

For a color Dirac anomaly in 2n dimensions we have

(D 3y = 28p Myits L S Ween (4) dziz. (2.26)

iD—iM

For a Weyl anomaly in a left-hand current in 2» dimen-
sions we have

(DI =2 Sp Myst"

_ 1 - S thl(zn) (4) 4"z,
iD—iM

Ded+4 1—275 . (2.27)

For the anomalous part of a fermion determinant in
2n + 1 dimensions we have

{1n det (iD — i)} gnom= S WD (A) dzvrig. (2.28)

We already calculated the expressions on the right sides
of (2.25)~(2.27) in the preceding subsection. Here we will
derive relations between the left-hand sides of the various
anomalies, and at the same time we will show that the follow-
ing holds:

W(D‘Zn+1) (A)

28& . 4 "
= S T (AP ay - Oy Aay )
2 n
GG rAdAt ). (2.29)

The relations between the right sides of the various anoma-
lies in (2.25)—(2.29) are discussed in Subsection 3.4.
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We begin with the relations between divergences of the
currents and traces. We first consider the law of conserva-
tion of an abelian vector current:

+
{0,J,y="Sp i0 —%1—.— —the contribution of regulators.
t)—im
(2.30)
We should now use the obvious identities
16— — ((A—im) —— 1, (2.31)
iD—im iD~—~im
=t ((A—im)—1. (2.32)
iD—im iD—im
We then have
Spid — b —8pid =t L Sp—at—id
iD—im iD—im iD—im
— —Sp (iA—im) =+ Sp———— (1A —im)
iD—im iD—im
=8p[— (A —im) + (id— im)] ———=0.
iD—im

The contribution of the regulators is also zero.
We now consider an axial/ anomaly:

«—

{0,J,)°==Sp iéy" - L —the contribution of regulators

iD—im
F . 13
= Sp| —7%i0 — + iyt — d|— reg.
P [ v iD—im ID—im ]
—Sp[ =2y (A —im) —— & ¥ L (a—im)]
=P ! iﬁ—im iN—im
=—2im Spy*— ! —the contribution of regulators —
iD—im

(2.33)

5 1
2iM Spy® —
n:O + Py iD—iM ’

as is confirmed by the first of equalities (2.25).

For non-abelian currents the equations become a bit
more complicated:

((DuJu)a> = (011',?1 —+ [Auju]“>.
For a vector current we thus have

(DT, = Sp ore —*

iD—im

+ Sp (l-fabrfi\b,C) _ {

iD—im

We can now write
d=D4+D, iD—

iD—im

! =14im Al s

iD—im

L Do —1—im—
iD—im

if)— im
As a result, everything is very similar to the situation in the

abelian case:
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vt b

iD—im

{(D,J,)% = Sp (Dt ‘151 .
D—1mm
G g fobe gbgr L
~Spiftearr L
iD—im
1

iD—im

- Sp ifabcfibtc —,.1—‘

iD—im

=0-+Sp (D, 1|

The commutator [D, ] is if <>t qb— _ tf“b‘g b ¢, and
the other two contributions to ((D,,J, ) ) cancel each other
out: ((D,J,)*) = 0. In exactly the same way, we can verify
the first of equalities (2.26) for massless fermions. On the
other hand, noting that the appearance of the projection op-
erator (1 — »°)/2 in front of 4 does not alter the equations
used above, we see that an analogous relation (2.27), holds
for a Weyl anomaly.

The functions W, W* and W, which are functions of
the fields 4, and which appear on the right side of (2.25)-
(2.27), can now be calculated in precisely the same way as in
the Vergeles-Fujikawa method in the preceding section. Spe-
cifically, we write

iD— i

=iM bp ‘Ys = .
—Dz— )2

i Sp My® ——

iD—iM

The term with D in the numerator drops out after we take

the y-matrix trace (since D contains an even number of y

matrices in any integer power). We are thus left with the
expression

Spy® 1

1— (D2

In other words, in the equations in Subsection 2.2 we now
need to calculate traces not with a weight of ¢® " but with
the weight of 1/[1 — (D*/M *)]. We know, however [see
the comment after Eq. (2.12)], that when an exponential
function is replaced by some other regularizing function no
change is caused in the result of calculations by the Vergeles-
Fujikawa method.

We turn now to relation (2.28), which holds for gauge
theories in an odd dimensionality. The simplest way to dis-
cuss the relationship between this anomaly and even-dimen-
sional anomalies is to put the left side of (2.28) in the same
form as in (2.25)-(2.27). We can do this by differentiating
(2.28):

8 1n det (iD — iMy=065pin (ib — i)

—Sp ——

8 (iD—1i17).
iD—iM

(2.34)

(The trace symbol makes it possible to arrange the factors in
the indicated order.) However, with respect to what quanti-
ty should we carry out the differentiation?

A variation with respect to the regulator mass M of any
physical quantity, in particular of the anomalous contribu-
tion to an effective Lagrangian will of course disappear. [ To
avoid any misunderstanding, we point out that a variation of
nonanomalous parts of an effective Lagrangian may be non-
vanishing: e.g., L () may contain contributions ~ In(u/
M) which stem from ultraviolet divergences. In such cases,
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it is not the effective Lagrangian itself which is physically
meaningful but its change under a displacement of the nor-
malization point. We are interested here, however, in only
the anomalous terms in L g, which do not depend on M. ]

A variation in terms of the mass of a physical fermion,
m, cannot depend on the presence of regulators. The
theorem on the splitting off of heavy fermions,*® on the one
hand, and the infrared finiteness of perturbation theory on
the other, rule out any dependence of physical quantities on
the parameter m/M. It is thus not surprising that in differen-
tiating with respect to m we lose all the information on the
anomalies.

We are left with two other ways to vary In det:

—variation with respect to the field 4, ;

~—variation with respect to some additional parameter
on which the field 4,, depends.

Each of these methods turns out to be substantive. The
first allows us to relate W &'+ to W<?", and the second
allows us to relate W+ to W' =2 In principle, there
is yet another possibility:

—a gauge transformation of the field 4,, .

We can thus find the relationship between W "+ and
W42 However, we will not pursue that possibility here.

2.3.1. Relationship between W§™+" and W2,
A variation of the left side of (2.28) with respect to 4 §
gives us
8 In det (Li) — iM) = Sp vt — 1
548 —_—

0 iD—i]

(2.35)

We now choose the gauge 4, = 0, and we note that the ma-
trix ¢, in 27 + 1 dimensions is the same as the 3° matrix in a
2n-dimensional theory. There is the possibility of comparing
(2.35) with (2.26) [but not with (2.27), where D is re-
placed by the different operator D]. The entire difference
between the expressions in these equations lies in the addi-
tional factor M in (2.26) and the different value of the sym-
bol Sp: In (2.35) the trace contains an average over a
(2n + 1)-dimensional space, while the average in (2.26) is
over a 2n-dimensional space. [t turns out that under certain
conditions, corresponding to the singling out of the anoma-
lous contribution from (2.35), these two differences cancel
each other out:

1
szn + 1-\’0ta R
10004 D —iM
i0g70-- 1D+ iM

, (2.36)
—a} — D2 M2+ (Fuy0uv/2)

= SPgp+1Vol"

We have explicitly singled out the component g, of the deriv-
ative D, (4, = 0); D contains the 2 other components. The
fermion determinant describes diagrams with an arbitrary
external lines, e.g., corrections to the Lagrangian F ., etc.
We are interested here not in such corrections but in the
anomalous contributions containing an e-symbol. To distin-
guish them in (2.36), we need to ignore the dependence of
the fields 4, on x,, and assume F,, = 0. The averaging over
the coordinate x,, can then be carried out in a manner inde-
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pendent of the averaging over the other coordinates:

10gpe+ iD -+ iM
—33—D?+ M2+ [(Fuvouy) /2]

Span+1Vot”

¢ dp o PYe-iDriM
“S B SP2n Vol EH L ML [(Fyopn)/2)

© dp a iM
=5 5 SPan VW TR T ) T ((Fevon /21

(2.37)

The term pyy, is the numerator drops out after the integra-
tion over dp,, while D = D; ¥, drops out when we take the y-
matrix trace. The resulting expression is

S__d& M SPanol® 20 (M2 pf)
2n 2(MEApf) Al —-f)2+(M2+p%)

o 2(M2EpY

. . (238)
iD— i (M2 pd)iss

S R A

20 2 (M*- pg)

The remaining trace describes a color Dirac anomaly
(2.26), with M replaced by (M? + p2)'/2. However, M is
the mass of a regulator on which W* of course does not
depend. Accordingly, the trace is simply equal to W**™ and
the integral over dp,, is the coefficient in front of it. This
coeflicient is 1/4, and we find the relation

4} (2n+1y _ 4 a(2n)
gz Vo =W

(we recall that W (*"+ " is the anomalous part of the loga-
rithm of a fermion determinant, which is determined entire-
ly by the regulators).

The quantities W §” 7!’ are none other than the Wess-
Zumino terms which arise in odd-dimensional Yang-Mills
theories after an integration over fermions. They are impli-
citly invariant under infinitesimal gauge transformations:
the gauge variation of W is nonzero, but it is a total deriva-
tive, so that a fermion determinant which includes an inte-
gral of W{*" ™" is gauge-invariant. As for global gauge
transformations which do not reduce to infinitesimal trans-
formations, we note that they can lead to a change
S W2+ 1x see Refs. 41 and 45 and Section 4 of the
present review. Gauge invariance is restored when nonlocal
contributions to the fermion determinant from light fer-
mions are taken into account. These additional contribu-
tions are unimportant in any case in which the scale of the
process under study is smaller than the reciprocal of a phys-
ical fermion, 1/m. Relation (2.39) makes it a simple matter
to write expressions for Wess-Zumino terms by working
from an expression which we already have for W™ ie.,
expression (2.12):

1
)
Wg‘-qz

(2.39)

Tr A,
@) __ 1 __ia
W“ T 4me2 (AdA k 3‘1)

2

1 ,
Zno oy Tr (Aa‘?ﬁAv"'rg AaABAv) >
@ _ 1 ) 3 3
W =t Tr (Ada2 4 g da 2 as)

The factors 2, 3, ... in the denominators arise from the inte-
grals fx"dx =x**!/(n + 1).
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The derivation of relation (2.39) given above was first
proposed (in a slightly different form) by Niemi and Semen-
off.*

2.3.2. Relationship between W'+ and W "+

We now wish to determine what happens when we use
the second method for dealing with the anomaly in (2.28).
We assume that the fields 4, depend on not only the 2n + 1
coordinates x,, but also the one additional parameter 7. We
differentiate (2.28) with respect to this parameter (we will
use a superior dot to denote d /dt):

SPZnﬂAuYu = L (2.40)

S IndetuD—iM) =
iD—iM

The (2n + 1)-dimensional ¥ matrices which appear here are
of dimensionality 2" + 2.

On the other hand, let us carry out a few elementary
transformations on the left side of the expression for the abe-
lian anomaly (2.25). We first go over to the gauge 4, = 0.

Second, we choose the 2"+ ' x 2" *! T matrices in 2n + 2
dimensions as follows:

r,= (Yu

p=1-=+2n+1,

F5=(~i i)

(here we have made the obvious change in the notation of the
2n-dimensional matrices: ¥, —¥1; ¥1= V2 o Yan—1 = Vans
Vs=Vam+1:V1 - V2anVan 41 ~¥3.+1 = 1). We then have

2Span+p MT?

_'Yu) ’

(2.41)

D—iM
iM
)2 M2+ (FuyOuv/2) + FouOop

= 2M Spnas TP —

R 1“5/'1,100u
= M SPanss [T (Pt 2
. 1
= &M?SPon oAV T DI T I T P DT (2.42)

Here we have made use of the fact that the relation Fy, = 4,
holds in the gauge 4, = 0, and we have written a 2 which
arises from the transition from the trace of the I' matices to
7, which has a dimensionality smaller by a factor of 2.
Expression (2 42) can be written

1
— 4012 5M2 bpzn+zAuYu B AL (Faon®) (2.43)

and the average over the null coordinate  can be carried out
explicitly. (Here we do not need to consider the dependence
of F,, and A# on ¢. In contrast with the transition between
W(z'l +1 and W™, the situation at hand does not involve
the discrimination of an anomalous contribution. It is easy
to see that in this case the changes which arise when this
dependence is taken into account vanish in the limit
M — «.) Taking an average over ¢, we find

7} : T dp 1
—4M? aM? sz"HA“Y“ j 2_110 pi— D2+ M2 (Fuyouv/2)

-4

~ dpo . 1
xj 2n (p§ - MY* [sznﬂA”Yu iD— 1 (M2 - p})i/2 ime‘(Z.44)
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The trace Sp,, , ; which appears here should be compared
with (2.40). We wish to call attention to the fact that (2.44)
contains only the anomalous part of the trace Sp,, , ,; the
reason is the elimination of the term D from the numerator.
(In the odd-dimensional case, in contrast with the even-di-
mensional case, the y-matrix trace may be nonzero for either
an even or odd number of ¥ matrices. ) Since the anomalous
part of trace Sp,, , , does not depend on M, the integration
over dp, and the differentiation with respect to M > can be
carried out explicitly:

— 27 ip_o__l—_
aM M2 j 2 (pi--M3)ye

M2
(R w

. e
= ) dpo

The result is

2 dW%}IH»l)

W (2n+2) - & (2.45)

Thederivatived /dt herecanbereplaced by aformal external
differentiation (Subsection 3.1). Some examples are

, 2 1
- 5 ) . 2 N . 1)
Wiz o Tr F - I‘I‘d/l-- (1 Tr A»-——dW(o s
9 . 1 2

W@ — T Tr FZ_:-FTrd(AdA—FgAa)

2 1 .2 2 )

:?d/, 2Tr(AdA+§A3): ?(IW:;,

W® - 2 )33! Tr F3

2 2
cm A Tr (4daz s 2 asaa+ 2 ae) Zawp,

We have discussed the relationship among the left sides
of Dirac anomalies (2.25), (2.26), and (2.28). The relation-
ship between the Weyl anomaly in (2.27) and the odd-di-
mensionality anomaly in (2.28) is found by means of Wess-
Zumino consistency conditions in the following subsection.

2.4. Wess-Zumino consistency conditions and relationship
between Dirac and Weyl anomalies

The change in W {*** " under a gauge transformation
is a total derivative. We will begin this subsection by proving
this assertion, which may appear to be totally unrelated to
the title of this subheading. Nevertheless, the relationship
between the Dirac and Weyl anomalies is based on this asser-
tion. The proof is very simple. A Dirac fermion determinant
is a gauge-invariant quantity, so that it is clear at the outset
that under infinitesimal gauge transformations which are
not singular anywhere, including at infinity, the quantity
S Wt Ya2 =1 x does not change, so that if Wi+ "
changes at all it does so by a total derivative. [One could
also make use of (2.45).] Since W@ +2 _TrF"-'
is an explicitly gauge-invariant quantity, we find
0=6, W22 =d§, WP+ " immediately from it. In any
singly connected region away from singularities, §, W " * "
is an external derivative of some expression.] A less tnvial
point is that this total derivative is not identically zero, as
can be seen most simply by looking at the specific expression
in (2.29) for

L Tr(4d4™+ ...

(n+1) __
Wi = 22" (n41)!

A.Yu.Morozov 1020



We now take the integral of W "+ not over the entire

space R 2"+ ' but only over the lower half-space R*" *'. We
assume that all the fields decay at infinity, so that this is
actually an integral over a hemisphere S*” ). We denote it
by U?"+ D Thisintegral itself is not remarkable in any way,
but its variation under a gauge transformation,

e — b yenn,
Sua
depends only the value of the fields on this sphere $ ", which
is the upper boundary of $* * "’ . We will make use of the

functional U“*"” in the discussion below.
We turn now to a Weyl anomaly. The Lagrangian

changes under the gauge transformation
. {— "1’5
P — exp ( — ittt —2—\) g
by

_ {—n8 a
—_— 117'\7uta —-—ZL- P (Duu)

= LT D) (D =0+ [Auu)-

This change is cancelled exactly by the gauge variation of the
external field 4:4, -4, +J,u + [A,u] =4, + D, u. Ac-
cordingly, the average of (D,J )¢ over the vacuum is a
gauge variation of an effective action which arises after an
integration over fermions:

<D“J'11>a = Wzlx(zm -9 5u56e:£ {4} ]
We can now use the Jacobi identity 8.6, —8,8.

+ 8., =0, which means that the gauge transformations

form a group. In particular, we have 66,54
— 8,654 +06,,,Sxr =0, ie,
8, TruW¢™ —o§, TroWE + Tr [uv] W™ = 3 total
derivative.
(2.46)

This is the Wess-Zumino consistency condition for a Weyl
anomaly. The total derivative arises because S.g, in contrast
with W {¥", contains an integration over d ' x. This total
derivative is extremely important, Expressions for Weyl
anomalies satisfy equation (2.46) only if this total derivative
is taken into account. For example, in the two-dimensional
case (the simplest) we have

TrW¥ ~ TrudA,
8, TruW® =Tru ([dA4, vI—[4, dv})
= —Trluv)dA —Tr |udv] 4,
— 6, TroWw® = —Tr{uv] d4—Tr[duv] 4,
4 Triuv] W@ = 4 Tr (uv] dA4.
Adding these three expressions, we find
(—1 —1 1) Tr [uw] d4 — Tr (ludv] + [duvh A

= —d Tr luv] A = a total derivative.
We note that Tr uA " does not satisfy the consis-
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tency condition: In this case, we have — Tr{uv]4-
+ Tr(d{uv])A, on the left side of (2.46), and that quantity
is not equal to a total derivative. Consequently, a Weyl
anomaly W3 contains a contribution ~dA4 but not ~A4 >, In
general, it is not difficult to see that one can work from the
given “senior”” term of the anomaly W9 Tr t“d4”, to
find all the other terms with the help of (2.46). The arbitrar-
iness here reduces to possible structures without an £-sym-
bol, which can be obtained by means of a gauge variation of
local functionals and which we have agreed to discard for
this reason. (Truly anomalous contributions to an anomaly
correspond to a nonlocal S, e.g., if non-abelian contribu-
tions are ignored,
S'" ~ 0,4y 71’_ LTI “2nF“1“2 Tt F“zn ~1Man?

BuSet ~ Ugy, ... ”‘mF”‘lL‘a T F“zn-ﬂ‘an')
Accordingly, any nontrivial solution of Eq. (2.46), begin-
ning with

2

G (-1
will certainly lead to the correct result for a Weyl anomaly in
a 2n-dimensional theory. It is now time to recall the expres-
sion U°® which was determined at the beginning of Sub-
section 2.4 from W §™ * V. By definition, U"*"? is a gauge
variation of a functional U®" * I | and it depends on only the
values of the fields in the 2n-dimensional space S . Conse-
quently, U°*" necessarily satisfies condition (2.46). On the
other hand, U°®*™ contains an £-symbol, so that (with a
correct normalization) it leads to the result for a Weyl
anomaly (see the examples in Section 3): W@ 22",

We will conclude this Subsection with a few words
about the applicability of the Wess-Zumino condition in oth-
er situations. Since it is simply the Jacobi identity applied to
an effective action, this condition is applicable whenever the
action of a group of gauge transformations on fermions and
vector fields is defined, and one is examining the covariant
divergence of an internal current with which gauge bosons
are interacting. In reality, both conditions hold in only two
cases: for the divergence of a vector current in the Dirac
theory (in which case the anomaly vanishes, and the Wess-
Zumino condition is satisfied trivially) and for the diver-
gence of a left-hand (or right-hand) current in the Weyl
theory. The reason is that in a fermion theory the action of
the group G, X G g, for which there are subgroups of only
twotypes, Gy and G (G ), is defined. One could of course
write consistency conditions for the total group G, X Gy,
and precisely those conditions were derived in the classic
paper by Wess and Zumino.” These conditions can be writ-
ten as two relations (2.46), separately for right-hand and
left-hand transformations, or they can be written in a mixed
form: in terms of vector (V) transformations ¢»— ¢ ¢ and
axial (A) transformations ¢ —e™’"

Trt*dA",

Budy — 8,0y + 285 — 6264 =811,
BBy — 8,80 + 8,65 — 858Y = Bfkry.

These relations are satisfied by. for example. the four-dimen-
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sional Bardeen anomaly® in a theory with a Lagrangian

b Vi + ¥ Ay
(DyJ3)" == 0,38 + [V, J81° + [4u],)°
=L Ty o Pt A F 4 (aerg 2
T 4m? V+3 —’3_( V+AFvA+FvA)
8 1.
+-§‘A‘] ;
(2.47)
here Fy =dV + V?+ A% and F, =dA + VA + AV. The

gauge transformations act on fields in accordance with the
obvious rules

8yV =du-+ [Vu],
82V =[Au],
61‘,Fv = [Fvu],
84 Fy = [Faul,

8y A =[Au],

8ad = du+[Vu),
8uF x=[Fsul,

SIYFA = [F‘ru],
As we are doing everywhere else in this review, we are as-
suming in (2.47) that the vector current is conserved:
D,J,=3d,J, +[V,J,]+[4,/,]=0. With 4=0 we
find from (247) a Dirac anomaly, W*®
= (1/47*) Tr t°F3: with ¥ = + A we find a Weyl anomaly
(in order to find the correct Lagrangian

—A {— b
WS,

it is necessary to also make the substitutions V-V /2,
A—-A/2):

W g (G2 5) (e f )
IR ()5
()R] )

1 . 1
= oy Tt [dV2+—2—(V2dV—VdVV+dVV2)]

—

=y Treed (Vav+ 3 73).

This is indeed a Weyl anomaly, since we have

5 R _ 5 -
D,J;=-D,J.D,J,=+D,J, .from the conserva
tion of the vector current. Yet another important particular
case is found with ¥ = 0, in which case the theory has only
an axial gauge boson:

(DuI2)% = g Tr t* (42— 49). (2.48)

At first glance, this anomaly would appear to satisfy the
Wess-Zumino relation: One calculates the divergence of the
same current with which the fields 4 are interacting. How-
ever, the second condition does not hold: The axial transfor-
mations ¥ — " ¢ do not form groups: G| X Gy has no axi-
al-transformation subgroups G , . The commutator of two
axial transformations ¢ — e ¢ is equal to a vector transfor-
mation ¢ — ¢'“ i/, not an axial transformation. Consequently,
(2.48) does not satisfy relation (2.46).

Unfortunately, the limitations imposed on the Bardeen
anomaly by the Wess-Zumino relations are not great in an

1022 Sov. Phys. Usp. 29 (11), November 1986

arbitrary number of dimensions, so that this anomaly cannot
be incorporated in the hierarchy of anomalies.

2.5. Calculation of anomalies by means of dispersion
relations

This approach to anomalies was proposed by Dolgov
and Zakharov.? We have already mentioned it in the Intro-
duction, in the example of a two-dimensional theory. A cal-
culation of anomalies on the basis of the imaginary part is
not only of fundamental importance but also technically
much simpler than other methods in certain cases. One such
case is the calculation of anomalies of antisymmetric tensor
fields, since it is immeasurably simpler to work with these
fields on the mass shell (and nothing more is required in the
Dolgov-Zakharov method) than off it. We will reproduce
here a passage from Ref. 8 on the calculation on the basis of
the imaginary part of an ordinary triangle * anomaly (i.e.,
an abelian Dirac four-dimensional axial anomaly) (Fig.
10).

Instead of calculating the regulator diagram with a ver-
tex 2)°M,.,, the idea is to find an answer for the current J }
itself, initially for its imaginary part. The imaginary part is
determined by the behavior of the fields on the mass shell; it
is ultraviolet-finite; and it has no contribution from regula-
tors. On the other hand, an infrared regularization is neces-
sary in this case. There are two convenient ways to choose
this regularization:

a) a nonzero fermion mass m;

b) a nonzero photon mass p},, = pl,, = u’.

Regularization b) is technically simpler. Furthermore,
it never requires leaving the mass shell, so that it should be
used in a discussion of antisymmetric fields and other com-
plicated examples. Regularization a) was used by Dolgov
and Zakharov in their own calculations. A simple example of
the use of this regularization is given in Subsection 1.2. Be-
low we will use regularization b).

We denote the difference between the momenta of the

photons by p, = p/"’ — p?’; the sum of these momenta is

q, =p."” +p?. Under the condition p7,, =p?,) =pu* we
have the scalar product gp =0. The calculation for
Im(JZ)aﬁ must be symmetric with respect to the inter-
change of photons; i.e., it must be an invariant of the trans-
formation a<>f3, p«> — p. This condition is satisfied by the
four following structures:

FIG. 10. Four-dimensional electrodynamics. Axial current in an external
photon field. The dashed line is the cutoff for calculating the imaginary
part of the diagram.
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: quEaptnPedn:  G°E.q ptPt
PatupenPedn + Pp€uaznledn,
GatyupenPedn — Gp€patnlidn-

(2.49)

Other  possible structures, e.g, p,€., P: 9,
— Pp€uaiy P: 4, are themselves asymmetric, and they
could appear in the result for the diagrams in Fig. 10 only
with a factor ( gp). That factor, however, is zero in our kine-
matics (and this is precisely the reason why it is convenient
to choose the masses of the photons to be identical).

The last structure in (2.49) is actually expressed in
terms of the first two. This situation follows from the specific
four-dimensional relation among e-symbols, which is found
when the product §,,¢€,4., is rendered antisymmetric in
terms of the indices u, o, 3, £, 7. Since each of these five
indices can take on only four values, the result of the conver-
sion to an antisymmetric form should be zero:

0= (SMLEG.BETI - (Sha Epnpin + 5xﬁ5pagn

— Speepuapn T Santuape (2.50)
Contracting this identity with g, p; ¢,,, we find
GaCuptnPiin — 9p€uatnPiin
= quEapinlidn + ¢*2uapiPs — (PY) Eup (2.51)

The last term on the right drops out in the case pg = 0.
When the fermions in the loop are on the mass shell, as
they are in a calculation of the diagram on the basis of is
imaginary part, the axial current is conserved; i.e.,
g, Im({J}) .5 =0. [If we were using regularization a),
which gives the fermion a mass, this would not be correct. ]
Furthermore, vector currents are conserved as usual:

P Im (I8 = pi Tm (J}) 5 —=
The general expression for the imaginary part here is
Im({Jias = Agueqptnpedn + Be*euap: Pt

+ C(peeupenltdnt PptuamPeldn) (2.52)

where the coefficients 4, B, and C—arbitrary at this point—
are functions of ¢°. The conditions for the conservation of
three currents then make it possible to express B and C in
terms of A. For example, if we multiply (2.52) by g, , we find
B = A; if we multiply (2.52) by p{V = (1/2)(p + q) ., we
find the relation Bg*> + Cp” = 0. Precisely the same relation
arises if we multiply Im(J}),, by pi=(1/2)
X(—p+4q)z. At this point we note that we have
pz — (p(l) _pm)z - 4#2 — g% and thus

C=—2=(1-47)"a

As a result we find

Im(Ji)ep=4 [QHsaﬂiﬂPEQn + q*euapiPt

apt \ =t
+ ( — —ql;‘) (PauptnPrdn + PaCLgtn/ET) ] .
(2.53)

The coefficient can be found by direct calculation'®:
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A=°L"’;‘—"”’-)(1+0(g—:)). (2.54)

8mq®
In Subsection 1.2 [see (1.18)—(1.22)] we have already dis-
cussed the calculation of anomalies on the basis of the imagi-
nary part. We saw there that an imaginary part ~8( g%)
corresponds to an anomaly. In an infrared-regularized the-
ory there is of course no §-function; in its place there is an
expression of the type 12/¢*. In other words, an anomalous
imaginary part must be proportional to the square of the
regularizing mass. This condition has not yet been satisfied
in (2.53). What is going on here? From the expression which
we have found we still need to single out the anomaly proper:
the structure which describes a transition to specifically two
photons. The amplitude differs from (2.53) in the
presence of photon polarization vectors el and &3:
Im(J )56 €. A very important point is that the polar-
ization vectors are transverse: piUel’) =ple? =0. It
turns out that after we multiply by £, e’ we are left in
(2.53) with only a contribution proportional to (z%/g*)A4.
Again using identity (2.51), we find

Jueqapinlidn + GPCuapr Ot + PalupinPtPn + DpluatnPidn
= GoEupin Pran — TpEatnDidn T PalupinPidn -+ PpCuginpPign
=2 (Pa Eupln2eqn — pﬂ eu.a. ﬂp;QQ)v

which vanishes upon multiplication by £"¢5”. According-
ly, something remains in the amplitude found from (2.53)
only because of the difference between [1 — (4u?/¢*)] '
and unity:

Im (J )GB 8((} ;}2)

4us 2
= A uaptnPidn + Penanp) eefd’ (140 (41 ))

e(q! 4ul) ruz
an queaa:npﬁ”l"ﬁ’eg’eh”

+§uq’Teuass (pt" — pi™ 8"’8&”] (1+0 (%:_}) )

As s tends toward zero, the coefficient of the first structure
becomes §(g”) /4, while that of the second structure van-
ishes. We thus finally find

(2.55)

(1) (D

Im (3, )aaelz“EEs”—Tﬁ(qz) TuEapin Pt Py e el

(2.56)
From this expression we can easily find the real part of the
amplitude:

du
(":‘)GB e(n En [m’ q’ Eas.np(g".ﬂmemﬁg)

+ceuaB§ (p( _p= )) 8(l)ell) (257)
here ¢ is an arbitrary constant which arises in accordance
with the dispersion relations from a zero imaginary part of
the corresponding form factor. Vector currents are con-

served if we choose z = 0, and in this case we have®

. o
Vi) = grags Faplaps

L
(@) = gox FasFas.
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3. HIERARCHY OF ANOMALIES

3.1. Differential forms

The expressions for the anomalies contain an &-sym-
bol—they are rendered antisymmetric in terms of all vector
indices—so that they can be written most compactly in
terms of differential forms. Differential forms are construct-
ed in D dimensions by means of D anticommuting differen-
tials dx,...dx,,dx, dx, = — dx,dx, and all possible prod-
ucts and linear combinations of these differentials. A formal
sum each of whose terms contains the product of &
differentials with coefficients which depend on x,
¢=9, ., (x)dx, ..dx, iscalleda “form of rank kK or a
“k-form.” In terms of differential forms, the field 4 ;, corre-
sponds to the 1-form A4 =i4¢°dx,, while the anti-
symmetric tensor F§, corresponds to the 2-form
F=iF; t%x,dx,/2.

Two important operations are defined for differential
forms: the external product and the external differentiation.
They are found from the tensor product and from ordinary
differentiation through a conversion to an antisymmetric
form with respect to all indices. The external product brings
two forms of ranks &, and &, into a (k, + k,)-form:

— (2)
(CDU)(D(Z))”‘ oo BRy Ry T (D[u; e “h,(Dl-lh,+1 coo By g

The operation of external differentiation transforms a k-
formintoa (k + 1)-form:

(dD),, ..

k
cMpa T 6[”‘(1)”': e g1 T (—) 6[uk”q)u1 co Myl

Using these operations, we can write F=d4d +4°
[In more detail: F=(1/2)F, dx,dx, =(1/2)(d,.4,
—0d,4, + (4,4, }dx,dx, =(d,4, +A,4,)dx,dx,
=d4+4°]

Finally, a divergence using the language of forms can be
written with the help of yet another operation, *, which
transforms a k-form into a (D — k)-form: (*®), .

=€ Pup xs l“*“D’aﬂl ¢#l#:"'#k ~(d*P),,, - For exam-
ple,if J°> = J; dx, isa 1-form corresponding to an axial cur-
rent, an abelian Dirac anomaly (2.25) can be put in the form
d#J5 =gy TrF™.
We have already written out some particularly complicated
expressions in terms of differential forms. This way of writ-
ing the expressions makes it possible to avoid writing a large
number of vector indices.

3.2. The operation which is the inverse of external
differentiation

Any closed differential form ® of rank &k + 1, with
d® =0, is locally integrable, i.e., can be represented as an
external derivative of some k-form B: & = dB. Form B can
be expressed in terms of ® in a nonlocal way, in the
form of an integral. For example, the closed 1-form
¢, dx,, ¢, =, is adifferential zero-form:

X

B:S(Dudxu. (3.1

1024 Sov. Phys. Usp. 29 (11), November 1986

Our first task in this subsection is to generalize expression
(3.1) to the case of an arbitrary rank & #0.

3.2.1. Integration of differential forms

We can attempt to seek a solution of the equation

(3.2)

kR
(Dul e uk+l= (—) 6[Hk+1BIJ-1 see “h]

in the case of a closed form & in the same way as in (3.1):

. dghe+t, (3.3)

x

Buoow @ =@y,

¢

where the integral is taken along a contour C which termin-
ates at point x. Unfortunately, the integral depends on the
choice of contour, so that (3.3) is meaningless. The closed
nature of the (X + 1)-form ® guarantees independence from
the choice of integration surface only for the integral
SO, ldx“'...dx“‘ ~'—this is by no means the case for in-
tegrals of lower order. The validity of representation (3.1) in
this sense is simply fortuitous: It is correct for closed 1-
forms, and only for such forms.

However, this is not the end of the story regarding rep-
resentation (3.3). Since the dependence on the path of inte-
gration is a complicating factor, we can attempt to fix this
path. The simplest way to choose the contour C is as a
straight line with a linear parametrization which emerges
from some given point, e.g., zero, and goes to point x:

C = {zt; t €10, 1]}. (3.4)

We immediately note that there is no guarantee that this
choice of contour in (3.3) will lead to a solution of Eq. (3.2).
When the point x is changed (Fig. 11), contour C also
changes: C + 8C # C. If the integral were independent of the
choice of contour, the difference

1]
would then be equal to an integral over the interval
[x,x 4+ 6x], and everything would be fine. Actually, how-
ever, the integral depends on the path and this difference is
not necessarily determined by the neighborhood of the point
X; it may turn out to be a nonlocal expression which depends
on the values of the integrand at all points on contour C. We
will see below that this suspicion is warranted, but we will
also see that yet another simple modification of (3.3) will
make it possible to obtain a correct representation of B(x).

Let us attempt to use contour (3.4) in (3.3), and let us
see whether the resulting expression satisfies Eq. (3.2):

@°”

5 xR

e
o

FIG. 11. Variation of the contour C in expression (3.3).
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1

I \ CDu‘ s Mplug g (zn) i de
0

. Mg . .
b @O @l (35)

What are we to do with the second term in this equation?
Making use of the closed nature of the (k + 1)-form ®, we
can interchange the indices pt, , , and A:

1
B eeettylip, g #1 A+1 Dty ey
It is now simple to see that the square brackets in (3.5) con-
tain a total derivative with respect to 1:
uh’" uh+l)

t:cuh”
(cDm o () +m®u.

L1y, L (@)

Tkt 1)
Clearly, if we integrate this expression with a weight of /*,
rather than with a unit weight, as in (3.3) and (3.5), we
would find

Dy, ..,y (2 — lim i,

L (E2) =
ot 0 U-h()

Dy, ... wyh (2).

(3.6)
In other words, the solution of Eq. (3.2) becomes
1

By, ... u, (@) =(—)" S Dy, ...y, (at) Zrerth de. (3.7)
0

We have deliberately retained the limit 1—0 in (3.6).
There are some important limits of singular forms ¢ for
which this limit is nonzero (Subsection 3.2.3).

3.2.2. Fixed-point gauge

Expression (3.7) should be familiar to anyone who is
familiar with the fixed-point gauge, which is actively used in
quantum chromodynamics.’**” Indeed, there exists a repre-

entation of the gluon field 4, in terms of the intensity
F,.=0,A —-3d.A, +[4,4.]

p (@) = — S F,, (z) z,t dt. (3.8)
[ This is not a literal analog of (3.7), since in the non-abelian
case we would have dF #0 and F = d4 + A *#£dA. This cir-
cumstance is unimportant here, and we will ignore it, espe-
cially since we offer a derivation below which applies to both
(3.7) and (3.8).]

Expression (3.8) holds in the fixed-point gauge, which
is specified by the condition

.4, (@) = 0. (3.9)
We note at this point that the k-form B is also determined
ambiguously from the equation dB = ®: There exists a
“‘gauge arbitrariness,” and (3.7) corresponds to a definite
fixing of the gauge in accordance with, again, condition
(3.9):

., B

wiewn, (@=0 (i, 2« B=0). (3.10)

Conversely, condition (3.10) is by itself a sufficient condi-
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tion for finding (3.7). Speciﬁcally, we have

{4
Buyweon, )= (yk AMy .. .uh)—y"mb....uh

(3.11)

a
" Bhu, cer np®

It would be convenient to have a derivative with respect to
Y,, rather than Y, . We can arrange this by making use of
the relation

¢3yIu B""'“- —_ay—u:Bluxu....uh—l-- .
a
=(D"""”""uh+—6KB“'---”h’ (3.12)

In order to find a linear combination of this sort, it is suffi-
cient to note that in addition to (3.11) we have

Bu, T (y) — Y 6_!/ Buo.u. eee Hpt

etc. We can thus write

kB, . .l (y)+JA Bu. TS (y)z'_yx(Du,Ku....uh

= (—)k Dy, ... T ) yuk”'

Now substituting y in the form y = x, we find a total deriva-

tive on the left,

1
T dt [t*By, ... <y, ()],

and on the right we find (-)*®, ,  (zx)x™
ing this expression over dr with a weight of 7* ~ ', we again
find (3.7). Returning to (3.8) we note that in the derivation
given here the replacement of the short derivative d by the
long derivative § + A might be dangerous in (3.12). In the
fixed-point gauge, however, the necessary equation

6Ap. 6Av
yu 5yv yll 5y

" 't. Integrat-

= —qulW

holds.

3.2.3. Integration of singular forms

This subsection is purely technical, concerned with the
violation of (3.7) due to the singularity of form & at zero,
mentioned at the end of Subsection 3.2.1. We will discuss
here a simple example, but one which is important and repre-
sentative. We assume that @, has the form ¢, 5( ¢°) in mo-

1t
mentum space (and the form XT in coordinate space, in 2n
x "
dimensions). We then have ¢, ®, (¢) =¢°5(¢%) =0; i.e,
the divergence of <1> . (x) is zero. This result means that the
(2n — 1)-form & = *®,d - £ d)!,:”, is closed.

ity ey

Some questions arise here: Of just what 1s this the external
product? What is B, .~ equal to? The problem here is
that B has 2»n-2 indices and necessarily contains an £-symbol
with 2» indices. The two extra indices have to be contracted
with something. At first glance it would appear that we have
no vectors other than x** at our disposal. But it is just one.
Let us see what we can find from (3.7):
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1

By, * Ban—g (@) = 5 [eun . (Lt)vi"—'] han-142"-2 4t = Q,

Bon | zt 2"
(3.13)

What has happened? The answer is relation (3.6). The prod-

uct
anei hem
t Q)U'l see Honay (tl') =By 4as Ban x2n

is completely independent of z; in particulzir, it does not van-
ish in the limit -0, so that (3.7) is inapplicable. [ The deri-
vation given in Subsection 3.2.2. does not apply, for a similar
reason: It follows from that derivation that (3.7) actually
determines not B(x) but B(x) — 11m t"B(tx)]

11—

If (3.7) is to be used in the present situation, it must be

regularized. The limit lim ¢ >~ '® (1x) becomes vanishing if
t—-0

we replace the function @ (y) by ®(y + n), wheren,, is any
nonzero vector. Removing the regularization corresponds to
the limit |n|—0. After this replacement, the integral in
(3.13) becomes

! Hon
By,  Bops () = g €uy (et 1 o)

Mop.172n-2
vy Torpn e T AL

Mo, W 1 .
n’ ng in-l 1212 4
=t v | T O
b}
Han-tpben
=eu,.. uznm—i_o(n) (3.14)
or, in momentum space,
Uan-1,Men
Bux...uzn_z(‘I)""Eu:...uznq—(ﬁ?‘—a(?z) (3.15)

In two dimensions (# = 1), for example, we have

wov
3au9u6 {1 = 94 [Buv %:T b (qz)] .

The dependence of B on the direction of the regularizing
vector n,, is not surprising: It corresponds to the arbitrari-
ness in the determination of B from (3.2). An important
point is that there exist singular forms ® for which B cannot
be chosen in an “isotropic” form: depending on only the
vector x* and the parameters in ®. In such cases, Eq. (3.7)
requires regularization, which gives rise to an arbitrary unit
vector.

3.2.4. Inexact forms and the K operation

The next question concerning (3.7) arises in an exami-
nation of unclosed forms ®. Equation (3.7) determines a
linear operation which acts on any forms ®. What is its
meaning in the case d® = 0? For brevity, we denote this oper-
ation by K. The K operation lowers the rank of the form by
one:

KA{Dy, ...v,m}m oy (=)

1
=(—)" 5 Dy, ... 4, (tz) Z2att de. (3.16)
[}
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It follows from the derivation in Subsection 3.2.1. that the
(k + 1)-form dK{®} is
dK{D}y, ...y, @

hheathet (g,

1
=Dy, iy @ — (=) | QD)

0

BreiPrae

If @ is closed, we return to our old assertion, dK{®} = &. In
the case d® #0, however, we find the new relation

dK {®} + K {(dP} =D (3.17)
or, in “‘operator form,”
dK + Kd = 1. (3.18)

Identity (3.18) holds when applied to any nonsingular
forms (Subsection 3.2.3.) of arbitrary nonzero rank. If the
rank of & is zero, it becomes necessary to recall relation
(3.6), in which we have, in this case

lim @(tz).

t—0
When applied to a 0-form, (3.18) is valid only if this limit is
zero, i.e., only if the O-form vanishes at the origin of coordi-
nates.

Equation (3.16) determines a linear operation which is
the inverse of external differentiation: K =d ~'. Since the
operator 4 is nilpotent (d > = 0), the operator which is its
inverse must be determined specifically by rule (3.18), not
by the more customary relations Kd = dK = 1 (such an op-
erator would not be defined on inexact forms). The operator
K is often called a **homotopic” operator. It is defined am-
biguously by (3.18); the choice in (3.16) corresponds to the
fixed-point gauge , x*K{®} = 0. The operator X is also nil-
potent, and its square satisfies K 2 =0, as follows immediate-
ly from (3.16) and from the antisymmetry of the differential
forms:

K? {(D}HA ese Up o

1

JE

0

= (=) (=)

u, (T22) (za)"rett g r-igh2 de

=L

=0.

At this point we have a few words regarding the action
of the K operation on an external product of differential
forms. External differentiation is an odd operation; i.e., it
acts on a product in accordance with the rule

d(AB)=dA-B+(—)%4 A dB,

where R , is the rank of form 4, and (—)"“*is its parity. The
inverse K operation does not have this property: When it acts
on a product, it is completely impossible to distinguish the
effect on only one of the factors (just as the Leibnitz formula,
valid for differentiation, does not apply to ordinary inte-
grals).

3.2.5. Can d 7 be a local operator?

The general answer is of course no. In general,d ~'isan
integral, nonlocal operation. Nevertheless, there may exist a
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certain set of forms on which the operation d ~! which does
not explicitly contain an integration, acts. Taking a bit of
liberty, we will classify such an operation as local. Below we
will discuss the important class of forms which are con-
structed from the 1-form 4 (x) and its external derivative
dA(x), which do not contain an explicit dependence on x.
These are precisely the forms which arise in the study of
anomalies. Zumino®' introduced an operation (which we
call k; it is printed as k, here) on this class of forms which
is local and which, under certain stipulations, satisfies the
relation dk, + k,d = 1. We will discuss this operation in
Subsection 3.3. In the present subsection we attempt to de-
termine how K, given by (3.16), can be converted into a
local operation. As a result, the definition of k, becomes
clearer, as does its range of applicability. The reader may, if
he wishes, move on directly to Subsection 3.3, whose con-
tents do not depend on the remainder of the present subsec-
tion.
We apply the K operation to an exact 2-form dA4:

K{dA), (1) = — S (dA),, (xt) 2Vt dt

— 5 [ — 0,4, (zt) + 0,4, (xt)] z¥t dt
1

=4, () —;fr 5 A, (at) 2v de
0

1

=[4—d A, @navar] . (3.19)
0

Ju

As a result, we find not the original form A4 but its “gauge
transformation.” After what we saw in Subsection 3.2.2.,
this result should not be surprising. We already know that
the application of the K operation leads to a result in the
fixed-point gauge.

We stipulate that we are choosing the field 4 in the
fixed-point gauge. The relation K{d4} =4 then holds.

Furthemore, in this case we have
1

K{A)= S A, (zt) 2 dt =0,
0

We now consider a form which is an external product of any
number of A ’s and d4 ’s, and we apply the X operation to it.

In applying the K operator to the external product of
forms A and dA, we obtain in the integrand a sum of several
terms which correspond to a convolution of x* with various
factors. Each time x* is convolved with 4%, we obtain a zero
in the fixed-point gauge, while when x* is convolved with
(d4),; = [d, 4, —d,A, ] (xt), we obtain an expression in
which

dA,,; (rt) z

is replaced by
1 d
- T (t4, (zt)).

For example, when K is applied to the product of p forms d4
and k + 1 — 2p forms A {thisis a (X 4+ 1)-form}], we obtain
the sum
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K{...A...dA...d4...4)

1 .
—=-(—1)h5(...,4 L dA . dA L A L) (et et dt
0

=(_)h3 {...+0+ oot A ...[—%%(M(ﬂ))]

. d4 ...A...+...A...dA...[—tlEdt—tA(xt)J

VA eet a0 L ) (3.20)

In each of the nonzero terms, we now have to “distribute” *
asfollows:onet toeachofk + 1 — 2pfactors4 andtwo¢’sto
p — 1 factorsdA. Yet another ¢t is expended on cancelling 1/¢
in
1 4d
—+ g7 (t4).

As a result, all of the A (xt) are replaced by t4 (xt), and the
dA (xt) are replaced by

12 dA,, (zt) = 61 [t4, (zt)]
I
[ we recall that
F)
(04) @0) = 52 A (V) lymsi= 7 55 (4 (21].

We can now set x = 0 and take the integral over ¢. The oper-
ation found by this formal approach looks the same as if we
had replaced one of the factors by 4 and written an addi-
tional factor

! !

| et dr = | ¢ dt =
o v

S
k+1—p

= (the number of times the letter 4 appears in the
product) .

Finally, the sign is determined by the circumstance that K is
an odd operation; i.e., a minus sign appears when we pass
through each 1-form A or external differentiation. This is the
k ; operation. In the following subsection we discuss this
operation in greater detail, since it is extremely important in
dealing with anomalies.

3.3. The k, operation21

This operation is defined only on forms constructed
froma 1-form A and its external derivative d4. The k , oper-
ation lowers the rank of the form by one, and on the specified
class of forms it satisfies the relation

kyd 4 dk, =1, (3.21)

Le.,itactsasd ~'on thisclass. We begin with actions on the
“elementary” forms:

kA =0, k, (d4) = 4. (3.22)
Clearly, (3.21) holds:

(k. d + dk;) A = k, (d4) = 4,

(k,d + dk,) dA = d (k, (d4)) = dA.
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We now consider the product of several forms 4 and d4, e.g.,
AdA. We assume that k, acts on a product as a local odd
operation:

kA = —Ak, + (k,A) = —Ak,,
kdA = + (dA) k, + (k. (d4)) = + (d4) k, + A.

We then have k,(4d4) = —Akszz —AAd = — A2
Does (3.21) hold?

dk, (AdA) = d (—A?) = —dAA + AdA4,
k,d (AdA) = k. (d42) = (A + (d4) k;) d4
= Ad4 + dAA.

We find (dk, + k,d)(AdA) = 24dA. An extra factor of 2
has appeared. We see from this result that a Jocal k, oper-
ation does not exist. However, let us see what happens in the
general case. We take the product of p 1-forms 4 and of ¢ 2-
forms dA, written in any order. We have

dk, {. . .A. . .A...}

= (dRA). Al e Al (dRA).
1o (dA). . (k). . . — .. (kA (@A) ] e

On the other hand, we have
kad { ..A...A...}

e e (dA) A AL (RdA).
1+ [ . (dA). . (k). . . +. . (K A). . .(AA). . ]+ .

Animportant point is that the expressions in square brackets
in these two equations differ only in their sign. We will
change nothing by replacing 4 by dA. This observation
means that when the sum k,d + dk, is applied to a product
it is not necessary to consider cross terms, in whichd and k,
act on different elementary forms:

(dk, + k,d) {..A...d4}
= 4. ARy + kDAL L dA.
+. . Ak d + dEy) dAl . 4L
=(p+gq...A ..dA. ..

All the signs are plus signs here since k,d + dk, acts as an
even form.

We thus see that, under the assumption that &, is local,
during the application of dk, + k.d to the product of p
forms 4 and of ¢ forms dA it is multiplied not by unity but by
p + ¢q. In order to satisfy relation (3.21), we should intro-
duce an additional rule: We assign a factor of 1/( p + ¢) to
each such product. We wish to emphasize that after we have
done this &, is no longer a local operation in the sense that its
action on a product is not determined as an action on the
factors one after another; we also need a “global” character-
istic: the total number of forms p + ¢. Zumino?' suggested
the following mnemonic rule for dealing with this *“‘nonlocal
nature’: assign a factor ¢ to each 4 and dA4 and take the
integral
j e
v 1
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of the resulting expression. Clearly, a factor of 1/( p + q) is
reproduced in this manner. Less clear are the origin and
meaning of this rule. In the preceding subsection we at-
tempted to show that the nonlocal nature of the k, operation
and the appearance of a parameter ¢ are consequences of the
general structure of the operationd ~'.

To avoid any misunderstanding, we need to point out
that &, is defined ““algebraically”: The operation of integra-
tion here essentially reduces to the replacement of d4 by 4.
Consequently, k, ‘‘does not know about” the important
property that the D-forms are closed in a D-dimensional
space. To see the situation, we consider the 2-form 4 % in a
two-dimensional space. On the one hand, we have k, 4 2 = 0,
while on the other d(A4?) also vanishes in this situation.
However, this result is an explicit contradiction of (3.21)!
How could this have happened? Returning to the derivation
of the properties of the k, operation, we find
k,d(A2) = [(k,dA)A + A(k,d4)] =24%#0. In other
words &, “does not know” that it is forbidden to raise the
rank of a D-form and that the product &k, does not change the
rank. The result found by this algebraic approach contains
no hint that the derivation is erroneous. We could look at
this example from a slightly different standpoint: The %,
operation does not always generate from a closed form the
original of this form [as it should, according to (3.21)]:

d (kD) = O — kdD = D).

For example, from a closed 2-form 4 2 in two dimensions we
find zero instead of the correct result

' .

g A, (tz) A, (tz) 2t dt

{0
In order to obtain the original correctly, we need algebraic
closure, i.e., d® = 0, regardless of the dimensionality of the
space [while in the example above we algebraically have
d(4?) =dAA4 — A dA=£0]. Pathological behavior of this
type naturally does not arise for the original K operation | see
(3.16) ]. When we went from K to k, at the end of the pre-
ceding subsection, we needed the fixed-point gauge. Conse-
quently, we need to be particularly careful in applying the &,
operation to gauge-invariant forms.

As some important examples we consider two 2r-forms
in a 2n-dimensional space, which arise in a discussion
of Dirac anomalies: W=TrF" and W*=Tr¢t“F"
(F =dA + A %). Both these forms are closed, and they can be
written in the form d (KW). However, we can replace k by &,
only in the case of W. At this point we first need to
recall that W is a gauge-invariant, while W is not: If
A-U"'AU+ U 'dU we find W*TrU 't“UF"
% W . Furthermore, W vanishes during a formal (algebra-
ic) external differentiation, while W “ does not''):

dW = nTr (dF) F*' = n Tr (dAA — AdA) F*-

=nTr (FA — AF) F*1=0,
dWe = Trt® ((FA — AF) F*-\ + F (FA — AF) F** +
... FPU(FA — AF)] = Tr (At® — t°A) F" £ 0

[thelast expressionisa (2n + 1)-form and of course vanish-
es in a 2n-dimensional space, but the k, operation ‘‘cannot
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know™ about this]. The closed form W<* =Trt“F" can
thus be written as the external derivative of only an expres-
sion which is nonlocal in terms of x, while we have
W=TrF" =d{k, Tr F"}. For the discussion below it is
convenient to introduce a symmetrized trace, by which we
mean a trace which has been rendered symmetric with re-
spect to all possible permutations of the color matrices be-
fore the trace is taken:

STr (4, B) =+ Tr (4B + (~)"a*F5B4),

etc. We then have
Tr F* = STrF'(=STr (¥, F, ..., F)) =d (k,STeF™)

= dlk, D) CXSTr (d4*, (4%

h=0

n I
= 1 3] pocn, STr (dA*, A, (4%"7),

h=0

Here C* = n!/k!(n — k)! are the binomial coefficients, and
the factor 2n — k = 2(n — k) + k results from the integra-
tion over ¢ in the definition of the k, operation.

We have one more comment regarding the application
of the k, operation to Tr F". It is clear that when &, is
applied to a closed form it is necessary (but not sufficient)
that it not contain terms of the type 4*, which do not contain
dA. For a closed form we have d{k, ®} = ®, and since &, ®
does not contain integrals, when we differentiate it we neces-
sarily find an expression proportional to d4. 1t is thus clear
that a term withoutd4 in Tr F ", i.e.,, Tr 43", is zero. This is
indeed the case; e.g.,

1

1 . v
Tr AZ‘:W v Tr f1l‘-‘4\l:w €y ﬁ,A% xO,

: 1
Tr At = —?iT Epvap Tr AI-I.A’VAG.AB

1
:m guvaﬁfabmfrdmAﬁAeAaAg -0

(the latter equality stems from the Jacobi identity for struc-
ture constants: £ £/ = @). The general proof looks
much simpler:

Ted? = TrAdA¥1 = ()" VTr4 =14 = — TrA™ = 0

[we have moved 4 from left to right within the trace, and the
factor (—)?” "’ has arisen because of the interchange of the
1-form A with the (2n — 1)-form 42"~ !). It should not be
surprising that Tr ¢ “ £ " does not have an analogous proper-
ty: Trt“dA4*" #0, since even at n = 1 we have

Tr 1942 = 3 [y, A% A5 7 O,

3.4. Relations among anomalies20-23-33

In this section we discuss the relations among the ex-
pressions on the right sides of the four simplest anomalies.
A Dirac abelian anomaly in 27 dimensions,

n 2
dxJi= W )=WTI'F711

F=dA+4% Jh=v09 (3.23)
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A Dirac color anomaly in 2» dimensions,

(D #J%)2 = Woem = 2

gy TP T =T,

(3.24)
A Wess-Zumino term (Chern-Simons class) in a
(2r + 1)-dimensional gauge theory,
In detDanom= ( W(U2n+1)’ W(Uzn+1)

1

= ZE T (3.25)

Tr{d(d4)™1+ ...].

A Weyl anomaly in 2n dimensions,

(D # J 1)o = W™ =Tz?1>_(2n';1—>1 Tree((d4A)" + ...},
(3.26)

We can show that these structures are related to each
other by the k, operation in the following way (Fig. 12):

WerD = (a/2)k, WeEr*2,

or (/2)We™ = dWE+h,

(3.27)

For n = 1, for example, we have

n 1 1 2
5 TrF2=d o Tr (A dA+—3—A3> .

The left branch of the diagram corresponds to the relation

2 1
switnth

o (3.28)

Wee = 4

For example,

—Gj—a{n—Tr (4 dA+%A3)

.
FTI‘t F:4
= e Tr £ (d4 + 49).

The second branch of the diagram stems from more-compli-
cated transformations, specifically gauge variations of ficlds.
They are 6,: A=A+ [Au]l +du; 8,: F=d4+ 4% -d4
+ [dd,u] — [A,du}] +A2+ A[Au] + [Auld + dud
+Adu = F+ [Fu). The arrow in Fig. 12 corresponds to
the relation

W(z& +2)
d-f
% (2/2+7)

/04 a’g,

wa2n) W,a(Z/r)

V (2/7-/)

l
l
¥

FIG. 12. Hierarchy of anomalies. The transitions indicated by the dashed
arrows are not discussed in the text.
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uawlll(?.n)=4k26uW(02n+1)’ (3 29)
or d (uW§¥) =48, Wi+, .
For n = 1, for example, we have
1 E
d Wiy =d—Trudd=—Trdud4.

On the other hand, we have

1 2
48, WP = 48,5~ Tr (4 dA+ = 43)

=4%Tr {du dA——A[Adu]
2 1
+ = (Azdu+t 4 duA-i—duAZ)};: = Trdud4.

The reader will easily recognize in these relations
between different anomalies the coupling equations which
we have already discussed in Subsection 2.3. There, how-
ever, we were dealing with left-hand fermion parts of equali-
ties (3.23)-(3.26). Here we are concerned with right-hand,
boson parts; in particular, we wish to derive general equa-
tions for W§*+ " and W*", The hierarchy of anomalies
given by (3.27)-(3.29) is a purely algebraic construction,
which relates different cohomological characteristics of
operations involving a variation with respect to the gauge
field (connectivity)®® and gauge transformations.** From
the practical standpoint, Eqs. (3.27)-(3.29) make it possi-
ble to find automatically complicated expressions for the
Weyl anomaly in spaces with more dimensions by working
from the simple expression (3.23) for the Dirac anomalyina
space with a dimensionality two units higher. We also note
that the hierarchy of anomalies is not exhausted by the dia-
gram (Fig. 12): We could go down even further, into spaces
of 2n — 1, 2n — 2, etc., dimensions. (A method for generat-
ing new cohomological characteristics in this way is some-
times called the ‘‘descent method.”) However, the physical
interpretation of the equations which appear as a result is
still in dispute,®*-*>-%° and we will not discuss those questions
here.

The remainder of Subsection 3.4 is purely technical. We
will write explicit expressions for all the anomalies.

We begin with an abelian Dirac anomaly:

LA B e~ T Pr= STrF" = 3 CASTr (d4*, (43)™4)

h=0

< C'I:zk R= n=k
=d 3 s STr (A4, 4, (49)™).
h=1

(3.30)

The last equality follows from the properties of the £, oper-
ation; the reader is referred to Subsection 3.3, where all the
nuances of this transition were analyzed. It follows from
(3.30) that we have

e 1 I Cﬁk - n-
WD = s 2 gy STr (@A A, (4975,
LT

h_ nl 3.31
Cn= Kl (n—#&1 ( )

To go over to a color Dirac anomaly, we need to vary
this expression with respect to the field 4. It is convenient to
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replace (3.31) by an integral representation generated by
the k, operation:

1
2Qr)t WY = pSTr S AFY'dg, Fy=tdA+E242
’ (3.32)

We thus vary (3.32) with respect to the field 4. For this
purpose we use the replacements 4 -4 + a and

STrAF?™' — STrAF{~'48Tr(a, Fi™")

+ (n—1)STr{4, F{7%, tda+5(da+ad)}. (3.33)

At this point we note two circumstances. First we have
Aa +ad = [A,a], and thus £da + § *(4a + ad) = £ D,a,
where D, = d + [£4,] is a covariant derivative with respect
to the field £4. Second, we have

DyFy = O. (3.34)
This relation can be found from the Bianchi identity DF = 0
by replacing A by £4. As a result, the last trace
in (3.33) becomes equal, within a total derivative, to
+&(n—1)S Tr(a,D 4,F2~*). The sign is a plus sign
here, since the odd parity of the 1-form tells us that we have
a(D;a)B —a(D.B) = D{(aB). Furthermore, we have
D.4 =dd + 2£4 7, and from (3.33) we find

oz 2 @)t g

1
=n STr {1°, dE[F""-{—(n_i) (£ dA + 28242, Fn—2)]]
£ t {

0

=nSTr{t, | dEi(nFs+(n—1) 247, FF*1}

Oy

- =18 Tr{te, dAR-1, (A%)"R]
=n 2 {nc -1 Y=
h

n-2 STr[te, d4k-1, (A2)"-k
+(n_1)ck_f re o (42)"-h] }

n-1
= S 25l STr e, A1, (497 [ne (n— )
R

=n D) CrIiSTr (18, dA*-t, (43)"*]
k

=nTr (taF"—i) == (2‘_:‘)51:1_ n”,Va(?_n—z)'

The relation §W "~V /64° = W2 /4 has thus been
proved.

We now consider the relationship between W §*"— "
and W {7, Here we need a gauge variation of expression
(3.32):

1
8, {2(2n)" (n++ Y W — (1 1) 6,8 Tr S AFTdE
0

1
=(n—}-1)STr5d§{(du, FY+nld, FI™', —£(4, du)

[\

+E2 (4 du 4+ dud)]}
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1
= (n+1) STr | d&{(du, FY—nt(1—p
4

x((du, A], 4, Fi™")). (3.36)

Understandably, u appears without a derivative only in the
commutators [4,u], and [F;,u], and it drops out after the
trace is taken. We will accordingly ignore from the outset
terms which do not contain du. To prove (3.29) we must
first show that (3.36) contains a total derivative. Since this
derivative is proportional to du, however, the entire expres-
sion (3.36) must be of the form STr{du,dV}. As a starting
point, to indicate where we are headed, we will show that
(3.36) contains a term STr{du,4>" }, which cannot appear
exactly in STr{du,dV}:

i

§ dES Tr {du, EA™ —nt(1—8) [du, A], 4, =D 4200}
0

1
—$Tr{du, 4%} | ag(e — 28 (1~ &Y.
0

The integral is

1 1

s — 20 (g — 5y ) =0-

Before we derive a general expression for W ("~ 1 we will
repeat the entire passage from a Dirac anomaly to a Weyl
anomaly. The original expression is

2 Tr Fﬂ-fl

PSS S
wems = 2" (n 1)

which is an explicitly gauge-invariant expression. We then
write # 2" * 2 in the form

2 (2n+1)
- dWs ),

where
1

WD TZ::)TZI— Tr | azaFy
0

is no longer necessarily gauge-invariant. However, the
changein W {*” ="’ under gauge transformations of fields is a
total derivative: §, W *" =) = dU,, by virtue of the relation
dS, WtV =(a/2)8, W3 P =0. The variation
8, W Vs linear in &, but since W (2"~ " is colorless this
variation may contain u only in the form du (u without a
derivative drops out when the trace is taken). We thus have
S, WY =dU, = TrdulU and O0=ds Wwi+"
= Tr dudU. This equation holds for arbitrary u, so we have
dU=0and thus U=dVand § W > " = Tr dudV. This
circumstance means that we can apply the &, operation to
(3.36); that operation acts only on 4 and d4, not on du.
As a result we find precisely S TrduV: —dS TrduV
= STrdudV = W * . Remarkably, the application of
k. causes the second term in

1
STr j dt {du, FR—nE(1—¥)

0

(2n-+4) __ 1
8y = rmmar

X{du, 4], 4, F{~Y}
(3.37)
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to vanish. The reasons are the odd parity of k, and the taking
of a symmetrized trace. We recall (Subsection 3.3) that we
havek,4 = Oand k,dA = A. Since k, transforms the 2-form
dA into the 1-form A4, it must be an odd operation. As a
result of the application of k, to the symmetrized
trace STr({du,4],A4, Fi- ') we find an expression
EVTUSTr([du, 4, 4, 4, F~?), which vanishes becasue
of the symmetrization with respect to the two 1-forms 4.
Accordingly, the role of the second term in (3.37) is exclu-
sively one of modifying TrduF } to the exact form to permit
use of the k, operation. This operation itself acts in a nontri-
vial way on only F;:

k
STr (du, Ft) % nSTr(du, &4, Fi™),

since k, F, =k, (£d4 + £°47) = £4. We recall, however,
that by virtue of the definition of the k, operation we should
still multiply all the fields A by ¢ and take the integral

1

e

)T

0
Exactly the same role, however, is played by the parameter £
in the transformation from W"+ 2 to W "+ 1 sothatit is
sufficient to replace £ by £¢ and to integrate as follows:

¢ de 1d£
)]

We then find

1 i
k,STr | a2 (du, Fp=»n | 2
0 0

dESTr (du, Et4, FR).

Sy

We switch to the new integration variables (£¢) and ¢:

%idg...:jd(&) 1{ &L
0 0 (&)

Sy

Denoting (£1) by £’ and then in terms of £ again, we find

1
k, STr S d& (du, F)=n | d&' 155 STr(du, ¥4, FI)
0

T

SN

1
—n [ dE(t—ySTr(du, 4, I,

0
As a result we have

S WY = 1 Tr du dver

1

1 n=1
= sz ¢ j dE(1—§&) STr (du, 4, FI™Y). (3.38)
0
The quantity ¥***~ 1 jtself can be expressed in terms of a

symmetrized product SP (again, a conversion to symmetry
in terms of color indices):
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1

n—4y __ 2 o et
V= re=r | PSP
Q
——-—2 Ne=
=G mror SP4d4™ + ). (3.39)
The trace W =Tr*dV*"~ " determines a Weyl
anomaly.

3.5. Anomalies and the coboundary operator3?

The calculations in the preceding subsection can be in-
terpreted in an elegant and meaningful way. We again return
to the Wess-Zumino consistency condition. The anomaly
w'(u|d)=§ W} (u|d)dx satisfies the relation 5, w' (v|4)
—8,w "(ul4) —w'([uv]|4) =0. We are interested in
nontrivial solutions of this equation which are not gauge
transformations of an integral of any local expression,
w(d)=5 Wo(A)dPx:w' (u|d) #6,w’(4), for any w’(4).
Otherwise, w’(A4) could be added to the action as a counter-
term, which eliminates the anomaly. In other words, an
anomaly exists only if there are solutions w'(u|4) of the
equation

(Av?) (uy, v | A)e= 8,07 (v, A)

— St (| A)—ut (w] 1 4) =0,
(3.40)

which cannot be put in the form (Aw®) (u|4) =6, u’(4). At
this point we need to recall that any variation §, w(4) auto-
matically satisfies condition (3.40): A(Aw”)=0. There is
accordingly an operation A whose square is zero (A% = 0),
and we are interested in solutions of the equation Aw' =0
which are nontrivial in the sense that we have w' £ Aw". (So-
lutions of the type w' = Aw" are trivial in the sense that for
them we have Aw' = 0 because of the properties of the oper-
ation A not because of the solutions themselves.) The oper-
ation A transforms expressions of the type w"(4), which
depend on only the fields 4, into expressions (Aw") (u|4),
which contain an additional dependence on the parameter u
of the gauge transformation (or, stated more simply, a de-
pendence on the element of the Lie algebra, G). In turn, the
expressions w' (#|4) which already contain a dependence on
a single element of the Lie algebra are transformed by this
operation into (Aw') (u,v|4), which depend on the two ele-
ments # and v. This construction can of course be general-
ized quite easily. The only point to be careful about is the
conservation of the property A> = 0. For example, for w?(u,
v|d) = — w?(v,u|4) one can define

(Aw?®) (u, v, w|A)

= 8,w(v, w|A) + 8w (w, u | A) + S,uw® (u, v | A4)
—w? (wl, w|A) —w® (v wl, u|d) —w® (wul, v]A4).
It is easy to verify that we have

(A*w') (uy v, w [ A) = (A (Auw?) (4, v, w|A4)

= w' (lluvlw] | 4)

+ willowlu] | A) + wi({lwul] | 4) =0
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by virtue of the Jacobi identity for the Lie algebra, which can
easily be applied if w'(#|4) is linear in the variable 4.

In general, for any n we can introduce a linear space L”
of expressions w” (u, ..., 4, |4) which are completely anti-
symmetric with respect to all the u,, ..., u,, and linear with
respect to each of them. Such w” are called “n-cochains,”
and the action of a “‘coboundary operator” on them is de-
fined: A: L" - L"*', with A2 = 0. On the n-cochain w", A
acts in accordance with the rule

(Aw") (U4, ooey un+y]d)

= (=) Oy (g - By ous UnsalA)
i

cee UpyylA);
(3.41)

where P; and P; are the parities of the interchanges (/, 1, ...,

i,.on+1Dand (i, /1,..,14...J, ..n4+ 1), respectively. The

carets mean that the marked letters are omitted. The se-

quence of mappings

P v v
— D (=) Y (uiugly vy veo g ... ouy
i<

2 ORI S -
has the following property:
{the set of all
“coboundary”
(or “‘exact”)
elements L"

The transform of Im,, _, A = AB" "~ ={ found from

any elements L" !

through the
\mapping 4, and

the set of all “coclosed” elements
the kernel Ker ,A = {L" which vanish under the mapping
AfromL" toL" !,

Im, ;A < Ker, A,

These mappings are not necessarily the same, however: There
may exist “‘cocyclic” elements which are coclosed but not co-
boundary. For this purpose, the “group of cohomologies™
H" (A)y=Ker,A/Im, _, A must be nontrivial. (Im, A
and Ker, A are linear subspaces in L", and therefore

the set of equivalence classes of the elements of

o — [thesct o cui
Ker, Awhich differ by elements Im A

n—1
is also a linear space. In particular, it has the structure of an
abelian summation group.)

Returning to the anomalies, we can conclude that the
anomaly w'(u|4) is a 1-cocycle: an element of the group of
cohomologies H '(A).

What have we accomplished through this reformulation
of the consistency conditions? The first and foremost accom-
plishment is the determination of the algebraic meaning of
this condition. The question of an anomaly has been related to
many other (mathematical) questions. There are also some
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“more practical” results: An anomaly turns out to be one of
the elements of an infinite series: In addition to the first coho-
mology H ' there are also H %, H?, etc.; a hierarchy of anoma-
lies has arisen. We will return to this series a bit later.

Finally, we have obtained a new computational meth-
od. To find the anomaly w'(u|4) we need to write down all
the elements of L ' and to map those linear combinations of
these elements which vanish under the application of A. We
obtain Ker,A. We then need to write down all the elements
of L ° and to act on them with A: We find ImyA. The differ-
ence between Ker;A and Im,A is the anomaly (within nu-
merical factors). Let us see how this method works in a spe-
cific case. The spaces L% L, ... themselves depend on the
dimensionality of the space-time D. This circumstance de-
termines the dependence of the cochains which are integrals
of D-forms on the fields 4. We consider the simplest case,
D = 2. The basis in the linear space L ,_, consists of two
elements Tr § ud4 and Tr § uA 2, which are transformed by
the operation A into

S d {Tr [uv]l4) = 0 (an integral of a total derivative) and

TrSAdHuﬂ-+1&§mwA%#o.

Accordingly, Ker}, _, A consists of 2-forms Tr § ud4 with
an arbitrary numerical factor. The space L §,_, turns out to
be empty: We haveboth Tr § d4 = Oand Tr §f 4 > = Osothat
ImY = 0. We thus have H}_,(A) = {const-Tr § «d4}.
We know that a Weyl anomaly is indeed of this form in two
dimensions. The numerical factor is of course not fixed by a
calculation of the group of cohomologies, just as it is not
fixed by the Wess-Zumino consistency condition itself.

We should point out that a purely algebraic method of
this sort for calculating anomalies is extremely useful in
complicated multidimentional problems. Furthermore, it is
not restricted to Weyl anomalies: All that is required is to
relate an anomaly to cohomologies of some complex. Inter-
estingly, this turns out to be possible even for conformal
anomalies.** In order to convert the corresponding operator
A'=g""5/6¢"" into a boundary operator (i.e., one satisfy-
ing the condition A? =0), we simply multiply it by the
Grassmann parameter §: A = A’ = 0g"*° /5g"",07 = 0.
This operation, which seems at first glance to be somewhat
pointless, will make it possible to simplify dramatically the
calculation of conformal anomalies in the presence of exter-
nal gravitational and Yang-Mills fields.

We return to a hierarchy of anomalies. We would first
like to see what the descent method (used in the preceding
subsection) looks like from the standpoint of a complex:

A A I\
L - ' » ... > I" —

Since the descent method uses a transition from one dimen-
sionality of space-time to another by means of the operation
dandd ~', it of course applies not to spaces L !, of integrals
of D-forms but to spaces of 4 % of the D-forms themselves:
L7, =§ A7 The operation A also acts in accordance with
rule (3.41) on the forms themselves, and in this case we
again have A® = 0. To avoid any misunderstanding, we will
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use a different letter, &, to denote this operation on the forms:
Af W7 =y58W5. Since 5 = 0, we have the complex
8 8 8 6
Ap = A — ... .= A5 0.
Furthermore, we now also have the operation of external
differentiation, which transforms 4 }, into 4 }, , ,, at our dis-

posal. That operation also satisfies the condition d* = 0. We
thus have even a *“double complex™

af  at ¢ f |
Ay ap s S S

af  of at
df' d¥. Qf. (3.42)
A S s
at at at

[\ 6 6 [}
A — A S S A L)

The operations § and d commute with each other, as follows
from the equality d6,4 =d([4u] + du) = [d4,u] — [A4,
du] =6,dA4. Consequently, diagram (3.42) is commuta-
tive. What is the anomaly W }, in terms of a double complex
of this sort? The Wess-Zumino condition requires
AfWp,=J8W),=0andthusSW ) =dW?2_, forsome
W1 _.ed} : W, does not necessarily have to belong to
the kernel of §, but it must be transformed by this operator
into a total derivative. On the other hand, the integral of the

(D-1)form § W73 _,eL? | which arises as a result
itself satisfies the relation A f W3 _ | = 0. Consequently,
SWZI |, is an exact form, since we have

d(6W3, ) =8WWi,_ ) =8(8W,)=86K. =0, and
AfW3 ., =f6W3 = an integral of an exact
form = 0. More briefly, A-closed elements from L} are
mapped into A-closed elements of L%, _,. Furthermore, A-
exact elements from L }, are transformed into A-exact ele-
ments of L, . In fact, if we have f W}, = A f W9, then
we have W, =6W, +dW |, | for some W) ,edl .
We then have §W |, = 8dW |, _ | and dSW |, corresponds in

A% _, to an element W2 | +dW2 ., with some
Wi _,. The integral of this element, f(§W) |,
+dW3, ) =§8W,_ ,=Af§/W. |, is A-exact in
Ly .

All this means that the properties of the double
complex (3.42) can be used to construct a mapping
P:HL(A)—~H}_,(A) of groups of cohomologies of the

A A A A A
complexes: Ly —Lp—~..~L%—~.. and LY L% |
A A A

—..—L% —.. In exactly the same way we could of

course construct the operation P: H', (A) - H ' " (A) for
arbitrary » and D. [ The rule is that for A { W, = O we have
SWip=dwiyt, and AfW,T, =0, and if W
=Af W, ' then we have W) =6W} ' +dw2 _,,
Wiy =dWwy, +dWwh ) and
f((SW'[’J { +dW,[l)rz):Af W’b l']
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A hierarchy of anomalies is found by applying
the  operation P successively to  H9(A):

P P P

HY(A)-H}_,(A) -H% _,(A)—..Inthis sequence, P?
is generally not zero, and P itself usually performs a surjec-
tive mapping: Any cocyle from H%*! | can be found
through the application of P from some cocycle in H% _ .
The original H §,—the space of gauge-invariant integrals of
D-forms—is constructed in different ways in the cases of
even and odd D. For D = 2n, the basis element in HS, is
Tr f F". In this case the 2n-form itself, W5, =Tr F" is
gauge-invariant, W ,, =0, and the first application of the
operation P leads to a vanishing result. For an odd dimen-
sionality D = 2n — 1, this situation is different. In this case
wehave W9, =TrF" =dW$, _,,and f W5, , is abasis
element of H9, _,. The quantity §W 9, _, no longer vanish-
es, and the operation P makes it possible to find from
§ W9, _, the expression § W), _, for a Weyl anomaly in
2n — 2 dimensions. An example of a calculation of this type
was given in the preceding subsection.

4. GLOBAL ANOMALIES

In 1982 Witten*® studied the behavior of a fermion de-
terminant under topologically nontrivial gauge transforma-
tions. Of interest in this case are Weyl fermions, since the
Pauli-Villars regularization guarantees the gauge invariance
of the determinant of Dirac fermions. The action of Weyl
fermions is invariant simply by virtue of the Weyl anomaly
associated with the determinant of regulators. In the case at
hand, in contrast, we are talking about an additional nonin-
variance. [ A global anomaly will of course be more impor-
tant in cases in which there is no local Weyl anomaly. One
such case is that of the SU(2) group at D = 4, since we have
Trt®FF~d* F®F< = 0. This case will be focused on be-
low.] It turns out that at D = 4 the Weyl fermions in the
fundamental representation of the group G = Sp(») , in par-
ticular SU(2) = Sp(1) necessarily generate an action which
changes by exactly i7 (while the exponential function of the
action changes sign) under an uncontractable gauge trans-
formation, whose existence stems from the nontrivial nature
of the homotopic group 7, _ 4 (G). This gauge transforma-
tion is global in a substantial way and does not reduce to a
composition of infinitesimal transformations. The corre-
sponding noninvariance of the action is consequently not
manifested in the nonconservation of some current.

Somewhat later, Redlich*' (see also Ref. 35) discov-
ered an analogous phenomenon in odd-dimensional theor-
ies. In this case, a regularized determinant of course cannot
disrupt the gauge invariance (Dirac fermions), but the de-
terminants of the physical fermion and of the regulator, are
separately noninvariant. More precisely, we need to examine
the contributions to the effective action which are propor-
tional to an e-symbol. The corresponding anomalous struc-
ture in the Lagrangian of a (2# + 1)-dimensional theory is

W Tr(4d4™+ ...), (4.

1
T 2@ (n+1)!

and its coefficient in momentum space is constructed in ac-
cordance with*’

1034 Sov. Phys. Usp. 29 (11), November 1986

am : Ip]
L= o1 Aresin T e e (42)

The unity is the contribution of the regulator, and the second
(nonlocal) term is the contribution of a physical fermion
with mass m. The limit m = 0is not always meaningful: The
theory contains infrared divergences. For a very light fer-
mion, at all energies | p| > m, the second term in parantheses
is inconsequential, so that all the physical properties of the
theory (the spectrum and the scattering characteristics) are
determined by the action with a unit coefficient for the struc-
ture § W §"* V. If we instead are interested in global gauge
transformations which fall off slowly at infinity, the nonlo-
cal term “comes into play” and cancels the noninvariance of
the action with § W §*" ™" under such transformations. For
D =2n + 1 =3, for example, variation of f W {*" + " under
the transformation A4-—-g~'(4g+dg) is equal to
7 Tr § (247%) ' Tr(g~ 'dg) and is a multiple of 7, so that
there are transformations { which correspond to an odd to-
pological charge of an ordinary 4-dimensional (BPTS) in-
stanton] under which exp(i f W {*) changes sign. The ac-
tion of a physical fermion, however, does not change by 7
here, and the theory turns out to be invariant.

We have already calculated the anomalous contribu-
tion to the determinant of a regulator fermion, in Subsection
2.3. Interestingly, the noninvariance of this determinant can
be seen by using the same method as was used by Witten in
his study of the SU(2) anomaly. We should again emphasize
the profound distinction between the theories studied by
Witten and Redlich. In the former case, a regularization
which makes the generatoring functional invariant does not
exist; i.e., the theory is nonself-consistent. In the latter case,
everything is fine theoretically, but not every regularization
can be used. (In particular, there is an unavoidable violation
ofthe P, and T invariances, which are present in the classical
theory of massless fermions in an odd number of dimen-
sions.) The derivation of the SU(2) anomaly is ultimately
based on theorems regarding the index of the Dirac opera-
tor. The indices in the four-dimensional theory derived by
Witten and in the three-dimensional theory by Redlich are
different. It is not our purpose here to derive the correspond-
ing theorems; we will attempt, for the most part following
Ref. 45, to explain how the difference in indices leads to a
difference in physical results: the possibility or impossibility
of regularizing the theory.

4.1. Properties of a fermion determinant under topologically
nontrivial gauge transformations

The method for studying this question which was used
in the paper by Witten is as follows.

a) We first note that the determinant of a Dirag opera-
tor for Weyl fermions is not defined, since D = d + A4 trans-
forms left-hand fermions into right-hand fermions, i.e., re-
moves the left-hand fermions from the space. In the
following subsections we resolve this difficulty by switching
to the operator

D=drdisy
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This operator is non-Hermitian, however, and thus inconve-
nient for a study of topological effects. In addition, we could
define a Weyl determinant as the square root of a Dirac de-
terminant, making use of the circumstance that the eigenval-
ues of the latter are “degenerate’”:

DOy, = My,
D@ (y5) = — A (¥¥bn),

i.e., ¥, = ¢ _, (for brevity, we will put quotation marks
around the word ‘““degeneracy” to specify this degeneracy
within a sign). We wish to emphasize that the massless na-
ture of the Dirac operator DY is important here; the ques-
tion of regularization is still open. In a regularized theory, an
ordinary Weyl anomaly generally arises. On the other hand,
a Witten anomaly does not necessarily occur in the determi-
nant of regulators (more on this below). In particular, it
does not occur in the D = 4 case, so that at this point it is
sufficient to consider an unregularized determinant.

Taking a root is defined up to a sign. Strictly speaking,
all the information about the phase of a Weyl determinant is
lost when we switch to an ordinary Dirac operator: de-
t(iD*“) is the product of determinants for right-hand and
left-hand fermions, which are complex conjugates of each
other; the phase for each of them is cancelled out completely
by the phase of the other when a product is formed. Even
more remarkably, a change in this phase which is unrelated
to regulators leaves its trace in the characteristics of the op-
erator /D'

b) This traceis observed when astudy is made not of the
entire determinant det (1D ') but of the evolution of the indi-
vidual eigenvalues 1D‘4 upon a change in the field 4. Let us
use the field 4 to perform the topologically nontrivial gauge
transformation 4 - Q4 (which is of such a nature that the
mapping Q: 5% - G is not homotoplc with a unit mapping).
The spectra of the operators iD® '(4) and ID““(QA) are of
course the same. The eigenfunctions of the second of these
operators are found from the eigenfunctions of the first by
multiplying by the matrix @~ '. Any interpolation between
A and Q4, e.g.,

is not a gauge-invariant field 4 by virtue of the definition of
Q. Accordingly, for finite values of § the spectrum of the
operator ;D% (A, ) differs from that osz""(A) and we can
raise the question of the evolution of the eigenvalues of the
operator 1D§‘”(A§) as & changes. Figure 13 shows a picture
of this evolution. The picture is symmetric with respect to
the abscissa, since for arbltrary values of £ the operator
zD“”(A ) anticommutes with 3°, and its spectrum is “‘degen-
erate.’ That result, however, is not what is important here.
What is important is that there are two eigenvalues, which
have exchanged places. It might appear that at the point of
intersection it is difficult to say whether an eigenvalue has
moved from top to bottom or has “‘been reflected” from the
abscissa and has moved back up. Actually, a Weyl determi-

nant must be determined as an analytic function of the fields,

and near its zero, det[zD‘4 (Ag - £,)] =0, it must be of the
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F1G. 13. Evolution of the eigenvalues of an even-dimensional Dirac opera-

tor zD“” =i(d+ A ) in the case of an uncontractable gauge transfor-
mation ().

i-th§ 1+th §
A=-"_"= — T
3 5 A4+ 7 QA

form det(iD'*(4,))~ (4, — A, )~E — &, In  other
words, it must change sign upon the crossing of a simple
zero. Consequently, there can be no jog of any sort on the
path of an eigenvalue.

The question of how the picture of the evolution of
eigenvalues shown in Fig. 13 arises is the subject of the fol-
lowing subsection. At this point we would also like to take up
the odd-dimensional Yang-Mills theory, which was studied
by Redlich.

a) An odd-dimensional Dirac operator /D * 1) has
well-defined eigenvalues, and the spectrum of this operator
has no ““degeneracy” of any sort (in this case, there are no
matrices which anticommute with all the ¥ matrices). If the
homotopic group has the property 7,, . , (G) #0, there are
still some uncontractable gauge transformations {2 here, and
we can examine the evolution of an eigenvalue of the opera-
tor 1D 2"+ (4,). However, the picture of this evolution
turns out to be completely different (why will be explained
in the following subsection) (Fig. 14). The asymmetry of
the picture stems from the absence of a “‘degeneracy” in the
spectrum. If we wish to have the eigenvalues moved down-
ward, rather than upward, we need to examine either the
operator 1D<2“ * 1, or the transformation ', with the oppo-
site topologlcal charge (the Pontryagin index).

What can we learn from these figures? In order to deter-
mine a determinant we need to choose some subset of the
eigenvalues. First, we need to discard all eigenvalues which
exceed the ultraviolet cutoff 4 in modulus. Second—in the

FIG. 14 Evolution of the eigenvalues of an odd-dimensional Dirac opera-

tor 1D =i+ A )™ in the case of an uncontractable gauge transfor-
mation ).
_ i-thg 14+tht
A% 5 A+ ) QA
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Weyl case (Fig. 13)—we need retain only one of each pair of
eigenvalues + A. The product of the remaining eigenvalues
changes sign for both Fig. 13 and 14, as is easily seen. The
theory is not yet regularized, however: The ultraviolet cutoff
A is by itself a poor regularization for det ;D@ + 1y, since
one of the eigenvalues in the region ( — A, + A) necessarily
drops out of this region as & varies: The regularizations with
&= — w and £ = + o« aredifferent. It is thus necessary to
take the determinant of the regulators into account. An im-
portant point is that by virtue of its very nature regulariza-
tion affects only the higher eigenvalues. In the Weyl case
(Fig. 13), thereis nothing remarkable in the behavior of the
higher eigenvalues; they are mapped into themselves upon a
change, so that the determinant of the regulators cannot
compensate for the change in the sign of the “low-energy”
determinant. In Fig. 14, this is not the case. Now all the
eigenvalues no matter how high, are raised one step upon a
change in £. We can always find an eigenvalue which inter-
sects the horizontal line drawn at the height — M, so that
the determinant det(/D*”* " + M) changes sign at the
same time as det(/D*" + V). This determinant is still not a
real determinant of regulators, in which the operator
D+ = im (non-Hermitian ) would occur, but it is easy
to see that during the motion of the real eigenvalues of the
operator /D*”* " in accordance with Fig. 14 the phase
det(iD® + 1 4 iM) changes by exactly 7, and the regula-
tor determinant also changes sign. As a result, the regular-
ized determinant is gauge-invariant.

In short, a Weyl theory in which the eigenvalues behave
as in Fig. 13 [in the D = 4 case, this comment applies to
gauge groups G = Sp(n) ] cannot be regularized with invar-
iance under topologically nontrivial gauge transformations
being retained. As a result, a generating functional is not
determined. In an odd-dimensional Yang-Mills theory, in
which the eigenvalues behave in accordance with Fig. 14
[this is the situation whenever the group has the property
Ty, + 1 (G)#0], the determinants of physical and regulator
fermions are not separately gauge-invariant, but their ra-
tio—a regularized determinant—is a well-defined quantity.

4.2. Difference between the y5 index and the C index

In this subsection we prove that the evolution of the
eigenvalues of the operators /D?’ (4. ) is indeed as depicted
in Figs. 13 and 14, depending on the dimensionality of space-
time.

The evolution of an eigenvalue of the Dirac operator
I'IA)ED ) can be studied by making use of its relationship with
the zero modes of operators with a dimensionality one unit
larger, e.g.,

D{P* V= + D@ — 1.

Actually, the elgenvalues of a Hermitian operator 1']32” ) are
real, and if for some eigenvalue we have A(§ = — ) <M
andA(£ = + o) > M, then the operator D{”* " must have
a zero mode,

p§ ~exp| — Y A (G — M) dE].

This function is normalizable; i.e., it is one of the functions
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which must be taken into account in the measure of the path
integration, and it satisfies the equation D {** V¢ = 0. More
precisely, 1f1D‘L”1//,1 e =AY, then

v @ =, zexp | — | G- az].

The derivative of 1 (£) with respect to £ is
(=2 @+ M+ Ins) O

The magnitude of the first term is determined by the quanti-
ty A(£) (which is in turn related to the index of the eigenval-
ue and the “size of the box” holding the system ). The magni-
tude of the second term can be made arbitrarily small
through a sufficiently slow variation of the field 4, . We can
choose the interpolation of 4(£) between 4 and 24 in any
way we wish, so that we can ignore the second term. The
inverse is also true: Each zero mode of the operator D | 2+t
corresponds to some eigenvalue of the operator zD(D ) Whlch
intersects the line A = M as it moves upward. Analogously,
the eigenvalues which go downward are in a mutually one-
to-one correspondence with the zero modes of another
operator

D+t 2
D(z + ) ar_ —[—lD(D) M,

which differs from D {° * V' in the sign of @ /3&. The evolution
of an eigenvalue can also be related to the zero modes of
other (D + 1)-dimensional operators. The meaning of these
manipulations is that if an index has been defined for the
operator D then the problem of the zero modes of D is quite
simple. For the existence of an index, it is necessary also to
find one more operator P which anticommutes with D:
DP = — PD. The existence of P ensures the “degeneracy”
of the spectrum of D: D¢y = Ap=>D(Py) = — A(Py). If, as
the parameters of the operator D are varied continuously it
remains anticommutative with P, then the number of zero
modes of D can be varied only as a result of the arrival or
departure of a pair of eigenvalues. Consequently, the even
parity of the number of zero modes remains constant under a
continuous variation of the parameters of D. We usually
have P? = 1, but the only necessary conditions are that P be

"nondegenerate and uniformly bounded. (These conditions

are necessary so that ¢ _ ; = Py, will not vanish identically
and will be a normalizable function and also so that these
conditions hold when the pair of functions ¥, , converts
into two zero modes.) In the case P> = 1, a more precise
assertion is that the number n , of zero modes Py = + ¢
minus the number n_ of zero modes Py = — 1 is invariant:
n, —n_=indp D. This difference is called the “P-index” of
the operator D. As we have already explained, the index of
an operator is a topological invariant (i.e., it does not change
under continuous deformations), and it can be determined
by topological means or found for some convenient choice of
parameters.

Returning to the problem of the evolution of the eigen-
values, we must construct a (D + 1)-dimensional operator
which is associated with zD(D > and which has an index. For
the simplest operators, D%@+ D there are no operators P
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which anticommute with them, so we need to move on to a
more complicated construction.

It is well known that even-dimensional massless Dirac
operators have an index associated with P = I'°. According-
ly, in discussing the evolution of the eigenvalues of an odd-
dimensional iDﬁ.z” D (the Redlich case) we can attempt
to continue the construction of this operator to a
(D+1=2n—14+1=2n)-dimensional Dirac operator.
In this process we are forced primarily to change the dimen-
sionality of the I' matrices. Specifically, 2n-dimensional ma-
trices I' are found from (2n — 1)-dimensional matrices ¥, ,

i=1,2, .., 2n,in accordance with the rule
N P A

The operator

i]‘)(;n-n ai

iDen —f 7 :
. (2n-1
& —ibgnh

is completely suitable for our purposes. Its left-hand zero
modes,

v ()

satisfy the equation
DE (4 =0) p= -

1p+i]5(§2n—i)w:0

and correspond to eigenvalues of the operator 1’1322“‘ b
which intersect zero moving upward. The right-hand modes,
P 1)
ve=("7)

— 1],,
satisfy the equation

D™ (M = 0) = — ¢ v 1D =0

and determine eigenvalues which cross zero moving down-
ward. We wish to emphasize that, in contrast with the opera-
tors D {3 themselves, the quantity iD® has an index, so
that the number of its zero modes can be found. It is deter-
mined by the Dirac anomaly and is given by

ind Dem (4 = Fwen = | Ter

1
@ayal
the topological charge of the field 4. .

We have now seen that for topologically nontrivial
gauge transformations {2 with a Pontryagin index + 1 (un-
der the boundary conditions 4, -4 as £— — o« and

A. - QA4 as £~ + oothe operator /D has one more of
left hand zero modes than the number of right-hand zero
modes) the number of eigenvalues of the operator zD‘z” -
which cross zero moving upward is one greater than the
number of eigenvalues which cross zero moving downward.
To prove the validity of Fig. 14, we still need to explain why
the other eigenvalues, which do not cross zero, rise. It is
intuitively clear that for them *‘there is no other way out™:
the picture near the A = O predetermines the behavior of the
other eigenvalues. The proof, on the other hand, is based on
the circumstance that the operator iD*"’ — iMT T, as be-
fore, anticommutes with I', so that its index does not depend
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on the value of the parameter M. In other words, it is the
same as the known index for M = 0. On the other hand, the
left-hand and right-hand modes of this operator satisfy the
equations

D(271)L ‘q)+ D(un 1)113_]‘/1—14):

DY = — g p+iDE" T p— My =0
respectively. These results are sufficient to prove the validity
of Fig. 14. (See Refs. 41 and 45 for a more detailed analysis.)
It is slightly more complicated to find the Witten pic-
turein Fig. 13, since the version of the theorem regarding the
index in this case is less familiar in the physics literature.
Instead of proving this theorem (Ref. 11), we will end this
subsection with a simple example which illustrates it.
Going from the operator iD"*toa (D + | = 5)-dimen-
sional Dirac operator /D' does not require changing the
dimensionality of the ¥ matrices:

DG — iy (_ o \75D““)

The zero modes of this operator are completely suitable for
our purposes, It is sufficient to note that the spectra of the
operators ¥’ D}*’ and /D{* are the same:

P =y = y°DW (y F iv*y) =
D@y = iy = IDW (y & iySy) =

£ (0 F iyy),
+=p(y & i)

The only difficulty is that for odd-dimensional operators
there is no analog of the y° matrix, and in general no index
exists. In several cases, however, an operator P which anti-
commutes with /D'’ can be constructed by working from the
operation of complex conjugation, C. In the basis

Va:(i 8

/

the operation CP\P,, consisting of complex conjugation and
inversion of the first and third coordinates (i.e., rotation
through 7 in the plane of Fig. 13), anticommutes with the
Hermitian operator

: a 2 A
i (5 +1°000) =iD® (4=0),

[The Hermitian nature is particularly important here.
Otherwise, the operator P, containing a complex conjuga-
tion, would not commute with the eigenvalues /D', and we

would find iD(Py) = — PiDy = — PAy = — A (Py).] It
turns out that this property can be retained even when we

turn on the fields 4, = i4 . For this purpose, there must
exist an involution EC for the algebra G which relates com-

plex-conjugate representations: £~ 't“%Z = — t“. We then

have (CZ7")(d +4)(CZ) =3 + 4, and the operator P
can be written in the form P = CEP P,. Such an involution
exists for the SU(2) group: 3 = 7,,¢ '** = 7, , ;. Animpor-
tant point is that for a Dirac mass operator /D' + M thereis
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no five-dimensional operator of any sort which has an index:
S PO M
does not anticommute with CP,P;, while the operator
{2 Go—im)

is non-Hermitian, so that its anticommutivity with
P = CP P, which contains complex conjugation, is insuffi-
cient for invariance of the index. This result shows that for
an even-dimensional Dirac operator the eigenvalues cross
only the line A = 0 (and lines which are close to it in a layer
with a thickness of the order of the reciprocal of the size of
the box), as illustrated in Fig. 13. In order to prove that there
is nevertheless an interchange of one pair of eigenvalues, we
need the index theorem'' mentioned above, which relates
the parity of the number of zero modes of the operator iD*
to the topological nontriviality of the field A. We have al-
ready stated that a global Witten anomaly is unrelated to the
nonconservation of any current. This situation is also mani-
fested in the absence of an integral representation for the C
index of the operator /D",

We conclude with the promised example that illustrates
the situation regardmg the operators /D{* and iD' and the
index theorem.'' The pair of operators in this example is
AV =0,id, + 0,4.,A” = 04id; + 0,id, + 0,4.. Each is
Hermitian and purely imaginary, so that each has an index
(P = C). We will discuss the evolution of the eigenvalues of
the operator A"’(4, ), and we will need only the index of the
operator A'”. In a topologically nontrivial field 4, (x), A”
will have a zero mode which corresponds to an eigenvalue of
the operator A{"’ which intersects the abscissa moving up-
ward [the eigenvalue which is “‘degenerate” with it (such an
eigenvalue exists, by virtueof Aoy = — 0,A"), and which
is moving downward, is described by a zero mode of
the operator A” = — 04id + 0,id, + 0,4, ]. The term to-
pologically nontrivial” here refers to a classification in ac-
cordance with the homotopic group =, (G). We take
G =U(1) in the field 4, with a unit topological charge,
determined on S' for each £ on a circle of perimeter L:
A, = (m/L)th £. [The topological charge is

1

1 [ 1 Ia
—E—W(z)-—_—,—zz- Epv j aFAVdZI--ZTL 5 dE E

L
= (Are—Ae)=1.

We cannot add a constant to 7/L thé, because if we did the
spectra of the operators A’ _and A‘}’_ would not coincide:
We do not have perfect gauge invariance for the operator
A" (A4) (this is the price we pay for the simplicity and the
clarity of this example)]. As is predicted by the index
theorem for the operator A'?, of all the eigenvalues of the
operator A“(4, = (ﬂ'/L)th £), which are equal to
A% = (2mn/L)* + A% there is an interchange of only one
pair; the others are mapped into themselves, in complete
accordance with Fig. 13.

UThis name derives from Wess and Zumino’s 1971 paper,” in which we
find the first mention of the idea of implicitly symmetric Lagrangians
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(the gauge version of which reproduces an anomaly). In the 1980s,
Lagrangians of this sort were introduced explicitly and used by Wit-
ten’”; Schénfeld™; Deser, Jackiw, and Templeton®’; Novikov®*; and,
later, by many other authors.

*'This distinction between 7'<" and TS

1 actually stems from the confor-
mal invariance of the theory

R¢2].

"The fields 4, are anti-Hermitian matrices from a Lie algebra G corre-
sponding to gauge group G. They are related to the fields 4 ;;, which are
frequently used and for which we have F}“ =4, A “ _9.4 "
+f4%4¢, by the relations 4, =idit*,F = IF/““ 1 =34,

— 3.4, + [4,A4,] Herethes are Hermman generators of the alge-
braG; [¢“,t %] = if “*t <, f** arestructure constants of the algebra; and
Treet? =8/2.

YWe will not go through a special discussion of sca/ar matter fields. In the
first place, all the basic assertions concerning unbroken, local symme-
tries are identical in the scalar and spinor cases, although the results for
the scalars are more complicated. The reason is that in the scalar case
the interaction has a term not present in (1.13): Tr4, J, (&)

+Tr A, J,.(¢)A,. [For example, Tr(D¢)* =Tr(dé)* + 2Tr Aédé
=Tr AdﬁAdz 1 Second, the scalar matter fields are nonchiral and cannot
lead to anomalies (more on this below)."

¥Ina (D = 2n)-dimensional space we understand y° as a matrix which is
proportional to the product ¥,¥,...7,, - ; and which satisfies the condi-

) D—2
172, = gl/2 ! et
gyiL g/[2(0¢)+8(D

tions »° = + ¢, (")’ = + 1.

® At his point we set Planck’s constant equal to unity. We recall that each
loop corresponds to one power of #. Actually, in a path integral the
action is divided by #, so that 1/# corresponds to each vertex ¥, and an #
corresponds to each propagator P. Since we have P — V =L — |, the
effectiveaction which arises from a diagram with L loops is proportional
to##" /B =#' PV =t

""The more accurate reason for the appearance of the e-symbol is cosmo-
logical. In particular, integrals of structures with the e-symbol are topo-
logical invariants.

%We should perhaps explain that all the quark fields with masses below
the characteristic hadronic scale m,, i.e., precisely u, d, and s, are im-
portant for the U(1) problem. The heavy c, b, etc., quarks do not con-
tribute to the anomaly at hadronic energies. It is for this reason that we
discussed the U, (3) group, rather than U, (2) or U (4), in Subsection
1.3.1).

“'We will assume, however, that the “ in a non-abelian current are the
same as the generators of the gauge group which describes the interac-
tion with vector bosons. In principle, it would be meaningful to study
the nonconservation of currents which are associated with other groups,
e.g., the breaking of the flavor group SU, (n;- ) X SUg (ng) in quantum
chromodynamics. The generalization of all the equations to such cases is
almost obvious and we will not burden the calculations by striving for
unnecessary generality.

'““When regularization a) is carried out through the introduction of a
fermion mass, the coefficient of the structure g, ¢4, p; ¢, contains an
additional logarithmic factor

n L= @m/a%)

1+(mijgh) >
which is related to threshold effects. There is no factor of this type when
the threshold is related to external particles, which do not propagate in
the loop.

'"Here we could also use the Bianchi identity DF =0, where
D=d + [4,]; D(®,,®;) = (D®)P, + ( — )Ry ® DP,. Since W
and W are traces and do not have free color indices, we have
AW =DWanddW* =DW*,dTrF" =DTrF" =0,but Trt“F"
=DTre¢“F" =Tr(Dt)F" + Trt°DF" =Tr[A4,t°]F"=Tr(At*
— tYAYF".
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