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A self-consistent model of the magnetosphere of a pulsar is constructed. This model is based on
a successive solution of the equations describing global properties of the magnetosphere and on
a comparison of the basic predictions of the developed theory and observational data.
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1. PULSARS; BASIC OBSERVATIONAL CHARACTERISTICS

Pulsars or, more precisely, radiopulsars—sources of
pulsed radio waves received from space—were discovered in
1967 by some English radio astronomers' and were identi-
fied essentially immediately with rotating neutron stars.’
Such stars should form as a result of the collapse (a cata-
strophic gravitational contraction) of ordinary stars which
have exhausted their reserve of nuclear fuel. In neutron
stars, the gravitational forces are balanced not by the gas
pressure, as in ordinary stars, but by the pressure of degener-
ate electrons, as in white dwarfs, and by the pressure of the
highly compressed neutron matter. These entities are there-
fore huge blobs of nuclear matter, and at a mass of the order
of the solar mass they should have a radius R~ 10 km
(Ref. 3).

The experimental observation of pulsars, i.e., of neu-
tron stars, which had been predicted back in the mid-1930s,?
is rightly regarded as one of the major discoveries in astro-
physics. For this discovery, Antony Hewish was awarded
the Nobel prize in 1974.

The discovery of radiopulsars was followed immediate-
ly by the observation of several other cosmic entities (x-ray
pulsars,® sources of x-ray® and y-ray bursts,” and other enti-
ties®'"), whose activity is also linked with processes which
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occur in neutron stars.''™'* A discussion of the nature of

those sources, however, goes beyond the scope of the present
review.

Radiopulsars are presently being studied at essentially
all the leading observatories around the world. In particular,
the list of observed sources is continually growing. By mid-
1986, 437 pulsars had been found. The total number of ra-
diopulsars in the Local Galaxy, on the other hand, is of the
order of'* 100 000. The number of pulsars which have be-
come ‘“‘extinguished,” i.e., the number of neutron stars
which are no longer emitting in the radio range, should be
three orders of magnitude greater.

The average distances to the pulsars known to us are
0.3-3 kpc. These distances are a hundred times greater than
thedistances to the nearest stars. Like ordinary stars, pulsars
are concentrated near the galactic plane, but the thickness of
the stellar disk is slightly smaller than that of the pulsar
disk'® (~500 pc). We might also note that the intrinsic ve-
locities of pulsars reach'® 200-400 km/s, significantly high-
er than the average velocities of ordinary stars.

Finally, pulsars are, in addition to everything else, ex-
ceptionally effective probes of the interstellar medium. They
send us their pulses of radio waves over a broad frequency
range and at strictly determined times. By studying the re-
tardation, the absorption, and the change in the polarization
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of these pulses we can determine the properties of the inter-
stellar medium. It is this approach which has given us the
most accurate information on the interstellar gas, on the
magnetic field of the Local Galaxy, and on the distance
scale. This approach has also made it possible to carry out
other extremely accurate measurements.'’

Among the basic observational characteristics of radio-
pulsars we should classify the period (P) of the pulsar, the
spectrum and polarization of the radio emission, and the
shape of the mean profile. These characteristics serve as
“technical specifications” of each pulsar.

1. 1. Periods of pulsars. The radio emission from pulsars
arrives here in distinct bursts or pulses. The time interval
between pulses is called the “period” P of the pulsar. The
periods of all known pulsars lie between 0.00 156 s and 4.3 s;
the overwhelming majority fall in the narrower interval 0.3-
1.5s (Ref. 21). The value of P for each pulsaris a constant to
six or more significant figures. For example, the period of the
fastest millisecond pulsar, PSR 1937 + 21,

P=0.0015578 064 488 724 s

is presently known to 13 significant figures, and the stability
of this frequency is at the level of the best atomic standards.*?
There is talk of introducing a new, ‘‘pulsar,” time scale to
make use of this surprising property.”’

The existence of this strict periodicity in the repetition
of pulses was a governing factor in the construction of the
pulsar model shown in Fig. 1 (Ref. 2). This model has the
pulsar period P being equal to simply the rotation period of
the neutron star. Indeed, only the rotation of an exceedingly
compact star could explain both the very short periods of
pulsars and the high stability of the repetition of pulses.

An important point is that the periods of all pulsars are
gradually increasing. The rate of change of the period, dP /
dr, has now been determined for 300 pulsars. The values of
the derivative dP /dt are stable, and for most pulsars they lie
between® 10~ " and 10~ '°. The time scale of the slowing of
the rotation,

p

Tp==—F
2P

is actually the lifetime of the radio pulsar. Itis typically a few
million years.”*

(1.1)

-

FIG. 1. Model of a pulsar: a rotating neutron star. The arrows show the
region in which the directed radio emission is generated.
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FI1G. 2. Typical mean profiles of the radio emission of pulsars.”

1.2. Mean profile. Another characteristic feature of the
emission of a pulsar is its high directionality. If we assume
that the pulsar period P corresponds to a 360° rotation, we
would conclude that the typical width of the directional pat-
tern of a pulsar, W,, is only 10°-30°. For only a few pulsars
does the radio emission occupy a significant fraction of the
total period P. Figure 2 shows some examples of the shape of
the mean profiles of the emission of pulsars.?®

The mean profiles in Fig. 2 correspond to an average
over several hundred successive pulses. Such mean profiles
have a shape characteristic of each pulse, are stable, and are
independent of the time. The shape of the individual pulses,
in contrast, may differ greatly from the shape of the mean
profile. The structure of the individual pulses is rather com-
plex. In particular, subpulse details (with a time scale ~ 10
ms) and microstructural details (with a time scale ~ 100
1s) have now been reliably identified.?”** These details do
not survive on the mean profile.

1.3. Polarization. The radio emission of pulsars is char-
acterized by high polarization. The linear polarization
reaches 100% in some subpulses, while the average degree of
linear polarization is 30-50% (Ref. 29). In some cases, but
far more rarely, circular polarization is observed.*’

Figure 3 shows a typical time evolution of the position
angle of the linear polarization (i.e., of the angle between the
direction of the electric field of the wave and a given direc-
tion lying in the visual plane).>* For some pulsars, the total
rotation of the position angle reaches 180°. Furthermore, it is
frequently possible to distinguish two orthogonal modes in
the radio emission,”' differing in both position angle and the
direction of the circular polarization.
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FI1G. 3. Changes in the position angle of the linear polarization within the
mean profile.”*

1.4. Energetics of pulsars. The radio emission of pulsars
is received over a broad frequency range, from 30 MHz to 10
GHz, i.e., at essentially all the radio wavelengths which can
pass through the earth’s ionosphere and atmosphere. The
frequency spectra of the radio emission are described over a
broad range by a power law I, « v~ % withanindex@~0.6—
23333 There is a high-frequency drop-off (at v> 10 GHz),
and there is also a low-frequency drop-off (v < 10 MHz).**

An exceedingly important property of the observed ra-
dio emission is its high brightness temperature. In radio as-
tronomy it is common to use not the value of I, but the
brightness temperature T, , defined as the temperature of a
black body which would provide the same emission intensity
I,. It turns out that the brightness temperature of pulsars,
T, , is of the order of 10°'-10*° K and even reaches 10°“ K in
some cases.> The radio emission of pulsars thus cannot be a
thermal emission. Furthermore, the high brightness tem-
perature is unambiguous evidence that the mechanism for
the generation of the radio emission must be coherent
(Ginzburg et al ***%).

The integrated emission power of pulsars in the radio
range is extremely high: of the order of 10*°-10°" erg/s.
However, the emission of pulsars is not confined to the radio
range: For four pulsars, intense emission has been observed
in other parts of the electromagnetic spectrum.”* For exam-
ple, emission from the pulsar PSR 0531 + 21, in the Crab
Nebula (period P = 0.033s), is also detected in the IR, opti-
cal, x-ray, and y-ray ranges, with y-ray energies up to 10"
eV (Refs. 36 and 37). The total power radiated by this pulsar
reaches 10°7 erg/s—four orders of magnitude greater than
that of the radiation from the sun. Nuclear burning does not
occur in a neutron star. What is the source of the energy
required to sustain this high activity of pulsars?

The answer to this question is known. As we have al-
ready mentioned, the periods of all pulsars are increasing;
i.e., the rotational velocity of the neutron star is decreasing.
Calculating the energy released in the process from

W = —I1,00, (1.2)

where I, ~ 10*° g-cm? is the moment of inertia of the neutron
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star, and {} = 27/Pis the angular velocity of the rotation, we
find the loss to be 10°°-10*" erg/s. This loss is always greater
than the energy involved in the observed emission.

These are the basic observational characteristics of ra-
diopulsars. We see that even a preliminary analysis of these
characteristics reveals both the nature of the pulsars and the
energy source of their activity. It is also natural to suggest
that the high coherence and directionality of the emission
are due to a strong magnetic field (Fig. 1) and to the plasma
near the neutron star, i.e., the magnetosphere of the pulsar,
in which this radiation is generated.*®

Many questions of course arise here. Why does a rotat-
ing neutron star slow down, and what is the mechanism for
this slowing? What is this magnetospheric plasma? Where
does it come from? How is part of the energy of the slowing
of the star transformed into radiation energy? What is the
mechanism for the generation of the coherent and highly
directional radio emission? Despite the serious efforts of
theoreticians, these questions have yet to be comprehensive-
ly answered.?"*%*9

The situation has recently been changing substantially.
It has become possible to construct a systematic theory for
the physics of the magnetosphere of a neutron star. This
theory explains, in a unified way, the slowing of the pul-
sars,”*! the release of the energy of the slowing in active
regions,*'** the production of plasma,**~** and the genera-
tion of the directional radio emission.*> Qur purpose in this
review is to set forth the present state of this theory.

2. PHYSICAL PROCESSES IN THE MAGNETOSPHERE OF A
PULSAR

In this section we will take a qualitative look at the na-
ture of the basic physical processes which occur in the mag-
netosphere of a pulsar. We recall that both the theories for
the formation and evolution of neutron stars***” and certain
direct observations** show that the magnetic field B, near
the surface of the star reaches a level of 10''-10"* G. Because
of the rotation, an electric field also arises. It can be estimat-
ed to be

oy~ 2K By~ 100 — 10" V /e, (2.1)
here § is the angular velocity of the rotation of the star, R is
its radius, and c is the velocity of light. Animportant point is
that since the surface of the star is polarized the electric field
also has a component parallel to the magnetic field.** Parti-
cles entering such a strong electric field are accelerated, and
they emit hard ¥ rays. As these y rays are absorbed in the
magnetic field, they produce electron-positron pairs.** In
this way, the magnetosphere of the pulsar forms. The elec-
tron-positron plasma which is produced is in the strong mag-
netic field of the neutron star. The magnetosphere fills a
large volume, stretching out to distances »~¢/{}, which are
10°~10* times greater than the radius of the neutron star, R.

The plasma filling the magnetosphere screens the longi-
tudinal electric field, and it begins to rotate along with the
star as a rigid body. A corotation of this sort is indeed ob-
served in the magnetospheres of planets: the earth and Ju-
piter. The plasma filling the magnetosphere becomes polar-
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ized: A corotation charge forms with a density (Goldreich

and Julian™®)

(QB) pe __ (9B) (2.2)
e

T 2nce ’

b=~ Re=

here e is the electron charge. In the earth’s magnetosphere,
for example, the density is 7, ~ 10~ ° particles/cm?, while in
the magnetosphere of a pulsar the density n. reaches 10''-
10'* particles/cm®. The rotation, i.e., the motion of the
charge p.., gives rise to electric currents. The maximum cor-
otation current density is

@n) (2.3)

Je==coe - — 5

The currents become deformed and perturb the mag-
netic field of the neutron star. While these perturbations are
slight near the star, they become large and even governing
factors at large distances from the star, 7 ~c/). Because of
the currents, the remote magnetic lines of force become
stretched out and ultimately break. The situation is illustrat-
ed by Fig. 4. Two very different groups of lines of force thus
form in the magnetosphere. One group consists of closed
lines of force, i.e., lines of force which return to the surface of
the star; the other group consists of open lines of force, which
go off to infinity. The open lines emerge from small regions
near the magnetic poles of the star—polar caps, with a radius

Ry~ R (QTR)”Z</B. (2.4)

Plasma can freely escape from the star along open lines
of force. As it escapes, the charge p. in (2.2) also escapes.

FIG. 4. Model of the current closure in the magnetosphere of a pulsar. At
the light surface, S, (the dashed lines), there is an additional acceleration
of secondary plasma. The star is slowed down by the Ampére force which
results from the surface current I 5, which closes the circuit for the longitu-
dinal currents flowing in the magnetosphere. The hatching shows the re-
gion of closed lines of force.
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However, the condition for screening and corotation will
then be disrupted near the polar caps, with the result that a
vacuum region appears, in which there is a strong potential
electric field E~E_, (R /c)''?. The potential difference
across distances comparable to the size of the polar cap,
(2.4), can reach |V | = E R, (2R /c)''*:

Wy (A8)7 BBy~ 108 — 101V, (2.5)
Under these conditions, as we have already mentioned, the
vacuum is unstable: An electron-positron plasma is pro-
duced in it. The mechanism for this plasma production can
be outlined as follows. The electric field—VW which arises
near the neutron star accelerates certain particles (the posi-
trons, say) away from the star and others (the electrons)
toward the star; which particles go toward and which away
from the star depend on the sign of the-charge p, in (2.2).
The particles move along a very strong magnetic field. Since
the magnetic field is curvilinear, the particles which have
acquired sufficient energy £ ~eW¥,, begin to emit high-ener-
gy “curvature-radiation” " photons: ¥ quanta. These ¥ pho-
tons are emitted along the direction in which the particle is
moving, i.e., along the magnetic line of force. Since the mag-
nitic field is curvilinear, however, the ¥ photon begins to
move across it, and it eventually reaches the critical angle for
the production of an electron-positron pair. This angle de-
pends on the energy of the y photon and the magnetic field
strength. The particles of the other sign go through the same
process, as they move through the electric field in the oppo-
site direction. These particles also emit curvature radiation y
quanta, which produce pairs. The process of acceleration
and pair production is then repeated. The result is a chain
reaction in which there is a multiplication of electrons, posi-
trons, and y quanta near the neutron star. The multiplica-
tion coefficient increases because the particles produced at
high Landau levels in the magnetic field emit synchrotron
radiation: synchrotron photons, which are also capable of
producing pairs.

Asaresult, a plasma is produced with a density three to
five orders of magnitude greater than #_ in (2.2). This plas-
ma moves away from the star at a velocity close to ¢ and
contains a broad distribution of particle energies £. The max-
imum of the energy distribution typically falls at a Lorentz
factor** y ~y i =&/mc* ~300-500. At ¥ < ¥, the distri-
bution function is cut off sharply. All the relativistic parti-
cles with energies ¥ ~ 100-1000 moving the curvilinear mag-
netic field of the pulsar produce curvature radiation in the
radio-frequency range 0.01-10 GHz, which is similar to or-
dinary synchrotron radiation. Animportant point, however,
is that the wavelength of this radiation, 4,, is many orders of
magnitude greater than the mean distance between particles,
and its phase velocity is close to the velocity of the particles.
A strong collective interaction of waves and particles arises
and gives rise to a Cherenkov radiation of rapidly growing
hydrodynamic curvature-plasma modes. At a distance (10~
100)R from the neutron star, these modes convert into ordi-
nary radio waves. As a result, an intense flux of directed
radio waves is produced at frequencies 0.01-10 GHz and is
directed away from regions near the magnetic poles of the
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pulsar. This picture is entirely in accordance with the gener-
ally accepted model for the emission of a pulsar (Fig. 1).

A steady-state production of plasma occurs near a pul-
sar only if the drop in the electric potential between the sur-
face of the neutron star and the magnetosphere reaches a
certain level ¥, < |Wy |, which depends on the pulsar period
P, the magnetic field B,, and the radius of curvature of the
magnetic line of force, p (Ref. 42). The value of the potential
is typically W, ~ 10'* V and depends relatively weakly on the
properties of the surface of the neutron star. Since the poten-
tial ¥,, always has a completely definite sign, which is the
same as the sign of the chargep, in (2.2), only charges of the
same sign will be accelerated away from the surface of the
star. The process by which the electron-positron plasma is
produced is therefore always accompanied by the flow of an
electric current with a density of the order of j. in (2.3)
along the magnetic lines of force. The total current 7 which
drains from the star is of the order of I, given by

I, = nR}j,. - (2.6)
The total potential difference traversed by the current 7 is
W, givenin (2.5). The power associated with this current is
therefore

W = I¥y; 21
this power is dissipated in the magnetosphere in the course of
the production and acceleration of the electron-positron
plasma, the ¥ quanta, and the radio waves.

Because of the potential drop W, between the surface of
the star and the magnetosphere, the electric field in the mag-
netosphere near broken lines of force is not the same as the
corotation field. The plasma in this part of the magneto-
sphere is not rotating as a rigid body along with the star; its
rotation velocity becomes smaller.

The longitudinal current in the magnetosphere is flow-
ing in the same direction over an entire polar cap. For this
situation to be possible, there must exist a return current at
the surface of the pulsar. This current closure occurs as is
shown in Fig. 4. Near the light surface S, , where the revolu-
tion velocity of the plasma particles approaches the velocity
of light, the state of uniform rotation is disrupted, and parti-
cles begin to move across the magnetic lines of force. They
are accelerated to energies £~ 10'°-10"* eV; the electrons
and positrons are accelerated in different directions. As a
result, an intense jet of an electric current forms along the
light surface and flows in the direction across the magnetic
lines of force. When this jet reaches the boundary of the
closed magnetosphere, it continues to move along the separ-
atrix separating the regions of open and closed lines of force,
thereby returning to the surface of the neutron star.

As Fig. 4 shows, the current jet 7 then begins to flow
along the surface of the star, crossing magnetic lines of force.
A ponderomotive Ampére force F, = (1/¢)I 4B, arises and
slows the rotation of the star. The slowing down of a neutron
star is thus caused by the surface current. The energy of this
slowing is released in part by the longitudinal current at the
surface of the star (/W¥, ), while the rest is expended on accel-
erating the electrons and positrons near the light surface.
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The physical basis of the entire complex of processes
which arise in the magnetosphere of a pulsar is therefore
exceedingly simple and natural: Eveything happens as a re-
sult of the rapid rotation in vacuum of a highly magnetized
conducting object: a neutron star. The rotation creates an
electric field, which, in the presence of the strong, curvilin-
ear magnetic field of the star, causes an effective production
of an electron-positron plasma, i.e., the formation of a mag-
netosphere. The plasma in the magnetosphere of the rotating
star reaches a state of corotation; corotation currents arise;
and because of these currents some of the magnetic lines of
force break and go off to infinity. Plasma escapes from the
star along these lines of force, so that plasma must be pro-
duced continuously near the magnetic poles. This is the rea-
son for the constant activity near the magnetic poles, which
leads in particular to the appearance of the intense and di-
rected radio emission of a pulsar. The energetics of all the
processes is based on the slowing of the rotation of the star,
caused by electric currents. The main role in the production
and maintenance of the activity of a pulsar is played by the
longitudinal current I which is circulating in the magneto-
sphere. The roles played by the surrounding medium and the
particular structural features of the surface of the object are
minor. In this sense, the theory which we will be examining
below is physically closed and contains essentially no further
assumptions of a model nature.

3. ELECTRODYNAMICS OF THE MAGNETOSPHERE

3.1. Basic equations. The electrodynamics of the magne-
tosphere of a pulsar is determined by the interaction of the
electron-positron plasma with the magnetic field of the ro-
tating neutron star. It is described by Maxwell's equations
for the electric field E and the magnetic field B and by the
kinetic equations for the distribution functions of electrons
(F ) and positrons (F *):

: 1 4B
div E = 4np,, rotE= —— =, (3.1
rotB=4—:'-j+—:- i‘f—, divB=0, (3.2)
aF £ . T = e af= o aFT
B () =5 (BB G oy G G

(3.4)

j=¢e(ntv: —nv7y,;

herer|, v, and p, are the coordinate, velocity, and momen-
tum of a particle along a magnetic line of force;r_, v_, and p,
are the same, but across the line of force; F* ( p. ,xr,t) is the
distribution function of electrons or positrons with respect
to the longitudinal momentum; n = andv ~ are the densities
and average velocities of the particles; and g( p .r,?) is the
density of the source of electron-positron pairs. We have
taken into account the circumstance that the spread in trans-
verse momentum p, is negligible, because of both the partic-
ular way in which the electron-positron plasma is produced
and the rapid synchrotron radiation, due to the large value of
the magnetic field B,. We thus have

F*(P‘I’ p

where the functions p * (r,7) are determined by the equations

cr )= FE(py.ox, 1) 8 (p. —pT(r, 1)),
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¥ =+ 1 [P
ni—;\Fidpu, n*vjf = — —ﬂ

pPL=mV.Y,

——+(vV)pi+e(Ei+ - [PiB] ]
|
F= dev l

here m is the rest mass of an electron, and ¥ is the Lorentz
factor.

The initial equations can be simplified substantially.
We first consider the steady-state solution. In the case of a
star in uniform rotation, the steady-state solution depends
on the time ¢ and the azimuthal angle ¢ in the combination
@ — . Wecan therefore eliminate the time ¢ from the equa-
tions, by using the substitution ¢ ' =@ — 2. As a result,
Egs. (3.1) and (3.2) acquire the steady-state form

(3.6)
(3.7)

E= —[prB]—-VV;
rot B="2 j—(Br rot (BrBI| + V (BrV V),

where B =[Qr]/c. The first term in (3.6) is the corotation
electric field [cf. (2.1)], and ¥ is the electric potential in a
frame of reference which is rotating at an angular velocity ).
The potential ¥ shows the extent to which the actual field
determining the motion of the plasma in the magnetosphere
of the pulsar differs from the field of an exact corotation. It
reflects the interaction of the magnetic field and the currents
with the plasma and is the most important characteristic of
the magnetosphere.

Furthermore, as we mentioned in §2 (see §4 for more
details), the electron-positron plasma is produced by a
source ¢ in (3.3) in the immediate vicinity of the neutron
star and then moves away from the star at a velocity close to
¢, along broken lines of force. The plasma density n, in the
magnetosphere always satisfies the condition

ne € ne < Ns; (3.8)

here n. is the corotation density, given by (2.2), and
ng = B*/87(E ), where (E ) is the average energy of the
plasma particles. The condition n. < n, means that the po-
larization of the plasma caused by the rotation leads toonly a
slight charge separation: [n ™ — n ™ |/n, €1 (if this condition
does not hold, the charges become completely separated,
and the medium is no longer a plasma). Because of the plas-
ma polarization, the longitudinal electric field £ j is screened
in the magnetosphere. Specifically, in the zeroth approxima-
tion in the parameter 1/4, where

5 — e (39)

T one
wecanset £, =0,1e, ¥ =W¥(r ).

The condition 1, € ng means that the energy density of
the plasma is much smaller than that of the magnetic field.
In the zeroth approximation in the parameter

H'::—;<<1 (3.10)
we can ignore the plasma pressure. In this case the transverse
electric current is determined exclusively by the drift of the
electric charge p, in (3.1), so that the total current can be
written

i coo Apk+ iB=cpbr—cp e 4B (311)
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Using (3.1) and (3.6), we can then eliminate the charge
density p. and write the system of steady-state equations
(3.7), (3.11), (3.3) in the following form™":

rot {B (1 — k) -+ Br (BPr) 4 [BrV ¥1}

- 4ot _ll |
- 1‘5E+BR([V‘PB]/BZ){ (1 —Ph)

B+ [BrV Y

(VYB] | 08) )
+ B2 lL 21c /m (AV — PRV (B V1)) ]} ’
divB =0, (3.12)
¥Y="(r,), Pr =[Qr]/c.

The system of equations (3.12) is the final form. It de-
scribes the magnetic field configuration in the magneto-
sphere of a pulsar with an arbitrary electric field—V# and a
longitudinal current #;. The two latter quantities serve as
sources in Eqs. (3.12); they are determined by the condi-
tions at the boundaries of the magnetosphere.

The boundary conditions on Egs. (3.12) are as follows.
Near the surface of the star, at the lower boundary of the
magnetosphere, S = S,(r), the magnetic field determined
by internal sources is given:

Bls, =By (r). (3.13)

Also given here are the longitudinal currents which are flow-
ing into the magnetosphere and out of it,

inlse =1ty (r_) By, (3.14)
and the electric potential,
¥ig, =¥ (r.). (3.15)

There are important differences between the region in which
the closed magnetic lines of force emerge and the region in
which the broken lines of force (i.e., those which go off to
infinity ) emerge (§2). If we assume the conductivity of the
star to be infinite, we can assume that there are no longitudi-
nal currents in the region of closed lines of force, S, (r), and
there is complete corotation:

iyls,, =0, ¥ls,=0. (3.16)
Boundary conditions (3.14) and (3.15) are thus of a nontri-
vial nature and lead to a substantial change in the form of the
equations only in the region of open lines of force.

Yet another natural condition arises at the surface S,

defined by the relation

1 —Br+ Br Vg 0.
The right side of Egs. (3.12) has a singularity at this surface.
The requirement that the magnetic lines of force must be
able to intersect the singular surface S 4, i.e., that the electric
charge p, and the current j must remain finite at this surface,
is a natural boundary condition of the problem. Finally, we
need to require that all the fields vanish at infinity.

We wish to emphasize that near the “light surface”
S.,where E— B, the particle drift velocity approaches the
velocity of light. There is accordingly an increase in the ener-
gy of the particles here, and there is a corresponding sharp
increase in the expansion parameter & in (3.10). As a result,

(3.17)
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the conditions for the applicability of Eq. (3.12) are violated
near S.. A singular boundary layer forms here, in which
approximation (3.11) is no longer sufficient, and a more
accurate solution of equations of motion (3.5) is necessary.
The surface S, is therefore a sort of boundary of the magne-
tosphere, outside which Eqs. (3.12) do not hold. However,
the additional requirement that the fields vanish at infinity is
correct, since the range of applicability of approximation
(3.11) along the rotation axis extends without bound.

3.2. Axisymmetric case. We begin with the simplest
case. We assume that the unperturbed magnetic field of the
pulsar is a dipole field, with dipole axis running parallel to
the rotation axis. In this case, the magnetic field can be writ-
ten in the cylindrical coordinates p, , @, z (the z axis is along
the rotation axis) as follows:

1 g
B=—— e | +——eg
oI Vied+ e

where the scalar function f( p, ,z) does not depend on the
azimuthal angle . Since we have (BVf) = 0, the function
f(p,,z) is constant along the magnetic lines of force, so that
the condition £ = 0 can be rewritten as

¥ = (), (3.18)
Finally, the function g( p, ,z) is related to the longitudinal
current /; which flows in the magnetosphere, as is easily
verified. By virtue of our basic equation (3.12), we have
g =g(f),in the axisymmetric case, so that at the surface of
the star we have

Ao dg
P Fa

(3.19)

Finally, Eq. (3.12) reduces to a single nonlinear equation for
the scalar function f( p, ,z):

Q%% Q dvy2yy 2 9 de
—Af[1— ? (1+T T/_)11 P 9Py d /
Q%% .9 dv )y d2v .
= (15 ) T (V0= (3.20)

The functions W( f) and g( f), determined by boundary
conditions (3.14)-(3.16), serve as sources in Eq. (3.20).
If there is no electric field or longitudinal current any-
where in the magnetosphere, conditions (3.16) hold on both
the closed and open lines of force: W( f) = 0andg( f) = 0.
Equation (3.2) takes the simple form
Q2p? 2 of
—af(t==) e W
Figure 5 shows the solution of Eq. (3.21) found numerically
by Michel*” and Mestel and Wang.’® We see that the light
surface S, is a cylinder of radius ¢/(), as it should be, since in
this case corotation prevails throughout the magnetosphere.
At f> f* the magnetic lines of force are closed and do not
reach the singular surface S.; at f<f* they are open; i.e.,
they intersect the singular surface S. and go off to infinity.
Here we have f* = 1.592MQ /¢, where M is the magnetic
moment of the star. At the intersection of the separatrix
f=/* and the light cylinder there is a magnetic null line.
We turn now to the solution of the main problem: incor-
porating the longitudinal currents /; and the electric field ¥
in the region of open lines of force, i.e., at f< f* Equation

0. (3.21)
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FIG. 5. Magnetic lines of force ( /= const) in the absence of a longitudi-
nal current i, and of an accelerating potential S, (Refs. 49 and 50). Here
S.. is the light surface, which in this case coincides with the light cylinder
(the numbers are the values of fc/M(1).

(3.20) simplifies substantially in this case if we choose the
source functions in (3.14) and (3.15) to be

g(f)=
g(fy==0,

where [, and f3, are dimensionless parameters; i, is the den-
sity of the longitudinal current j; expressed in units of the
current 2j, in (2.3), and f3, is the drop in the potential ¥,
expressed in units of ¥, in (2.5).

Equation (3.20) in the region f </ * can be rewritten as

4Q
4

iof, f<<r1*,
f>f%

V() = By (X~ 1), (3.22)

¥ () =0,

Q2

c?

(1—Bo?]— = 2

Py 9,

Af[1_

+ 2 0.

¢

(3.23)

In the region /> f/ *, the equation remains of the same form
asin (3.21).

Boundary conditions (3.22) correspond to the follow-
ing picture of the currents in the magnetosphere of a pulsar:
The density of the flowing current /, is constant over the
entire region of open lines of force, while the return current
forms an intense current jet [a discontinuity in the function
g( f) near the boundary /= f*. When there is a longitudi-
nal current (i,#0) and a field ¥ ( 8,#0). we should thus
seek a solution of Eq. (3.23) at f<f* and join it with the
solution of Eq. (3.21) at /> f *. A joining of this sort would
be possible, however, only if the ““‘compatibility relation” *

B 1— (1 — )",

M

(3.24)
1A/

/* ~ 1.57,

z=0, p_‘_z-—-c/ﬂ

i2
IyM ==

2l

which relates /, and f3,, holds. Additional relation (3.24)
has to be introduced because of the nonlinearity of Eq.
(3.20), which describes the entire magnetosphere of the pul-
sar.

Figure 6 shows an example of a solution constructed in
this way. The dashed lines show the singular surface S, and
the light surface S.. We see that the surface S, lies beyond
the light cylinder, §)p, /c = 1. This result means that the
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FIG. 6. Magnetic field configuration in the presence of a longitu_d'mal
current (i, = 1). The dashed lines show the light surface S, and the singu-
lar surface .

rotation of the magnetosphere has slowed down substantial-
ly. The magnetosphere remains divided into regions of open
and closed lines of force, and the null line is at p, =¢/Q,
z=0.

We wish to emphasize the importance of compatibility
relation (3.24), which relates the flowing longitudinal cur-
rent #, to the electric field 5, or the drop in the potential
between the surface of the star and the magnetosphere,
W ( /), given by (3.22). This relation serves as a nonlinear
Ohm’s law, and it determines the energy loss of the pulsar, as
we will see. Furthermore, it follows from (3.24) that the
density of the longitudinal current i, cannot exceed the criti-
cal value iy, . It turns out that in order to derive compatibility
relation (3.24) we need to know only the behavior of the
solution of (3.21) ({, =0, B, = 0) near the magnetic null
line. Relation (3.24) follows from Eq. (3.23), since near the
null line (p, /c = 1, f=f*) the magnetic field is weak, so
that we have V /- 0.

This remarkable fact makes it possible to derive a com-
patibility relation for an arbitrary inclination of the axis of
the magnetic dipole with respect to the rotation axis y. This
relation is

Bo=Bm (%) [1 - (1 - i'f“i%(x) )”2}

and is completely analogous to (3.24). The only changes are
in the coefficients £ (y) and 7y (y), which are shown in
Fig. 7. Figure 8 shows the structure of the magnetosphere for
axis inclination angles y = 30° and 90°. We will not discuss
the case of inclined axes in more detail here (see Ref. 40).
3.3. Boundary layer; current closure. The solutions con-
structed above are valid only up to the light surface, where
the total electric field £ is comparable in magnitude to the
magnetic field B. Here the particle drift velocity approaches
the velocity of light, and the energy of the particles increases
sharply; condition (3.10) breaks down. A singular bound-
ary layer thus forms near the light surface. In it, drift ap-
proximation (3.11) is inadequate, and we need a more accu-
rate description of the motion of the electrons and positrons.
As we will see, the thickness of the boundary layer at
n.>n. in (3.8) is always small in comparison with the di-

(3.25)
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FIG.7.The quéntities i (x) and By (), whichappear in *‘compatibility
refation™ (3.25), as functions of the angle y.

mensions of the magnetosphere. In the steady state, all quan-
tities in this layer thus vary substantially only in the direc-
tion normal to the layer, p,. Making use of this
circumstance, we rewrite the basic equations, (3.1), (3.2),
(3.6), as

9By 4a . 0B, 4 ) -
[ S e LU T T
P g 9B 4o (%Pu ) (3.26)
oY - c 7 ( praLy Oe

The distribution of electrons and positrons is described
by kinetic equations (3.3)—(3.5), where ¢ = 0. Near the
light surface, the particles are accelerated to a great extent,
so that their initial spread in longitudinal momentum can be
ignored. Now writing the particle distribution function as

F= = n*(p,) 8 [p — p=(p.)],
we find from (3.4) and (3.5)

(3.27)

FIG. 8. Structure of the magnetosphere of a pulsar for axis inclination
angles y = 30°and 90°. Here S. is the light surface, which coincides with
the light cylinder in the case i, = 0.
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d 1)§ n
L =0
dpJ_( P ) '
dp§ piz + 1
: L . _Pe e\i (mEMwL _ [ptB]"‘) :
Py 0LPy, Py, cy - 38
(3.28)
dp:;’ o P% + ey® (mE + 1 [p=B] )
dp\ pl - p;)t_L ¢ C‘Yi ¢ ’
dpzi eyi 1 4
S =BJ,) .
=tk (mE,+ =[P )

Dy

Equations (3.26)—(3.28) constitute a complete system of
equations describing the distribution of the plasma and the
field in the boundary layer.

Figure 9 shows the solution of these equations. Here s is
the distance from the light surface, in units of (¢/47AQ )1/
I., where A = n./n. in.(3.9). By virtue of condition (3.8),
the condition 4 > 1 always holds, so that the boundary layer
is thin. Specifically, its thickness Ap, ~c/04 is much
smaller than the scale of the magnetosphere, r ~¢/Q. It can
be seen from Fig. 9 that the energy of the electrons and the
positrons in the boundary layer increases to € ~¢£,, , where

o= = B (3.29)
It follows that the maximum energy of the particles is pro-
portional to the total current 7 circulating in the magneto-
sphere and inversely proportional to the particle density.
The total particle density becomes comparable to the energy
density of the electromagnetic field at s~ 1. As a result, the
conditionu < 1 [see (3.10) and (3.8) ] is violated, so that the
properties of the medium change substantially: The Alfvén
velocity becomes comparable to the velocity of light, and
excitation of magnetosonic waves becomes possible. The
particles escape into the region s> 2 along with the MHD
radiation; their average energy remains of the order of ;.

The momentum in the ratation direction, p, , increases
in proportion to the energy. The momentum in the radial

&/e o
ﬁf’ /5;20) G
T 2

. g
~ip #*

FIG. 9. Profiles of the energy £ and the momentum (the components p,,
and p, ) of the particles and also of the magnetic field B, in the boundary
layer.
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direction,p/,( , has a more distinctive behavior in the bound-
ary layer. As we see from the figure, it initially increases and
then decreases, resulting in an accumulation of particles in
the layer. The motion of the particles in the z direction, par-
allel to the light surface, is substantial only in the boundary
layer, as we see from the figure. The momentum p, increases
most rapidly. The primary feature here is that the particles
with charges of different sign move in opposite directions
along z. This result means that a strong electric current
arises in the thin boundary layer (Fig. 4). A jet of surface
current, flowing in the z direction, i.e., along the light sur-
face, forms. The intensity of the current jet is

1
]S T B;[([])C:

(3.30)
c 4n

here B!” = i,B,(QR /c)" is the azimuthal component of
the magnetic field at the boundary of the layer, i.e., ats = 0.
Because of the intense surface current /, in (3.30), the com-
ponent B, decreases rapidly in the boundary layer, as can be
seen from Fig. 9. The vanishing of B, ats =13 corresponds
to complete closure by the current jet in the boundary layer
of the longitudinal currents which are flowing in the magne-
tosphere (Fig. 4).

As the separatrix is approached, f—f*, the potential
difference between the surface of the star and the magneto-
sphere vanishes, as can be seen from (3.22). The current
becomes able to return freely to the surface of the star.
Where the light surface intersects the light line /= f*, the
current jet thus turns, and returns to the surface of the pulsar
along the separatrix /= f* (Fig. 4). This result is in com-
plete accordance with conditions (3.22): The discontinuity
ing( f)atf=f*meansthatthereis areturn-current jet. Its
magnitude is

[ 2o

7 2ac

(3.31)

This jet completely compensates for the forward longitudi-
nal current / which flows throughout the magnetosphere of
the pulsar. In this manner, there is a circulation of the cur-
rent in the magnetosphere of the pulsar.

3.4. Energy loss of a pulsar. Let us determine the loss of
rotational energy of a pulsar. The slowing of the star results
from the current Iy which is flowing along the surface of the
star, S. The moment of forces acting on the star is

K= Ui (iaBo (51148 (3.32)
here B, (S) is the magnetic field at the surface of the star.
The projection onto the rotation axis { determines the loss
of kinetic energy of the pulsar:

dEk1n = __W. KO .— 0-
LB — W Ke - 1,00;

(3.3
here I, is the moment of inertia of the star. The other compo-
nents of the vector K determine the rotation of the rotation
axis with respect to the magnetic moment of the star, M: i.e.,
they change the axis inclination angle y.

In finding the surface current I it is convenient to dis-
tinguish between the potential and solenoidal parts of this
current.”’ The potential part is determined by the longitudi-
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nal currents which drain into the magnetosphere from the
surface of the star. It turns out that the retarding moment K
is determined exclusively by the potential surface current,
since it is proportional to the dimensionless density of the
longitudinal current ¢, in (3.22):
BYOR® . M

M (3.34)
3 [} M ’

K=—-L

here L is a numerical coefficient, approximately equal to”
0.4. It follows from (3.33) and (3.34) that in addition to the
slowing, i.¢., the decrease in the magnitude of the angular
rotation velocity of the star,

BQR®

T (3.35)

O= — 1L

19 COS ¥,

there is also a regular increase in the axis inclination angle if
the star is strictly spherically symmetric, as was pointed out
by Heintzmann’*:

sirlx:%sinxo, )'(=——%th, (3.36)

Here y, and €}, are the initial values of the inclination angle
and of the angular velocity. We recall that the current i is
bounded in our case: i,<iy (y). The maximum current, i,
depends strongly on the axis inclination angle y (Fig. 7).
The energy carried off from the star, W, inside the light
surface ts the sum of two parts: the energy carried off by the
flux of particles which are accelerated by the drop in the
potential W( ) near the surface of the star (W) and the
energy carried off by the electromagnetic field*’ (W, ):

2
W=Wp+W,=L B“‘?JRB i COSY;
Wp— L B%SCE:R“ ioBo: (3.37)
B3Q4Re |
W = L —5— iy (cos 1, — By).-

We see that the flux of accelerated particles carries only part
of the energy away from the pulsar, and this fraction is small
if B, < 1 [orifi,<1;see (3.24) }. However, in the boundary
layer near the light surface the electrons and positrons of the
entire plasma are accelerated, and they acquire an energy
£y, given by (3.29). The electromagnetic energy flux W, is
entirely transferred to the plasma particles and to MHD
waves. The total energy flux carried away from the star, W,
is equal to the energy of the slowing of the star, given by
(3.33) and (3.35). The energy flux W naturally is in accor-
dance with estimate (2.7).

In the past, the slowing of a pulsar has usually been
attributed to the loss of energy of a magnetic dipole which is
rotating in a vacuum>*%%;

{ BIQIR®
3

Wvd =

= (3.38)

sin®y.
The dipole loss W, is a vacuum loss; the current loss W in
(3.37) arises when there is a plasma-filled magnetosphere.
Comparison of W with W, reveals that the primary distinc-
tion is the difference in the behavior as a function of the axis
inclination angle: The dipole loss reaches a maximum when
the axes are orthogonal, and it vanishes completely in the
limit y —0°. The current loss, in contrast, is at a maximum in
the axisymmetric case and decreases with increasing y. This
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behavior of the current loss seems completely natural on
physical grounds. The point is that the original cause of the
loss is the need for plasma production on the open lines of
force, and the amount of plasma, which is proportional top,.,
decreases with increasing angle y [see (2.2)].

The most important distinction between the current
loss and the dipole loss is that the former is proportional to
the longitudinal current which drains away from the surface
of the pulsar, as is reflected in (3.37) by the dimensionless
factor.

. j
1022'0057(,-—0" ;

here j; is the longitudinal current density, and j, is the criti-
cal current, given by (2.3). The factor 7, cannot exceed i, in
(3.25). As i,—1Iy, the current loss becomes comparable in
magnitude to the dipole loss, while at i, €7, the current loss
is much smaller. In particular, if there is no longitudinal
current at all ({, = 0) arotating star surrounded by a plasma
magnetosphere loses no energy at all, regardless of the axis
inclination angle y. The physical reason is that in the ab-
sence of a longitudinal current the magnetospheric plasma
becomes polarized in such a way that the radiation is com-
pletely suppressed. The Poynting vector in this case has only
acomponent along ¢ on the light cylinder, so that the energy
flux directed away from the star is zero.

An important point is that the longitudinal current i, is
related to the electric potential ¥ by virtue of compatibility
relation (3.24), (3.25). This potential, on the other hand, is
determined by the conditions for the production of electron-
positron pairs. Ultimately, therefore, it is the production of
plasma on the open lines of force which determines the cur-
rent i/, and thus the slowing of the pulsar. We wish to stress
that compatibility relation (3.25) leads immediately to the
conclusion that a rotating neutron star becomes a radiopul-
sar only if an e “e™ plasma is produced from vacuum near
the star. Since we have W iy~ (W, /Wy )2 (W, 2 107 V),
the loss of rotational energy of the star can be great enough
to explain the observed radio emission only under the condi-
tion W, % 10°-10'" V. Such large values of the potential drop
near the surface of the star, ¥, could arise only if the plasma
is produced from vacuum.

4. PRODUCTION OF AN ELECTRON-POSITRON PLASMA

4.1. Basic equations. The plasma production mecha-
nism suggested by Sturrock®* and developed by Ruderman
and Sutherland®* and other investigators***>>* involves
an acceleration of electrons and positrons in a strong electric
field near a neutron star and the emission of high-energy
curvature y photons by these particles as they move in a
curvilinear magnetic field. The ¥ photons produce electron-
positron pairs (§2). This process is described by the kinetic
equations for the particles, (3.3), and for the y photons, and
by Maxwell’s equations, (3.1) and (3.2), for the field. The
initial equations simplify because the plasma production oc-
curs close to the pulsar, at (» — R) S R, for the most part, so
that the drift of the charged particles and perturbations of
the magnetic field can be ignored. They accordingly take the
form
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VY 0

— (V2= px N
+ ciB By —-Y——F ]]-_Dl_l_qc"
(4.1)
G k oG
W—FCT‘_:(]F‘FQS-Dr (4.2)
AY = —4:16!_2 S(F —Fo)dy—nc], (4.3)

where F F (y,r,t) is the energy distribution of the positrons
and electrons; y = [1 + ( p,/mc)*]'/? (we are using the
relation  p, €p;); and the factor and index
o = sign(p,B) = F 1 characterize the direction of the lon-
gitudinal momentum [the relationship between p; and y is
multivalued, so that a single function F( p, ) corresponds to
two functions F,, (y) ]. The operator D, (F * ) describes the
scattering of electrons and positrons as they emit ¥ photons,
while the operator g5 describes the production of electron-
positron pairs by high-energy ¥ photons. The function
G (k,r,t) is the distribution function of the ¥ photons with
respect to the momentum k; the operator g describes the
production of curvature ¥ photons by fast electrons and po-
sitrons; g¢ describes the emission of synchrotron photons by
particles in nonzero A levels; and D describes the loss of ¥
photons due to pair production. Finally, V¥ is the electric
potential given by (3.6), and n_ is the corotation density,
given by (2.2). In (4.3) we have taken into account the cir-
cumstance that Eqgs. (3.1) and (3.6) reduce to a Poisson
equation in a rotating coordinate system in the absence of
magnetic perturbations.

We can write the specific expressions for the operators
D,, D, q;, gr, and gs. The scattering operator is*?

55 %
2V3 P 6? G )]

2 ck 4

DI(F):'—TGX‘—ST—(?TLYAF‘I‘

(4.4)

here a; = ¢’/#ic is the fine-structure constant, # = fi/mc is
the Compton wavelength,

) ()

~ 7.5.10’131/2(7{,—)‘”2 (_’_)”Zcm

7 (4.5)

is the radius of curvature of the magnetic field along the
given line of force, p in the numerical expression is given in
centimeters, and P is given in seconds. The operator describ-
ing pair production by ¥ photons is

2o { w ()G ®S(y

where w, (k) is the probability for the single-photon produc-
tion of a pair in the magnetic field B (Ref. 60):

) dk, (4.6)

_ 1
|sin 6]

313 .
wi(x):ﬁar—;—Bh ISlIlel
8 ; .
XEXp(—m)@‘(KISIHOI—Q),
kB 1, =z>0,
cos® =Tz - 8‘(1):{0, z<0;
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here and below, we are using the dimensionless wave number
% (in unitsof 4 ~';i.e., x = #iw/mc?), and the dimensionless
magneticfieldis B, = B /B, (B, = m°c’/#ie = 4.4-10"* G is
the critical magnetic field). The operator describing the pro-
duction of curvature photons is

g0 [ dYFs )+ Fs )] | dnb oty 18 (o 2]
1 0

(4.7)

here P, (x,y)dx is the probability for the emission of a curva-
ture photon in the interval dx, given by®'
3 %
£x g Ko@) de,  #o=5 =%
®

*c

P (n, v)= I

and K,;(x) is the modified Hankel function. The operator
describing the production of synchrotron photons is

__3V3 1
9s= (2m)® %38, |sin 0]
0 ()60 2 | Koy de
%B
u’/'nB
XS (sin2 6’ —sin2 0)1/2

x@;[sinze’—sinze 4C°S e] dx’

uBZ—g—Bh |sin 8] cos? 8 (sin? 0’ — sin2 0)~1. (4.8)
Finally, the operator describing the loss of  photons on pair
production is
D = w, (%) G (»). (4.9)
The system (4.1)~(4.9) is valid under the conditions

ky? o
By< 0.4, - <1, <,

which are satisfied quite well in the magnetosphere of a pul-
sar (ordinarily, we would have B, ~0.01-0.1, p~10* cm,
y~107, % ~10%).%

The boundary conditions on Eqs. (4.1)-(4.3) are
specified at the surface of the star, # = 0, and at large values
h 2 R, where the plasma production process has essentially
ended (/4 is the height above the surface of the star near the
polar cap). At &4 = 0 we have

=(Fty, Fy, GOYyeo + F,
Ko (Fry, Fo, GOm0 +G7.

G (x, h=0) = (4.10)

For definiteness we have assumed here that the vector B is
directed away from the surface of the star. The functions
F * and G '*’ therefore correspond to particles and photons
which are moving away from the surface, while £ * | and
G '™ correspond to those moving toward the surface. The
coefficients K* and K ; describe the ejection of electrons,
positrons, and ¥ photons with energies above 1 MeV away
from the surface of the star by accelerated particles which
are incident on this surface from the plasma. These opera-
tors are generally linear. The coefficients F [* and G § "’ de-
scribe the independent emission of the same particles from
the surface due to other processes (thermionic emission and
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cold emission caused by the electric field). At large distances
hZ R, the plasma which is produced moves away from the
star, i.e., we have

F&=F5, =G=0, hxR (4.11)

In this case the electric potential tends toward the constant
value ¥, determined by the quasineutrality condition

[ (Pt—Fp) dy=ne (1= iv2, (4.12)
3

Here we have used the fact that when there is a longitudinal
current i, = 2j/j. the angular velocity of the rotation of the
magnetospheric plasma decreases according to (3.24) and
(3.25). Below we will reckon the plasma potential from W __ ;
ie, wewillset W =0.

4.2. Double layer; critical “‘breakdown” potential. The
existence of a significant potential difference between the
surface of the star and the magnetosphere, ¥_, leads to a
natural distinction of a layer near the surface in which there
is a strong electric field. This layer is analogous to an ordi-
nary Langmuir double layer near the surface of an object in a
plasma. We will accordingly call it a “‘double layer™ (*‘vacu-
um gap’’ is frequently used in the literature on pulsars®). It
is in this double layer that the particles acquire the high
energy necessary for the emission of curvature y photons
which are capable of producing electron-positron pairs. It is
thus natural to look separately at the region of the double
layer, which determines the conditions for the occurrence of
“breakdown,” and the region of quasineutral plasma, in
which there is an effective multiplication of particles.

The scale of the double layer—its thickness H— can be
estimated easily from Poisson equation (4.3). Examining
the direction along the normal to the layer, 4, and noting
that the plasma density in the layer is low, we find
[Wel e )1/2

(4.13)
QB cos y

H=~ (
Under the conditions prevailing in the magnetosphere of a
pulsar we would have H ~ 100 m (with ¥, ~10"* V). Since
this quantity is not large, we can simplify the equations sub-
stantially. In the first place, the production of synchrotron
photons will be inconsequential in comparison with curva-
ture photons over distances comparable to A, and the scat-
tering and loss of ¥ photons in pair production will also be
inconsequential. We can therefore ignore the terms ¢g, D,
and D, in Eqgs. (4.1) and (4.2). Furthermore, it can be
shown that the effective production of electron-positron
pairs by curvature ¥ photons occurs over a length scale Ak
which is small in comparison with the thickness of the dou-
ble layer. This result means that the plasma multiplication is
a linear process: Each accelerated positron (for definiteness
weare assuming that it is the positrons which are accelerated
away from the star by the field) corresponds to K ;; electrons
which are produced near the upper boundary of the layer,
h = H, and reflected back by the electric field:

ng (Hy = Kune (0), (4.14)
where n.* (4) is the density of positrons or electrons. Analo-

957 Sov. Phys. Usp. 29 (10), October 1986

gously, near the surface of the star, # = 0, an electron accel-
erated by the field produces K| positrons. We can then write

ng (0) = Kong (H), Ky=K,+ K*+Kg, (4.15)

Here we have used boundary condition (4.10), and we have
assumed that there is no independent emission of positrons
from the surface of the star: F,; =0. From (4.14) and
(4.15) we find the following condition for a steady-state pro-
duction of plasma, i.e., a “breakdown”’ condition:

KKy = 1. (4.16)

The potential distribution in the layer is simple accord-
ing to (4.3) and (4.12):
(H—hy?
a0
At the upper boundary of the double layer, at # = H, the
electric field vanishes; here the region of quasineutral plas-
ma begins. To calculate the coefficients K ; and K, in (4.14)
and (4.15) we need to solve the kinetic equations in the field
(4.17). The corresponding calculation makes it possible to
determine the critical potential ¥, at which the condition
for steady-state production, (4.16), holds and also the corre-
sponding layer height H (Ref. 42). They can be written in
the form*

Y, =5.5.1012p2 PV BN T cost /T y(1— pig)! /T 57T V
(4.18)
H=9.5-103 7P B cos=3/7 y(1— pig) ="~/ cm;

>

(4.17)

W (h) =¥, h< H.

here p is expressed in units of 10’ cm, B in units of 10'* G,
and P in seconds. We see that the critical potential is of the
order of 10'* V and that the height is H~ 10 m; neither
depends strongly on the parameters of the pulsar. The pa-
rameter p = (K —1)/(K+ 1), where K=K* +Kg is
the total coefficient in (4.10}, is a quantitative characteristic
of the physical processes occurring at the surface. Specifical-
ly, this parameter shows how many secondary particles and
¥ photons with energies above 1 MeV are emitted from the
surface when a single high-energy particle (¢ ~ 10" MeV) is
incident on it. The dimensionless parameter b also depends
on the coefficient X, as shown in Fig. 10. With increasing K,
the parameter b increases, so that the breakdown potential
V. decreases. This decrease in W, , however, is quite slow: As
Kincreases from 1 to 10°, the potential W, falls off by a factor
of about three. We can thus say that in the absence of inde-
pendent emission the steady-state plasma production is not
highly sensitive to the conditions at the surface of the pulsar.

/.

772 ! 1
3 37 300 K

FIG. 10. The dimensionless parameter b as a function of the multiplica-
tion coefficient K.
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Analogous plasma-production processes arise near a rotat-
ing neutron star when there is a free emission of charges of
one sign (Arons et al.**%"),

The electric potential in the layer is described by (4.17)
only if the layer height A is smaller than the radius of the
polar cap, R, given by (2.4). As H approaches R, the
breakdown potential W, tends toward its limiting value
Yy = (Bof¥’R */2¢*)cos y, given by (2.5). This limiting
value may be lower than the value [givenin (4.18) ] required
for plasma production in the layer. The result is a restriction
on the parameters of the rotating neutron star,

210

PBFT < 1.25p% (4.19)

(K) cos?/3y,
under which an electron-positron plasma can be produced in
the polar region of the star, i.e., under which the rotating
neutron star can become a pulsar.

4.3. Plasma multiplication. In the region of quasineu-
tral plasma, at h > H, there is an intense multiplication of
electrons, positrons, and ¥ quanta. The source of the multi-
plication is a beam of fast positrons (or electrons) which is
accelerated in the double layer to energies ¥~ 10"~10%,
These primary particles, moving along the lines of force of
the curvilinear magnetic field, emit curvature ¥ photons,
which produce plasma. Equations (4.1)—-(4.3) simplify in
this case, since the electric field is essentially zero in a quasi-
neutral plasma, so that the evolution of the distribution
function is determined exclusively by the sequential cascade
production of electron-positron plasma and radiation.

The evolution of the distribution function of the pri-

mary beam, F,,(»,4), is described by Eqs. (4.1) and (4.4):
F, 2 [ [Y/IF 55 i a ( 7FO)‘l

T3 %oy 3213 0 ov

=g (4.20)

At the boundary of the region of quasineutral plasma,
h = H, the function F, is essentially monoenergetic:
R (V— o) B — el

mc?

¥

0o=1Ip I\+1

Solution of Eq. (4.20) shows that in the region of quasineu-
tral plasma, 4 > H, the function F,, becomes approximately
Gaussian with a mean energy (¥ (4)) and an energy spread
Ay(h) (Ref. 42):

dr’
pr )

W=y (143075, n= oyl (4.21)

:EL/—.:-

Here p(4) is the radius of curvature of the magnetic field.
given by (4.5). The energy spread Ay is small, ~ 107y, so
that the slowing down of the primary beam is the primary
process. The parameter 7 cannot exceed the maximum value

. AR,
M=o e Ingg . pe=p (k=01 (422)
The total energy density lost by the primary beam is there-
fore

Bnax = fufte oy Yome? (1 — (13 0L (4.23)

This energy is expended on the production of  quanta and
secondary plasma. We see that this energy is significant only
if gy 2 1/3; if y < |, the energy expended on plasma pro-
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duction falls off sharply. The condition 7y, > 1/3 leads to a
limitation on y,, i.e., on the potential ¥ :

Yoy, = 100p3 (L)Y, (4.24)

here again, P is expressed in seconds. Only under the condi-
tion W W, is a significant amount of energy—of the order of
the energy of the primary beam-—expended on plasma pro-
duction.

The secondary plasma is produced in stages. After the
curvature ¥ photons from the primary beam have traversed a
distance of the order of the mean free path /(x),

4 p 1 oip
=== A®)-—=—In —=
3 xB,A (%) (%)== 3 21 8 4B,x?

(4.25)
the curvature y photons are absorbed, forming electron-pos-
itron pairs, which constitute the first generation of the plas-
ma which is produced. In this case the energy of the particles
lies in the interval

9 1 9 L 30

T VB <v<<g —p_'\’oBV«‘\ (f—l o )

and the spectrum of the particles is a power law, y~>/*. The
next generation of plasma particles is produced by the synch-
rotron y photons which are emitted during the formation of
the first generation. Their energy lies in the interval

9 7

o VB ’(——— Yo\ ‘) <Y<——\‘,Bh

and their spectrum is considerably steeper: °’ (etc.). At
small values of ¥, the cutoff of the spectrum of the plasma
which is produced is determined by the transparency of the
magnetosphere, since both the magnetic field B and the radi-
us of curvature p vary substantially with height above the
surface of the star. An analysis reveals

~ 300 — 500, (4.26)

Ymu 4 %
where R is the radius of the star.

The plasma production usually terminates in the sec-
ond generation, sometimes in the third. The energy spec-
trum of the particles of the plasma which is produced is
shown in Fig. 11 (Ref. 44). We see that the particle distribu-

+

ar”
@

7 -

7k
Vs
w7

L ] 1
w?  w wt

FIG. 11. Representative spectrum of a secondary electron-positron plas-

ma produced by a primary particle with an energy of 10'" eV (Ref. 44).
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tion function increases with decreasing energy of the parti-
cles at ¥ > ¥, in proportion to ¥~ on the average; at
¥ < ¥min» the distribution function is cut off sharply.

5. RADIO EMISSION FROM A PULSAR

It was shown above that the plasma in the magneto-
sphere of a pulsar near open lines of force, f < f*, is a steady
stream of relativistic electrons and positrons with a Lorentz
factor ¥ ~ (3-5) - 10%, which are moving along a very strong
curvilinear magnetic field. Each individual charged particle
emits electromagnetic waves. This is curvature radiation,
completely analogous to ordinary synchrotron radiation
having the same characteristic frequency w,. = (3/2)(c/
p)y” and being directed in a narrow cone with a vertex angle
A6 ~ 1/y around the direction in which the particle is mov-
ing, i.e., along the magnetic field. This radiation was dis-
cussed in detail in the preceding section. In all cases, how-
ever, the discussion dealt with high-energy ¥ quanta, with a
wavelength short in comparison with the average distance
between particles. In this section of the review, we are con-
cerned instead with the radiation which is generated by the
main plasma and whose frequency is in the radio range, with
a comparatively large wavelength A, ~0.1-10° cm. A study
of this radiation under the conditions prevailing in a dense,
relativistic plasma, in which the average distance between
particles is much smaller than the wavelength of the radiated
wave, so that collective effects are important, is of funda-
mental interest for reaching an understanding of the origin
of the extremely intense and highly directional radio emis-
sion from pulsars.®**

We wish to stress that in the steady state there is no
radiation from the entire plasma, in contrast with the emis-
sion from an individual particle, since a constant current
does not radiate. The curvilinear nature of the magnetic
field, i.e., its nonuniformity, plays a governing role in the
generation of this radiation. Yet another important circum-
stance is that since the velocity of all the plasma particles is
close to the velocity of light, ¢, a Cherenkov interaction of
the radiation with the plasma becomes possible for the nor-
mal oscillation mode with a refractive index slightly greater
than unity. All or nearly all of the plasma particles are reso-
nant particles in this case. The simultaneous coexistence and
the interaction of the curvature and Cherenkov radiations
should give rise to new oscillation modes, completely dis-
tinct from the oscillations of a homogeneous plasma.*” We
call these new modes “‘curvature-plasma modes.”

5.1. Electrodynamics of an inhomogeneous plasma. To
study the electrodynamic properties of such a medium as an
inhomogeneous, collisionless, relativistic electron-positron
plasma, it is first necessary to calculate the dielectric permit-
tivity tensor. To do this, we first use a path-integration meth-
od to solve the linearized kinetic equation and to find the
response of the inhomogeneous medium to a plane wave
with a wave vector k and a frequency w. The general expres-
sion for the current j induced in the medium by the plane
wave is written®”
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jlo, k, r, 1)

. 1
= —e¢? \ dpv 5 exp (—iwt’ + ikr’)

x(EAq_[gquEAy])gg;dte (5.1)
here E, is the amplitude of the electric field of the wave;
F(p,r) is the unperturbed distribution function of the parti-
clesofchargee;andp’ = p(¢'),v = v(¢’),andr’ = r(¢ ') are
the momentum, velocity, and coordinate at the time ¢’ of a
particle moving along an unperturbed path, so that at the
time ¢ the particle is at the point under consideration, r,
and has a momentum p and a velocity v. Using this expres-
sion for the current, and assuming j, =oy.E,
X exp( — iwt + ikr), where 004 is the conductivity of the
medium, we find the corresponding dielectric permittivity in
the standard way:

4mi
S&D)B = 6aﬁ+Tl 0?157

4mie?

exp (0, k, 1)=8,——

t
x\1 dpv, \ dt’ exp [io (t —t') — ik (r—1")]

— o0

(5.2)

4 kovg a
(=) e ]

It should be kept in mind, however, that the quantity
82,,, (w,k,r) in (5.2) is not the quantity which determines the
dispersion properties of the inhomogeneous medium and
which must be substituted into the dispersion relation in or-
der to find the natural modes and eigenfrequencies of elec-
tromagnetic oscillations. The point is that although we have
taken into account the effect of the inhomogeneity of the
medium on the motion of the particles the electromagnetic
wave was assumed to be a plane wave, as in a homogeneous
medium. Plane waves, however, are not eigenfunctions in an
inhomogeneous plasma.

In the case of a slightly inhomogeneous medium, in
which the wavelength is much shorter than the scale of the
inhomogeneity (in our case, this scale is the radius of curva-
ture of the magnetic field, p),

kp > 1 (5.3)

and the damping (or growth) of the wave is relatively slight,

aH
Mkl 1 g1, e,y = el + il
|

] (5.4)

(&ls is the Hermitian part, and €% the anti-Hermitian part,
of the tensor £, ), we can choose the field of a wave packet
as eigenfunctions for the electromagnetic field:

E (r) = E9 (r) exp [iD (r)].

Using the energy transport equation, we can show that the
equation for the electromagnetic field of the wave then takes
the usual form
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(ks — K5+ 5 eag) 3=, (5.5)
if the quantity 5 (w,k,r) in (5.5) is related to the quantity
€34 (w,k,r) by

1
k, 1) :*(—)‘73- S dk’ dR'E&B ((:),

£ep (0,

xexp [i (k' —k) R’]. (5.6)

It follows from (5.5) that the quantity £,5 (w,k,r) is the
dielectric permittivity tensor of a slightly inhomogeneous
medium which we have been seeking.

Expression (5.2), (5.6) for £,5 can be simplified. For
this purpose, we substitute (5.2) into (5.6) and integrate
over dk’ and dR'. Since the quantity r — r’in (5.2) is a func-
tion of the coordinate r, the momentum p, and the time dif-
ferencer — ¢,

r—r =L p ¢t —1¢)

we find*’
t
qie? . , . ’ ;

Eup = Ogp— i \ dpv, S dt’ exp [io (t —t') — ikR*]

¢ —-00

R#
NP P Gt i [P 2
o det™1}8,, — TN (1 - )680
kgvﬂ . i a . oF
t35 9m ar VB~ 5 O ary 'U"] 9Pg |rmr+(r¥/2)

(5.7)
where the vector R* (r,p,/—¢ ) is the solution of the equation

R =L (r+ 57, p, t—t'). (5.8)

5.2. Dielectric permittivity. Expression (5.7) holds for
any inhomogeneous medium under conditions (5.3) and
(5.4). Let us calculate the quantity £,5 (@,k,r) for our case,
in which the medium is an electron-positron plasma moving
at a relativistic velocity along a curved magnetic field. At
each given point r we introduce three unit vectors: b, along
the direction of the magnetic field; n, the normal vector; and
1, the binormal vector. Since the particles are moving along
the magnetic field, their distribution function is of the form
in (3.3):

F(p, r) = neFy (py) 6 (p1); (5.9)
here p, is the momentum component along b, and p, is that
transverse tob. Here we have taken into account the circum-
stance that the transverse drift of the particles is slight
(Ip,| <p, ) in the part of the magnetosphere in which we are
interested. By virtue of the relation w €wg (@y is the cyclo-
tron frequency), a possible transverse motion of the particles
“is rapidly forgotten ” and we can write
N}

opy

oF oFy 8 vg (¢)
o, = Pebo (r') 6P o) =ne =)

8 (p.).
To pursue the calculations we need to know the paths
along which the particles move:

P=r V(=) = () (=)L

ve . y l) 3 (5 10)
U 4. || 1 ap Yl
a=-—mn; a=——b——n e :
p p* (b ar ) PP L
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here p is the radius of curvature in (4.5), and p_ is the radius
of the twisting of a magnetic line of force. Since the relation
P >p holds in the region in which the radiation is excited,
we willsetp,. = o for the discussion below. The value of the
distribution function at the point r 4+ (R */2) appears in
expression (5.7) for the dielectric permittivity tensor. We
thus also need to find the particle velocities v and v (r ") and
R* at the pointr + (R*/2). We have

W=Uﬂb (1‘-}—%)

agr 7 ]

_v“h—l— L—t)n ; (t—)*[b=n (b (b1,

vy '
v (W) =pyb— g (1= 1)

1

Xn——g—% (t——t’)'~’[h+n (h ﬂ)] , (5.11)

ar
R*(W)=Uuh(i—i)—2_4—p—“ (t—1t) [h*“ b—- )]

Itis important to note that R* in (5.11) is an odd function of
the difference (¢ — ¢’). In general, it can be shown that the
quantity o (r —t’) — kR* in (5.7) is an odd function of the
argument ¢ — ¢ . This situation corresponds to the fact that
time reversal (r— — ¢) leaves the dielectric permittivity ten-
sor £,; the same for the inverted wave (0= —o,
k = — k). This important property determines the possibil-
ity of a local description of the inhomogeneous medium. The
tensor €0, in (5.2) does not have this property.

Substituting expressions (5.11) into (5.7), we find the
following expression for the dielectric permittivity tensor
which we are seeking:

gqp (0, k, 1)
=8up— (‘ dpmvy S diE (o, ky py, T)
1]
viT
X[ baby (1— o )
v
+ (nabg-—nﬁba) —E T

a9 (7 v |
— (ngby -+ nghy) ©° (b Tf) ap|2 -
Exp ((!)7 kv P T)

:exp{i[m~(kh)u,,]t+ ’ p2 Ts[(kb)Jr (kn) (

o) I}

here a)f, = 47e’n. /m is the plasma frequency. Considering
modes which are propagating at a small angle 6 ~ 1/y from
the magnetic field (since only such modes could be unsta-
ble), we can ignore the terms containing the derivative of the
radius of curvature, dp/dr. Integrating over 7in (5.12), we
can write the tensor £, in the following final form™:
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2
(1+4nmp kﬁ‘/a ‘ .stz"

Eup = 0, 1,
p s Ai" () +iGi" §) >
{77k N v ’

The Airy functions Ai(¢£) and Gi(§) are defined by
v oy, B3
A (®) +iGi () = — | exp (8 +15) at:
0
the primes in (5.13) mean the derivatives with respect to the
argument

Eee 2 (0 — k) —m (5.14)

AT
The coordinate system has been chosen in such a way that
the z axis runs along the vector b, while x runs along n. The
angle brackets mean an average over the distribution func-
tion F (py): (..) =fdp..F (py).

In the limit p — oo, expression (5.13) becomes the cor-
responding expression for an inhomogeneous plasma with*’
w<Lwy =eB /mcy:

:'1,

Exx = Eyy

. w; g
=1 S 0* > ’

Exy yx = Bxp = Epx T By = By = 0.

For finite values of p and for w = k,v =k,c, however, the
dielectric permittivity of the inhomogeneous plasma in
(5.13) has essentially nothing in common with the local di-
electric permittivity of a homogeneous medium. This result
is not surprising: In the first place, there is no curvature

v, GHz (w)Z/J a=7
L) =q
@),
/02 L < }6"=30”
0 f_
z
f -
w7
772 L
| 1 1
7 w? w3 R

FIG. 12. Three regions of parameter values which are distinguished in the
magnetosphere of a pulsar. Maser amplification of curvature-plasma
modes occurs in region I. Only two transverse waves can propagate in
region III. The dashed line corresponds to the height ry, in (5.21); this is
the height at which unstable waves leave the amplification cone.
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p4/3
0, 1 —l—4nm; m
z

ps , Gi" ®)—AI" () \ —hnet P <Ai"<§)+iGi'(§)>]
) Ll pk_z R S—

13p2,
VY

0 . (5.13)
Gi' §)—iAl" (§)
< stz“ >J

radiation in a homogeneous medium, since curvature radi-
ation is due entirely to an inhomogeneity. Furthermore, the
entire plasma consists of resonant particles, and under the
condition £ =1 (and also at all negative values of &) the
imaginary part of the increment in the unit tensor 4 is
comparable in order of magnitude to the real part. This cir-
cumstance gives rise to new oscillation modes with a signifi-
cant growth rate which do not exist in a homogeneous plas-
ma.

5.3. Curvature-plasma modes. We turn now to normal
waves. We begin by noting that a wave polarized in such a
way that its electric vector is directed perpendicular to the
(x,z) plane does not interact with the plasma. It is simple to
see that this would be an ordinary vacuum wave with a re-
fractive index n=1. The properties of the other normal
modes, which are polarized in the plane of motion of the
particles, depend strongly on the parameter a:
SN . P

a:—-4n(\ :

5.15
) b 1)

Ifay |, (w/o,)**>a (region II; see Fig. 12), then two lon-
gitudinal waves and one transverse wave in the radio-fre-
quency range can propagate in the magnetospheric plasma,
as in the case of a uniform magnetic field. Under the condi-
tion a> 1, (w/w, ) ga (region I) in contrast, one of the
plasma waves splits in three. Two of the three turn out to be
unstable at angles 6 < 8, , where & is the angle between k
and B:

8, uy == 0,15, wu,==0.41. (5.16)

=y
y2 72 (kzp)ua ’

This splitting of modes is illustrated in Fig. 13 for the case
w:{y)/w’> 1. The imaginary parts of the refractive index,

FIG. 13. Dispersion curves for the five normal waves which exist in region
I. The unstable curvature-plasma modes correspond to drift oscillations
with n~1/cos 6.
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which give us the growth rates of the unstable curvature-
plasma modes, can be written as follows*® for sufficiently
small angles 6:

i (4 ke
mna { — — e
rn PRI

(5.17)

It can be seen from Fig. 13 that unstable curvature-plasma
waves correspond to drift oscillations for which we would
have n=~1/cos 6.

In region 111, where the condition @ €1 holds, only a
single transverse wave with n = 1, can propagate. The damp-
ing and excitation of this wave are of minor importance and
can in fact be ignored.

We wish to stress-that the growing solutions in (5.17)
correspond to a hydrodynamic instability. This is as it
should be, since the limit @ > 1 corresponds to a high particle
density, as can be seen from (5.14). Further indication that
the instability is of a hydrodynamic nature comes from the
circumstance that the imaginary parts in (5.17) depend on
the particle density in a power-law fashion: Im n « n}”® (we
are using w; «n,).

Now using (2.2) and (4.5), we conclude that in the case
of a dipole magnetic field B=B,(r/R) " the parameter a
depends only on the line of force f, the wave frequency v, and
the distance (r) from the center of the star:

a=>5,b- 106\’01%:{31)_1/3?3_030312}»3 (_rR_) e (%)2/3 (5.18)

[+ is expressed in gigahertz; {(1/9*) ~'/?is expressed in units

of ¥, = 300; we are using A; =4 /10" as in (3.9); and B is
expressed in units of 10'> G]. As aresult (Fig. 12), region I,
in which rapidly growing curvature-plasma waves propa-
gate, is in the inner magnetosphere, i.e., close to the star,
with /R ~10-100, while region III, in which only two
transverse waves propagate, is in the more remote outer
magnetosphere. The frequency corresponding to the nodal
point,

vk — 60?:133643;21 /"},5““p*“2 (_ffr)ﬁ/é MHyz, (5.19)
falls in the center of the observable radio-frequency range for
the typical parameter values (y, ~400-500, B~10"* G).
We wish to emphasize that v* is a very strong function of the
characteristic energy of the particles:

Ve = {(1/y*)-U3,
What is the total optical thickness traversed by unstable

curvature-plasma waves as they propagate in the inner mag-
netosphere? Using asymptotic expression (5.17), we find

11,2:2§51mndz

= 290, VY3 vl SP YRRl (%)“5, (5.20)
where s, , is a geometric factor of order unity.

Figure 14 shows the total thickness 7, as a function of
the frequency v. The paths of normal waves were calculated
in the geometrical optics approximation. Although the
group velocity of the waves is directed along the magnetic
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line of force, the wave vector k deviates systematically from
the direction of the magnetic field. As a result, at angles
6>0,, [see (5.16)] the waves no longer grow. That height
above the surface of the star at which the waves leave the
growth “cone” is determined by

= —1,,— 5 -1/3
= S0Rdvall B ()7

= (5.21)

The value r = r,; is shown by the dashed line in Fig. 12.

We see from Fig. 14 that the modulus of the optical
thickness is a few hundred. This value corresponds to an
amplification by a factor of e*" ~ 10'%*! This result of course
does not mean that such a huge amplification actually oc-
curs: Nonlinear processes will act to limit the radiation pow-
er long before this amplification is achieved.

In summary, a relativistic plasma moving along a
strong curvilinear magnetic field is unstable. The instability,
which leads to a growth of electromagnetic waves, is of a
hydrodynamic nature. It is related to a Cherenkov excitation
of curvature-plasma modes and has high growth rates. Un-
der the conditions prevailing in the magnetosphere of a pul-
sar, this instability leads to an intense excitation of oscilla-
tions of the field and of the plasma in the region of broken
lines of force. At a distance of (10~100)R from the neutron
star, these oscillations convert into ordinary radio waves,
with frequencies over the range 0.01-10 GHz. The radio
waves emerge from near the magnetic poles of the star and
are directional. The picture found here thus corresponds
completely to the generally accepted model for the radio
emission of a pulsar (Fig. 1).

6. COMPARISON OF THEORY AND OBSERVATIONAL DATA

6.1. Structure of the active region. Having determined
the potential drop in the region in which the particles are
accelerated and produced, we can now compare the theory
with observational data. Using the potential drop in the ac-
celeration region, givenin (4.18), we can find the parameter
[, which appears in compatibility relation (3.25), and we
can thereby determine the longitudinal current circulating
in the magnetosphere, /,. The longitudinal current /, speci-
fies the total energy loss of the neutron star, according to
(3.37). This loss can be detemined from observations.

It is natural to suggest that the longitudinal current i, is
constant over the entire plasma production region. Relation
(4.18) for magnetic fields B < 0.18_ then leads to the follow-
ing dependence of the dimensionless ratio ¥_./¥,, on the

17

g0

200

. ,
/A A % v, GHz

FIG. 14. Modulus of the optical thickness traversed by unstable curva-
ture-plasma waves as a function of the frequency v.
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quantity f= B, /2, which characterizes a given line of
force at the surface of the star and which is proportional to
the square of the distance (r, ) from the given line of force to
the magnetic axis:

7S = aoBif P cost/T y (1 — pig) (’ffT)—w'

v 6.1)

Herea, =1, and ¥, is the maximum possible potential drop
in the acceleration region [expression (2.5)]. The region of
magnetic lines of force f in which a steady-state solution
can exist is determined by the two conditions

Ve (%) = 0 (62)
~ <54 <o, (6.3)

which follow from (3.16) and (3.22). If the first of these
conditions does not hold, the current flowing from the sur-
face of the pulsar cannot return to the star. If the second
condition (¢/Q)dV¥./d f < — 1) does not hold, the plasma
in the region of broken lines of force will rotate in the direc-
tion opposite to the rotation of the star. This of course can
not be the case.

Figure 15 shows values of f satisfying conditions (6.2)
and (6.3). Consequently, the plasma on the broken lines of
force is produced continuously only in the annular region

h<<f<fa (64
where

) ()T 6
and
g0 =a,Bi TP costi7 y (1 — pig) ap = 1. (6.6)

The pattern of currents flowing in the magnetosphere
can thus be described as follows: At f < f},i.e,atr, <r
where

ne

(6.7)

;12_:2@135/651-24/9 cos~1/3 y; ag ~ 1.
and R, is the radius of the polar cap, givenin (2.4), there are
no currents, and no plasma is produced here. A hollow re-
gion thus forms inside the plasma-filled magnetosphere.
This fact reflects a particular feature of the plasma produc-
tion in our model (a “hollow cone”).**

FIG. 15. Region of continuous plasma production, f, < f < f,. The dashed
line corresponds to a slope (2/c)d¥./d f= — 1.
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Further on, at the boundary r, = r,,, as was shown in
Ref. 41, there is a jet of surface current,
BQ RS /f*

’
[ iq

I,=2 (6.8)
and then comes a region of constant production of an elec-
tron-positron plasma. The total current flowing in this re-
gion is determined by compatibility relation (3.25), where,
according to (6.1), we have

Bo=agBis’ P cost/? y (1— pig)t/7, (6.9)

ag o> 1.

The density of the current which is flowing out is here gener-
ally lower than that of the current near the inner boundary of
the hollow cone. Finally, the entire current returns to the
star along the separatrix f= f* (i.e.,, 7, = R,).

We wish to emphasize that the numerical proportional-
ity coefficients a, a;, ag, and agz are of order unity. Every-
where below we will set them equal to unity, since there
seems to be no point in calculating them more accurately. In
the first place, they depend on such quantities as the moment
ofinertia /. and the radius R of the star; the radius R appears
raised to the sixth power, as can be seen in, for example,
(3.37). The theories which have been derived for the inter-
nal structure of neutron stars lead to an uncertainty of at
least 100% in the coefficients, because of the uncertainty in
I, and R ® (Ref. 3). Second, as we have already mentioned,
relation (3.25) was derived under the assumption that the
following condition holds in the plasma production region:

Bo= % Efi =const.

As can be seen from Fig. 15, the accelerating potential in
(4.18) and (6.1) does not satisfy this condition. The result is
again to introduce a significant uncertainty.

To pursue the analysis we need to determine the basic
characteristics of the pulsars in terms of the observable
quantities P and dP /dt. It is convenient for this purpose to
introduce the dimensionless parameter

Q=2p"/Opzite, (6.10)

where P_,; = 10'°dP /dr is the rate at which the pulsar is
slowing down. Now using Eq. (3.35) to determine the mag-
netic field B, in terms of the observable quantities P and dP /
dt and the nonobservable quantity cos y, and also using the
asymptotic form of compatibility relation (3.25),

=t (0) ()" ¢
which holds at i, €in (¥), By €8 (¥), we find
Bo
Wr\« 2, (6.12)
Tin
= Q7 (6.13)

The dependence on the angle y in (6.12) and (6.13) is unim-
portant.*' The magnetic field,

By~ P~V P costy, Q< 1,

on the other hand, depends strongly on y.
We see that for pulsars with Q < 1 the inner radius of the

(6.14)
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FIG. 16. Distributions in the period P for “‘young” pulsars (Q < 1; solid
line) and “‘old” pulsars (Q> 1; dashed line).

outflowing plasma, r;,, is smaller than R, and the relation
Bo<Bwm(y) holds. Consequently, the outflowing current
covers essentially the entire surface of the polar cap for pul-
sars with Q < 1, so that for such pulsars we can indeed use
compatibility relation (3.25) or, more precisely, its asymp-
totic form in (6.11). For pulsars with @ > 1 we set r,, =R,
and By~fm (y). This approach results in the following
expression for the magnetic field of pulsars with Q > I:

By, &~ PV cos! 7, Q> 1. (6.15)

Figure 16 shows the period distribution of 300 pulsars
for which the slowing rate dP /dt is presently known.”**
The solid line represents 152 pulsars with Q < 1, while the
dashed line represents 148 with Q > 1. We see that most of
the pulsars with @ > 1 have periods p > 0.7 s, while the per-
iods of pulsars with Q < 1 are shorter than 0.8 s for the most
part.

In the literature, the question of a significant difference
between the properties of pulsars with long and short periods
has been raised repeatedly on the basis of analyses of obser-
vational data.”® We will now show that the observed differ-
ence in the properties of radiopulsars is related to the param-
eter Q and can be explained on the basis of the theory which
has been derived.

6.2. Plasma production. In the first place, the quantity Q
characterizes the rate at which the electron-positron plasma
is produced near the magnetic poles of the neutron star. As
can be seen from (6.13), the production of plasma in the case
of pulsars with Q > 1 should be suppressed, for plasma pro-
duction in such pulsars occurs only in a thin ring with
Fin =R,

Figure 17 shows the distribution of pulsars in the plane
defined by the period and the magnetic field, whose values
were found from (6.14) and (6.15) withcos y = 0.5. Wesee
that all the pulsars whose radio emission reveals various irre-
gularities (a ‘“‘turning off,”” a “‘switching,” and a drift of sub-
pulses) do in fact lie in the region Q > 1. All the pulsars with
Q < 1, on the other hand, are characterized by stable radio
emission.*'

Furthermore, as is easily verified, condition (4.19),
which determines the possibility of steady-state plasma pro-
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iB, 1012G
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celple >

FIG. 17. Pulsar extinction boundary ona ( P,B,,) diagram. The region to
the left of the boundary is the region of steady-state plasma production.
Filled points—pulsars with @ < 1; crosses—pulsars with ¢ 1; open cir-
cles—extinguishing pulsars, i.e., those which have an irregular emis-

2

sion*?; dashed line—the boundary 5y = 1/3, to the right of which the
energy lost by the primary beam is small,

duction (i.e., whether a radiopulsar can exist) can be written
as Q < Q,, where

Q, = 2.5bV7. (6.16)

From Fig. 17 we see that this condition corresponds well to
observational data.?'

It follows from a comparison of (6.16) with the ob-
served boundary of the distribution of pulsars, shown in Fig.
17, that we have b(K') =0.2-0.4, so that the average coeffi-
cient of ejection of particles from the surface is K * ~ 10—
100.

Another observational test, which permits a direct con-
clusion about processes which occur near the magnetic poles
of the neutron star, is the observation of *“‘relict” y radiation,
i.e., curvature-radiation photons produced in the course of
the plasma production. Figure 18 shows the result of a calcu-
lation carried out for the pulsar PSR 0833-45 through a solu-

ALS
. cm2.s
4
70-4_
/e
w oL "3
/s
7”—5 {
5 s S00 S009
£,, Mev

FIG. 18. Spectrum of the “relict” ¥ radiation, which arises in the course of
the production of the e e ~ plasma. The points are results of observations
of the y emission from the pulsar PSR 0833-45 (Ref. 36).
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tion of equations (4.1)-(4.3) for arotating dipole magnetic
field. There is a fair agreement between the calculated results
and the observational results obtained on the COS B and
SAS-2 satellites for energies®® £, S 1 GeV. At high energies
the spectrum of the relict y radiation falls off because of the
strong single-photon absorption of » quanta in a magnetic
field.”"

6.3. Evolution’ weakly emitting pulsars. The evolution
of single pulsars is determined completely by Egs. (3.35)
and (3.36), which determine the rate of change of the period
P and the axis inclination angle y. Using asymptotic expres-

sion (6.11), we find, for pulsars with Q < 1,

P_is~ BT ptE gosnd g (6.17)

v~ Biy!" costamiy ptith sin v
0

(6.18)

?

where y,, and P, are the initial values of the inclination angle
y and of the period P, and d~0.7-0.8 is a slowly varying
function of the angle y (Ref. 41). As we have already men-
tioned, the angle y increases with time.

Equations (6.17) and (6.18) can be used (ﬁrst.) to de-
termine the so-called braking parameter n, =QQ/Q%

ny == 2--2d tgy, By, < 4.4 (6.19)

PR

Knowing n,,, we can also determine the axis inclination an-
gle y. For the pulsar PSR 1509-58, for example (thisis one of
the two pulsars for which the braking parameter has been
reliably determined’”), we have n,, = 2.83 + 0.03 and thus™

Yisoo — (02 4 2)°. (6.20)
The value of (6.20) is precisely the same as the value found
for the angle y from an analysis of the x-ray emission profile
of this pulsar.™

Furthermore, analysis of Egs. (6.17) and (6.18) shows
that pulsars for which the parameter Q was less than unity at
the time of their formation go into the region Q> 1 [or,
equivalently, B, =/f3y (y)] after a time r=~¢,, where
Py

sin ¥,

(6.21)

ty=3 B2 million years.
As we have seen, in this region the cascade production of
particles is suppressed to a large extent, so that pulsars with
Q> 1l arein a stage of fading. The time ¢, in (6.21) is there-
fore a characteristic lifetime of a pulsar. For magnetic fields
B,~ 10" G, this time would be a few million years. The
rotation period at which the pulsar reaches the value Q0 = 1,
on the other hand, is

PCT :B Téls S'

(6.22)

If a pulsar is formed with a sufficiently short period £,
it will go into the angular region y = 90° before it reaches the
extinction boundary 8, =~/ \; (v). If the period of the pulsar
is not too long,

P503B1 s, (6.23)

its parameter Q will remain less than unity, so that the pro-
duction of secondary particles will continue to occur.
The primary distinctive feature of such pulsars is that
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their slowing is determined by an asymmetric current, i.e.,
by a current which flows away from the star in one part of the
polar cap and returns to the star in another part.***' Such a
current configuration would be possible only if the angle y

satisfied the condition
Q_R) e (6.24)
c

< tx
The retarding moment due to the asymmetric current is
smaller by a factor of at least (2R /c) than the retarding
moment described by (3.34) with y =0°. For this reason, the
intensity of the radio emission of such pulsars should also be
modest.

In summary, pulsars with angles y =~90° should have
the following features®':

a) afast ( P <0.1-0.4 s) or ultrafast ( P < 0.01s) rota-
tion; ,

b) a slight slowing (P~10"1 — 1072,

¢) a weak radio emission (E, ~107-10 erg/s for
fast pulsars or E,,4 ~ 107'-10°® erg/s for ultrafast pulsars);

d) an “interpulse” (y =90°);

e) a reduced magnetic field B,,

We see that at the present sensitivity level of receivers’”
it would be possible to detect only ultrafast, “‘weakly emit-
ting” pulsars. We do not rule out the possibility that this
group would include the recently discovered millisecond
pulsars’®"® with periods of 1.56, 5.4, and 6.1 ms, which have
extremely small slowing rates, P~10~"*-107'°, An inter-
pulse has been observed for two of these pulsars. It must be
recalled, of course, that according to the present theory of
the evolution of fast-period pulsars’™ all these pulsars should
go through a stage of a binary system, in which the dynamics
of their slowing may, generally speaking, differ from that of
the slowing of an isolated neutron star. Indeed, two of the
three millisecond pulsars are members of binary systems.

With regard to the weakly emitting pulsars with a peri-
od P~0.1-0.4 s, we note that they could be observed only if
the sensitivity of receivers were increased by one or two or-
ders of magnitude beyond that of existing apparatus.

6.4. Statistics of pulsars. For a statistical analysis of pul-
sars it is convenient to examine their distribution with re-
spect to the magnetic field B, the period P, the axis inclina-
tion angle y, and the time #: N( P,y,B,t). The change in the
distribution function is described in this case by the kinetic
equation

aN a a

Gt (N e (V) =U-v 625

here dP /dt and dy/d¢ are determined in accordance with
(3.35) and (3.36), i.e., are known functions of B, P, and y.
The source U on the right side of (6.25) describes the forma-
tion of pulsars, while ¥ describes their disappearance (extin-
guishing).

The time scale of the changes in the source U, which is
determined by the average lifetime of the stars, is much long-
er than the pulsar lifetime in (6.21). The distribution func-
tion of the pulsars can therefore be assumed quasisteady—
independent of the time. For simplicity we will assume here
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that the source U depends on P and B independently and is
equiprobable in the initial angle y:

U=20,p)Us(B) (6.26)

The sink function ¥ should be zero everywhere except in the
pulsar fading region, i.e., in the region of parameter values
corresponding to the condition @ > 1. Itis thus convenient to
consider only pulsars with Q < 1, for which we canset ¥ = 0.
In this case the “sink” is the region of parameter values cor-
responding to the condition B, = By (y).

Now substituting asymptotic expressions (6.17) and
(6.18)—which hold specifically for pulsars with Q< 1—
into kinetic equation (6.25), and using the integral of mo-
tion in (3.36), we finally find the steady-state distribution
function

2 Ug (B)

NP w0 B =3 B0 covi ¢

xf PUp(p)dP (6.27)

[1—(sinZ P2/ PH/2 0, (Bm —Bo)-
(o]

The step function ®,[ By — B( P.y,B)] selects pulsars
with Q < 1.

We wish to stress that distribution function (6.27) is
not the expected distribution function of the observable pul-
sars. Radio emission can be detected only if the flux density
in the pulse, I,, exceeds a certain value I "’ ( P,DM,...),
which characterizes the given radiation receiver (DM is a
dispersion measure of the pulsar). In particular, it would be
impossible to observe a pulsar if the earth did not lie in its
directional pattern. The distribution function of the observ-
able pulsars, N,( P,y,B) is therefore related to the steady-
state function in (6.27) by a relation of the form

Ny, = NA, (6.28)

where 4(1¥,DM,...) is an observability coefficient. For
simplicity we will use the simple function®

. WP
A =gnsin X3gT

(6.29)
[W? (degrees) is the width of the window of observable
radiation], which reflects only the geometric properties of
the directional pattern. More-accurate expressions for 4, in-
corporating the particular features of various receivers, are
given by Lyne e al."*

A systematic comparison of the observational data with
the theory thus requires knowledge of both the pulsar distri-
bution function N( P,y,B) and the observability coefficient
A. Knowing the functions N( P,y,B) and A4, on the other
hand, we can determine the statistical characteristics of pul-
sars as averages over the distribution function N,( P,y,B).
In particular, this approach makes it possible to reconstruct
the source functions Uy ( P) and U (B).

Analysis of Egs. (6.27) and (6.29) shows that the ob-
served pulsar distribution agrees quite well with the assump-
tion that the source functionsatisfies U, ( P) = U,, = const,
i.e., that the initial periods of the pulsars are equiprobable
(this assumption agrees with the results of Refs. 80 and 81).
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Only in this case does the distribution function N,( P) fall
off at small values of P, as the observed pulsar distribution
(Fig. 16) does. It has now been established®” that this defi-
ciency of pulsars at P < 0.3 s reflects an actual decrease in the
number of pulsars with small periods and is not a conse-
quence of observational selection.

The source function U/}, (B), on the other hand, turns
out to be relatively insensitive to changes in the other param-
eters. The function

Ty+p+1) 1 ( n )v ( { o B y-ioieh

Us(B) = —=— B Be \ B, By /
T(y=1H TP 0 0 0 (630)

provides a rather good interpolation of the source function
Uy (B); the parameters 7, B and B, will be determined be-
low.

Now using relations (6.27)—-(6.30) and the fact that the
window width W? for pulsars with Q < 1 can be written as
W = W,P%, where (Ref. 70, for example)

v=—0.2 =+ 0.1, (6.31)

we finally find the following expression for the distribution
function in (6.28):

No(Py 3, By=hyNP™ o ()7
B \-1-7=3
X(i <+ W\) Faq () Oy (Bar — P

(6.32)

where Fy (y) =2 (1 — cos y) cos' **y/sin y, N is the total
number of pulsars, and &, is a normalization factor of order
unity.

We will now use three examples to show how distribu-
tion function (6.32) can be used to compare the theoretical
predictions with observational data. We first need to say a
few words about the evolution of the magnetic field. The
model developed above is based on the assumption that the
magnetic field of each pulsar remains constant over the life-
time of the pulsar. To verify this assumption, we separately
analyzed the distributions in the magnetic field for “old™
(@>1) and “young” (Q< 1) pulsars. For pulsars with
@ < 1 we find, integrating distribution function (6.32) over
Pand y,

-1

-v-R 0<1.

(6.33)
For pulsars with Q> 1, on the other hand. projecting distri-
bution function (6.32) onto the boundary B, = 8 (1) (ac-
cording to our assumption. all pulsars with ¢ > I are at this
boundary). we find

B\ (B/19m+ 1) -(10/D+7 By ~1-%-B
NO(B)OC(—B—O-) (““W) O>1

( )(\\ 130D 4+2)-(10/7)+7 (

. B ; B
No(B) X (5 1+ )

(6.34)

Figure 19 compares distribution functions (6.33) and
(6.34) with the observed distribution of pulsars in the mag-
netic field B, determined from (6.14) and (6.15). We see
that for both old and young pulsars there is good agreement
between theory and observation. confirming our assumption
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FIG. 19. Distribution of pulsars with respect to the magnetic
field B,,. Solid lines—theoretical distributions (6.33) and
(6.34); points—observations.

5 B102G 2 4

that the magnetic field remains constant. The best parameter
values in the function U, (B) are

v=2 P =0758,=10"G (6.35)

The apparent reason for the constancy of the magnetic field
is the relatively short duration of the active life of a pulsar,
given by (6.21), over which the magnetic field does not have
time to change substantially. We wish to stress that an analy-
sis of the evolution of pulsars on the basis of the equations for
magnetic dipole radiation (3.38), led to the opposite conclu-
sion." ™ In addition, we can determine the number of ““in-
terpulse™ pulsars, i.e., pulsars for which the condition | (7/
2) — vy < W, holds, so that radio emission can be detected
from both magnetic poles. The observed dependence of the
relative number of interpulse pulsars, V... /¥, on the period
P is shown in Fig. 20 along with the expected distribution
found with the help of distribution function (6.32). The the-
ory thus not only correctly determines the total number of
pulsars with iuterpulses but also successfully explains the
dependence of their relative number, ¥, /N, on the peri-
Od.4]

We recall that the absence of pulsars with an interpulse
at large periods, P> 1 s, is a consequence of the fact that such
pulsars reach the extinction boundary 5, =By (y) at an-
gles y considerably smaller than 90°. In contrast, at small
values of P, most of the observable pulsars should have an
interpulse. As can be seen from (6.21), neutron stars with
rotation periods P < 1 s move quite quickly into the angular
region v =90°, where they effectively accumulate.

Finally, Fig. 21 shows the observed distribution of pul-
sars with Q <1 with respect to the value of W=1, 00,
which 1s the total power lost by the neutron star. We see that
over the broad loss range W~ 10*'-10*" erg/s this distribu-
tion is described by a power law™* N(W)aW 7, where

FIG. 20. Relative number of pulsars having an interpulse as a function of
the period P.
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Vobs — 1.58 = 0.03. (6.36)

Distribution function (6.32), which follows from the the-
ory, also leads to a power-law functional dependence
N,(W). The exponent ¥,,.,, =1.68 = 0.34v is determined
exclusively by the rather well-known quantity v, given in
(6.31), and is independent of the nature of the source func-
tion Up (B),in (6.30) and (6.35). For the values of v which
follow from (6.31) we find

Vineor = 1.680 £ 0.03, (6.37)
which, we see, is again in agreement with observational data.

6.5. Radio emission. We conclude by comparing the ba-
sic properties of the observed radio emission with the theo-
retical conclusions.

As was shown in §5, the characteristic frequencies for
which the amplification of unstable curvature-plasma waves
is most effective are the same as the frequencies of the ob-
served radio emission (Fig. 14). Furthermore, since the am-
plification of such modes is limited by nonlinear processes,
as has been shown, the intensity of the radio emission should
be a certain fraction of the total energy of the plasma which
flows in the inner regions of the magnetosphere of the pulsar.
Accordingly, the conversion coefficient &, which is the ratio
of the radio luminosity E,,, to the energy W, which is ex-
pended on plasma production, given in (3.37), must on the
average remain constant for all pulsars.

Figure 22 shows the distributions of pulsars with Q < 1
(solid line) and with @ > 1 (dashed line) as functions of the

(W>4p]
N AW

RETTLGT)

J :
07w T w7 W, ergls

FIG. 21. Integrated distribution of pulsars with Q < 1 with respect to the
quantity W =1 Q), i.e., the total power lost by the neutron star.
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FIG. 22. Distributions with respect to the conversion coefficient a for
pulsars with Q < 1 (solid line) and for those with Q > 1 (dashed line).

conversion coefficient a. The value of @ was found directly
from observations, since we have, according to (3.37),

Erad — Evag W Erad E’M(X)_ .

A (6.38)
Wp W Wy 1,96 Bo

aA =

here W = 1. Q2 is the total power loss of the neutron star,
given by (3.37), and the ratio 3,/ y (x) is related to Q by
virtue of (6.12). [For Q> 1, we have B,=f,, (), as we
have already mentioned. ]

These distributions are seen to be essentially the same.
Consequently, the conversion coefficient « is indeed a uni-
versal characteristic, which does not depend (in particular)
on the period P. This constancy of a indicates the existence
of a common mechanism for the radio emission of all pul-
sars. The average value of the conversion coefficient a is

(6.39)

a~ 1074,

With regard to the ratio E,,, /I, €}, we note that for fast-
period pulsars it should be one or two orders of magnitude
smaller than that for pulsars with P~ 1s, as can be seen from
(6.38) (Refs. 70 and 86). The reason is that for pulsars with
P < 1s, for most of which therelations Q< 1 and 5,< 8, (y)
hold, the particles inside the light cylinder carry only a small
fraction of the total loss of rotational energy of the star.
The theory also yields the basic geometric properties of
the observed radio emission. For example, if we assume that
the conversion of unstable curvature-plasma modes into
transverse electromagnetic waves occurs at a height of the
order of ry,, determined by (5.21), we find the following
expression for the width of the directional pattern of the
radio emission:
[\ 1/3
)

vV(l!:220}”13/(3?3_01(\/21)_UZV(}I—I{:G(’T (640)

As we will see, the quantity W ° is the same as the character-

istic width of the mean profiles of pulsars (Fig. 2).
Furthermore, relation (6.40) yields an explanation of

the observed dependence of the width of the mean profiles,
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W?°, on the frequency v and the period P of the pulsar: Ac-
cording to (6.40), the value of W for each pulsar should
depend on the frequency v in a power-law fashion, with
W« v~ % This behavior is in fact observed, both on the
average over the range from 400 MHz to 4 GHz [in which
we have W0 oy~ (@131095) according to Ref. 87] and for
many individual pulsars over a significantly broader fre-
quency range."® The dependence of the window width W
on the period P is determined not only by the power-law
factor P ~ '/ but also by the way in which the value of the line
of forcef,,,,, which determines the angular size of the direc-
tional pattern of the radio emission, depends on the period.
For pulsars with ¢ > 1, for example, for which we have
Sraw = f* wefind W)« P~ "% From the results of Ref. 70
wehave WPy (04099 lip complete agreement with the
theoretical prediction. For pulsars with Q < I, on the other
hand, the width of the directional pattern should be deter-
mined by the inner radius of the hollow cone, given in (6.5),
where there is an intense jet of a surface current 7, given in
(6.8) (Ref. 41). Consequently, the P dependence of W ! be-
comes slightly different [see (6.31)].

Furthermore, if the maximum of the radio emission
does in fact lie near , = r,,, then all the pulsars for which
the line of sight intersects the directional pattern far from the
inner radius of the hollow cone should have a simple single
profile. For only those pulsars for which the relation r
< r,, holds should the observed profile be binary. Some ex-
amples of mean profiles of this sort are shown in Fig. 2.

Clearly, for a given inner radius of the hollow cone, r,,,,
the ratio of the number of pulsars with simple and binary
profiles should be

Ni __fo—rin Moy

(6.41)

b
Ny in in

and according to (6.13) it can be expressed directly in terms
of the observable quantity Q. From Fig. 23 we see that here
again there is good agreement between theory and observa-
tions.*'

Finally, the theory also explains the basic polarization
properties of the radio emission. As was shown in §4, in the
inner part of the magnetosphere (region IIl in Fig. 12) only
two transverse, linearly polarized waves can propagate; only
one of them can effectively interact with unstable curvature-
plasma modes. Therefore, the radio emission from pulsars

Y
My
0+

vl

w0’ Fin /Ry 7

FIG. 23. Relative number of pulsars with single and binary mean profiles,
N,/N,,asafunction of the parameter r, /R,,. The curve shows the expect-
ed dependence, given by (6.41).
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should have a significant linear polarization, with a position
angle determined by the projection of the magnetic field onto
the visual plane. As we know, this model also gives a good
explanation of the observed behavior of the position angle,
shown in Fig. 3 (Refs. 25 and 89).

7. CONCLUSION

In summary, the theory given above makes substantial
progress toward an understanding of the basic physical pro-
cesses which occur in the magnetosphere of a neutron star.
This theory has been used to determine the basic properties
of the dynamics and evolution of pulsars and to determine
the nature of their activity, in particular, to find a coherent
mechanism for the observed emission. The basic theoretical
predictions agree with observational data, as has been
shown.

There are of course many other questions which require
detailed theoretical study, e.g., the effect of nonlinear pro-
cesses on the characteristics of the radio emission, the origin
of the subpulse and microstructural details, the correlation
properties of the former, and the origin of the ultrahigh-
energy y rays. On the whole, however, the physical picture of
the basic processes which occur in the magnetosphere of a
pulsar seems to be clear.
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