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A review is given of the studies of the dimensionality characteristics of percolation clusters.
The purely geometric nature of a percolation phase transition and the great variety of the
quantities exhibiting critical behavior make this geometric approach both informative and
useful. In addition to the fractal dimensionality of a cluster and its subsets (such as the
backbone, hull, and other dimensionalities), it is necessary to introduce additional
characteristics. For example, the maximum velocity of propagation of excitations is
determined by the chemical dimensionality of a cluster, and the critical behavior of the
conductivity, diffusion coefficient, etc., is determined by spectral (or other related to it)
dimensionalities. Scaling relationships between different dimensionalities, as well as
relationships between dimensionalities and conventional critical exponents are discussed.
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1. INTRODUCTION

The concept of dimensionality (or dimensions) has re-
cently become popular in theoretical physics. This concept is
understood to mean the Hausdorff dimensionality (or its
analogs, such as the Kolmogorov and other capacities or
dimensionalities, and also information capacity or dimen-
sionality ), which may assume fractional values and is a char-
acteristic of the self-similar properties of objects. In addition
to the "intrinsic" dimensionalities, other properties of self-
similar objects are described by quantities which are in many
respects analogous to dimensionalities. Some of these quan-
tities can be regarded as the dimensionalities of special sets
and some have a more complicated meaning. Introduction of
such quantities has been found to be useful in studies of the

properties of a great variety of physical objects and pro-
cesses.

The concept of dimensionality (or dimensions), inves-
tigated actively by mathematicians from the beginning of the
present century, has been brought to the attention of physi-
cists thanks toa monograph of Mandelbrot' which appeared
in 1975 in French and then in 1977 in English. This book
consists mainly of illustrations and examples, but it is pro-
vided also with a rigorous mathematical appendix, and dem-
onstrates the usefulness of the concept of dimensionality in
the description of the properties of the very great variety of
self-similar objects and structures in hydrodynamics, statis-
tical physics, astrophysics, and other fields. This monograph
can be regarded as an excellent example of scientific adver-
tising or popularization, in this case naturally of new con-
cepts and models.
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To the best knowledge of the present author, the first
paper treating the dimensionalities of percolation clusters
was that of Stanley,2 which appeared in 1977, and a review
by Stauffer3 which appeared in 1979 has a section dealing
with this topic. In recent years the number of communica-
tions dealing with these dimensionalities has reached several
hundred.

It has gradually become clear that there are two groups
of physical problems in which the concept of dimensionality
can be and is useful. On the one hand, these are the problems
of dynamic stochasticity, turbulence, and generally chaotic
behavior, and on the other, a series of problems in statistical
physics.

In the first case the concept of dimensionality makes it
possible, for example, to provide a more or less satisfactory
classification of strange attractors and the associated chaotic
behavior. In this case the dimensionalities are not indepen-
dent characteristics: they are related to the Lyapunov expo-
nents, asymptotic behavior of the spectra, etc. It is important
to note that these dimensionalities represent "coarse-
grained" and measurable characteristics of the system.
These problems are discussed in the review of Farmer, Ott,
and Yorke,4 and we shall not deal with them any further.

Our review is concerned with the second group of prob-
lems, or more exactly with one such problem which is the
percolation theory. We shall use this problem as an example
to show how the dimensionalities and other geometric expo-
nents are introduced, what are the scaling relationships
between them, and how they are related to other more usual
critical exponents. For each critical exponent (apart from v
describing the divergence of the correlation length) we can
identify a set with the dimensionality to which this exponent
is related. Studies of the structure of these sets helps greatly
in the understanding of the critical behavior of a system and
of the relationships between the exponents. We shall also
consider the general relationship between the intermediate
asymptotic behavior of a system and its fractal geometry.
Since we shall confine ourselves to just the one problem of
percolation, we shall be able to discuss all these topics in
detail. The exponents introduced by us will be largely uni-
versal and useful in studies of other systems. These systems
include in particular linear and branched polymers and ep-
oxy resins,5"7 protein structures,8'9 porous materials and
substances with highly developed surfaces, '"~12 and aggre-
gates formed in the course of diffusion-limited reactions
(dendrites). An extensive literature is available on the last
topic (see, for example, Refs. 13-27).

The "fractal boom" in percolation theory, which
reached its peak in 1983-84, is now subsiding somewhat.
The main concepts have been formulated and have become
familiar, the results which could be obtained by rewriting the
familiar relationships in terms of new notation have been
already obtained. We can now draw some conclusions. How-
ever, we shall show below that many topics are still unre-
solved or even untouched, whereas the solution of others will
require much computational or analytic work. The continu-
ing interest in the topic should ensure that the gaps will be
filled in the near future.

2. PERCOLATION THEORY. DEFINITIONS AND CRITICAL
BEHAVIOR

From the moment of appearance in 1957 of the first
paper of Broadbent and Hammersley,2" interest in percola-
tion theory has been maintained for over 30 years now.
There are several reasons for this interest. We shall mention
just two of them.

1. This theory decribes satisfactorily many systems ex-
hibiting a purely geometric phase transition, such as the con-
ductor-insulator transition in mixtures of conducting and
insulating particles,29 fracture of rocks after formation of a
sufficient number of cracks,30 etc. The theory is used to de-
scribe the elasticity of polymer gels,3' hopping conduction in
doped semiconductors,32 Anderson localization in disor-
dered systems,33'34 and in many othef applications. An ex-
tensive literature is available on the formulation and applica-
tions of percolation problems: in the Russian language we
have the review of Shklovskii and Efros,32 Chap. 5 in the
monograph of Ref. 35 by the same authors, and a popular
treatment by Efros,36 whereas in English there are two com-
plementary reviews of Stauffer3 and Essam.37 In the years
since the writing of the last of these reviews many new prob-
lems have been treated using percolation models. Modifica-
tions of these models are numerous and it is not possible to
enumerate them all.

2. The percolation theory models are simple and infor-
mative. By simplicity we mean here both the simplicity of the
initial formulation of the problem and the ability to go far
toward its solution. Simple models soon become standard
and analysis of these models then attracts theoretical physi-
cists for years. The standard models are useful because they
represent a testing ground for various methods. The unifor-
mity of the initial problems makes it possible to compare and
integrate the results of various methods.

In addition to these two aspects of simplicity, which
make the approach so attractive, there is one other facet.
Many percolation theory models (or at least the lattice mod-
els) are readily accessible to numerical simulation or model-
ing on computers. The simplicity of the initial formulation
and the high effectiveness of the algorithms (particularly
those involving sorting and search, and also solutions of sys-
tems of linear equations), make it possible to investigate
these models by the Monte Carlo, finite scaling, and other
methods. The existence of extensive and extremely precise
"experimental" data on many models and the ability to for-
mulate practically any thought (gedanken) experiment
makes these problems even more attractive.

This discussion should be sufficient to demonstrate that
the percolation theory problems are extremely interesting
topics for research. This review will be focused on the geo-
metric nature of phase transitions and on a great variety of
quantities exhibiting critical behavior, all of which make the
approach informative and useful. This great variety of the
quantities makes our concepts and relationships important
means for the solution of other problems, particularly those
mentioned in the introduction.
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2.1. Principal definitions and models

In the present section we shall briefly recall the formu-
lation of the main percolation theory problems and discuss
the most important features of critical behavior of the mod-
els. This information will be needed later.

The simplest lattice problems in the percolation theory
can be formulated as follows. Let us consider a lattice re-
garded usually as a set of sites and bonds. A given site can be
labeled (for example, it can be of black color) with a proba-
bility x. A set of black sites connected to one another will be
called a black cluster. If x = 0, the system has no black clus-
ters, whereas for x -4 1 the black clusters represent mainly
sets with small numbers of sites (single sites, pairs, triplets,
etc.). On the other hand, if x = 1, then all the sites are black:
for 1 — x< 1 there is an infinite black cluster in the system.
There should be a critical concentration xc at which a transi-
tion takes place from one regime to the other, i.e., when an
infinite cluster first appears. A similar formulation can be
used to tackle the problem of bonds, in which we regard as
bond as labeled with a probability x and define a cluster as a
set of sites linked by labeled bonds. Sometimes in the case of
problems of electrical conductivity and random walk we
shall regard a labeled site as empty, and a labeled bond as
whole (unbroken).

The formation of an infinite cluster represents a phase
transition and the order parameter of this transition is the
power of an infinite cluster, defined as the probability that a
site belongs to such a cluster. The critical behavior of this
quantity in the limit ;c —xc for;c>;tc is described by

P., <*, (x - xc)fi. (2.0

The behavior of Px (x) is demonstrated for different lattices
in Fig. 1. We shall use T = (x — xc )/xc to denote later the
"dimensionless" deviation of the concentration from its
critical value. A detailed discussion of the critical behavior
of percolation models can be found in Refs. 3 and 35 and we
shall simply quote here that information which will be abso-
lutely essential in the subsequent treatment.

The average number of sites in a finite cluster (which is
an analog of susceptibility) behaves as follows in the limit
7--.0:

Introducing an analog of the specific heat c, we obtain

c oc J T. :-*, (2.3)

where c = —— ,, = 0,F(p,h)=\nte ''' (s is the number
dr~ s

of sites, «j is the fraction of clusters with this number of sites,
and h is the "external field" which has a very specific mean-
ing in percolation theory"*).

The characteristic spatial scale of the system is the cor-
relation length g, the rigorous meaning of which we shall
establish later. At this stage we can assume that g is the
characteristic size of a black cluster when x<xe and the
characteristic size of the voids in the cluster when x>xt .
The critical behavior of this quantity is described by

FIG. 1. Dependences of the power of an infinite cluster ( 1 ) and of the
conductivity of a percolation net (2) on the concentration.4" The bond
problem: a) square lattice: b) simple cubic lattice.

c oc (2.4)

When the h ^Ocaseisconsidered, wecanintroducea further
exponent 6:

/^ ,T = 0. h) = ,V/6. (2.5)

All the critical exponents introduced above (which we shall
call thermodynamic) are linked by the usual scaling rela-
tionships M"c':

a = 2 - d v = 2 — 2 -

(2.6)

This system of relationships corresponds to the two-expo-
nent scaling: the values of all the exponents given above can
be found if we know the values of two of them. We shall
assume that we know the exponents r and /?. Some of the
above relationships are valid for any dimensions of space d
and the others (those which contain d) are valid in the di-
mensions of space less than the critical value*/<6. The latter
are frequently called the hyperscaling relationships. In the
classical range d^ 6 the values for all the exponents are given
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TABLE I. Principal critical exponents in
percolation theory.

d

V

P
t

*
4/3
5/36

1.29

3

0.88

0,40

1.7

4

0.7
0.5
2.4

5

0.6
0.7
2.7

i;

•1/2

1

3

by the system (2.6) for d = 6,13 = 1, and v = 1/2, and are
independent of d. The values of the exponents/?, v, and ? (the
last one will be introduced later) are given in Table I, which
is taken basically from the review of Stauffer.3 For d = 1 the
exponents v and /3 are rational numbers: they can be ob-
tained in the model which is exactly soluble41'42 (see also
Chap. 12 of Baxter's monograph43); the values for c?>6 are
given by the mean-field approximation or by the exactly so-
luble model based on a Bethe lattice.

We shall need another critical exponent. If r/0, then

ns (T) = / (g) exp (_ As \ T |A) (2.7)

where f ( s ) is a certain function which arises no more rapidly
than proportionally to a quantity with a power exponent s,
In this case the exponent A determines the characteristic
largest size of a finite cluster. Clusters with sc a: \T\ ~ A are
known as critical; the probability of the occurrence of larger
clusters decreases exponentially. It should be noted that the
characteristic spatial scale of a critical cluster is equal to the
correlation length, but in the sense defined above. The expo-
nent A obeys the hyperscaling relationship35

A = dv - (3. (2.8)

It should be noted that the notation used for the critical
exponents in the present review is standard, with the excep-
tion of A.

We shall terminate here the review of thermodynamic
critical exponents. All of them are fully analogous to the
exponents introduced in the theory of other phase transi-
tions. However, it should be pointed out that because the
external field in percolation theory can be introduced only
formally, the meaning of some of these critical exponents is
not quite clear.

An important feature of percolation theory is the exis-
tence of nontrivial critical exponents which are meaningless
in the conventional models of thermodynamic phase transi-
tions. One of the applications of percolation theory is the
problem of electrical conductivity of random nets (conduc-
tivity of mixtures of conducting and insulating particles). In
the simplest case such a system can be modeled in the bond
problem: each whole bond has the resistance r=\, whereas
each broken bond has the resistance r = oo. The resistance of
a large part of such a net located between two perfectly con-
ducting plates behaves as follows:

°°' T<°' ( 2 9 )
,/?0T-< T>0. ( }

The resistance of a random net composed of normal and

superconducting conductors in concentrations x and
( 1 — x), respectively, obeys c%(x— xcY (Refs. 44-46)
where in the two-dimensional case we have 5" = t (Ref. 44).
The values of t are listed in Table I. Similar relationships
determine the behavior of the elastic constants of a random
net (broken bonds are assumed to have no elastic moduli).
The behavior of the elasticity of such a net depends strongly
on the symmetry properties of the elastic forces acting
between the atoms (see Ref. 47). In particular, within the
framework of the Born model, we find that the cases of iso-
tropic and central interactions differ greatly. In the former
case, the critical behavior is the same as that of the electrical
conductivity, whereas in the latter case we have

0 , T'<0,
Evi'T, T '>0,

(2.10)

where T ^=t; this problem will be discussed in detail later (see
Sec. 6.1). If d = 2, then T = 2.4 ± 0.4, whereas for d = 3, we
have T = 4.4 + 0.6. The problem of the elasticity of a ran-
dom network is considered in Ref. 48 and it is assumed that
bonds can bend and have an appropriate elastic modulus.
There is a suspicion that the index TL encountered in this
problem differs from T and /.

It should be pointed out that the model considered in
Ref. 49 and characterized by the purely central interaction
with just the nearest neighbors is oversimplified. According
to this model, the square and simple cubic lattices have, for
example, no shear elasticity. Therefore, the triangular and
fee cubic lattices are considered in Ref. 49. In this case the
critical concentration x f , at which an infinite cluster as-
sumes elastic properties, differs from the percolation con-
centration: XL. >xc, so that in Eq. (2.10) we have
T = x — xc T^T. This circumstance is related to the fact that
if xc <x <xe, an infinite cluster contains many one-dimen-
sional twisted chains capable of extension without a change
in the length of the component bonds, but involving only
changes in the angles between the bonds. A cluster becomes
elastic only when such an extension mechanism is impossi-
ble. For a triangular lattice we have xc=0.58
(xc = 0.3473), whereas for an fee lattice we havexc =0.42
(xc =0.119).

Considerable effort has been spent (see Ref. 35) so as to
be able to express the exponent t in terms of/3 and v within
the framework of the two-exponent scaling. The existence of
many different critical exponents t, T, and J, makes it neces-
sary to formulate a more general (and less interesting) prob-
lem: how the nature of the relevant equation (see Sec. 6) can
be used to determine the critical exponent of the behavior of
the quantity of interest. It may be that such a general expres-
sion does not exist at all.

2.2. Universality. Scaling and self-similarity

The exceptional interest in the critical exponents is due
to their universality, i.e., due to the fact that they are practi-
cally completely independent of many coarse features of the
selected model and yet are sensitive to such fine characteris-
tics as the symmetry, the existence of long-range correla-
tions, etc. In studies of the problem of the motion of a parti-
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cle in a random potential we of necessity meet the
continuous percolation problem, i.e., the problem of a ran-
dom distribution of two colors in space. The color of regions
is correlated over a distance A0, whereas the color of small
regions separated by larger distances is independent. This
formulation is extremely useful in the theoretical sense: the
boundary of a cluster (i.e., the boundary of a connected re-
gion with a given color) is a continuous smooth curve; more-
over, the topological structure of clusters is informative.

If we consider, for example, a polycrystalline material
or some other similar system, which appears as a result of
crystallization, we must first consider the process of crystal-
lization itself. In the model developed by Meijering5" this
reduces to splitting the space into polyhedra of Voronoi, cor-
responding to the initial distribution of the crystallization
centers. Then, the polyhedra are assigned colors at random:
some of them are regarded as conducting and the others as
nonconducting.51 There are also other nonlattice modifica-
tions of percolation problems, particularly various problems
of random sites.

The postulate of universality means that all (listed in
Sec. 2.1) critical exponents are independent of the selection
of the model and are governed only by the dimensions of
space. This postulate, checked in a very large number of nu-
merical experiments, is the foundation of the theory.

The behavior of a system is governed by the ratio of two
spatial scales, which are the minimum length a() (lattice con-
stant, scaling length A0, average distance between crystalli-
zation centers) and the correlation length f. If r41, then
|>a0 and there is also a range of intermediate asymptotic
behavior corresponding to a,,^/<f. In this range all the
characteristics of the clusters (determined on a scale shorter
than I") are similar to the characteristics of the critical point
itself when r = 0 and £ = oo. Their properties in this region
are characterized by self-similarity (scaling in variance).
For scaling lengths greater than g the system is homogen-
eous: it can be represented as consisting of blocks of J" X J" X £
... dimensions. The properties of blocks are characterized by
the behavior in the intermediate asymptotic range. If r = 0,
the scaling invariance applies for all scaling lengths / > a,,.
All this has been known for some time and it forms the basis
of the theory of scaling.

We can describe the behavior of a system near r = 0
provided we know only the correlation length J" (i.e., one
thermodynamic exponent v), and the geometric properties
of an infinite cluster or of very large clusters. The reason for
similarity of the critical phenomena is the similarity (self-
similarity ) of geometric objects. The fractal dimensionality
is a characteristic of this self-similarity. Introduction of this
concept and a careful study of the dimensionalities of clus-
ters and their subsets (hulls, backbone, etc.) and of the rela-
tionships between them has not only extended the vocabu-
lary of the theory, but has led also to the understanding of
new relationships.

Moreover, a study of the geometric similarity or scaling
represents a study of a single object at r = 0. There is no need
to discuss the asymptotic behavior of the relevant quantities
in the limit T -»0 and N— oo, where ./Vis the number of sites in

a sample. Instead of going to the limit twice, we can simply
consider only the thermodynamic limit JV-» oo. There is no
need to justify the convenience of such an approch from the
point of view of effectiveness and precision of numerical ex-
periments.

3. DIMENSIONALITIES. PRINCIPAL DEFINITIONS

The basic information on the dimensionalities can be
found in Mandelbrot's book' and in the review by Zel'dovich
and Sokolov.52 The review of Farmer, Ott, and Yorke4 also
contains all the necessary definitions and also deals with the
problems encountered in the calculation of the dimensiona-
lities of various sets. However, as in the preceding section, it
is reasonable to summarize all the main concepts and to in-
troduce some standard models which are not mentioned in
Ref. 52. In this section we shall not cite the original papers,
but direct the reader to the reviews just quoted.

All the objects under discussion are sets of points in a d-
dimensional Euclidean space. A topological dimensionality
can be introduced for any such set. This quantity is intro-
duced as follows. The dimensionality of any finite or denu-
merable set of points is dT — 0. The dimensionality of any
connected set is dT + 1, if it can be cut into two unconnected
parts by excluding at least a dT -dimensional set of points (by
a dr -dimensional cut). From the very definition of the topo-
logical dimensionality it follows that it can be only an in-
teger. The topological dimensionality of a straight line is 1,
that of a plane or spherical surface is 2, for a sphere it is 3, etc.

Neither the dimensionality of the Euclidean space nor
the topological dimensionality have anything to do with the
self-similarity of the sets under discussion. A characteristic
of this self-similarity is the fractal dimensionality or, more
exactly, the fractal dimensionalities introduced in different
ways. We shall begin with an example.

3.1. Dimensionality of self-similarity. Ramification and phase
transitions

We shall consider a square (Fig. 2). Two cuts make it
possible to separate it into four similar squares but with the
size half as large. The self-similar dimensionality is

o n a ' u n DIG u n

n n a | n D a

D o D O C a, a a a

FIG. 2. Square (D = 2) and Sierpinski carpet (D= 1.8817...).
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D = In N An «. Here, TV is the number of objects similar to
the object in question and characterized by a spatial scale
which is rt-times less from which we can compose the object
in question. In this case the self-similar dimensionality is
D = In 4/ln 2 = 2.

We shall now consider the following set. We shall take a
square and by four cuts we shall divide it into nine parts. We
shall remove the central part. We shall then deal similarly
with each of the eight remaining parts. The result is a set
known as the Sierpiriski carpet (or the universal Sierpiriski
curve) and it has the self-similar dimensionality D = In 8/
In 3 = 1.8817 .... Such objects with a fractional dimensional-
ity will be called fractals, following Mandelbrot.

In the construction of a Sierpinski carpet the process of
cutting out the center of the square can be continued indefi-
nitely. However, in a physical system there is a minimum
scale a(l such that for lower scales the self-similarity no long-
er applies. We can say that a system consists of atoms of size
aQ. Then, if the size of the system is large, the total number of
atoms in the system (the mass of atoms) rises on increase in
the linear size as follows:

M oc 1D, (3.1)

so that the self-similar dimensionality has the simple mean-
ing of a certain critical (because in real systems the self-
similarity occurs only in the vicinity of a critical point) expo-
nent.

By way of illustration, we shall give several other exam-
ples of regular fractals. Nevertheless, it should be mentioned
that these objects (constructed very simply) have been in-
vestigated very thoroughly as models of clusters and other
self-similar systems. These fractals are shown in Fig. 3. This
figure should be regarded as follows: it shows "unit cells" of
fractals where each shaded region is a fractal similar to a
given cell. We can easily show that a fractal with any speci-

fied self-similar dimensionality can be constructed in this
way.

It is worth noting one difference between the objects in
Figs. 3a-3c and those in Figs. 3d-3h, which is quite obvious.
The first three objects consist of unit cells connected by ver-
tices, whereas in the other objects the cells are connected
along their sides. This difference can be described math-
ematically. From the topological point of view all the objects
in Fig. 3 are one-dimensional: each of them can be cut into
two unconnected parts by excluding at most a denumerable
set of points. The minimum number of the excluded points
needed to cut the objects in Figs. 3d-3h is finite (for a trian-
gular Sierpiriski curve it amounts to two: these points are
identified by arrows), whereas for the objects in Figs. 3a-3c
this minimum is infinite. Such a minimum number of points
is known as the ramification of a fractal r. The specific value
of the ramification is unimportant, but some properties of
fractals with finite and infinite ramifications are fundamen-
tally different.

In the case of fractals with an infinite ramification we
can introduce a ramification order. Let us consider a fractal
lattice of size R. Such a lattice is understood to be a system
constructed on a large scale in the same way as a regular
fractal, whereas on the minimum scale each of the shaded
regions in Fig. 3 represents one site of the lattice connected
by bonds to sites corresponding to the neighboring shaded
regions. Such a lattice can be cut into two parts by breaking
at least Nm(n bonds. The ramification order is then the expo-
nent in the following expression:

N fip (3.2)•"mln cc /I . v '

The most interesting property (from our point of view) of
infinitely ramified fractal lattices is that, in contrast to lat-
tices with a finite ramification on which a percolation path
breaks down when a finite number of sites is removed, on

FIG. 3. Models of regular fractals. a)-c) Sierpinski
carpet and other fractals considered in Ref. 55 (see
Table II); r = oo. d) Triangular Sierpiriski curve.
e)-h) Other "chessboard triangles"; r< oo. i), j)
Generalizations of a and d to the three-dimensional
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TABLE II. Critical concentration and critical exponents for model of percolation on an infinitely
ramified fractal.

b

2
3
4
5

10
iro

D

2
1,89
1.79
1.72
1.56
1.30
L l n 4
1 In 6

<•

\
O.G3
0.5
0.43
n,3u
0.15
In 2
Inb

•Tc

0.5
0.85
0.92
0.95
n.989
n.9999
1 1
1 i*

V

1.83
2.13
2.43
2.69
3.6o
6.79
In ft
In 2

P

".63
H.27

In ft
h* In 2

these lattices a very real percolation transition exists. A fam-
ily of regular fractals of the type shown in Figs. 3a-3c was
considered in Ref. 55. These fractals differ in respect of the
value of b, which is the number of "unit cells" along one side
of a square. Table II gives the fractal dimensionality D, the
ramification order (exponent) p, and the critical percolation
concentration xc, as well as the exponents /? and v calculated
by the standard renormalization group approach.56

The absence of phase transitions on lattices with finite
ramification and the possibility of such transitions in the
case of infinitely ramified lattices is a fairly general proper-
ty57: it is known that in the case of Euclidean one-dimension-
al systems (r = 1) we cannot expect phase transitions (§ 163
in Ref. 58), but phase transitions can occur in Euclidean
systems with cf>2(r = 0 0 ) .

Since for T = 0 the removal of a finite number of sites in
an infinite cluster suppresses percolation, we have to assume
that its ramification is finite. Therefore, a cluster (or, more
exactly, its backbone) can be simulated by a triangular Sier-
pinski curve and not a Sierpinski carpet.

These definitions of the self-similar dimensionalities are
valid generally speaking only for regular geometric objects
exhibiting self-similarity in its rigorous sense. Objects such
as percolation clusters, polymer molecules, etc., exhibit only
a statistical self-similarity.

3.2. More rigorous definitions

Rigorous mathematical definition of analogs of the self-
similar dimensionality lead us to the concepts of the Kolmo-
gorov capacity and of the Hausdorff-Besicovitch dimension-
ality.

We shall consider a set of points in a ^/-dimensional Eu-
clidean space and see how they can be covered with rf-dimen-
sional spheres. We shall define N(e) as the minimum num-
ber of spheres of radius £ needed to cover this set. If N(e)
rises on reduction in e as £ ~ D', then D, is the Kolmogorov
capacity of the set.

Strictly speaking, this quantity should be defined as fol-
lows: the capacity is the number D for which the following
limit differs from zero:

(3.3)

In this definition we simply multiply N(E) by a quantity
which is a generalization of the formula for the volume of a

e?-dimensional sphere to the case of fractional values of D.
The limit discussed here is simply an upper bound for the D-
dimensional volume of our set.

The definition of the Hausdorff dimensionality differs
because the covering is by spheres of radius not exceeding E,
so that the Hausdorff measure is

Q,
ru/2)D (3.4)

where the sum is taken over all the spheres of radius r, <e
covering the lattice. The value of D at which this limit differs
from 0 and oo is the Hausdorff dimensionality of a set.

Spheres are used to deal with the coverage only in order
to avoid the problem of orientation. We can equally use d-
dimensional cubes; the term with the F functions in Eqs.
(3.3) and (3.4) should then be omitted. In the experimental
determination of D (see Sec. 4.1) it is preferable to use the
latter method.

The Hausdorff dimensionality and the Kolmogorov ca-
pacity may differ even for very simple sets. For example, for
aset of points on a straight line with the coordinates x,, = I/
« the former is 0 and the latter is 1/2. In contrast to the
dimensionalities, particularly in the case of the Hausdorff
dimensionality, the capacities do not remain invariant in the
case of piecewise-smooth (but with possible singularities)
transformation of the coordinates54: in the case of the quan-
tities that lay claim to being dimensionalities such an invar-
iance is an essential feature.

In all the physical applications the dimensionality is
defined as the exponent of Eq. (3.1)6" and it is not possible to
say whether this represents a Hausdorff dimensionality or a
capacity. This is due to the fact that the dimensionality de-
scribes the properties of intermediate asymptotic behavior
and it is not possible to go to the limit required by the formal
definition. On a small scale the system is not fractal: its be-
havior is described by the minimum scaling length a,,.

3.3. Self-similar curves

We shall consider a self-similar curve without recur-
rences (without return to the initial point) and self-intersec-
tions. We shall assume that the dependence of the average
distance between the ends of this curve on its length is given
by the relationship (r)'/: oc (/ /a,,)*', where / is the length of
the curve (for a long polymer molecule we find that, for
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side a given sphere. This makes it possible to define the di-
mensionality D' as the number which obeys

FIG. 4. Determination of the length of a curve with a scale length A.

example, <p^4/3 corresponds to d = 2 and <pzz7/6 corre-
sponds to d = 3—see Ref. 31). Bearing in mind that the
"mass" of this curve is proportional to / (in the case of a
molecule this mass is proportional to the number of mon-
omers, whereas in random walk problems it is proportional
to the number of steps, etc.), we find that the fractal dimen-
sionality of the curve5 is

(3.5)D = q>

We can approach the definition of the dimensionality of the
curve in a different way. We shall consider the behavior of
the curve on a scale considerably greater than the minimal
(the existence of the minimal scale is not essential: we can
consider also a "mathematical" fractal). We shall determine
the length of a curve with a spatial resolution A0 (Fig. 4).
The measured length depends on A0 as follows:

X <* *o~D. (3'6)

In fact, over the whole length of the curve it can be divided
into N cc A 0 ° pieces (which are arcs subtended by segments
of length A0), because a change of the scale A() by a factor a
changes this number (by definition) by a factor b such that
In b /In a = D. The total measured length of the curve
_/ cc/ljVis then given by Eq. (3.6).

In the case of curves without recurrences and self-inter-
sections there are no problems in using both definitions of/).
However, if recurrences are present, we have to consider not
only the Hausdorff dimensionality, but also the dimension-
ality defined in a somewhat different way. If a curve exhibits
recurrences or self-intersections (i.e., if there are pieces tra-
versed several times), we are then faced with the question of
how many times such a piece should be allowed for in the
determination of the length. The standard definition of the
capacity or dimensionality says that this should be done only
once: each point is covered by just one sphere for any passage
across it. We can modify the definition (3.4) by taking a
point into account as many times as there have been passages
across it. In this case the measure introduced by us differs
from the Hausdorff dimensionality.

We shall now consider some parametrization of a curve,
for example, its natural parametrization when the parameter
is / representing the length (including recurrences) from the
initial point or t which is the time taken by a point moving at
a constant velocity along the curve. We shall assign a weight-
ing factory (n,.) to each sphere and assume that this factor is
equal to the fraction of time that a given point spends inside
this sphere or the probability of finding a moving point in-

sn/r-
e-M, ̂  r (1/2)D/ (3.7)

We shall now obtain the corresponding capacity by replac-
ing in Eq. (3.7) the summation over spheres ft,- of radius
r,. <£ with the summation over spheres of the same radius.
The dimensionality obtained subject to such weighting is a
quantity similar to that called the internal (interior) dimen-
sionality in Ref. 52. The dimensionality D ' is called the di-
mensionality of a natural measure in Ref. 4. This dimension-
ality describes, for example, the dependence of the "mass" of
a random walk on time if each site is ascribed a mass equal to
the number of times that the site is crossed. The quantity l/gy
for such random walk is D ' and not D.

Different weighting factors can be used in other appli-
cations: for example, in the theory of strange attractors it is
frequently possible to introduce the concept of information
dimensionality D, for which the weighting factor is

The problem of determination of the length of a curve in
finding the length of a coastline using maps of increasing
scale (with greater detail) was evidently the first practical
problem in which the fractal curves have been encountered.
The history of this problem, numerical results, and excellent
illustrations can be found in Mandelbrot's book.' The
boundary of a percolation cluster in a two-dimensional con-
tinuous model is also a fractal curve. We shall return to this
problem later.

For any curve defined on a two-dimensional set ( which
may be a plane or a spherical surface) the fractal dimension-
ality satisfies the inequality 1 <Z><2. The fractal dimension-
ality of the western coast of Great Britain isZ>s 1.24, where-
as the coastline of Australia is characterized by D~ 1 . 1 3; the
dimensionalities of the majority of coastlines are close to
unity. On the other hand, the fractal dimensionality of the
boundary of a percolation cluster which can be regarded as a
line with a random relief is Dh ~ 1 .74, i.e., it is much closer to
2. The fractal dimensionality of the outer boundary or hull of
a cluster with s>.sc (also called lattice animal) is approxi-
mately 1.5 (Ref. 3). The coastlines of islands and continents
are not random lines at sea level: they have been formed as a
result of a complex interaction between sea and land.

4. DIMENSIONALITIES OF PERCOLATION CLUSTERS

4.1. Homogeneous fractals and dimensionality of a cluster

We shall now consider the problems of percolation and
calculate the fractal dimensionality of a percolation cluster
(which is either very large or infinite). This dimensionality
is easily expressed in terms of thermodynamic critical expo-
nents.

As already pointed out, near a critical point a system
can be regarded as fractal and self-similar on a scale
a0^l< g, where £ is the correlation length, and as homogen-
eous on a larger scale. An idea of how such a system looks
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FIG. 5. Behavior of the density of a homogeneous fractal.

can be gained if a plane is covered with Sierpiriski carpets
with a side of length £: on a scale less than £ the system is self-
similar, whereas on a larger scale it is homogeneous. If a
system has a minimum scale, the dependence of its mass on
the scale / is given by Eq. (3.1) for l<g and by Moc/d for

. Introducing the density

const
(4.1)

we find that £ is the scale at which the density becomes con-
stant. Figure 5 shows this behavior of the density on a double
logarithmic scale. Similar behavior is expected for any inten-
sive quantity characterizing the behavior of such a system.
In the fractal regime such a quantity Fobeys Foe 1A , where A
is a certain power exponent; in the homogeneous case it be-
comes constant.

Structures which behave as fractal on a small scale and
as homogeneous on a large scale are frequently called homo-
geneous fractals. In particular, percolation clusters charac-
terized by x=^xc are objects of this kind. The power of an
infinite cluster, i.e., the fraction of the sites or the volume
belonging to a cluster, varies with the concentration as
Px oc T ". This quantity is the density of a cluster. The scale
for which this quantity is defined is as follows: an infinite
cluster is a fractal object i f / < £ c c r ~ v and a homogeneous
one for larger scales. When the characteristic scale £ is al-
tered, i.e., when the concentration x is modified, the density
varies as follows: p(g)<x.g~B/v. Bearing in mind that
p(£) cc|"D~d, we obtain from Refs. 2, 3, and 61 the expres-
sion

D , ,-rf_JL. (4.2)

We shall return to Eq. (4.2) later, but at this stage we note
that the above analysis is standard: this is the approach used
in the establishment of the relationship with thermodynamic
and other geometric exponents.

Let us consider the behavior of some quantity Y related
to our homogeneous fractal; for example, the quantity may
be the electrical conductivity considered in Sec. 5.1. Above
all, we have to introduce an intensive quantity j> related to Y.
In the case of conduction problems this quantity is of course
the electrical conductivity. Such an intensive quantity is in-
dependent of the scale / in the homogeneous regime. In the
fractal regime when /<£, it behaves as /•*. Consequently, the

FIG. 6. Photomicrographs of a metal island film with x = *, (Ref. 63): a)
infinite cluster; b) backbone of an infinite cluster.

value of y for the homogeneous regime obeys y<^^, The
dependence of>> on the control parameter T is then manifest-
ed because of the dependence on r of the length £, so that
y(r) °:g(T)A ccr ~vA . It means that the thermodynamic ex-
ponent A ' ( y cc T *') is related to A. by A ' = — vA. This ap-
proach will be used throughout the present review.

There are also other approaches which give Eq. (4.2).
The result (4.2) has been confirmed in the two-dimensional
case by independent measurements of/), 13, and v (Ref. 61).
Among the experiments confirming Eq. (4.2) we will men-
tion particularly the physical experiments on metal island
films. A study of lead films was reported in Ref. 62 and of
gold films in Ref. 63. The values D^l.9 (Figs. 6-8) were
obtained. The standard method for the determination of the
fractal dimensionalities of real objects involves the use of
their photomicrographs obtained using different magnifica-

K? 100 L

FIG. 7. Dependences of the density of an infinite cluster ( I ) and of its
backbone (2) on the linear size of the investigated sample with x = xf

(Ref. 63). Double logarithmic scale.
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FIG. 8. Dependencep(L ) for x>xc (Ref. 63). This curve is an experi-
mental analog of Fig. 5.

tions, drawing of a square grid on such photomicrographs,
and calculating the number of squares within which the
points of the object occur. Then, the fractal dimensionality is
the slope of the straight line representing the dependence of
the number of such squares on the magnification, plotted on
a double logarithmic scale. For example, this method was
used in Ref. 64 to determine the fractal dimensionality of the
boundaries of clouds governed by turbulent diffusion of wa-
ter vapor in the atmosphere.65

The relationship (4.2) includes d and it is valid in the
hyperscaling regime, i.e., when<f<6. I f d > 6, the quantity D
assumes a constant value, like many other critical exponents
in the classical range. This value is D = 4. The formula
which gives D for any dimensionality of space is66

D: (4.3)

Eliminating from Eq. (4.3) the value of fby the hyperscal-
ing relationship dv = 2/3 + y, we obtain Eq. (4.2).

In discussing the problem of the number of infinite per-
colation clusters, it has been shown rigorously that this num-
ber is n x = 0, 1, or oo. The zero value naturally corresponds
to the absence of percolation, whereas 1 or oo correspond to
percolation.67-6X If d <6, the first two possibilities are real-
ized, whereas for d = oo (Bethe lattice), we find that the
first and the third possibilities occur. It has been frequently
suggested that ifc^> 6, then we can have n K = oc (Refs. 67
and 68). If this is indeed true then the divergence between
Eqs. (4.2) and (4.3), and any breakdown of the hyperscal-
ing relationships in general can be understood: these equa-
tions give the dimensionalities of various sets. Equation
(4.2) gives the dimensionality of a set of all the infinite clus-
ters, whereas Eq. (4.3) gives the dimensionality of one clus-
ter. I f d < 6 , when n x = 1 for* >xc, these sets are naturally
identical. The author of the present review is not aware of
any treatments proving or disproving the hypothesis that
n^ = oc when

In addition to the dimensionality of a cluster, it is inter-
esting to consider the dimensionality of its current-carrying
part which is called the backbone. The backbone of an infi-
nite cluster is a set of sites belonging to paths in a cluster
infinite in both directions. It is assumed that the knowledge
of this dimensionality will help in dealing with the electrical
conductivity of a percolation net. The dimensionality of the
backbone is described by

A> = d—T ' (4'4)

which is analogous to Eq. (4.2), except that[3h is the critical
exponent of the strength of the backbone of a cluster: the
probability that a given site belongs to the backbone is
Ph <x r I3h. This dimensionality was determined in Ref. 69
and it amounts to 1.67 + 0.17 for d = 2 and 1.68 + 0.14 for
d = 3. It does not differ too greatly from the dimensionality
of a triangular Sierpinski curve, which is'therefore often used
as the model of the backbone.7"-71

4.2. Chemical dimensionality and velocity of propagation of
excitations

In addition to the fractal dimensionality of a cluster, it
is of interest to consider its chemical dimensionality.72'73 Let
us consider, for example, the site problem. We shall define
the chemical distance Rc between the sites ; and j as the
minimum number of steps in which we can reach j from /
passing only between the empty sites (Fig. 9). If a sphere Bt

is regarded as a set of sites for which Rc <«, we can define the
chemical dimensionality as the exponent Dc such that a
number N of sites belonging to Bc increases on increase in n
in accordance with

Woe 7ZDc. (4.5)

This quantity has been determined numerically for the
two-dimensional case and it isZ>r ~ 1.72. The value of Dc is
the ratio of two dimensionalities, that of a cluster D and DR

of a curve of length which gives the chemical distance. The
dimensionality of this "geodesic" is DR = D/Dc, ~ 1.10,
which shows that the line is not broken too much. This ter-
minology is due to the following application of the percola-
tion theory. We shall consider a percolation cluster as a lat-

FIG. 9. Chemical distance for a percolation cluster.
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tice model of a branched polymer molecule. The sites of the
lattice then correspond to monomers and the bonds to chem-
ical bonds between the monomers. The number of steps in a
cluster is the number of chemical bonds along the path from
the rth to they'th monomer and it is quite natural to call this
the chemical distance and the associated dimensionality to
be called chemical. A different name for this dimensionality
is the dimensionality of the connectivity.

We shall consider in detail the meaning of a thermody-
namic exponent i[> = (DR — \)v, associated with DR (Ref.
74).

Let us assume that there is a perturbation which travels
as follows. If at a moment / a site / is excited, then at a mo-
ment t + 1 all the sites which are available next to / are excit-
ed. A site excited at any time remains in that state during all
subsequent moments. Let us assume that at t = 0 we excite
the site 0. The excitation front at a time / i s a set of sites for
which the chemical distance from the site 0 is t.

Such a model describes, for example, propagation of a
disease between trees36 or of a forest fire, and it is also used
(within the framework of the model discussed in Ref. 75 ) to
describe propagation of neural pulses in myocardium.74

If x<xc, there is no propagating perturbation in the
system. For any value of x > xc , the asymptotic behavior of
the front is described in the limit of long times by a certain x-
dependent velocity. As x approaches xc from above, this
velocity decreases: critical retardation takes place. At
x = xc, the perturbation velocity vanishes.

Let us assume that the concentration of empty sites is
x > xc . The correlation length of such a system isg = r~r.
In the fractal regime the time in which the perturbation front
travels a distance Ri&t^R0" and, in particular, the distance
| is traveled in a time tf oc § DR cc T ~ D"' . Over long distances
the behavior of the system becomes homogeneous. Then, we
have?//j =R/%. Therefore, in a time/ >/<.- the perturbation
front travels a distance R<x(g /ts )t; the effective velocity is

OCX — cc T
(DK ~ "v. The exponent \1>=(DR - l)v for the ef-

fective velocity governs the critical retardation. For d = 2,
we have if> = 0.13 + 0.06, whereas for d = 3, we find that
i/> = 0.31 + 0.06. In the classical range, we obtain if> = 0.5.

4.3. Boundaries (hulls) of percolation clusters

Investigations have also been made of the dimensionali-
ty of the outer boundary of a critical percolation cluster. The
dimensionality of the whole boundary (outer and inner) is
the same as the dimensionality of the cluster itself, since the
number of sites on the boundary (perimeter) is proportional
to the total number of sites in the cluster: / ex sp, where p = 1
(Refs. 3 and 76). The dimensionality of the outer boundary
or hull of a large two-dimensional cluster has been consid-
ered77 and found to be Dh = 1.72-1.74 (Fig. 10). We shall
consider the relationship between this quantity and other
critical exponents.71* We shall discuss a critical cluster. Its
boundary is a self-similar curve; when the length of the curve

10 10*

FIG. 10. Dependence of the perimeter of a percolation cluster on its trans
verse size.77 Double logarithmic scale.

is of the order of the total length of the boundary of the
cluster (for example, of the order of 1/2), its distance from
the initial point is of the order of the cluster size, i.e., it is of
the order of the correlation length £,. A characteristic num-
ber of sites in a critical cluster is st oc ~rf' l3 , whereas the
relationship between the length of the outer boundary or
hull of a cluster and the number of sites is given by locs^ v,
where x<0 is an exponent governing the critical behavior of
the ratio of the outer and inner perimeters. In the two-di-
mensional case the quantity x has been determined numeri-
cally in Ref. 76 and in Ref. 79 an expression for this quantity
(again in the two-dimensional case) is obtained in terms of
d = 2, D, and thermodynamic exponents:

The quantity x can be very small: xx — 0.1. If we define Dh

using/),, = \/<p, where cp is the exponent in £ = _/«:/' ' ,and
recall that J"ccr "' and /ocr"/v /J) ( •" ' > , we obtain

- (/' -i *) - D (,, + x). (4.7)

The formula (4.7) remains valid also \fd>2, if the perim-
eter or boundary of a cluster is understood to be the corre-
sponding surface or hypersurface.

The problem of a special type of diffusion of particles
emitted by a linear source is considered in Ref. 80 where it is
asserted that there is an analogy between the diffusion front
which is then formed and the boundary of a percolation clus-
ter. On the basis of this analogy [which, like Eq. (4.6), is
invalid in the three-dimensional case] it has been found that
D,, = \ + ( 1/v). A numerical modeling of the boundary of
a cluster by a random walk*1 gives a similar estimate
amounting to D,, = 1.751 +0.002.

It is concluded in Ref. 78 that if d>3, then a finite frac-
tion of the perimeter of a cluster belongs to the outer bound-
ary or hull, i.e., x = 0. The dimensionality of the hull of a
cluster and of the cluster itself are then identical. The reason
for the difference in the cases d = 2 and rf>3 is the consider-
able difference between the topology of the boundaries of
clusters: in the two-dimensional case the outer boundary is
singly connected, whereas in the rf>3 case it is not singly
connected.
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5. DIMENSIONALITIES AND TRANSPORT COEFFICIENTS

5.1. Conductivity and elasticity of fractal nets

We shall now consider the geometric critical exponents
associated with the thermodynamic exponent t. We shall as-
sume that r^Q. In the homogeneous range of scales a system
can be regarded as consisting of blocks of size g. We shall
assume that the characteristic spatial size of the system is
L > f; we shall discuss the specific case when the sample is in
the form of a e?-dimensional cube. We shall determine its
resistance by connecting two perfectly conducting (d — 1 )-
dimensional electrodes to the opposite sides of the cube.

If the resistance between the two faces of a cube of side J"
is ^?0, then the resistance of the whole system is

Indeed, in view of the identity of the cubes, the currents do
not flow through their side surfaces and the resistance of one
column of cubes connecting the elctrodes is /?()(J^/f); the
total number of such parallel-connected columns is (^/
f )d~ ' , so that we obtain Eq. (5.1) . This is a familiar rela-
tionship showing that the resistance of a wire rises propor-
tionally to its length and the resistances of similar plane fig-
ures are identical, and so on.

If 5 i ? o c T ~ ' , it then follows that ,i#0(f) = (J/Y
f) ' / f 2 / ^ [ r ( f ) ] < x f / - 2 + " A - ' . Assuming that the de-
pendence i#,,(/) applies for any scale in the self-similar re-
gime, we reached the conclusion that the resistance of a per-
colation cluster with /<f depends on the distance between
the electrodes as follows:

i# (/) a f , where f = — - ,
v

(5.2)

This exponent was first introduced in Ref. 82. The exponent
£ is also a geometric one representing the properties of clus-
ters in the self-similar regime. This exponent describes the
rate of growth of the resistance of a fractal on increase in its
spatial scale: f = In c /In a, where c is the ratio of the resis-
tances measured between similar points of fractals which
have spatial scales differing by a factor a. In an earlier
study81 representing a calculation of t by the scaling method
it has been postulated that f = 1. This is not a self-evident
assumption, although it may be valid in the d = 2 case.84

The value off can easily be calculated for the simplest
families of regular fractals. We shall carry out such a calcu-
lation for a triangular Sierpiriski curve.63 This fractal con-
sists of three similar fractals of half the size and, consequent-

0.9
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0,7

'

f.4f 7,55
_1_
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FIG. 12. Values of the exponent f for fractals of the "chessboard triangle"
type. The dashed line represents f = D /2.

ly, we have D = In 3/ln 2 = 1.585. In this calculation we
shall assume that the resistance between the vertices of each
of the small triangles is 1 and replace each of them by a star in
accordance with the usual rules (Fig. 11); this shows that
the resistance between the vertices of the large triangle is
R = 4/3, so that f = In(4/3)/In 2 = 0.7370. This fractal is
selected because its fractal dimensionality is close to the di-
mensionality of the backbone of an infinite cluster, so that to
some extent it models its current-carrying part. The values
off for objects of this kind also do not differ appreciably. If
we consider fractals of the "chessboard triangle" type and
plot the exponent f as a function of the fractal dimensionali-
ty, we find that the points obtained are grouped around a
certain curve, although they do not lie exactly on this curve
(Fig. 12). However, we can construct fractals for which the
deviation from this curve is large: there is no universal de-
pendence of £ on D. We shall return later to this important
topic.

It is also of interest to consider the behavior of the elas-
tic modulus T. By analogy with f, we can once again intro-
duce a geometric exponent Z = (T/v) + d — 2. In model-
ing the elasticity of a random net we should, as already
pointed out, consider separately the cases of isotropic and
central elastic forces. For the isotropic forces the potential
energy due to the displacement of lattice sites is simply the
sum of the contributions made by the displacements along
the axes:

a=l

The corresponding equilibrium conditions are of the form3

A

FIG. 11. Calculation of the conductivity and elasticity of a
fractal lattice.
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(r) (5.6)

(5.3)

(the summation is carried out over the whole bonds m in a
percolation lattice and each of these bonds is assigned an
elastic constant k ) . Such a system represents a system of
Kirchhoff equations which are repeated d times (for each of
the axes) and describe the electric currents in a net and,
consequently, in the homogeneous case when T = t.

When the forces are central, the potential energy is

and the equilibrium conditions are different than in the case
of the Kirchhoff equations: the terms corresponding to dis-
placements along different axes are now mixed. In the case of
the simplest fractals (such as a triangular Sierpiriski curve
and its generalization to spaces with a larger number of di-
mensions) this exponent is calculated in Ref. 85. It is as-
sumed that each of the parts of a fractal represents a rigid
figure with known bulk and shear moduli whereas at the
point of connection the figures are linked by ballbearings
(Fig. 11). If in the first order in respect of displacement of
the vertices of a large fractal, we determine the forces acting
on them, we find that the bulk and shear moduli behave in
the same way: A'cc// oc/z, where z = d — 1, and their ratio is

It therefore follows that problems of elasticity of a poly-
mer net may belong to different classes of universality in the
case of isotropic and central elasticity forces. This has been
confirmed by a numerical experiment.49 This experiment
was concerned with the case in which there are homogen-
eous and central contributions, and a crossover takes place
from one type of behavior to another.

5.2. Conductivity exponent, anomalous diffusion, and
internal dimensionality of random walks on a cluster

The value of the exponent f is related directly to some
dimensional characteristics of the fractals or, more precise-
ly, of the sets created by random walks on the initial fractal.

Let us consider a point which wanders randomly on an
ordered ^/-dimensional lattice. The dependence of the aver-
age square of the distance reached by this point in N steps
(after a discrete time t ) is then

<r2) oc N, tt
 (5'4)

where this asymptotic law in no way depends on the dimen-
sions of space. For a random walk on a fractal lattice the
dependence ( r2 ( 0 ) is different86'9 ' :

(5.5)

where the quantity 9 ^0 is sometimes called the anomalous
diffusion exponent. Equation (5.5) can be regarded as de-
scribing diffusion in a medium with a variable coordinate-
dependent diffusion coefficient:

The fractal properties of the medium appear because such a
dependence 3if(r) is realized for any initial point of a ran-
dom walk.

It seems quite surprising that the fractal structure of a
set disobeys such a universal law as that given by Eq. (5.4).
Therefore, it seems that although the distance measured in
the external space does not obey Eq. (5.4), the average dis-
tance inside the system (i.e., the chemical distance) may
obey this law. This is true only of fractal lines. An analysis of
such a line which represents a very involved one-dimension-
al lattice"6 shows that after N steps a random walker travels
on the average jVav <x # l / 2 . In the Euclidean space this dis-
tance corresponds to r oc N ^°, so that (r2} <x N{/D. We then
have

= 2D - 2 . (5.7)

However, Eq. (5.7) is not valid in the case with a ramifica-
tion order greater than 1. The reason for this is that the effect
of the fractal structure of a cluster is not just that after a long
walk on a fractal the net displacement in the surrounding
Euclidean space is small. A complex structure of the path
and the inhomogeneity of the distribution of its points of
intersection violates even the relationship Nav oc N ' / 2 .

We shall consider a random net. On the smallest scale
we can regard it as formed by ordinary conductors, each
with a resistance 30, and assume that the probabilities of
electron jumps between the sites are given: wi} = w for any
whole bond and wtj — 0 for a broken bond. When r>0, in
either of these cases the large-scale behavior of the particles
can be described as diffusion. The conductivity of the system
is proportional to the carrier mobility which in its turn is
proportional to the diffusion coefficient because of the fun-
damental relationship to Einstein. Since the diffusion coeffi-
cient ,%^(T) is defined only for an infinite cluster to which
the fraction Px (T) of the sites belongs, the relationship can
be written in the form"6-91 (see also Ref. 92):

(r). (5.8)

We shall calculate the asymptotic behavior of W(r) using
our standard approach. The diffusion coefficient is an inten-
sive quantity. Its value is J f ( r ) = 3f (r = £) "' r''". Substi-
tuting it in Eq. (5.8), we find that

6 = t-P (5.9)

A relationship similar to Eq. (5.9) was first derived in Ref.
93 and began to be used more frequently after publication of
Refs. 86 and 91, A confirmation of this relationship by a
more rigorous approach can be found in Ref. 94. We shall
rewrite Eq. (5.2) using Eq. (5.9):

(5.10)

We shall consider the relationship between the exponent f
and the dimensional characteristics. The meaning of the sec-
ond term in Eq. (5.10) is already known: this is the fractal
dimensionality of the cluster itself.
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We shall consider a line (with recurrence, i.e., return to
the starting point, and self-intersections) which describes a
random walk of a point on a cluster. The length / of the curve
is proportional to the number of steps N. The exponent cp for
this curve defined by the formula ( r 2 ) l / 2 o c / ¥ is q> = I/
(2 + 6) and, consequently, its dimensionality is
D \v = 2 + 0. Since 0 > 0, in the case of a random walk on
any fractal, we have D 'w > 2. Therefore, the expression for
the exponent ^ can be rewritten in the form

£ = Dw — D, ( 5 - n >

where D is the dimensionality of a set and D 'w is the internal
dimensionality of a random walk on this set. For any regular
lattice we have 6 = 0, D 'w = 2, and D = d, so that
f = 2 — d: this is the known exponent for the relationship
between the resistance of a system and its electrical resistiv-
ity.

The fact that D 'w > 2 means that a random walker re-
turns many times to the starting point. This can be seen di-
rectly by examination of Fig. 13 representing the result of a
numerical modeling of a random walk on a fractal.14

We shall now consider the backbone of an infinite clus-
ter. Since the resistance of a cluster is equal to the resistance
of its backbone (if the electrodes are sufficiently far apart),
the exponents for the whole cluster and its backbone are
identical. Then, in discussing a random walk on the back-
bone, we find [in full analogy with Eq. (5.10)] that

(5.12)

where 6b is the exponent of anomalous diffusion on the back-
bone of a cluster. Equating Eqs. (5.10) and (5.12), we ob-
tain"1

The internal dimensionality of a random walk on a backbone
is less than the internal dimensionality of a walk on the

whole cluster: it is closer to 2, which is the dimensionality of
an ordinary random walk. This is due to a change in the
nature of recurrence: wandering along dead ends results in
repeated passage through sites close to the point of attach-
ment of the dead ends to the backbone and when the back-
bone is considered on its own, this contribution is excluded.

Other types of random walks have also been considered.
For example, diffusion on lattice animals is considered in
Ref. 95, whereas in Refs. 92, 96, and 97 a study has been
made of self-avoiding random walks on fractal lattices.

5.3. Equation for diffusion on a fractal

In the preceding section we have dealt with the asymp-
totic behavior of various quantities. We can now pose the
question: what should be the equation for diffusion on a frac-
tal and what is the solution of this equation? In this section
we shall follow the treatment in Refs. 98 and 99 which deal
specifically with this topic.

We shall consider the density of the probability/? (r,t) of
finding a particle located at the point 0 at the beginning of
the process t = 0 and at a point r at a time t. Calculations for
a regular fractal (in the form of a triangular Sierpinski
curve) show that the function p ( r , t ) is nonanalytic and has
singularities on small and large scales. We can consider a
smooth envelope of this function P ( r , t ) . The function P ( r , t )
is described by the equation

(this equation is derived in spherical coordinates). The
quantity JT is the generalized diffusion coefficient. The so-
lution of the above equation is

r
r(0/(2 + 6 ) ) |

r- r 2_ j_ 0 -,
6XP [ ~ ̂ -(2 -u)*,J

(5.15)
and it yields

q-| R-i

FIG. 13. Random walk of 2500 steps on a fractal of 1000 sites
(dendrite).'"1
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(2+e)a<]2/ (2+9)r

and

(5.16)

(5.17)

The expression (5.15) agrees excellently with the results of
rigorous calculations for a triangular Sierpinski curve. An-
other approach which gives the same results and is based on
the formalisim of the path integrals is presented in Ref. 100.
Equation (5.14) is an analog of the diffusion equation in
Euclidean space written down using spherical coordinates:

"P (r. t) _ yf <> [" .d-i HP (r
~~ ~ , c l - i d r L' ~r

op < r -
f'r

(5.18)

The derivation of Eq. (5.14) is based on the relationship
between diffusion and conductivity, and the procedure used
to derive it is standard. The probability of finding a particle
in a spherical layer between r and r + dr is m(r,t)dr and it
obeys the relationship

0 r i ,\ (5.19)dm (r, t)
Tit

where I (r , t ) is the probability flux. The probability m(r,t) is
related to P(r,t) and to the number of sites N(r) inside the
layer:

m (r, t) = P (r, t) N (r). (5-2°)

We can close the system by writing down the equation that
relates linearly I(r,t) and VP(r,t):

T , , , ,i'P(r, t) (5.21)
I ( r , t ) = °(r)—3T-<

where the coefficient a(r) is proportional to the total (inte-
grated over the angles) conductivity at a distance r. Using
Eqs. (5.19)-(5.21), we obtain

oP(r, t) . . . . . a r / %= N"1 (r) — a (r)v ' dr L v '

SP (r, t)~\— -L-!- I .
<>r J

(5.22)

The quantity N(r) = dn(r)/dr, where «(/•) is the number of
sites within a sphere of radius r, has the value
N ( r ) = Dr°' ' if a,, = 1. Instead of a we shall introduce the
"conductivity" per site proportional to the diffusion coeffi-
cient: cr(r) =3f(r)N(r). We can describe .^(r) by the
expression mentioned earlier: J?'(r) =<~A''r~". Substitut-
ing all this in Eq. (5.22), we obtain Eq. (5.14).

We shall make one other comment. In Euclidean space
the case of an isotropic diffusion coefficient is not common.
On the other hand, in the case of fractals the diffusion coeffi-
cient is typically isotropic.

We shall begin with an example. We shall consider a
triangular Sierpinski curve. We shall assume that on the
smallest scale the resistance between the vertices A and B of a
unit cell is rx, whereas that between A and C or B and C is rv.
Replacing, as usual, the triangle with a star, we find that the
renormalized resistance (i.e., resistances on a 2a() scale) are

; = rAC' = r, + - (5.23)

The ratio of these resistances, representing the anisotropy of
the resistance A', is renormalized in accordance with the law

(5.24)

The A" = g(X) transformation has one stable fixed point
X* = 1 and, consequently, on a large scale the resistances
between all the vertices of a fractal are the same, irrespective
of how the resistances of the bonds in a unit cell of a fractal
are selected. On a large scale (X~ 1) the quantity A = X — 1
is renormalized in accordance with the law
A' —g'( 1)A = 4A/5. The corresponding geometric expo-
nent is In (4/5)/In 2 = -0.322.

This behavior, representing isotropization of the con-
ductivity, is generally typical of fractals. Let us consider
some isotropic (in respect of structure) self-similar system
with different bond resistances. Let us assume that the con-
ductivities of certain bonds, such as those parallel to the OX
axis, are equal to crv and the remainder to av, The scaling
transformation (i.e., the crossover to a fractal which is n
times greater) renormalizes these conductivities as follows:

oJ-Ma""'')' (5'25)

We shall now assume that all the bonds in our fractal are
current-carrying. Then, the functions fx and/, are mono-
tonic in each of the arguments: it follows from a>b that
fxy (a,c) >fxy (b,c) and/x>, (c,a) >/. v (c,b). An increase in
the conductivity of any specific bonds cannot reduce the
conductivity of the system as a whole.

In the case of identical arguments, we have

where n is the scaling transformation coefficient. We shall
consider the specific case when ax > av. We then have

lx <r
a, a,,)

= x (5.26)

Therefore, if the initial value is X> 1, then the values of X
decrease during the subsequent iterations and they approach
unity. For X < 1, the value of X increases as a result of iter-
ation until it reaches unity. The exception to this rule is the
case when the rigorous inequality is not obeyed, i.e., when
the functions/, and/, are independent of the second of their
arguments. The dependence of A" on X in the limit A"— 1 is
described by a certain function g(X) and the derivative of
this function at X = 1 determines the corresponding geomet-
ric exponent

m = jMlilL. (5.27)

This disappearance of the anisotropy on approach to
the critical point has long been known to be a feature of
percolation problems: in the effective-medium approxima-
tion such isotropization was studied in Ref. 101 and the criti-
cal behavior of the anisotropy X was first considered in Ref.
102. The anisotropy of the conductivity near the percolation
threshold has been studied both numerically'":~")'i and in
real experiments. "l<s The corresponding thermodynamic ex-
ponent is A = — cov: X ^ rA . In the two-dimensional case
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this exponent is approximately 0.86, whereas in the three-
dimensional case it is close to 1/3.

6. SPECTRAL AND RELATED DIMENSIONALITIES

6.1. Spectral dimensionality, dimensionality of a recurrence
set, and dimensionality of random walks

The characteristics of a random walk on a cluster in-
clude also another very important exponent which is known
as the spectral or fracton dimensionality.86'107 We shall now
consider the transport equation describing a random walk of
a particle:

(6.1)
;

where p, (t) is the probability of finding a particle at a site /at
a moment t; V(j is the probability of a transition from a site /
to a sitey per unit time. We shall assume that Vtj = 1 for
neighboring sites connected by a whole bond and that
Vjj = 0 in all the other cases. This equation differs only in
respect of the order of magnitude from the equation describ-
ing vibrations of a random net:

iij[xj(l) — x , ( t ) ] ; (6.2)

here, <y,7 = 1 if a given bond is whole. The elasticity forces
are then regarded as isotropic and a displacement is a scalar
quantity. An equation of the (6.1) type describes also the
electronic properties of such a random crystal in the tight-
binding approximation with a correlated diagonal and off-
diagonal disorder, described by the Hamiltonian

where e, = — ̂  V,j; Vlt• = 1 for a whole bond and Vy = 0
i

for a broken bond. As usual, we can introduce the Green's
function of the relevant equations in the time or energy rep-
resentation. In the time representation Gik (t) is a solution
of, for example, Eq. (6.1) subject to the initial condition
Gik (t = 0) = Sik. A diagonal matrix element Gkk (t) simply
denotes the probability that a particle is at the original site k
at a moment t. The appropriate Green's functions for regular
fractals can be calculated exactly.IOK If we consider the Four-
ier transform of such a function, we find that the density of
the eigenstates of the relevant equation is

(6.4)

In the problem of lattice vibrations, which differs from the
problems of diffusion and of an electron spectrum by the
replacement of the first derivative with the second, i.e., by
the replacement of '6' with a)2, the density of states is

.,¥>(,„) = (o.V (M"-). (6.5)

We can establish the relationship between this expan-
sion and the earlier approaches by considering the asympto-

tic behavior of G0()(t) in the case of a random walk on a
percolation cluster or some other fractal lattice. We shall
assume that at the moment t = 0 a particle executing such a
random walk is at the site 0. After n > 1 steps, its average
distance from the starting point i s / < x / j l / ( 2 f e > . If we consid-
er a sphere with the radius equal to this distance, we find that
the number of lattice sites inside the sphere is proportional to
1°. If, for the sake of simplicity, we assume that the probabil-
ity of finding the final point of a random walk within this
sphere is the same for every site, we can see that the probabil-
ity that after a time t a particle is at the starting site amounts
to

P0(t)
, -D/(2+(>) (6.6)

Knowing the asymptotic behavior of the probability of
remaining at the starting site, we can find the asymptotic
form of the density of states. In the problem of diffusion and
in the solution of the Schrodinger equation of a random crys-
tal with correlated diagonal and off-diagonal disorder the
asymptotic behavior ofN( Y? ) in the limit %> -»0 is

, (6.7)

whereas in the problem of lattice vibrations, we have

•'. (6.8)

We shall now consider a regular lattice in a Euclidean space
of any dimensionality d. The density of the phonon states for
a regular lattice (in the case of a homogeneous lattice there is
only an acoustic mode) is described by the following asymp-
totic expression in the limit <y ̂ 0:

(6.9)

For a fractal structure (percolation cluster, gel at the forma-
tion threshold) the quantity

(6.10)

is an important characteristic of the vibrational spectrum of
an object, which transforms into a Euclidean dimensionality
in the case of a regular lattice. This quantity is known as the
spectral or fracton dimensionality of the system. The word
"dimensionality" does not mean in this case that there is any
set which has these dimensions (in the sense used in Sec.
3.2). The spectral dimensionality can be found also for a
more general case of both nonisotropic elastic forces109 and
long-range interactions."" The above case is, however, the
most important. In this case the fracton dimensionality Df is
related to the recurrence dimensionality £>rec of a set of mo-
ments tf at which a random walker returns to the starting
point O (Refs. 1 1 1 and 1 12) and to the fractal (Hausdorff)
dimensionality of a random walk. The first relationship is
given by

Z>rec=l— Y- , (6.11)

which is valid if Df < 2 (which is always true of percolation
clusters; see Sec. 6.3). If we consider a random walk on any
set with Df > 2, we find that Z)rec vanishes.

In the case of regular lattices in the space of d dimen-
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FIG. 14. Dependences of the numbers of different sites
visited in the course of a random walk on the number
of steps jV( Ref. 113). Linear (a) and double logarith-
mic (b) scales: 1) Euclidean lattice; 2) percolation
cluster.

50000 100000 150000 200000N 703 2 34 ffSfO* 2 14 ff 810s 2 34 S II
a b

sions Aec (d) the recurrence dimensionality behaves as fol-
lows: Aec ( I ) = 1/2, Aec (d>2) = 0; in the space of two di-
mensions the number of returns to the original point is
proportional to In t, whereas in the space with d>3a random
walk is self-avoiding, i.e., there is no return to the starting
point."3

The quantity Dw = A/2 also has a simple meaning.
The number of different sites visited in the course of a ran-
dom walk of n steps isSB oc«D/2 (see Fig. 14 and Ref. 114),
so that Dw is the fractal dimensionality of a random
walk, in contrast to the internal dimensionality
D'w=2D/Df=D/Dw.

The exponent Drcc is related directly to the kinetics of
fractal reactions and can be determined experimentally. By
way of example, we shall consider Ref. 115. The investigated
material was a substitutional solid solution of naphthalene
C,0H8 in C10D8. A study was made of the transfer of energy
by triplet excitons T, the radiative decay of which was spin-
forbidden. ' '6 The mechanism of noncoherent energy trans-
fer was found to involve random jumps of excitons from one
C1()H8 molecule to another not too far from the former. The
critical percolation concentration of C1()H8 was about 8%.

When two triplet excitons reach the same site, they fuse
to form one singlet exciton:

firr-l ri ( O. 1 ̂  )

tii —*• o,

which decays radiatively. The reaction rate proportional to
the probability of an encounter of two excitons obeys the
following equation in the homogeneous regime:

_dns. = ws (6.13)
di '

where «T and «s are the concentrations of triplet and singlet
excitons, respectively. In the fractal regime the above equa-
tion becomes

so that an explicit time dependence appears in the equation.
ForZ>rcc = 0, i.e., in the case of a multidimensional regular
lattice, the above equation reduces to the preceding one. An
experimenter can study all the quantities which occur in Eq.
(6.14): dn^/dt is proportional to the fluorescence intensity

/„ ( t ) , whereas «T is proportional to the phosphorescence
intensity 7ph (t) (at a different frequency) which is associat-
ed with the absorption of triplet excitons by impurities (lu-
minescence centers).

The experiments mentioned above indicated that when
the C,,,H8 concentration was 8-12%, the recurrence dimen-
sionality was Aec —0.35, in good agreement with the theo-
retical value.

We analyzed this investigation in detail because the
problem of the luminescence of mixed molecular crystals
and dyes in porous matrices is currently highly topical from
the point of view of investigating the fractal dynamics ex-
perimentally. These problems are discussed in Refs. 117-
126, where both binary chemical reactions and the capture
of wandering particles by fixed traps are considered.

6.2. Eigenstates on fractals. Quantum percolation model

We shall now make some comments about the nature of
the eigenfunctions of Eqs. (6.1)-(6.3) for fractal lattices.
These functions correspond to localized states known as
fractons. The problem of localization and crossover from the
fracton to the phonon behavior is considered in Ref. 107.
Localization of vibrational and electron states has been dem-
onstrated for some models of regular fractals.'27' '2S The con-
clusion of localization7'9' is supported by the following argu-
ments. Let us consider a /? function, similar to that used in
the scaling theory of localization129:

(6.15)

whereg is a dimensionless conductivity, i.e., a quantity of the
order ofcrLd~2. In our case we have/7(g) = — g = const.
Then, the inequality 0(g) <0 is used, by analogy with Ref.
129, to draw the conclusion of localization. This conclusion
is based on the relationship between g ( L ) and the sensitivity
of the wave functions to changes in the boundary conditions,
i.e., it is based on one of the definitions of localization used in
Refs. 3 3 and 130.

However, the/? function is the average and, therefore, a
far too coarse characteristic of the system. It follows that the
finer and the most interesting aspects of the problem are then
ignored.
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It should be pointed out that the problem of localization
of eigenstates on a fractal lattice (percolation cluster) has
been investigated for some time (at least beginning from
1972) in connection with the problem of quantum percola-
tion. m-139 This is the problem of a model binary alloy of
very different components in which it is assumed that type A
atoms form a substitutional alloy with a substance B and that
the energy levels of these atoms differ so much that in a study
of an energy band formed by levels of atoms of one type we
can ignore the existence of atoms of the other type. This
model is described by the Hamiltonian

/y = 7 , V , , | / } ( / l , (6.16)

which differs from Eq. (6.3) by the absence of diagonal ma-
trix elements. In the case of this problem it is known that
near x = xc, when an infinite cluster of atoms of type A has
already been formed, the states are localized at small aggre-
gates of atoms belonging to this cluster and there is no clus-
ter conductivity.

Such localization of eigenstates in the model in question
is not surprising: it describes the limiting case of the usual
Anderson localization in an alloy.33 The localization of ei-
genstates at the regular fractals, which at first sight seem to
be very ordered structures, is somewhat more surprising.
The reason is as usual the absence of translational invar-
iance. In spite of the very close analogy of the problems, the
present author is not aware of any cross-fertilization from
the work on quantum percolation to that on fracton charac-
teristics.

We shall consider in greater detail the nature of local-
ized states in the case of fractal lattices, their behavior on
transition to the homogeneous regime, and the characteris-
tic differences between random and regular fractals, which
in this case are important.

We shall begin by presenting some results of a quantum
percolation model. The most striking distinguishing feature
of this problem is the existence of special localized states in
the case of an infinite cluster, known as the Kirkpatrick-
Eggarter states.131 Figure 15 shows the simplest configura-
tions that give rise to such states. The black dots are atoms of
type B and the positions of type A are labeled by the ampli-
tude of the wave functions of the relevant state.132 The exis-
tence of such states and their energy are completely indepen-
dent of the configuration of the remaining sites in the system:

they are completely insensitive to the boundary conditions
and may coexist with the exponentially (according to An-
derson) localized and delocalized states. In the density-of-
states spectrum these levels form a fine structure represent-
ing <5-like peaks.

The localization effect and the spectrum of eigenstates
of regular fractals were discussed in Refs. 127 and 128. A
triangular Sierpinski curve was considered in Ref. 128 and
an additional regular model was discussed in Ref. 127. The
main conclusions of these two investigations agree. In both
cases it is reported that regular fractals have states similar to
the Kirkpatrick-Eggarter states (they are called molecular
states in Ref. 128). An example of such a state on the lowest
scale of a triangular Sierpinski curve is shown in Fig. 15.
Similar states exist also for larger scales. In the case of the
Sierpinski curve and its analogs in spaces with larger
numbers of dimensions the fraction bf such states is d /
(d + 1 ) . The remaining fraction \/(d + 1) represents hier-
archical states with the amplitudes different from zero on
small and large scales, but with a definite average localiza-
tion length. The average localization length of all the states,
except those corresponding to E = 0, is finite and the state
with E = 0 is the only one which is delocalized. The hierar-
chical states are fully analogous to those which are Ander-
son-localized in the quantum percolation model.

The transition to the homogeneous regime was dis-
cussed in Ref. 127. A system of Sierpinski curves of the nth
generation (i.e.,ofthea,,2" scale) forming a regular triangu-
lar lattice was considered. As before, the majority of the
states was found to be insensitive to the boundary condi-
tions, but there should also be delocalized states represent-
ing ~ (2/3)" of the total number. It is natural to assume that
the narrow bands of these delocalized states form from hier-
archical states and very extended Kirkpatrick-Eggarter
states.

The fine structure of the density of states of regular frac-
tals is also of interest (Fig. 16). Since all the states are local-
ized, there is no continuous component in the spectrum. Dis-
crete levels are grouped in a sequence of "nests" inside which
the structure of the levels is exactly as before: the spectrum
has a fractal structure resembling the structure of the density
of states in one-dimensional systems (see, for example, Ref.
140). In each of these "nests" the scaling behavior is de-
scribed by its own exponent. The fracton dimensionality ex-
ponent is the quantity associated with the average density of
states in a "nest" of levels grouped around E = 0.

A 1/2-

—1/2-

FIG. 15. Simple Kirkpatrick-Eggarter states for a
square lattice (a-c) and for the lowest scale of a
triangular Sierpinski curve (d ) .
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There is a significant difference between the models of
regular fractals and the quantum percolation model: in the
latter case the coordination number (number of sites with
which a given lattice site Z is associated) is a random quanti-
ty. The consequences are as follows:

1) in the case of a regular fractal, Eqs. (6.3) and (6.16)
differ only in respect of the shift of the energy origin by an
amount Z.V, whereas in the disordered case the electron and
phonon problems differ by the absence or presence of diag-
onal disorder and may belong to different classes of univer-
sality;

2) there are no dead ends in regular fractal lat-
tices. I 2 7 - I 2 K A lattice of triangular Sierpinski curves is essen-
tially a regular triangular lattice with a complex basis, so
that it is not surprising that for any value of n (i.e., no matter
how large is the crossover length 5") the system includes de-
localized states. However, in the case of a percolation cluster
the first delocalization states appear when x exceeds consid-
erably xc; the correlation length t, is then not so large. The
reason for this is the existence of dead ends. "(04' The exis-
tence in a regular model of a single delocalized state with

E = 0 at Z = const and the absence of such a state in the
quantum percolation model is clearly also a consequence of
the disorder of Z.

6.3. "Superuniversality" of the spectral dimensionality

The fracton dimensionality calculated from the known
values of t,/3, and v is very close to 4/3 for any spatial dimen-
sionality 2<e?<6. In the case of a Bethe lattice, i.e., in the
classical region, the equality Df = 4/3 is exact. It has been
suggested that this equality is exact for any dimensions of
space (Alexander-Orbach hypothesis86-'42), i.e., the fracton
dimensionality is superuniversal.

The Alexander-Orbach hypothesis has immediately at-
tracted much attention. Indeed, this hypothesis postulates a
universal relationship between the dynamic exponents / and
the static components /3 and v: it follows from this hypothe-
sis and from Eqs. (4.3), (5.9), and (6.10) that the hyper-
scaling relationship applies:

•4)v-p] . (6.17)

Substitution into it of the values from Table I shows that it is
satisfied quite reasonably and it provides a satisfactory ap-
proximate rule.

The question is now: is the relationship between t [or,
better,^ = ( t / v ) — d + 2] and v and/? a general property of
the fractal geometry or of only special classes of fractals? If
d = 2, it follows from Eq. (6.17) that g = D /2. We shall now
turn back to Fig. 12. The relevant dependence is represented
by the dashed line. We can see that even the slopes of this line
and of a curve near which all the points are grouped have
different signs. The relevant calculations for infinitely rami-
fied models of regular fractals can be found in Refs. 55 and
143. In the case of a randomly selected model of a regular
fractal the Alexander-Orbach relationship is invalid.

The Alexander-Orbach hypothesis immediately met
with serious criticism.144-145 The problem of the classes of
fractals to which the Superuniversality can be applied at all
and whether percolation clusters belong to this class was
considered in Refs. 84, 146, and 147. In particular, it was
concluded in Ref. 84 that the superlinearity applies to perco-
lation clusters with d^ 3 and for d = 2 we have g = 1 and not
D /2. All these treatments are based on certain likelihood
considerations. However, we shall now consider more rigor-
ous calculations and numerical experiments.

The behavior of the exponent g was investigated in Ref.
148 using thee expansion. For 4"' = g /t' the expansion was
g' = 1 + f/42 + 0(f2) , where £ = 6 — d, whereas the Alex-
ander-Orbach relationship gives g ' = 1 + 0(f:). Therefore,
this relationship is disobeyed even in the first order in respect
off . This conflict (l ike the results obtained for any finite
order o f f ) tell us nothing about the extent to which Eq.
(6.17) is valid as an approximate relationship.

Several numerical experiments involving modeling of
the percolation conductivity with the aim of determining
more accurately the ratio t /v and, consequently, g have been
made for the case when d = 2. Calculations of this kind have
to be very accurate and a computer has to be powerful: it is
necessary to determine the difference in the third significant
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place of the power exponent. A numerical modeling of the
conductivity of a random net in the form of a strip of size
350X 106 sites was made in Ref. 149 by the method of finite
scaling and it gave the value t /v = 0.973 + 0.005, corre-
sponding to Df = 1.332 + 0.003 (this differs by less than
1% from 4/3). Calculations were carried out using a CDC-
205 vector computer. In Ref. 150 it was reported that a direct
calculation for a random walk gave r/v = 0.970 + 0.009,
whereas in Ref. 151 a model with superconducting bonds
gave S /v = 0.977 ±0.010. In the last investigation the
three-dimensional case was also simulated. Thirty hours of
the machine time on a CRAY-1 computer were needed to
obtain the relevant curve. More detailed discussions of these
numerical experiments can be found in Ref. 107.

7. CONCLUSIONS

We have discussed the main dimensional properties of
percolation clusters. Since the phase transition in percola-
tion models is of purely geometric nature, the critical behav-
ior exponents of various quantities are naturally governed by
the geometric characteristics of a system. The properties as-
sociated with the self-similarity of clusters are governed by
their fractal dimensionality, the maximum velocity of prop-
agation of excitations is governed by the chemical dimen-
sionality, the behavior of the diffusion coefficient, of the con-
ductivity, and of the asymptotic density-of-states spectrum
are all determined by the spectral (fracton) dimensionality.
The relationships between many of the critical exponents
have been established.

The main dimensional characteristics of clusters and
the relationships between them are listed in Table III. All the
relationships between the dimensionalities with one another
and with other exponents (apart from that identified by an
asterisk, postulated in Ref. 80 and known to be invalid in the
d /2 case) apply to any dimensions in space that do not
exceed 6. The numerical values are given for the most thor-
oughly investigated two-dimensional case. The references to

the relevant work can be found in the present review. Most of
these values have been obtained in experiments involving
direct numerical modeling. A considerable scatter is en-
countered only in the relatively poorly investigated quantity
known as the hull dimensionality Z),,. The value identified by
an asterisk was obtained by modeling the hull of a cluster by
a random walk, whereas that identified by a double asterisk
was calculated using Eq. (4.6).

A new concept of dimensionality introduced in the late
seventies has stimulated studies of the critical behavior of
percolation models. These studies have shed much light on
the behavior of such systems, have made it possible to formu-
late new models, and to achieve a better (although not yet
final) understanding of many long-investigated properties
of the critical behavior of some quantities, such as the con-
ductivity. However, not all the problems have yet been
solved.

At present we do not know what is the relationship
between the chemical dimensionality Dc and the ordinary
thermodynamic exponents and, in particular, it is not known
whether this exponent can be expressed in terms of /? and v
using two-exponent scaling. The meaning of the hull dimen-
sionality Dh has not yet been finally established. The prob-
lem of the behavior of dimensionalities in the classical range
rf>6 (which is interesting from the practical point of view in
connection with, for example, modeling of complex commu-
nication networks) has not yet been finally solved. In the
case of the fracton dimensionality the exponent is most prob-
ably independent and cannot be expressed in terms of/3 and
v. The question is whether this is indeed so. These questions
remain to be answered. Naturally, introduction of new quan-
tities or the use of new models will bring new problems.

As already pointed out, percolation theory provides a
satisfactory model of many experimental situations. The
number of experimental studies in which any dimensionality
apart from fractal has been determined is as yet small. Ap-
parently, their number will increase. From the experimental
point of view the very existence of self-similarity is not very

TABLE III. Dimensionality characteristics of percolation clusters (two-dimensional case).

Name of quantity

Dimensionality of cluster

Dimensionality of backbone

Chemical dimensionality

Dimensionality of "geodesic"

Dimensionality of outer boundary
( h u l l )

Dimensionality of random walk

Internal dimensionality of random walk

Fracton (spectral) dimensionality

Designation

D

Dc

Dh

Dw
D'w

Df

Relationship with
other exponents

D d P P+v
v v

V

D

1 *
V

D °r °DW 2" 2 + 9
D'w = D + :, = 2 + Q

n ID 2DLl 2+e D^

Numerical
value

91
48

1.67+0.17

1.72+.0.02

1.10+0.02

1.72-1.76

1.751±0,n02*

1.720...**

0,67

2.846±0.0)6

1.33
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interesting compared with those features of the behavior of
the electrical conductivity, diffusion coefficient, elasticity,
and their anisotropy, and also of the specific heat which can
be exhibited by fractal systems. Real systems with long-
range forces and different correlations may prove to be much
more complex than the simplest models discussed above. In
such cases the dimensional characteristics are not statistical
but depend on the controlling parameters and this will make
the problems even more interesting. All that we have said
about percolation models should apply also to other systems
with fractal geometry mentioned in the Introduction.

The author is grateful to P. V. Elyutin and L. V. Kel-
dysh for discussing many of the topics considered above.
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