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1. INTRODUCTION

Possibly it is somewhat strange that the current litera-
ture (both original papers and monographs) contains inac-
curate and sometimes simply erroneous slips concerning fea-
tures generated during reflection of variously shaped pulses
from the separation boundary of two media (see, for exam-
ple, Refs. 1-4). The most popular problem encountered here
is that of the "precursor", or the seeming violation of the
causality principle in solving the problem of reflection of a
narrow pulse of plane sound waves from the separation
boundary of two media at an angle larger than that of total
reflection. This problem is related to the fact that in treating
the problem within the plane wave approximation the re-
flected wave appears at the observation point somewhat ear-
lier than the arrival time of the reflected planar pulse. The
reason for precursor occurrence is the contact existing at all
times of the incident pulse with the separation boundary. A
correct treatment of the causally stated problem,5 in which
the incident pulse contacts the boundary at a finite moment
of time, makes it possible to clarify that the precursor repre-
sents the trailing edge of the lateral wave, naturally reaching
the observation point after a finite time. The second aspect
often mentioned in studies devoted to reflection of sound
pulses from the separation boundary of two media is the
interpretation of the lateral wave. In most of these studies it
is assumed that the lateral wave is related to the quasistatic
portion of the reflected disturbance. Incidentally, it is more
reasonable to associate this not with the quasistatic, but with
the wave disturbance excited by a source moving along the
boundary with a speed higher than the speed of sound in the
medium. This interpretation of reflected and transmitted
waves was expressed by Heaviside and Frank.6'7 The wave
nature of this disturbance is implied, in particular, also by
the fact that there exists a region in which the falling-off of

the disturbance with distance in the lateral wave is the same
as for the reflected wave. We note that this circumstance is
not sufficiently clearly discussed in the original studies.1"3

The next aspect to which we wish to turn attention is the
problem of reflection from the boundary of a spherical con-
centrated disturbance. As follows from the studies devoted
to this problem, here also something remains unclear (see,
for example, Ref. 8). This is related to the fact that during
incidence of a spherical delta-shaped disturbance on the
boundary, i.e., a disturbance described by a delta-function of
the argument t-(R /ct) (R is the distance from the source of
the initial disturbance to the observation point, and c, is the
speed of sound), a disturbance distribution can be realized in
the reflected field, described by the equation p~ [ (t — (R /
cl)) ] ~'. In this case, for spherical disturbances of arbitrary
shape the reflected field is described by a corresponding inte-
gral in the principal value sense near the singularity t—*R /c,.
In this connection it is obvious that to obtain a finite magni-
tude of a reflected signal the shape of the initial pulse must be
described by a continuous function, while for increasing
front steepness of this pulse the magnitude of the reflected
pulse also increases (for a finite jump of the function describ-
ing the shape of the incident pulse the magnitude of the re-
flected field becomes infinite).8"10 A similar situation also
occurs in the case of incidence of a plane concentrated pulse
on the boundary.

In the present study we propose to clarify the problem
under consideration specifically taking into account the fea-
tures mentioned above. In Section 2 we briefly consider inci-
dence of a monochromatic plane wave on a boundary. The
necessity of doing that in the present review is dictated by the
fact that essentially all features generated during pulse re-
flection are already manifested in the simple case of reflec-
tion of monochromatic waves. The point is that the reflec-
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tion coefficient of a monochromatic wave for incidence
angles exceeding the angle of total internal reflection de-
pends on angular frequency even in the absence of dispersion
in both media, leading to a shift of the phases of the Fourier
harmonics forming the reflected pulse. This is what explains
the generation of a reflected distributed disturbance in the
case of a concentrated incident pulse.

In Section 3 we consider on the basis of Ref. 5 the prob-
lem of reflection of a semi-infinite pulse, and investigate ef-
fects due to the possibility of existence of a precursor. The
problem of the reflection of a cylindrical disturbance is con-
sidered in section 4. This problem was solved in Refs. 11,12
(see also Refs. 5,13). To interpret the features of this system
it became necessary to determine in a special case the trans-
mitted wave field as well.

Finally, in Section 5 we consider the reflection problem
of a spherical pulse by the same method as in the preceding
sections. In this case the determination of the reflected field
involves more awkward calculations than in the preceding
sections. Possibly, the inaccurate and erroneous conclusions
in a number of studies are related to a misinterpretation of
the studies of Savage and Town,9'14 where reflection of a
spherical pulse from the separation boundary between two
liquids was first treated. In this connection we discuss in the
present review in detail the case of a spherical pulse by an-
other method, which is simpler and clearer. Another advan-
tage of the treatment utilized is that it is a natural conse-
quence of the method discussed in the preceding sections of
the present review for simpler configurations.

2. INCIDENCE OF A MONOCHROMATIC PLANE WAVE ON A
BOUNDARY. THE FRESNEL EQUATIONS

In the present review the problem of pulse reflection
from the separation boundary between two media is treated
using the example of reflection of sound waves from the sep-
aration boundary between two liquids, located above and
below the plane z = 0 and characterized by densities plt p2

and speeds of sound c, and c2, respectively. We assume that
the sound signal is incident from the side of the medium with
the lower speed of sound (cl < c2), since the features related
to total reflection are generated precisely in this situation.
Similar effects also occur in the case of reflection of electro-
magnetic waves from the separation boundary between two
dielectrics,12'15"17 as well as reflection of sound pulses from a
liquid-solid and solid-solid separation boundaries.11'13'18

As is well-known, reflection of monochromatic plane
sound waves from the separation boundary between two li-
quids is described by the Fresnel equations for the reflection
( V ) and transmission ( W ) coefficients. If the pressure p in
the incident wave is determined by the real part of the
expression /?0exp{ — ia>[t — (y/c^sin/j. + (z/c,)cos^]}(

then
- I — ) cos

\C1J- sin TO

Hi— \fni — sisin-*
re2 — sin2 (4,

where/n =p2/pt,n = c/Cj./z is the angle of incidence of the
wave at the boundary, and («2 — sin2/x)1/2 = /
X (sin2/* - n2)1'2 for sin n > n. For sin p > n = sin /z0 (the
incidence angle is larger than the angle of total internal re-
flection) the reflection coefficient becomes complex, while,
obviously, V\ = l. For this case the reflection coefficient is
conveniently represented in the form

V (<B) =exp (iq> sign w)
_

*
'cos2 n —7i2 + sina|i ' (2.2)

The dependence on frequency a indicated in Eq. (2.2)
follows from the requirement of reality of the expression for
the pressure in the reflected wave or from the condition that
the pressure tends to zero in the transient wave as the obser-
vation point is removed from the boundary toward infinity.
The reflection coefficient (2.1), (2.2) has the hermitian
property \V(<a) = V*( — < a ) . Upon wave reflection from the
separation boundary between two media there occurs a
phase change of the reflected wave in the case fj, >(t0. If a
wave is incident, given by the expression

p = p0cos <a[t + l-?-

= PO cos co|, |

cos — i-j- sin \i]

t + (-^-) cos \L — i-j-'j sin n,

2m cos |o,
sin2 fi

(2.1)

then the pressure in the reflected wave is given by the equa-
tion

Pref = PO cos («>Sl + <P). ll = t — 7|- COS ^ — -j- SID. (1.

Important for the subsequent description of incidence
at the boundary of concentrated disturbances is, as already
mentioned, the nonanalytic dependence of Von a for <o— >0,
following from Eq. (2.2). The latter makes the steepest des-
cent method inapplicable for determining the reflected field
in the case of incidence on the boundary of a spherical con-
centrated pulse (compare with Ref. 2).

3. INCIDENCE ON A BOUNDARY OF A SEMI-INFINITE DELTA-
SHAPED PULSE OF SOUND WAVES. THE PRECURSOR

Using Eq. (2.2), one can easily obtain an expression for
the reflected field of a narrow pulse of plane waves, which
also will contain an expression for the precursor, i.e., the
signal reaching the observation point somewhat earlier than
the moment of arrival there of the reflected concentrated
pulse. The precursor concept appeared in the literature1'3'19

essentially in this manner, though in the causally stated
problem, when contact of the incident pulse with the bound-
ary occurs at a certain finite moment of time t = t0, there
exist, naturally, no precursors.

Consider the reflection of a delta-shaped planar pulse
(p =pg6(g), where<5(£) is the delta-function), incident un-
der an angle larger than the angle of total internal reflection.
It is assumed that the incident pulse has constant contact
with the boundary during the whole time interval
— o o < f < o o (the noncausal statement of the prob-

lem ).10'20-24 The incident signal is then described by the rela-
tion
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p = -js- f etoldco=-^- \ coscoidw,
-00 0

while the reflected field is, according to Eq. (2.2),

(3.1)

dco

= po [cos (p8 (g() - -^2- •£-] , (3.2)

where /"/I", defines the principal value of the corresponding
integral for £1—>0, i.e.,

and/ (£,) is a continuous function (for ^—>0). We note that
by multiplying Eq. (3.2) by exp( — ico0t) (a)0>0) and re-
placing t by t — tt, and then integrating the expression ob-
tained over /, within the limits — oo < t < oo, then, natural-
ly, an equation is obtained for the reflected field,
corresponding to the case of incidence of a monochromatic
plane wave on the boundary, i.e.,

/>ref=P(,exp[ —zco (t —-J^-sinji—j-cos p) + icp] .

The first term in Eq. (3.2), described by the delta-func-
tion, refers to the concentrated reflected pulse, having the
same shape as the incident pulse. Though there is no disper-
sion in both media, for fi>/n0 the boundary "reprocesses"
the incident signal in such a manner that a distributed distur-
bance appears in the reflected field—a precursor, corre-
sponding to the second term in Eq. (3.2): Y= — (poP/
irjii )sin <p, existing in the whole time interval — oo < t < oo,
i.e., "arriving" at the observation point faster than the re-
flected concentrated signal. Moreover, the magnitude of the
disturbance in the precursor can reach higher values for
small £„ i.e., for/z >/*0 the boundary, in some sense, exerts a
focusing action on the incident concentrated pulse.

Of course, if the quantity incident on the boundary is
not a delta-shaped pulse, but is distributed in space (and in
time), with the shape of this pulse described by a continuous
function/ (£), the reflected field has no singularities. In this
case the reflected disturbance is described by some integral
expression, in which an expression of type (3.2) appears as a
Green's function, and the presence of a singularity for £,—*0
under the integral sign leads to the consequence that the
latter must be understood in the principal value sense.10'20'21

These comments also apply to the case of incidence of a
spherical pulse on a boundary, this case being discussed in
detail in section 5. It must not be thought that expression
(3.2) is deprived of any meaning. On the contrary, as will be

a y
FIG. 1

clear from the following, it is a consequence of the causal
statement of the problem, when the moment of contact of the
incident planar pulse with the boundary is t0—> — oo (see
also Ref. 5). Attempts have been made in a number of stud-
ies to correct Eq. (3.2) without invoking a causal statement
of the problem. Thus, it is stated in a well-known mono-
graph4 that an expression of type (3.2) can be utilized in the
description of a reflected wave only when t > (y sin p + z
cos f i ) / c t . For an incident planar pulse having contact with
the boundary in the whole infinite time interval, a solution is
constructed in Ref. 1, differing from that described by Eq.
(3.2) and not containing an expression corresponding to the
precursor. This solution, however, is obviously of little inter-
est since, as is easily shown, it corresponds to postulating a
certain given disturbance (unrelated to the incident pulse
propagating in the first medium) in the second medium as
well. It must be mentioned that in Refs. 1,2 it is necessary to
specify more precisely the path of integration La in the com-
plex <y-plane for the expression describing the reflected sig-
nal, by extending La symmetrically with respect to the
Re (o = 0 axis into the region Re co < 0 (for more detail see
Ref. 5).

To explain the meaning of occurrence of signals of the
precursor type it is necessary to consider a system in which a
semi-infinite pulse of sound waves, propagating in the first
medium toward the boundary, contacts the boundary by its
edge at some moment of time t = t0 (see Ref. 5).

As in Section 2, let cl,c2,pi,p2 be the speeds of sound
and densities, respectively, in the upper (z>0) and lower
(z < 0) media, with the speed of sound in the lower medium
higher than in the upper medium, which is precisely the situ-
ation in which the features are generated related to refrac-
tion of waves incident at an angle larger than that of total
internal reflection. It is assumed that up to the moment of
time t = 0 there is no sound disturbance in the whole space.
Further, we stipulate that at t = 0 the pressure in the upper
medium is described by the equation:

T (y-

3, e>0,
(3.3)

where

yf are the coordinates of the observation point,// is the angle
between the plane of location of the largest initial distur-
bances and the boundary ( the line AB in Fig. 1 ) , and A char-
acterizes the width of the initial disturbance (see Eq. (3. 14)
and the comments to this equation). Below, whenever possi-
ble, we put £ = 0. It is required to find the pressure field in
both media, i.e., to find the solution of the wave equations

dt*
2 /
l {

,
T

i \ _ A K8'
2 / n (y —(y — z ctg n)2

z>0,

-)-0,

z<0,

(3.4)

(3.5)
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satisfying the boundary conditions

m
(3.6)
(3.7)dz ~ dz '

where S ' ( t ) = dS/dt is the derivative of the delta-function
I

(oexp[ —

with respect to time, and/?! and/>2 are the wave pressures in
the first and second medium. In this case most of the atten-
tjon js devoted to determining pl =p + pre(, where p and
ptef, respectively, are the pressures in the incident and re-
flected disturbances. We represent the expression for the
field of the incident wave in the form of a Fourier integral:

— ft, \kv |)] d<a dky

where, as usual, it follows from the condition p(t<0) = 0 that in integrating over co the singular points are bypassed
from above (lmca>0). In the integration over kz the pole kz = — ky ctg/i is bypassed from below (e— »• + ()), there-
fore at z<l only the pole kz = - ((co2/c\) - k 2

y ) 1 1 2 , Im kz <0 (Imey>0) gives a contribution to (3.8). Taking
into account what was said, we obtain

«> exp [- iffli -H>=-i£r55
We seek a reflected wave field in the form

/>ref = j j ^(<». fc»)eXP ( — i.

*£(*- :0 + *M» -— — x dcodfc...

dw d/cs,

and a transmitted one — in the form

Pu

0,

0.

(3.9)

(3. 10)

(3.11)

Substituting then these expressions into the boundary conditions (3.6), (3.7), we obtain the following reflected and
transmitted waves

X (3.12)

Urn II < a « J t P l —

(m 1

'/' = y— I ctg |

We carry out the following variable replacement in Eq.
(3.12):

ctg n- "

= j., k =k'
1 v ' " v' (3.13)

T t . , fiii^..r ne i n J T nI t i s s e e n f r o m ( 3 1 3 t h a l m ^ > 0 f o r ^ > 0 , a n d l m x < 0
for*, <0(werccallthatlmfl,>0 . We further note that for
convergence of the integrals _(3.12) over*, it is necessary to
imposethefollowmgconditiononthevalueoftheimaginary
part of x for Clt>z + /(*=*, + «2):

i
0 < * 2 < ,

For P < 0 x2 can be selected arbitrarily. Conditions (3. 14)
indicate that, unlike the La integration path, which can be
selected arbitrarily in the «-plane, with the only restriction
of bypassing the singular points of the integrand of expres-
sion (3- 12) from above, the integration path Lx is squeezed

near thereat, axis. It is important to note that it

^ ificall the introduction of the finite source width/l
^ ̂  .̂ ^ disturbance (3-3) which renders conditions

compatible, and consequently also the variable re-
placement (3.13). If one puts A = 0 at the outset, then fol-
lowing the replacement (3. 13) the integrals over k.. will di-
verge.

Carrying out the integration over k , we obtain the rela-
tion

- J;
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where

m X* — i-i~

and the integration contour Lx lies above the real axis
** •*

[—00 + te,,oo + ixt], 0 < x2 < X/p, ra = q/cjj,
.. _

-l=* , lim^nV-l

where

m9—•/e2 —a8

0<a2«El-n2<l, lim/62-a2=e. (3.18)

The Le contour consists of a loop encompassing the point
6 = 1, segments along the imaginary axis, and a semicircle of
infinitely large radius (see Fig. 2). Relationship (3.17) can
be interpreted as a plane wave expansion of the reflected
signal. The variable of integration 0 is the cosine of the angle
of incidence of the plane wave, while real 6 values corre-
spond to homogeneous plane waves, and complex values—
to inhomogeneous ones.

InEq. (3.17) #1,2,3,4 = ± 1, ± a are branching points.
We make a cut from 6 = — 1 to 6 = 1 below the real axis;
05 = cos fj, is then a pole. But if we make a cut joining the
points 0= ±1 above the real axis (see Eq. (3.17)), then
66 = cos fj, will be a pole. The contribution to (3.17) is pro-
vided only by the poles determined by the equation

- Qz = (y + _ 62, (3.19)

since only they are located inside the Lg contour.
As shown by detailed analysis, the roots of Eq. (3.19),

located on the selected sheet of the Riemann surface (see Eq.
(3.18)), are

. »'>0l t>£, (3.20)

. „•«>, *> 5(3.21)

FIG. 2. (0 = 07)
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In the integral (3.15) it is convenient to make one more
replacement:

=6*= -i8. (3.16)

The pressure in the reflected wave is then determined by the
expression

(3.17)

where R 2 = (y + iA)2 + z'2, and the roots must be under-
stood in the following sense: when R l=y'2 +z'2>c\t2 the
real parts of the roots in (3.20), (3.21) are positive, while
when R0

2 <c2t2, then, both when / > 0 and y' < 0, the solu-
tion of Eqs. (3.19) is represented in the form

— R2>0.

(3.22)

It also follows from the analysis of Eq. (3.19) that for
c,f < z' the poles lie on another sheet of the Riemann surface,
while there are no singular points of the integrand expression
inEq. (3.17) inside theLe contour, and (3.17) vanishes. We
further mention that the poles determined by (3.20), (3.21)
are located inside the Lg contour on different sides of the
real Re 6 axis (fory' > 0 Im 07 > 0). Further calculating the
integral (3.17), we obtain the final answer

IA

-97) Q
c.c., (3.23)

where

~
y, fl,

R0<cit,

and 6-, is determined from expressions (3.20)-(3.22).
We also present here the equation for the pressure in the

incident wave, obtained similarly to Eq. (3.23)

iA
I — O ' c t g n —8 7 )Q

l , (3.24)

where in comparison with (3.23) one must make the follow-
ing replacement in the expressions for 6-, and ft: z' is replaced
by z( —I — z. Thus, an exact expression for the pressure in
the reflected wave has been obtained in terms of elementary
functions.

We analyze Eq. (3.23) in the simple limiting case / = 0,
i.e., t0 = 0. Let y > 0, and let the observation point be near the
boundary, i.e., z->0; the expression for the reflected wave
field is then simplified:

M v (87)
( / i_e?ctgn — 67)

+ C.C.,

Kunine/a/.

(3.25)
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For t—*y/Ci Eq. (3.25) contains a singularity of type
(y — ci*t2) ~1/2, corresponding to reflection of a cylindrical
wave excited by the edge of the initial disturbance. Until the
moment of time r = min{r,,f2}, t x = .y/c, sin //, t2 = y/c2 the
field of the reflected wave is ~A, and for /l-*0 it is vanish-
ingly small (in this case Eq. (3.25) is approximately repre-
sented for A—A by the sum of two complex conjugate imagi-
nary quantities). The reflected wave field appears at t> r.
Here it is necessary to distinguish two cases: a) tl<t2,
sin n < c,/c2 (the angle of incidence is smaller than the angle
of total internal reflection), and b) sin/u >cl/c2 (the angle
of incidence is larger than the angle of total internal reflec-
tion).

Consider initially the case in which sin//<Ci/c2.
Expression (3.25) has a singularity for t—+tlt A—>Q. To iso-
late this singularity it is necessary to put A = 0, 6-, = cos/*,
in the expressions in (3.25) not having singularities for f-»f„
A-»0, and the relation c^ctg// - ((y + iA.)2 — c\t2)112

must be expanded in powers of A. Omitting the simple com-
putations, by means of the equation

d(x) =— lira11 x-o
we obtain

(3.26)

We turn now to describe the features of the case in
which the incidence angle is larger than the angle of total
internal reflection, i.e., sin/z>c1/c2 = n(tl>t2). For
t—*t2 Im V(6)~A, and, since in this case the field is
~iV(6) + c.c., the disturbance in this time interval is small
(pn(~A). For t>t2 the reflection coefficient is complex,
and the reflected wave field becomes nonvanishing, though
the concentrated disturbance, located on the line y = ctt/
sin//, moving along the boundary with velocity c/sin/u,
does not approach the point under consideration. This dis-
turbance is partially due to the fact that a cylindrical wave
propagates from the edge of the planar initial disturbance,
with a lateral wave excited at its contact with the boundary,
with the moment of its arrival at the given boundary point
characterized by the equality t = t2. Besides the mechanism
mentioned, a contribution to the lateral wave is provided by
the distributed disturbance, excited in the second medium
(z<0), concentrated on the liney = ctt/sin//, t>t0 = 0,
z = 0. The expression for the lateral wave field is easily
found from Eq. (3.25):

m|^sin2x— n2__
ny (m2cos2x+sini!x— n2)(sinxctg;n —

sinx = - - , t2<t<tt.

(327)'

For \t — ti | <r,, j>>A— »0 we restrict ourselves, wherever nec-
essary, to quantities of order (t — f, )/tv A /y only, and find
after several transformations

2n m2cos |i+sina n—n 2 L

2m cos2n ysin2 n—n 2 a

r (ma cos2 n — sin2 |i + n2) X

wherea= (t — rj
For t—* oo, y—*oo the region in which Eq. (3.28) is valid

becomes arbitrarily large. Comparing (3.28) for the indicat-
ed t, y (t—Kx>, y-+cx>) with expression (3.2), obtained by
using the noncausal statement of the problem, we see that
these equations coincide. This noted fact justifies the state-
ment that the precursor obtained in the noncausal statement
of the problem, when contact of the planar concentrated dis-
turbance with the boundary is constant during the whole
time interval — oo < t < oo, is fully understood and corre-
sponds to the asymptotic solution (for t—*ao,y—Kxi) of the
causal problem, when contact of the incident disturbance
with the boundary occurs at the finite moment of time t = t0.
Thus, the precursor represents a trailing front of the lateral
wave (3.28), excited during contact of the incident radiation
with the separation boundary.

It follows from Eq. (3.28) that the reflected wave field
is represented in the form of two parts: a concentrated dis-
turbance, described by a delta-function, and a distributed
disturbance, described by the second term in (3.28). A simi-
lar situation also occurs in reflection of a spherical
pulse.8'9'14 Using Eq. (3.28) as a Green's function for an
initial pressure distribution of arbitrary shape, it is obvious
that this distribution must be described by continuous func-
tions of coordinates (since integrals of expressions of type
(3.28) must be understood as integrals in the principal value
sense for a—>Q). This implies that for initial fields for which
the front steepness increases the reflected wave will increase
logarithmically in the corresponding region.8"10'20'21

We turn to a brief description of the fields in the region
y < 0. In this region a lateral wave, existing at cj < \y\ <c2t,
is the first to arrive at the observation point, followed by a
cylindrical one (c j f > |>> |), and there is no plane wave in this
case. This lateral wave is due to the same factors as the la-
teral wave existing in the region y > 0. We present the expres-
sion for the lateral wave

m cos x

(cos x ctg n + sin x) (m2 cos2 x + sin2 x — n2) l/Va — ci'a '

y<0, sinx = - , < t < L . (3.29)

_A_
it

The location of the disturbances in space is illustrated by
Fig. 3 (/I— >0). The straight lines 1, 2 determine, respectively,
the positions of incident and reflected concentrated planar
disturbances. The semicircle 5 determines the boundary of
the cylindrical disturbance due to the edge of the planar ini-
tial distribution. The straight lines 3 and 4 represent the
boundary of the region of existence of the lateral wave.

In connection with Fig. 3 we note the following. The
disturbances corresponding to the reflected and transmitted

t>tit (3.28)

c,t c,t $^c2t y
sityt

FIG. 3
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fields can, naturally, be obtained by considering the radi-
ation from sources induced by the incident wave at the
boundary. The expressions for these sources are easily pro-
vided, noting that the incident wave is given only in the re-
gionz>0, i.e.,/>inc = U(z) p(t,y,z), wherep(t,z,y) is de-
termined by (3.24). In that case pret and pu satisfy the
equations

dt-
-Cl&pu =J, Z < 0 ,

= P(t, V, 0). Poz = --(t, z,

z>0,

(3.30)

(3.31)

with boundary conditions (3.6), (3.7), while, naturally,

) = pu (t < t0, y, z) = 0, t0 = —

As shown by analysis similar to the preceding, / consists of
two different parts. The first part corresponds to a source
concentrated on the line>> = c^/sin/z, whose value in the
comoving coordinate system is constant. Such a source is
generated by a plane incident disturbance crossing the sepa-
ration boundary (see Fig. 3). The second source is distribut-
ed at the boundary, and is localized within the strip y < c:t
(it is assumed here that 1 = 0 and that the moment of contact
of the cylindrical disturbance with the boundary is t0 = 0).
This source corresponds to a distributed cylindrical pulse,
propagating from the edge of the plane disturbance, crossing
the separation boundary (as is well known, a cylindrical sig-
nal is distributed in space also in the case when the initial
disturbance is localized on a straight line). Using the sources
introduced above, one easily explains several features of the
system under consideration. Firstly, if Ci/sin/z < c2 (the an-
gle of incidence is larger than the angle of total internal re-
flection), then a source concentrated on the line y = c^t /
sin/z provides Mach radiation only in the first medium (a
reflected concentrated pulse with an angle of reflection equal
to the angle of incidence), while there is no transmitted con-
centrated pulse in this case (the condition of supersonic
source motion is not satisfied in this case). The distributed
source due to a cylindrical divergence is time-dependent,
and therefore provides radiation in both media, with this
radiation in the second medium near the boundary being
localized in the strip \y\ <c2t(l = 0). Thus, the disturbance
moves along the boundary of the first medium with a veloc-
ity c2 larger than c1( which is what leads to the appearance of
a reflected signal propagating with a speed higher than the
sound speed in the first medium. As could be expected, the
boundaries of the localization region of this disturbance are
inclined to thez = 0 plane by the Mach angle sin 9m = c,/c2

(see Fig. 3). In view of what was said the nature also be-
comes obvious of appearance of a signal of a precursor type
in the system considered, a signal which does not decrease
for t—* oo, y—f- oo. Since the source concentrated at y = cj /
sin fi moves along the boundary with a velocity smaller than

the speed of sound in the second medium, a quasistatic dis-
turbance from this source is formed in it for t—><x>, y—*<x>,
moving along with the source with velocity Ci/sin/i." As
already noted, this signal is independent of time in the co-
moving coordinate system (y' =y — Ci?' sin/i) also near the
boundary p~ I//. In turn, the indicated disturbance, mov-
ing along the boundary with a velocity Cj/sin fi larger than
the speed of sound in the first medium provides to it a distrib-
uted Mach radiation (due to the distribution property of
p~\/y') at an angle equal to the reflection angle. It must be
noted that for a planar source of shape J = J(y— (c-f /
sin [i)), moving along this plane in a direction perpendicular
to the .y-axis, Mach radiations from separate elementary
bands Ay, composing the source, do not interfere with them-
selves. In this case the value of the Mach radiation is directly
derived from that of the source (of course, an essential as-
pect here is the fact that the source depends only on the
combination^ — c,i/sin//). It also remains to clarify spe-
cifically with what is the precursor shape mentioned above
for a concentrated incident disturbance (see Eqs. (3.2),
(3.28)) connected. For this we find the induced solution/?; tr
of Eq. (3.31), corresponding to the field excited by the
source formed by the intersection of the incident pulse with
the boundary. For the precursor it is sufficient to take into
account only an incident planar pulse, i.e.,

POz = —•
2A

v, = -

One can then seek a solution of Eq. (3.31) in the form/»itr

(z, J"Q) , i.e., this solution in a coordinate system moving with
velocity y is a steady-state one (independent of time), and

Pi.tr = Jkz, *5 exp (ikzz + ikg)

where

Jk,, h. =
lAc\
4n

«s<0.

After simple calculations we find

(3.32)

z<0.

A disturbance of this shape, moving as a whole along the
boundary with velocity c1/sin/i>c,, provides Mach radi-
ation in to the first medium, with the shape of this radiation,
described by Eq. (3.28), reproducing the boundary value
pitl without distortion. Equation (3.32) must be supple-
mented by the solution of the homogeneous equation (3.31),
of the same shape as (3.32). Furthermore, using boundary
conditions (3.6) and (3.9), one can find/>tr.

A detailed analysis of the transmitted pulse for various
shapes of the incident signal was performed in Ref. 25. In
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this study was noted the fruitfulness of representing the
transmitted waves in the form of radiation fields of a source
moving along the separation boundary. Indeed, the asymp-
totic expression for the transmitted wave field for angles
larger than the angle of total internal reflection is propor-
tional to (Ai/r) + (B /r2), where r is the distance from the
source to the observation point,

Pine At, B. At.

Such expansions correspond to a representation of source
fields in the form of multipole series, with the role of the
charge being played by the total momentum of the incident
wave. The expansion written above corresponds to quasi-
static fields of a filamentary source, which, without altering
its shape, moves with a velocity c/sin/z, smaller than the
speed of sound in the second medium.

For a bell-shaped form of an incident planar distur-
bance the problem was solved in Refs. 3,28. As follows from
Eq. (3.32), atz = 0 the pressure field consists of two parts: a
concentrated disturbance, described by <5(£0), and a distrib-
uted disturbance, related to the expression P /£0. By compar-
ing Eqs. (3.2) and (3.28) with (3.32) it is easily seen that
the precursor shape totally repeats the shape of the steady-
state distributed disturbance, moving along the boundary
with constant velocity c,/sin/z.

We turn now to describe the localization regions of la-
teral waves in the system under consideration. As already
noted, in the case of initial conditions (3.3) there exist two
incident waves (planar and cylindrical from the edge of the
planar disturbance). Therefore there exist also two types of
lateral waves. In the region restricted by the planes
z= — (y-c2t) tg0m, z= - [y- (cJ/sinn)] tg/^
(lines 2, 3 in Fig. 3) there exist lateral waves from both
sources: a disturbance not decreasing for f—>oo, y—»oo,
y— (c^/sin/z) = const, related to a source localized at
j> = Cj//sin/z,z = 0(seeEqs. (3.2), (3.28)), and a cylindri-
cal disturbance decreasing as y~' for f—>• oo, y—*oo, formed
by the cylindrical incident wave (the source is localized at
\y\ <ctt, z = 0). In the regions bounded by the planes
2 = -[y- (cj /sin//) ] tg/z, z = (y + c2t) tg 9m and by
the cylindrical surface .y2 + z2 = c2t2 there exists a cylindri-
cal lateral wave. In the regions bounded by the planes 2, 4
and the cylindrical surface 5 (see Fig. 3), along with the
lateral cylindrical wave there exists a disturbance from a
concentrated source localized at y = Cjf/sin^.

We turn now briefly to the case in which the angle of
incidence is smaller than the angle of total internal reflec-
tion. If c2 < c^sin fj,, then the velocity of the concentrated
source v = ct/sin //, moving along the boundary, is larger
than the speed of sound in the second medium, and a quasi-
static disturbance which would move along with the source
cannot be formed. At the same time the possibility appears to
Mach radiation propagated at the refraction angle (first not-
ed by Heaviside6). In view of what was said, the reflected
field retains the nature of the concentrated pulse, repeating
the shape of the incident signal. Similarly to (3.28), for
t—* oo, y—* oo we have

Plf{ =

and then we find from the boundary condition (3.6)

y sin nt — z cos m

c~2 (3.34)

where sin/z, = c2sin/z/c1, and fand Ware defined by Eq.
(2.1). Naturally, Eqs. (3.33), (3.34) are easily found direct-
ly from Eqs. (3.4), (3.5) without the right hand sides and
the boundary conditions (3.6), (3.7).Forc2<c,/sin/z (see
Fig. 3) there exists a lateral wave related to the cylindrical
disturbance in the region bounded by the plane
z= (y — c2t)tg&m and the cylindrical surface
x2 +y2 = eft2 (cl<c2), while, unlike the preceding case
(c2 > c,/sin fi ) , in this region there exist no disturbances un-
related to the lateral wave. It is interesting to note that the
lateral wave reaches the observation point later than the
plane wave (the point c2t is located to the left of the point
ctt /sin fj, ) . It is precisely due to this, therefore, that no seem-
ing violation of the causality principle is generated within
the plane wave approximation.

4. INCIDENCE OF A CYLINDRICAL DISTURBANCE ON A
BOUNDARY*11-1*

As is well known, in considering the problem of inci-
dence of a spherical pulse on the separation boundary
between two nondispersive media there are certain difficul-
ties in interpreting the results obtained, related, apparently,
to the relative complexity of the expressions for the reflected
field.9'14 At the same time, in the case of a cylindrical distur-
bance the expression describing the pressure in the reflected
field contains only elementary functions, and all features of
the process (similar in many cases to a spherical pulse) can
be easily explained. Naturally, the reflection problem of a
cylindrical disturbance is also of intrinsic interest, and con-
tains some features not present in the case of a spherical
pulse.

We assume that the source, being an infinitely long fila-
ment, is parallel to the boundary, located at a distance / from
it in the first medium (z>0) (see preceding Section). To
find the sound field one must start from the wave equations
(3.4), (3.5) and the boundary conditions (3.6), (3.7) with
pt(t<0) =0,/= 1,2, replacing the right hand side of (3.4)
by a source corresponding to a cylindrical disturbance of the
shape

Comparing Eq. (4.1) with the right hand side of (3.4), we
see that the solution of Eqs. (3.4), (3.5) withasource (4.1)
can be obtained directly from the results of the preceding
section, if in the corresponding equations fi = 77/2,
ctg /j, = 0 and multiplies the integrand expressions foip,pre{,
and pu by —kz/co=—0/cl. Thus, for example, from
(3.20) — (3.24) we have for the pressure in the reflected
wave
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„ _
Pitt—

V(6,)
/fl2-

-+ c.c., y>0, t>0, (4.2)

where 61 is determined primarily from Eqs. (3.20)-(3.22)
with the replacement of y' by y, and R 2 = (y + iA)2 + z'2.
Putting in (4.2) A = 0, a simple expression is obtained

y(9o)—+ c.c., z/>0, (4.3)

ft,

It is seen from Eq. (4.3) that the reflected signal exists at
some point of space only when the expression for it, K(00)/
(R0

2 — c\ t2)'/2, is complex. This is possible for two reasons:
either 90<a, i.e., the angle of incidence is larger than the
angle of total internal reflection and the coefficient V(90) is
complex (the region of existence of the lateral wave for
R0 >clt), or for t > R0/cl (the region of existence of a reflect-
ed cylindrical wave). The moment of arrival of the lateral
wave at a given point of space ?„ is determined by the condi-
tion 60 = a, giving

- COS Qn
(4.4)

Equation (4.4) corresponds to the Mach condition for a
source concentrated in the plane z = 0, \y\ <ctt, whose
boundaries move with velocity c2>c1. Since the reflected
cylindrical wave reaches the given point of space at the mo-
ment of time t = Ro/clt then, as seen from Eq. (4.4), the
lateral wave reaches the observation point earlier than the
reflected cylindrical wave. The expression for the pressure in
the lateral wave is

Am
rcc,

(4.5)

60<a.

It is interesting to note that for R^c^t pTC{, is independent of
time. Thus,

Pref.l ~ — -

y>0,

Am (4.6)

J, t>t6, 90<a.

W (0) d9

FIG. 4

For R0—*c0t (A = 0) the expressionforpref;-*oo behaves as
(Rl —c2t2)~in. The same singularity also exists in the
expression for the reflected cylindrical wave, described by
the equation (seeEq. (4.3))

Pref = - ' (4.7)

ec<a, (Cit -> R0).

The noted circumstance is related to the fact that, unlike the
planar and spherical cases, for which concentrated distur-
bances of the following respective types can propagate in the
medium: 6 ( g ) , g = t — (y/c^sin/j, + (z/c^cos// and
8(t — R / C I ) / R , for cylindrical symmetry the existence of
concentrated disturbances of the type S(t — R/c1)f(R)
(R = (y2 + z2)1/2, and/ (R) is an arbitrary function) is im-
possible. Thus, in the case under consideration the pressure
in the incident wave is

iA
C.C.

In Fig. 4 part of circle 1, whose equation is
y2 + (z — I)2 = c\t2, determines the boundary of the inci-
dent wave, the part of circle 2y2 + (z + /)2 = c2?2 shows the
boundary of the reflected cylindrical wave, and the straight
lines 3, 4, whose equations are (z + l±ytg&m)
cos 6m =c^t, determine the boundary for the existence of
the lateral wave.

In the case of the symmetry considered here it is easy to
find also the transmitted wave.11"13 We dwell briefly on this
problem. Similarly to Eq. (3.17), we have from (3.12), put-
ting fj. = ir/2 and multiplying the integrand expression by
-kt/o>,

(4.8)

where the integration path is the same as in (3.17), and
W(6) =2m9/mff + J02-a2. In what follows we put
/ = 0; a contribution to (4.8) is then provided by the pole of
the integrand expression, determined from the equation

ett+ye2-a2z=G/+a)i/1-02, (4.9)
whence, as can be shown, only one value turns out to be
significant

(4.10)

2/>0, \z\<c2t, z<0, Ree n >0,

ImO n >0, /?2 =

Using Eq. (4.10), and letting A tend to zero, we find

IA W(Qn) Vtil—a2 ,

(4 .11)

As follows from Eq. (4.11 ),ptT = 0 for R0 > c2t, since in this
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case Qn > a (see Eq. (4.10)). Near the boundary we have for

2ltci m 1 — c
-+ c.c. (4.12)

Part of the transmitted wave, existing in the region
cj <y<c2t, forms the lateral wave.

We turn attention to the fact that, unlike the incident
and reflected fields, the pressure in the transmitted wave is
finite for R = cj, and is determined by the equation

Am
(4.13)

Naturally, this conclusion also follows from the fact that for
z—>• + 0, y=£Q the value of the total pressure p + pret in the
first medium does not contain singularities for ̂ —x;it, and
equals —Am/irc^ay.

5. INCIDENCE OF A DELTA-SHAPED SPHERICAL PULSE ON A
BOUNDARY**"

In the present Section we consider the case in which a
concentrated spherical pulse is incident on the separation
boundary between two media. Obviously, this case is the
most complex to study among all those considered in the
present review. As already mentioned, the reflection prob-
lem of a spherical pulse from the separation boundary
between two media was first solved by Savage,9 and then, in
more detail, by Town.14 In the present review we provide the
solution of this problem by a different method, namely, we
use a method of direct calculation of the integral for />rel,
used in the preceding Sections for other shapes of initial dis-
turbances. This approach is simpler and easier to visualize
than those used earlier (see Ref. 14).

In the light of the problems considered in the present
study, the case of spherical symmetry is interesting in that by
the limiting transition /-*«> ( / i s the distance from the
boundary to the localization point of the initial disturbance)
one can obtain the solution of the problem of reflection of a
planar disturbance incident on the boundary. Therefore it is
of interest to clarify the features related to occurrence of a
precursor.19

According to what was said above, we assume that ini-
tially a concentrated sound disturbance is created in the up-
per medium (z > 0) at a distance / from the boundary.

To find the sound field it is then necessary to start from

Eqs. (3.4), (3.5) and boundary conditions (3.6), (3.7) with
Pi<(t < 0) = 0, i = 1,2, while the right hand side of Eq. (3.4)
must be replaced by a concentrated source near the point
p = 0, z = 1 of the initial disturbance:

P2 = *2+!/2. (5.1)

Here we used the well-known representation of the two-di-
mensional delta-function

8(p)/2irp = (27T)-1 lim/ia 2

The necessity of representing the source in this form is dic-
tated by the following method of calculation (see Eq. (5.9)
and the comments to Eq. (3.14)). Thus, for the Fourier
component of the incident wave

p(co, k) = j p(t, r) e«««-kr> df dr, r={:r, y, z},

we have:

__ Ae~thzl 7 pU0(xp)dp
- e>t/et_Kt_kt J (X2+p2)./2 , (5.2)

where x2 = k2
x + k}, andJ0(xp) is a Bessel function.

Using the well-known equation

,x (5.3)

by means of Eq. (5.2) we obtain the following expression for
the pressure in the incident wave

P ( t ,

— tat—Mi) — fot] x/0 (xp) dx,

(5.4)

zi=—z

From the conditionp(t<0) = 0 it follows that on the inte-
gration path Lm Im a > 0. In the region z < / one easily car-
ries out the integration over kz in Eq. (5.4). As a result we
find

p(t, - -&S-S
I.,., 0

xexp [ —icof + i V((aVcf)—x'?! —Xx] /0 (xp) dx

where ̂ (ea2/c2
t —Ki-^i/cl for a>—> oo , <a2 > 0, and the cuts

in the ea plane are made as follows: }tol\> xc^, co2 = 0.
As in the preceding sections, we carry out in (5.5) a

replacement of variables similar to (3.13), i.e., co =clx'x,
x = x'. Then

dx

(5.5)

xexp [-MX (I/a:2— I z j — c4tx) — Xx] dx

(5.6)

where the cuts in the x plane are characterized as follows:
|xj | > 1, x2 = 0, x = *j + ix2. It follows from Eq. (5.6) that
the integration contour lies above the real axis, but, unlike
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the integration over ca, the path of integration over x cannot (5.12), lie above the integration path Lx. When the condi-
be continued arbitrarily in the region Im x > 0. To refine this tion cj > R0 is satisfied the imaginary parts of the branching
circumstance we consider in more detail the internal integral points, determined by (5.12), have a finite imaginary part
over x in Eq. (5.6). Using the equation

= - — exp( ixps in0) d0,

we have
n oo

) = — — \ d£ \ dxexp ( ixpsing — bx),

b = i (cjx — YXZ — 1 z4) + A,.

The convergence condition of integral (5.7)

Re fc>0

(5.7)

(5.8)

imposes a restriction on the value of x, i.e., on the choice of
the integration path Lx; more specifically, assuming on
Lx x2—>0, x2>0 (jc = x1 + ix2), we obtain from (5.8) that
the following condition must be satisfied

for (5.9)

If |x,| <c,r/Vs, |x1|<x2, the inequality Re 6>0 is satisfied
automatically. Condition (5.9) is consistent only for A ^0.
It is just in connection with this that in the source represen-
tation used by us in the form (5.1) one cannot put A = 0 at
the outset.

Assuming now that Eq. (5.8) is satisfied, and introduc-
ing the new variable of integration Y = exp(/f), we find

dY
a—(2&y/p) —i

(5.10)

The contribution tol(b) is provided by that pole of the inte-
grand expression in Eq. (5.10)

(5.11)

at which |F0|<1, and this determines the sign of

It must be mentioned that condition (5.9) determines
the position of the singular points in the complex x-plane
relative to the integration contour. Indeed, the branching
points x1-2 = ± 1 lie below the Lx contour. The branch
points, determined from the relations a = ± /' or

c{tx±p — iX — j^z2—1 z,, (5.12)

have small imaginary parts forR0= (p2 + z\)ll2>clt:
X

Taking into account the position of the cuts in (5.6) in the x-
plane, we find that Eq. (5.12) has only two roots, localized
in the regions x2>0, |x,| >ctt/^/s. Therefore, it follows from
condition (5.9) that both branching points, determined by

(5.14)

and therefore their position relative to Lx is also determined.
(The Lx contour is strongly squeezed toward the x2 = 0
axis.)

Using (5.6), (5.7), and (5.10), we find

P ( t ,
A d

8rea dt

(5 .15 )_
V'xz — 1-va;

for x2>Q,x->- <^,Vp2 — (Yx2-izl~

for a: = 0, K = 0.

Performing the variable replacement (3.16), we have

, s _ iA d f d9 ___ A dl (t, r) / < r i / : s
PV' r>~ 8n*R0 ~dt } Tjef - 8n*B0 dl ' ^•i°>

Le
e(Q)

(5.17)
= - - (c,te, ± p Rl-cy) = cos (6 T 6,),

-£-, cos 6, = -^-.
o -no

Singular points of the integrand expression are the branch-
ing points, which for ctt > z,, R0 > ctt are determined by the
relations

(5.18)

(the cut connecting the points 9 = ± 1 lies along the real
axis). If also ctt <zt, then there are no singular points in the
integrand expression (5.16) (they are located on another
sheet of the Riemann surface, and p(clt<zl) =0). For

the branching pointsR0<c1t, \-jRl — c2

coincide with ̂ 12 (see Eq. (5.17)).

Imfl

FIG. 5
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As shown by straightforward analysis, in ( 5. 1 6 ) the in-
tegration contour Le can be selected to be the same as in
(3.17) ( see Fig. 2 ). We recall that the variable of integration
0 denotes the cosine of the angle of incidence of homogen-
eous and inhomogeneous planar pulses. Figure 5 shows the
positions of the branching points of the integrand expression
in (5.16) relative to Le foiR0>c1t.

ForR0>c}t the integral (5.16) reduces to integration
over the edges of the cut, connecting the points 0^ and 62 ( see
Fig. 5 ) . As a result we find

1• r de
. ) 7W

1 de

1
0<Im 8 -0

61

= 2 '5iW +1

9, as 62, 0 (K, t) 1 —

0> Im 9-»0

K, t),

fA,

(5.19)

R«

since the integration paths in both integrals can be selected
over different sides of the real axis arbitrarily close to the
latter (A—*0). For R0 < cj the branching points 01>2 also lie
inside Lg. In this case, more accurately for ̂ c]t2 — R% >/l,

, Zj>/l, as already noted, one can omit in (5.16) expres-
sions of order A, and then

/ (t, r) = - 2n, Ra < Clt. (5.20)

Taking into account (5.19), (5.20), we find that the pres-
sure in the incident disturbance is described by the following
expression:

(5.21)

Of course, the Green's function of the wave equation in
unbounded space can also be found by other methods. The
advantage of the method provided is that it is very conven-
ient for finding the field of the reflected wave. To find the
expression for the reflected wave it is necessary to multiply
the integrand expression in ( 5. 16) by the Fresnel coefficient
V(0) (see Eq. (3.18) ), and replacez! byz' = z + /. Thus, we
obtain

oft r\-P(t' r> -- tf^
iA

where Rl= cos8w=z'/Rt, co&S[l>=clt/Rl,

the cut connecting the branching points 0 = ± a is over the
real axis (see Fig. 5). For z' >cltpK( = 0, since in this case
there are no singular points inside Lg.

Consider the region located ahead of the spherical front
RI = c^t. As easily seen, for the region Rl >c1t the expres-
sion for/?ref is similar to (5.19), i.e.,

IA d
dt

81(1')
V (6) d9

0<Im 6-0
62(2')

0>Im 6—0

V (6) d9

M6)

(5.23)

where |1 - (c\t2/R } ) |»A /Rvl /R,<\, 0,(z'), 62(z') are
determined by (5.18) with the replacement of z, by z'. As in
(5.18), foTa<Re0l(z'),pie{ (/?,>c,r)~0(/l), while for
a > Re 0] both integrals in (5.23) cancel each other in the
interval a < 0 < 1, while cancellation does not take place in
the interval Re 91 (z' ) < 0 < a. This is related to the fact that
the root (6 2 — a2) J/2, appearing in the reflection coefficient
F( (9) ( see ( 3. 1 8 ) ) on the segment Re el(z')<0 < a ( in the
first integral of (5. 23)), is denned as/ V«2 — 0 *\ (the upper
side of the cut — a < 0 < a ) , while in the second integral of
(5.23) it is defined as — /|V«2 — 62\ (the lower side of the
cut — a < 0 < a ) . Taking into account what was said above
and omitting all quantities of order A in ( 5.23 ) , we obtain an
expression for the reflected wave (A //{ , < 1 1 — c\t /R , | )

d
dt

[02 (m2— l
(5.24)

/„ _ urnn —(a * ;-
1,

The disturbance described by ( 5.24) reaches the observation
point earlier than the reflected spherical front, characterized
by Rl =clf. Therefore, expression (5.24) corresponds to a
lateral wave. Its moment of arrival t, at the observation
point is determined from the condition 01 (z' ) = a, whence it
follows that

}-Qm)-^-, 4-<cos6n (5.25)

where sin Qm=n. Thus, a lateral wave exists in the time
interval t, <t<R1/cl.

Using Eq. (5.24), one can easily obtain an expression
for the lateral wave near its leading (t—>t,) and trailing
(f->/Zi/c,) edges. For f—>•?, we have from Eq. (5.24)

Ac\n
! sin1/2 6C) sin

0 < t — t, < f,.
) — 6m) (5.26)

It follows from Eq. (5.26) that near its leading front the
lateral wave decreases, just as in the case of a point harmonic
source,3-27"29 i.e., pret ~R f2 .

It was noted earlier that for a planar pulse incident on
the boundary the lateral wave near the reflected planar pulse
decreases inversely proportionally to the distance from this
pulse (it is precisely this part of the lateral wave which deter-
mines the precursor). A similar situation also occurs for a
spherical pulse. Indeed, for 0 < (R ^/c±) — t<R ,/c, one easi-
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ly finds from (5.24), retaining only terms of order
c,)-*]-1,

„
Pref

We turn now to determining the disturbance field in the
region behind the spherical reflecting front, i.e., in the region
Rt <c,f. Here one must distinguish two cases: y0>a (the
angle of incidence is smaller than the angle of total internal
reflection), and y0 < a (the angle of incidence is larger than
the angle of total internal reflection ) . For

•a, JL.
Hl

one can neglect in (5.22) terms of order A. In that case
(5.22) reduces to integrating around the cut connecting the
points *jn(z'),*2UU').

It is of interest to determine the behavior ofpKf directly
behind the reflected front, i.e., for ̂ (c\t2/R\) -
In this case the points * { ' ' (z1 ) , ̂  ' ' (z' ) are arbitrarily close
to each other, and Eq. (5.22) is easily computed. Since for

the integralz7/?i >a, RI >clt, ^[(R \/c\) — f2—>-0,
appearing in (5.22) (seeEq. (5.23)) vanishes, while for z7
RI <a,Rl <c,t the integral J, in (5.22) equals 2mV(6 = z'/
R I ) , S Q that

(5.28)

Thus, for z'/R, < a, near the front R, =c,t the shape of the
reflected pulse repeats the shape of the incident pulse.

The situation is more complex when the angle of inci-
dence is larger than the angle of total internal reflection. For

To < a, .
fl?

one can also omit in (5.22) terms of order A. under the radi-
cal, and (5.22) reduces to calculating/,, encompassing the
cut connecting the points % 2 (z"):

2m9
02(m2 —1

(5.29)
/,. = '

For arbitrary t, R values this integral, as well as in the case
Rt >c1t, cannot be expressed in terms of elementary func-
tions, except for the cases z' = 0 andp = 0. At the same time
it is easily computed for the range of values /?,—>c,r. In this
case the 0 values onLe can be assumed to be real; then, in the
integral Jl the L e contour encompasses the branching points
Via (z') located arbitrarily closely (v—»-0). Since there are
no other singular points inside Le, then

(5.30)

For v—»0 Eq. (5.29) contains a logarithmically diverging
expression (9—>-y,), which is what determines the most
slowly decreasing part of the disturbance upon moving away
from the sphere R^ = c,t. As a result we have

-c\t-

v-^O, fl,<^. (5J1)

By means of (5.24), (5.27), (5.30), and (5.31), we find as
Ri—*ctt for the regions adjacent on both sides to the sphere

fl,
• —1 ,_A. (5.32)

Besides the concentrated disturbance, repeating the
shape of the incident pulse, Eq. (5.32) contains a part relat-
ed to the distributed disturbance. In the sense mentioned
above the situation here is analogous to the case of incidence
of a planar pulse on the boundary (see Eqs. (3.2) and
(3.28)). It must be noted, however, that (5.32) does not
apply to very small values of t — (Rt/ct). A more accurate
treatment instead of the term [t — (.ft./c,)]^ in (5.32)
leads to the expression

i.e., there is full consistency between (5.32) and (3.2),
(3. 28). Moreover, for/— >• oo, .4— *cx,A // = const the distrib-
uted part of the signal, described by (5.32), can be interpret-
ed as a disturbance related to the precursor, since the "arri-
val" of this signal at the observation point leads the moment
of arrival of the concentrated pulse at this point by an arbi-
trarily long time interval.

Indeed, for /— >oo, ^4 // = const Eq. (5.32) corresponds
to (3.2), (3.28), since for />|j>|,/>z

R = YXZ + (y -j- I sin fx)2 + (z — I cos (i)2

« I + y sin (i — z cos (.1,

/?, « / + j r s in n + zcosn, t = — +t,ci

where /t is the distance from the localization point of the
initial disturbance to the origin of coordinates, and T is time,
measured from the moment of arrival of the sound signal at
the origin of coordinates.

It must be stressed that the asymptotic expansion of
(5.32) is valid for \t — Rl/cl \/t<$z'/Rs and can not be used
when the radiator and detector are located near the bound-
ary (z'—*0). The reflected wave field at z'—«-0 is expressed in
terms of elementary functions.19 For a lateral wave we ob-
tain from (5.24)

0, *<-£-,
Pi =

2np3 [

(5.33)
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and the reflected spherical wave repeats the shape of the
incident one with a reflection coefficient V = — 1:

(5.34)

In the plane wave approximation (R—xn) the total field in
the upper medium is for grazing incidence p =pinc

+ Pret — 0. This fact is the content of the so-called Lloyd
paradox: "For grazing incidence there is no total field in the
upper and lower media". The resolution of the Lloyd para-
dox consists of taking into account the sphericity of the inci-
dent pulse. In that case a lateral wave is present in the upper
medium (seeEq. (5.33)).

It is interesting to note that the asymptotic equations
given for the reflected spherical pulse (5.28), (5.32), corre-
sponding to reflection of plane waves, though describing
correctly the shape of the fundamental part of the signal,
nevertheless do not determine its total momentum

P =

To explain this fact we calculate the total momentum of
the reflected signal. Integrating (5.22) over time, we obtain

n m — 1

~ tafiifm + l) *

The same result can also be reached easily by integrat-
ing the original wave equations (3.4), (3.5) over time and
then solving the Laplace equations with boundary condi-
tions (3.6), (3.7).14 At the same time integration of rela-
tions (5.28), (5.32) provides results differing from those
given above. The resolution of the problem of the "vanished
pulse" is that the parts of the reflected field dropping off
faster than \/R t (lateral waves and signals arriving after the
fundamental pulse), though small in amplitude (~ l/R \),
have a long duration (~R,) , and provide a contribution to
the total momentum of the reflected field which is compara-
ble in order of magnitude to the fundamental signal. This
result, naturally, follows from direct computation of the mo-
mentum of the lateral wave (for more detail see Town's pa-
per19).

CONCLUSION

Above we considered problems of reflection of various-
ly shaped pulses from the separation boundary between two
liquids. In studying the reflection problem of a semi-infinite
pulse from the separation boundary it has been determined
that the precursor generated during reflection of a planar
pulse is related to excitation of that part of the lateral wave,
whose field in the reference system / =y — (c,f /sin/z) is
independent of the time. In considering the causal formula-
tion of the problem the moment of signal arrival at the obser-
vation point is determined by the leading edge of the lateral
wave. We considered reflection of a cylindrical shape pulse
from the separation boundary between two liquids.5 Similar
results for reflection of electromagnetic pulses from the sep-
aration boundary between two dielectrics were obtained in
Ref. 12. Reflection of cylindrical pulses from a liquid-solid
separation boundary was investigated in Refs. 11, 13. Exact

expressions were obtained in the studies mentioned5-11"13 in
terms of elementary functions for the reflected fields, which
makes it possible to study lateral waves in detail, as well as
different kinds of surface waves, generated during reflection
from a solid.11-13

The problem of reflection of a spherical pulse from the
separation boundary between two liquids, first solved in Ref.
9, and later treated in more detail in Ref. 14, has been ana-
lyzed in the third Section. The results of these studies are
also contained in Ref. 8. The case of reflection of a spherical
pulse from the boundary of a solid was investigated in Ref.
30; see also Refs. 31, 32. One or another variant of the Four-
ier or Laplace method, with subsequent computations of
multiple integrals, has been used in the studies quoted to
obtain original expressions for the reflected field. In foreign
studies (particularly in the U.S.A.) this method of obtaining
the expression for the reflected field is called the Cagniard or
the Cagniard-Hoop method.33"35 The unified approach
adopted in the present study for reflection problems of var-
iously shaped pulses is also based on the Fourier method.

The most substantial aspect of the method used in the
present review, as well as in Ref. 5, is that for initial condi-
tions we use a disturbance having a finite, though small, lo-
calization width, characterized by the parameter A (only in
the final expressions A tends to zero). This approach makes
it possible to avoid a number of complications in the compu-
tation of Fourier integrals describing the reflected field for
singular initial conditions (delta-shaped initial distur-
bances). This fact is well illustrated by the circumstance that
following integration over ky (seeEq. (3.15)) or K (seeEq.
(5.15)), in the single contour integrals for the reflected field
the integration paths Lx are compressed near the Im x = 0
axis by conditions (3.14), (5.9). Naturally, Lx cannot pass
along the real axis, since it contains singular points of the
integrand expressions, and, as is very important, the branch-
ing points x = +n~l.

It must be noted that the method developed here, as
well as the Cagniard-Hoop method, is as a rule effective only
for nondispersive media, when the reflection and refraction
coefficients V(o), k) and W(o>, k) are homogeneous func-
tions of their variables.

In conclusion we point out that the computational pro-
cedure employed in this article can also be successfully used
also in problems of the reflection of pulses from anisotropic
media.36-37

The authors are grateful to V. L. Ginzburg and to se-
minar participants of the Physics Institute of the USSR Aca-
demy of Sciences for a fruitful discussion of the results of this
work.
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