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The present state of research on the cooling of atomic ensembles by means of laser radiation
pressure is discussed. First the basic theory of resonance radiation pressure is reviewed. The effect
of recoil on the drift and fluctuations of the momentum of an atom interacting with resonance
radiation is examined. There is an analysis of the forces acting on an atom in some simple light
fields: a traveling plane wave, a Gaussian beam, and counterpropagating Gaussian beams. The
review then focuses on the monochromatization of atoms by resonance radiation pressure and
related methods for laser cooling of atoms. The roles played by the radiation pressure force and by
momentum diffusion in shaping the narrow velocity distributions of the ensemble of atoms are
analyzed. The lowest temperature obtainable in the radiation cooling of atoms is estimated. The
basic experimental methods for laser cooling of atomic beams are described. Problems of the
three-dimensional cooling of atomic ensembles and problems of localizing cold atoms in light
fields, steady-state magnetic fields, and electrostatic fields are discussed. The review concludes
with a discussion of some applications of cold atoms in high-precision spectroscopy, frequency
standards, and atomic physics.

This review covers the basic theory of resonant radi-
ation pressure, longitudinal cooling of atomic beams, radi-
ation collimation and transverse cooling of atomic beams,
three-dimensional radiation cooling of atoms, the localiza-
tion of cold atoms, and some applications of cold atoms.

1. INTRODUCTION

Laser radiation has a high effective temperature Tnd,
which is determined by the average number (n) of photons
in one degree of freedom of the field (in one laser oscillation
mode). From the Bose-Einstein relation we have

(1.1)

and thus

» wTzw, where n ~%> 1.

This is the basis for the many applications of laser light for
heating matter, over a range stretching from the reasonance
excitation of atoms and molecules to laser thermonuclear
fusion.

Is the inverse process possible? Can laser radiation in-
stead be used to cool matter? In general, thermodynamics
does not rule out this possibility if energy is conserved and if
the entropy of the closed system consisting of the matter and
the radiation increases. As matter is cooled, its energy and
entropy decrease, so that a cooling is possible if the energy
and the entropy of the radiation increase after the interac-
tion with the matter. We recall that the energy and entropy
of radiation are given by1

£rad ='JV»«B, (1.2)
•Srad =G[(n + 1) In (re + 1) — n In n]; (1.3)

Here N = Gn is the number of photons of the radiation, and
G is the number of degrees of freedom of the radiation, which
is given by the Rayleigh-Jeans law

,-, 0>2 A(D ,~T,

(2nc)» (1.4)

where V and ft are the volume and solid angle filled by the
radiation, and Aw is the spectral interval of the radiation.
Qualitative discussions based on relations (1.2)-(1.4) recall
the discussion in the pages of this Journal of the question of
increasing the brightness and temperature of a laser beam in
an interaction with matter.2

We will assume here that there is no real absorption of
photons in the matter and that the matter does not amplify
the radiation; i.e., the matter simply scatters the incident
radiation. Under these assumptions we have N = const, and
from (1.2) we find that the frequency of the radiation must
increase after the scattering (&—HO + Sea) if the matter is to
be cooled. In other words, the laser beam must be scattered
with an anti-Stokes frequency shift by the matter. Only un-
der this condition is a cooling of matter by electromagnetic
radiation possible. This circumstance was pointed out many
years ago by Kastler3 and ZePdovich.4 The necessary in-
crease in the energy of the radiation does not lead to any new
condition, because the entropy of laser radiation is always
small (it is strictly zero for monochromatic radiation),
while the entropy of scattered radiation is quite high because
of the finite spectral interval of the scattered radiation and
the filling of the entire solid angle ft = 4ir by the scattered
radiation.

In 1975 Wineland and Dehmelt5-6 and Hansch and
Schawlow7 pointed out two interaction mechanisms in
which these general thermodynamic requirements would be
met and which would result in a cooling by laser radiation of
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FIG. 1. a—Scattering of resonant radiation by ions localized in an electro-
magnetic confinement system; b—transitions responsible for the cooling
of ions.
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FIG. 2. a—Scattering of resonance laser radiation by freely moving
atoms; b—transitions responsible for the cooling of atoms. The dashed
curve is the distribution of cold atoms in the kinetic energy e.

atomic ions5'6 localized in electromagnetic confinement sys-
tems and a cooling of freely moving atoms.7 The suggestions
of Refs. 5-7, which were developments of the earlier ideas of
Kastler and Zel'dovich regarding the possible cooling of
matter by means of electromagnetic radiation, have led in
recent years to the development of laser methods for produc-
ing cold atoms and atomic ions.

Let us take a qualitative look at the elementary pro-
cesses which underlie the cooling of localized atomic ions
and free atoms by laser radiation. Figure 1 explains the laser
cooling of two-level atomic ions which are executing an os-
cillatory motion in an electromagnetic confinement system.
From the quantum-mechanical standpoint, the oscillatory
motion of ions at a frequency v corresponds to a distribution
of ions in vibrational energy levels EV = ftv(v + 1/2) (Fig.
Ib). In the scattering of low-frequency laser radiation, of
frequency a = co0 — v, for example, by the resonance elec-
tronic transition |1) — |2), with frequency co0 and natural
linewidth 7<v, the ion initially undergoes a transition

l,u)—»|2,u — 1) and then spontaneously reverts to the low-
er state by virtue of the transition \2,v — 1) —>• 11 ,y — l).Asa
result, some of the kinetic energy of the ion (fiv) is trans-
ferred to the resonantly scattered laser radiation. The rera-
diation of photons from the directed laser beam into the solid
angle of 4ir sr and the increase in the spectral width of the
scattered radiation, to the natural linewidth y of the reso-
nance transition, cause an increase in the entropy of the scat-
tered radiation. This elementary process makes it possible to
cool localized atomic ions to extremely low energies. Under
the condition v>y, under which the arguments above are
valid, the limiting energy of the cold ions is close to the ener-
gy of zero-point vibrations, (e) zz (l/2)^v, as follows from
the transition scheme in Fig. Ib. The corresponding tem-
perature of the cold ions for typical vibration frequencies,
vzs 10 MHz, is Ts (\/2)*v/kB ~ 10~3 K.

Laser cooling of ions can also be explained in a simple
way in classical terms. The oscillatory motion of an ion at a
frequency v causes side components to arise near the fre-
quency v of any optical spectral line of the ion. These side
components are of the same nature as in the spectrum of a
frequency-modulated oscillation at a high modulation index
(i.e., when the frequency deviation Sa> is less than or com-
parable to the modulation frequency v). Laser radiation ex-
cites an electronic state at frequencies of the low-frequency

components of the spectral line, and the photons spontan-
eously reradiated into 4ir sr have a spectrum which is sym-
metric with respect to the frequency co0. Correspondingly,
an increase in the frequency of the scattered radiation means
that the laser radiation is cooling the ions.

The idea of laser cooling of atomic beams has been im-
plemented experimentally819 in the cooling of Mg II and
Ba II ions to temperatures ~ 10~2 K. The success of these
experiments was attributable in large measure to the pro-
longed interaction of the ion in the confinement system with
the laser radiation; this prolonged confinement was required
for the repeated reradiation of a large number of photons by
a single ion, so that a significant loss of kinetic energy could
be achieved.

In the case of freely moving atoms the absorption spec-
trum is broadened inhomogeneously by the Doppler effect.
This circumstance can also be exploited for laser cooling of
atoms. Figure 2 shows the atomic cooling scheme corre-
sponding to the idea of Hansch and Schawlow.7 Here the
laser radiation isotropically illuminates part of the low-fre-
quency half of the Doppler absorption line at some frequen-
cy co. Radiation with a wave vector k = n co/c and a frequen-
cy co «»0 can be absorbed only by atoms which are moving
opposite to the photon which is absorbed:

co — o>o = kv, (1.5)

in which case the Doppler effect compensates for the differ-
ence between the atomic transition frequency co0 and the
photon frequency co. The photons which are reradiated into
the solid angle of 4ir sr have, on the average, a frequency
co0>co. As a result, part (kv) of the kinetic energy of the
atom is transferred to the scattered radiation. In other
words, in each event in which a directed photon is absorbed
and reradiated isotropically on the average, the kinetic ener-
gy of the atom decreases, on the average, by an amount

Ae = kv. (1.6)

These arguments in terms of energies correspond to the
following microscopic picture of the cooling of atoms. Dur-
ing the absorption of an oppositely propagating photon, the
velocity of the atom decreases by an amount equal to the
recoil velocity:

hk
(1.7)
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where M is the mass of the atom. When the absorption and
spontaneous emission of photons are repeated, the velocities
of all the atoms decrease continuously, so that the radiation
cools a gas of atoms. From this microscopic standpoint, the
slowing of an individual atom in a resonance radiation field,
under certain conditions (which always are satisfied quite
well in situations of practical interest), may be thought of as
the result of the effect on the atom of a resonance radiation
pressure force. For this reason, the cooling of free atoms in a
resonance radiation field is essentially always a cooling by
resonance radiation pressure.

The cooling of atoms by resonance radiation pressure
continues until fluctuations of the momentum of the atom
come into play; these fluctuations are unavoidably present in
the stochastic process of the reradiation of a large number of
photons. The fluctuational heating of the cold atoms leads to
the attainment of a steady-state temperature, whose mini-
mum value is10

10-4_10-3K. (1.8)

Three-dimensional laser cooling of an atomic gas in the
geometry shown in Fig. 2 has not yet been implemented ex-
perimentally. The problem is one of technical difficulties in
irradiating a gas in the large volume which is required for
arranging the interaction of freely moving atoms with laser
beam over a lengthy cooling time rcool £ (y0/
y rec)Y~ ' ~ 10~3 s, where v0 is the average thermal velocity.
Laser radiation pressure has been used successfully in sever-
al experiments to cool sodium atom beams by a counterpf o-
pagating resonant laser wave tuned to an absorption fre-
quency of the fast atoms.11'17 In the first experiment,11"13 a
pulsed scanning of the laser frequency was arranged in order
to maintain continuously a resonance with the absorption
frequency of the atoms in the beam as they were cooled. It
then became possible to lower the temperature of the relative
motion of the atoms to 1.5 K at a strong saturation of the
resonance transition, with most of the atoms in the Doppler
line entrained in the interaction.14'15 When a spatial scan-
ning of the frequency of the atomic transition along the path
of the atoms to be slowed was used, it was possible to achieve
a beam temperature of16'17 0.07 K. Finally, transverse irra-
diation has recently resulted in a cooling (radiation collima-
tion) of a beam of Na atoms to a temperature of18 3.5-1Q"3

K.
The cooling of free atoms by laser radiation pressure

has now become the subject of an active research program in
many laboratories concerned with the production of ultra-
narrow atomic resonances without Doppler broadening,
atomic frequency standards, etc. (see the proceedings of a
special symposium on this problem19). The reason is that the
cooling of free atoms to very low temperatures dramatically
weakens the fundamental restrictions on the width and shift
of spectral lines: The linear Doppler effect and even the qua-
dratic Doppler effect cancel out, as does transit-time broad-
ening. Consequently, this extremely interesting problem, at
the meeting point of atomic physics and laser physics, de-
serves a detailed discussion. We would like to call attention
to a review of the problem of the laser cooling of ions20 and

some reviews of the more general problem of the effect of
resonance radiation pressure on the motion of atoms.21'27

In the present review we discuss the present state of
research on the cooling of neutral atoms by the pressure ex-
erted by resonance laser radiation. Section 2 begins with a
discussion of elements of the theory of resonance radiation
pressure. Expressions for the radiation pressure force in
some simple laser field configurations are given. These ex-
pressions are used in Sections 3 and 4 to analyze methods for
longitudinal and transverse cooling of atomic beams. The
experiments which have been carried out are also discussed.
Section 5 deals with an important direction for future re-
search: the three-dimensional cooling of an atomic gas. Sec-
tion 6 discusses the present state of the problem of the local-
ization of cold atoms. The solution of this problem will make
it possible to develop a unique research method: spectrosco-
py of a single atom which remains for an unlimited time in
the observation region. The final section of this review dis-
cusses the potential applications of cold atoms, which are a
large part of the motivation for progress in this field of phys-
ics.

2. BASIC THEORY OF RESONANCE RADIATION PRESSURE

The elementary events which give rise to resonance ra-
diation pressure are the absorption and emission of photons
by an atom. As a result of each elementary interaction event,
the atom acquires a recoil momentum. When an average is
taken over a large number of these elementary events in the
classical limit (#— »0), we find the concepts of a radiation
pressure force and a momentum diffusion. Let us examine
some simple results on resonance radiation pressure which
can be extracted from an analysis of the influence of the
recoil effect on the motion of an atom.

a) Recoil effect in the absorption (or emission) of a photon

For a nonrelativistic atomic velocity v0, the momentum
and energy conservation laws in the absorption ( + ) and
emission ( — ) of a photon by an atom are

My0±Kk. — M\, -|- AfvJ ± tin = -|- M\2 ± /zco0, (2.1)

where v is the velocity of the atom after the absorption
(emission) of a photon with a wave vector k and a frequency

<a = kc, and <u0 = 2vrv0. The change in the kinetic energy of
the atom is given by an expression which follows from (2.1):

(2.2)

(2.3)

The energy of the absorbed (emitted) photon is

where R is the recoil energy, given by

* = is- (2.4)

According to (2.2), the change in the kinetic energy of the
atom is the sum of the Doppler energy shift of the photon
and the recoil energy.

A quantitative idea of the exchange of momentum and
energy during the absorption (emission) of a photon can be
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found in the example of a Na atom which resonantly absorbs
radiation at a wavelength A. = 5890 A in a transition from
the 3S ground state to the 3P excited state. The change in the
velocity of the Na atom during the absorption (emission) of
a photon at this wavelength is vm = ̂ k /M = h /MA = 3
cm/s. In frequency units, the recoil energy is R /h = h /
2MA.2 = 25 kHz. By way of comparison, the average thermal
velocity of a Na atom at 300 K is v = 5-104 cm/s. At this
velocity, the Doppler frequency shift of the photon is
Av = kv/2v = 850 MHz. The natural linewidth of the 3S-
2P transition is 10 MHz.

This example clearly illustrates that the recoil effect due
to the absorption or emission of an optical photon is very
small. For an atom with an average thermal velocity the
typical relative change in velocity (or momentum) during
the single absorption (or emission) of an optical phonon is
vrK/v~10~>.

How does the recoil effect influence the motion of an
atom under conditions such that the atom absorbs and emits
a large number of photons?

b) Fluctuations and drift of the atomic momentum during
repeated reradiatlon of photons

We consider the absorption and reemission of photons
in an electric dipole transition of an atom between the (low-
er) 1} ground level and the |2) excited level. The excited
level decays only to the ground level, in a process accompa-
nied by the emission of a spontaneous photon (Fig. 3a). This
two-level atom decays radiatively to its original state 11)
after each excitation to the upper state |2), so that the atom
undergoes a continuous resonance interaction with the laser
radiation.

If conditions allow a prolonged interaction of the atom
with the radiation, the change in the momentum of the atom
is caused by the joint effects of the recoil of the stimulated
and spontaneous transitions. In each stimulated absorption
(or emission) of a photon, the atom acquires a recoil mo-
mentum fik = fuog/c along the wave vector of the radiation
(fik during absorption and-fflc during emission of a photon).
The sequence of stimulated transitions is a random sequence
by virtue of the statistical nature of the spontaneous relaxa-
tion of the atom to its ground state. During spontaneous
emission, whose direction fluctuates, an atom acquires a re-
coil momentum which has a fixed magnitude fitVo/c but a
random direction. For these reasons, the combined effects of
the recoil of the stimulated and spontaneous transitions al-

ways cause the change in the momentum of the atom to be a
complicated stochastic process (Fig. 3b). In turn, the sto-
chastic nature of the change in the atom's momentum causes
the change in the atom's coordinate to be a stochastic pro-
cess.

What is the average change in the momentum of the
atom, i.e., the change over a time interval in which the atom
experiences the recoil effect many times? In this analysis, the
role of the elementary processes (stimulated absorption, sti-
mulated emission, and spontaneous emission) which change
the momentum of the atom can be summarized as follows:
The stimulated absorption on the average increases, and the
stimulated emission on the average reduces, the momentum
of the atom along the direction of the radiation vector k.
Since the direction of spontaneous emission is stochastic,
this emission does not change the momentum of the atom on
the average, but it does allow a relaxation of the atom to its
ground state. By virtue of the spontaneous relaxation, some
of the momentum acquired by the atom during the stimulat-
ed absorption of photons turns out to be a net momentum
acquired during the stimulated emission of photons. As a
result, the momentum of the atom on the average undergoes
a systematic drift in the direction of the vector k.

These qualitative arguments show that the motion of an
atom in a resonance light field is the sum of a drift along the
direction of the radiation wave vector and a fluctuational
motion. In cases of practical importance, the motion of an
atom in the light field can be treated at the classical level. In
such cases the drift of the atomic momentum is a result of the
application of the radiation pressure force, and the fluctu-
ations of the atomic momentum reduced to a diffusion.

Under what conditions can the motion of an atom in a
light field be treated classically?

c) Conditions under which the motion of an atom can be
treated classically

The change in the momentum of an atom in a resonance
light field is the sum of discrete steps whose magnitude is the
photon momentum Hk. Accordingly, a measure of the quan-
tum fluctuations of the atomic momentum is the momentum
of the photon.

The change in the average momentum of an atom under
the influence of the force due to radiation pressure should be
regarded as substantial if this change causes the atom to de-
viate from resonance with the radiation. A disruption of the
resonance nature of the interaction of the atom with the radi-

\a

FIG. 3. a—Two-level scheme for the resonance interaction of an
atom with monochromatic radiation; b—illustration of the stochas-
tic change in the momentum of an atom in a resonance radiation
field with a wave vector k. The initial momentum of the atom is
chosen to be zero.
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ation occurs when the momentum changes by an amount

Apres«^|V-, (2.5)

where y is the half-width of the line of the atomic transition.
Using (2.5), we can find a first condition under which the
motion of the atom can be treated classically from the re-
quirement that the momentum of the photon be small in
comparison with A/>res (Ref. 28):

A ( p > _(p)-(Po)
=—KT~ — At

(fft)~ (2.10)

My
k '

This condition can be rewritten as

2M

(2.6a)

(2.6b)

This condition always holds for allowed dipole transitions of
atoms, since we would typically have yzz2ir-( 107-108) Hz,
while the recoil energy would be of the order of R /
/z;=2fl-.(104-105)Hz.

A second condition which must be satisfied if the mo-
tion of the atom is to be treated classically stems from the
obvious requirement that the small-scale fluctuational
changes in the momentum by an amount Hk must be
smoothed out over a time interval Af, over which the classi-
cal motion of the atom is examined. Since the scale time of
the momentum fluctuations is rsp = — (2^)"', a classical
description of the motion is legitimate only over time inter-
vals29

At>v-1. (2.7)

d) Radiation pressure force and gradient force
1) Plane light wave

Let us examine the expression for the radiation pressure
force exerted on a two-level atom as it interacts with a plane
light wave. For this purpose we determine the change
(A < p > ) in the average momentum of the atom due to sti-
mulated and spontaneous transitions over a classical time
interval Af. Denoting by p0 the initial momentum of the
atom, we can write its momentum at the end of the time
interval Af as30

s

The second term here determines the change in the momen-
tum due to stimulated transitions involving the absorption
and emission of photons with a wave vector k. The quantities
N+ and N_ are the numbers of photons which are involved
in stimulated absorption and emission over the interval Af.
The third term reflects the change in the momentum during
spontaneous decays accompanied by the emission of pho-
tons with wave vectors ks (|k| = |ks | = (OQ/C).

From (2.8) we find the average momentum to be

= <Po> (2.9)

where we have made use of the fact that the spontaneous
photons do not contribute to the average momentum over
the interval Af, when the number of spontaneous photons is
quite large. From the definition of the force we then find

where (Nf) = (N+) — (N_} represents the average num-
ber of photons which are scattered by the atom in stimulated
transitions during the time interval Af.

We now introduce the probabilities for stimulated ab-
sorption, Wabs, and stimulated emission, Wcm, of a photon
by a two-level atom, along with the probability for spontane-
ous emission, Wsv = 2y. We denote by nl and «2, respective-
ly, (HI + «2 = 1)> tne relative probabilities for finding the
atom in levels 11) and |2>. The average numbers of photons
absorbed and emitted in stimulated transitions are then

:, (N_) = «2WemAf. (2.11)

The steady-state populations satisfy the balance condition
TI7 .

(2.12)

Using these relations, we can express the radiation pressure
force in terms of the relative population of, say, the upper
level, n2:

F = Kk. (^W^ — n2Wem) = 2Kk.yn2. (2.13)

The steady-state population n2 is (see, e.g., Ref. 31)

„ * G rj 141HZ~ 2 i + G+[(Q —kv)W2]' ^-i^-i

where G is the saturation parameter of the atomic transition,
and fl = a) — co0. Finally, we find the expression originally
derived by Ashkin32 for the radiation pressure force:

G T=«7=ir. (2-15)

Although this derivation of the expression for F has not
been rigorous, the result is the same as that of the rigorous
derivation and is exact.

The force in ( 2. 1 5 ) has a Lorentzian dependence on the
projection of the velocity v onto the wave vector k which is
typical of a resonance interaction of a two-level atom with a
monochromatic field (Fig. 4a). The force reaches a maxi-
mum exactly at resonance, with kv = fl. If there is a strong
saturation ( G> 1 ) , the force tends toward a maximum value

2) Gaussian light beam

Most of the suggestions and experiments on laser cool-
ing of atoms have been based on the properties of the radi-
ation force which is exerted on an atom in a laser beam. Let
us examine the features of the radiation force for the two
simplest types of laser fields: the field of a Gaussian light
beam and the field of two counterpropagating Gaussian
beams. Everywhere below we assume that the atom is a two-
level atom (Fig. 3a).

We assume that the field of the Gaussian light beam is
given by

E = -7j- e£0 exp [ i (kz — cot)] + c.c. = eEQ cos (kz — cof ) ; ( 2. 1 6)

here e is the unit polarization vector,
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a

FIG. 4. a—Radiation pressure force for the case of a traveling plane
wave as a function of the projection of the velocity of the atom onto
the wave vector k = ke,; b—the gradient force as a function of the
projection of the velocity of the atom onto the z axis. The light beam
is propagating in the positive z direction.

is the field amplitude of the beam, which depends on the
transverse cylindrical coordinate/7, and q is the beam radius.
We assume that the Gaussian beam is slightly divergent. For
this reason, we have omitted from (2.16) a dependence of
the phase on the transverse cylindrical coordinate/?.

Calculations show that the radiation force in field
(2.16) has components along and across the beam axis:

E = c.c. ]

F = epFp (2.17)

hereFr, the longitudinal component of the radiation force, is
the radiation-pressure force and is given by (2.15),

C(P)
F,= * i " \yt i i\au

The transverse component is33'34

Q — kv.

(2.18)

(2.19)

In (2.18) and (2.19), ft = a - ca0 is the difference between
the field frequency and the field of the atomic transition, and
ep is a unit vector along the radial coordinate p = xex + yey.
The saturation parameter is

(2.20)

where d is a maxtrix element of the atomic dipole moment.
In contrast with the longitudinal component of the ra-

diation force in (2.18), the vz dependence of the transverse
component of the force is described by a dispersion curve
(Fig. 4b). The transverse component of the radiation force is
frequently called the "gradient force." The physical reason
for the existence of a gradient force is the effect of a spatially
nonuniform optical field on the atomic dipole moment
which is induced by high-frequency oscillations of the
field.35 The modulus of the gradient force reaches a maxi-
mum at a frequency deviation fl = kvz ± yVl + G:

Iff I — "'PKpl raa i— o n*
G(P)

2 9s /l + G(p)
(2.21)

As the saturation parameter G(p) is increased, the maxi-
mum value of \Fp \ increases in proportion to G1/2.

3) Counterpropagatlng Gaussian beams

The field of two counterpropagating, slightly divergent
Gaussian beams can be written

= 2eZ?0 cos kz cos cot, (2.22)

where the notation is the same as in (2.16). The radiation
force for field (2.22) can also be written in the form in
(2.17), but now the longitudinal component Fz (the radi-
ation pressure force) and the transverse component Fp (the
gradient force) are determined by infinite converging frac-
tions.36 The expression for the radiation force takes this
mathematical form because of multiresonance processes in
which the atom interacts with the counterpropagating
waves. These processes are responsible for a multiresonance
structure of the radiation force (Fig. 5). The appearance of
multiresonance structures can be explained qualitatively us-
ing the example of the radiation pressure force as follows.

In the case of a single traveling wave, the radiation pres-
sure force contains a single resonance (Fig. 4a), which cor-
responds to an exact resonance of the atom with the field:
kvz = ft. In counterpropagating waves, with a slight satura-
tion of the atomic transition, two resonances arise: one for
each traveling wave, ± kvz = ft. These may be called "first-
order resonances."

As the saturation parameter in the velocity dependence
of the force increases, higher-order resonances appear be-
cause of the nonlinear interaction of the atom with the two
counterpropagating waves. These resonances can be seen
quite well on the dotted and dashed lines in Fig. 5. The sim-
plest of these resonances are second-order resonances (Fig.
6a) . These resonances arises when the absorption of photons
by one traveling wave is accompanied by a simultaneous
emission of photons into the other traveling wave. Since the
frequency of one wave in the rest frame of the atom is
6>±kvz, while the frequency of the other wave is co ^p kvz ,
energy conservation,

(co ± kv,) — (co T kvz) = 0, (2.23)

tells us that the second-order resonances arise at a zero ve-
locity (kvz = 0),

Next come the third-order resonances (Fig. 6b). These
resonances are caused by the nonlinear interaction in which
the absorption of photons from the two propagating waves
occurs at the same time as the emission of photons into one of
the waves. According to the energy conservation law written
in the rest frame of the atom,

(co ± kvz) — (co (co ± kvz) = co0, (2.24a)
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FIG. 5. a—Radiation pressure force; b—gradient force for the
field in (2.22) as functions of the velocity projection vz for a
frequency deviation ft = 3y. The saturation parameter is G = 1
(solid line), G = 9 (dashed line), or G = 25 (dotted line). The
transverse coordinate is p = kg2.

the third-order resonances are centered at velocities

kvz= (2.24b)

Higher-order resonances arise in an analogous way.
In general, the reasons for the appearance of resonances

of odd and even orders can be seen from these examples to be
nonlinear processes which either change the internal state of
the atom or leave it unchanged. Those processes in which the
absorption (or emission) of n + 1 photons from one wave is
accompanied by the emission (or absorption) of n photons
into the other wave alter the internal state of the atom and
give rise to resonances of order 2n + 1, which are localized
at velocities

kvz = ± 1). (2.25)

Those processes in which n photons are absorbed from one
wave and n photons are emitted into the other wave do not

FIG. 6. Schemes of resonance processes of second (a) and third (b) or-
ders.

alter the internal state of the atom and give rise to resonances
of order 2n, which are localized near zero velocity.

An important consequence of the multiresonance pro-
cesses is that the sign of the radiation pressure force changes
near the velocity vz = 0 in the case of pronounced satura-
tion, as can be seen from the dashed line in Fig. 5a. For
example, if the frequency deviation is chosen to be negative,
the sign of the force near vz = 0 at small values of G will be
opposite to the sign of the velocity vz, while at high values of
G, on the contrary, the sign of the force near vz = 0 will be
the same as the sign of vz. A change in the sign of the radi-
ation pressure force occurs only at a sufficiently large value
of the saturation parameter G, such that multiresonance
processes become so significant that the atom is effectively
involved in a stimulated scattering of both of the counterpro-
pagating waves.

Simple analytic expressions for the radiation force in
the field of two counterpropagating waves can be derived in
the approximation of slight saturation, in which saturation
parameter (2.20) satisfies the condition

(2.26)

In this approximations, the radiation pressure force is given
by10-37

where

(2.27)

(2.28)
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The gradient force in approximation (2.26) is33-34

_n$_G (Q-toz) L.+(Q+kvz) L+
> «" l+G(i_+i+) (2.2

Approximate expressions (2.27) and (2.29) are accep-
table approximations of the exact value of the radiation force
even if the saturation of the atomic transition is pronounced,
and condition (2.26) does not hold. The primary distinction
between the approximate and exact expressions is that the
approximate expressions incorporate only the first-order re-
sonances.

e) Momentum diffusion

We turn now to the fluctuation processes which cause a
diffusion of the atomic momentum against the background
of its drift. There are two such processes.

One of these fluctuation processes consists of fluctu-
ations in the direction of the spontaneous emission of the
photons. Since the change in the momentum of an atom is
related unambiguously to the momentum of the spontan-
eously emitted photon,

Ap = p' — p = — ftk,, (2.30)

the fluctuations in the direction of the spontaneous emission
always lead to fluctuations in the direction of the recoil mo-
mentum (Fig. 7).

The second process is caused by fluctuations in the
number of photons which are scattered by the atom.30-38

Since a recoil momentum ̂ k( — #k) is associated with each
stimulated absorption (or emission) of a photon, the mo-
mentum of the atom fluctuates by the amount ± tik upon
each unit fluctuational change in the number of scattered
photons. This fluctuation process causes the momentum of
the atom to vary only along the wave vector k, and always by
a discrete quanity fico/c.

The existence of these two fluctuation processes follows
directly from relations (2.8) and (2.9). The difference
between these two expressions determines the fluctuational
deviation of the momentum of the atom from its expectation
value:

Ap = p-<P> = (p0-<Po»+ftkAtfj + S7*k,. (2.31)

Here AA7,- = N, — (N,) is the deviation of the number of
photons (Nj = N+ — N_) scattered by the atom from the
expectation value (N,) = (N+} — (N_). The second term
in (2.31) incorporates fluctuations in the number of scat-
tered photons, while the third term incorporates fluctu-

-ftk

6i PX-M

FIG. 7. Fluctuations caused in an atom's momentum by (a) fluctuations
in the direction of the spontaneous emission photons and (b) fluctuations
in the number of photons scattered during stimulated transitions.

ations in the direction of the spontaneous emission of pho-
tons.

For classical motion of an atom over an interval A? sa-
tisfying condition (2.7), these fluctuation processes cause a
diffusive broadening of the momentum distribution. The
broadening is diffusive because of the large number of pho-
tons which are scattered by an atom during a classical time
interval (2.7). Each of the fluctuation processes causes a
corresponding type of diffusive broadening of the momen-
tum distribution. The fluctuations in the number of scat-
tered photons are the reason for directed diffusion, while
fluctuations in the direction of the spontaneous photons are
the reason for anisotropic diffusion. These diffusion pro-
cesses are determined quantitatively by corresponding diffu-
sion tensors.

For the simplest case of the interaction of a two-level
atom with resonance radiation with the wave vector k and a
frequency a = kc, we can evaluate the diagonal elements of
the momentum-diffusion tensor in a simple way. We define
the diagonal elements of the diffusion tensor by (/' = x, y, z)

(2.32)

If, for definiteness, we assume that the radiation is propagat-
ing along the z axis (k = &ez), we can write the following
expression on the basis of (2.31):

""" (2.33)

here au = (cos21?,) is the expectation value of the square of
the cosine of the angle i?,, which determines the projection of
the momentum fiks onto the axis / = x,y, z. The indices "a"
and "d" specify anisotropic and directed diffusion.

To find the elements of the momentum diffusion tensor
we need to determine the mean square value of the fluctu-
ations in the number of photons which are involved in the
stimulated scattering, ((AA7,-)2); this value appears in
(2.33). It depends on the statistics of the number of scat-
tered photons. It can be estimated by assuming that the scat-
tering of the photons is a completely random process. In this
case the probability P(N,), for the stimulated scattering of
AT photons over the interval Af, must obey a Poisson distri-
bution:

(2.34)
lft\

For Poisson statistics the relation ((AJV, )2} = (A7,) holds.
Furthermore, for our two-level atom we have
(N,} = (N, ) = 2yn2kt; i.e., the expectation values of the
numbers of photons involved in stimulated scattering and
spontaneous emission are identical. Using the latter rela-
tions, we finally find28'38

i ft

D,i=-TWv(att + dzi) , , _ ,_„ , (,0_i^2;,.2|. (2.35)

Approximate expression (2.35) is quite close to the exact
value, derived in Refs. 29 and 39-41. A deviation of (2.35)
from the exact value is caused by the deviation of the statis-
tics of the photons involved in the stimulated scattering from
Poisson statistics.
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Near a resonance (ft = kv) and with a pronounced sat-
uration of the atomic transition (G> 1) we have

D, (2.36)

For optical transitions of atoms, the elements of the velocity
diffusion tensor, found by replacing the recoil momentum by
the recoil velocity yrcc = fik /M,

C,,= Dti (2.37)

are of the order of 109 cmVs3.

3. LONGITUDINAL COOLING OF ATOMIC BEAMS

We begin with a consideration of the use of radiation
pressure to slow the motion of atoms along the axis of an
atomic beam. We first offer a qualitative analysis of the de-
formation of the velocity distribution of an atomic beam on
the basis of the simple expressions derived for the force in
Section 2. In those cases in which the diffusion is important,
we will use a stochastic Langevin equation to derive the mo-
tion of the atoms.

a) Monochromatization of atomic velocities

We begin with some basic estimates dealing with the
change in the velocities of an ensemble of two-level atoms in
the field of a plane, monochromatic, traveling light wave. In
this case an atom experiences a radiation pressure force
(2.15), which has a significant effect on an atom if its veloc-
ity lies in the interval

| kvz- Q | < Ys =7(1 (3.1)

The change in the velocity of an atom in interval (3.1) oc-
curs over the scale time (r{ ) for the resonance interaction of
the atom with the wave. This time can be found from the
equation of motion of the atom under the influence of the
force in (2.15):

_ 2(1 + 6)3/2 ft
T,« - g - _.. (3.2)

At a moderate saturation of the atomic transition, with G^l
(here the wave intensity required for an allowed transition of
the atom would be / zs 0. 1 W/cm2 ) , the time rf is of the order
of 10~5-10~6 s. The change in the velocity of the atom over
the time rf is ys/kx 102-103 cm/s. Over this time, an atom
with a velocity of the order of the average thermal velocity,
v ~ 105 cm/s, travels a distance / = VT{ ~0. 1-1 cm.

We now consider the case of an atomic ensemble, in
which all the atoms have positive initial velocities vz . The
ensemble is interacting with a light wave which is propagat-
ing along the z axis (Fig. 8a) . In this case the radiation pres-
sure force increases the velocities of the resonant atoms with
time, leading to a dip in the velocity distribution of the
atoms, centered at yres = fl/k. The formation of this dip is in
turn accompanied by the formation of a peak in the acceler-
ated atoms, centered at a velocity above i>res . If the interac-
tion lasts a sufficiently long time, essentially all the atoms
increase in velocity, so that a narrow, monovelocity distribu-
tion of atoms always forms from an initial broad distribu-
tion. Analogously, in the propagation of a light wave oppo-

FIG. 8. Sketch of the deformation of the velocity distribution w(vz) of an
ensemble of atoms in the field of a traveling light wave; plot of the radi-
ation pressure force F as a function of the velocity projection
i>2 (t < t, < f2) . a—The atoms are moving in the direction of the wave vec-
tor of the light wave; b—the atoms are moving in the opposite direction.

site to an atomic beam, a dip forms at the resonance velocity
yres = — f l / k in the velocity distribution of the atoms (Fig.
8b). In this case a narrow velocity distribution of atoms
forms at a velocity below i>res. The effect of the radiation
pressure force is thus to form from any broad initial distribu-
tion a narrower velocity distribution, i.e., to monochroma-
tize the atoms in velocity space. 29|42~49

A quantitative description of the velocity monochro-
matization of atoms by the radiation pressure force
F = MAZ (M and Az are the mass and acceleration of the
atom) can be found from the Liouville equation describing
the evolution of an atomic velocity distribution w = w (v2 ,t):

ir+- (3.3)

We assume that the initial velocity distribution of the atoms
corresponds to a relaxation of the atoms in the beam from a
source with a temperature T:

w(v» 0) = 4ir1/2ir3i>! exp (— v\lvz}, v^O, (3.4)

w, arb. units
10

20

FIG. 9. Evolution of the velocity distribution of a spatially uniform atom-
ic beam in a counterpropagating light wave. The frequency deviation is
fl = — 70y, and the saturation parameter is G = 10. The time and veloc-
ity units are ( c ) ~ '

 an<l Y/k- Dashed lines — Solutions of the Liouville
equation; solid lines — solutions of the Fokker-Planck equation.
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where v = (2kB T/M)l/2 is the mean velocity of an atom.
We consider the case of the slowing down of an atomic

beam in a light wave propagating in the direction opposite to
that of the beam. In this case the frequency deviation fl is
negative, and the acceleration of an atom, Az, is

(3.5)

Figure 9 shows the results of a numerical solution of Liou-
ville equation (3.3) for this case. The mean velocity has been
chosen to be v = 48y/k. We see from Fig. 9 that the deforma-
tion of the velocity distribution actually occurs over a time of
the order of rf. The numerical values of the quantities indi-
cated in Fig. 9 depend on the parameters of the atomic tran-
sition. For example, let us assume that the counterpropagat-
ing light wave is interacting with a beam of Ca atoms at the
4S-4P resonance transition. In this case the dimensional val-
ues are

Y/& = 740cm/s1, (kvrec)-
1 = 2,9-10-" s ,

v = 3,5-10* cm/s at T = 300 K.

b) Role of momentum diffusion

In all cases, the monochromatization of the atomic ve-
locities proceeds only up to a certain limit, set by velocity
diffusion. In order to incorporate the effect of velocity diffu-
sion on the evolution of the atomic velocity distribution we
need to solve the corresponding Fokker-Planck equa-
tion.45-29 For a spatially uniform, one-dimensional ensemble
of atoms in the field of a traveling plane wave, the Fokker-
Planck equation is

dw d , , \ _ d f _ / > - / i / r x

where C^ is the velocity diffusion coefficient. An approxi-
mate value of the latter is given by (2.35).

Figure 9 shows numerical solutions of Eq. (3.6) found
for the same parameter values as in the solution of Liouville
equation (3.3). Comparison of these solutions with the solu-
tions of Eq. (3.3) shows that the velocity monochromatiza-
tion of the atoms is disrupted as the diffusion time is in-
creased. The relative contribution of diffusion depends on
the time over which the atoms interact with a field and on the
width of the initial atomic velocity distribution. In particu-
lar, for the rather broad initial distribution chosen in Fig. 9
the contribution of diffusion becomes important at times

The minimum width of a velocity distribution in the
monochromatization of atoms by a light field has been calcu-
lated in many studies.39-45-46 A simple estimate of the mini-
mum width can be found from the stochastic Langevin equa-
tion. Let us consider atoms which at t = 0 are at resonance
with a wave which is directed opposite to the motion of the
atoms (Fig. 10). At t = 0 the velocity distribution (for con-
venience, normalized to a single atom) is a <5-function for the
resonant atoms:

w (vtt 0) = 6 (vz — yres), (3.7)

where yres = — fl/k. At t > 0, the motion of the resonant

"02 V?

FIG. 10. Shift of the mean velocity va and broadening of the velocity
distribution of atoms which at t = 0 are at resonance with the radiation.
The atoms are moving in the direction opposite to the light wave. The
mean velocities u01 and t)02 correspond to the times t, < ?2.

atoms is described by the Langevin equation

*Si.— A -I-EmAt — ~ - " z T e V*7> (3.8)

where the acceleration Az is determined by expression (3.5),
and g(t) is the stochastic force responsible for the diffusion
of atomic velocities, for which the relation (J"(f)) =0 holds.

Equation (3.8) describes the change in the mean veloc-
ity v0 and the broadening of the velocity distribution of the
resonant atoms. To find the broadening of the velocity distri-
bution, we need to consider these two processes separately.
For this purpose it is convenient to introduce the relative
velocity u = v2 — v0. The width of the velocity distribution
of the monochromatized atoms is small in comparison with
the velocity interval + G/k , as is clear from the solu-
tion of Eq. (3.8). The force MAZ (v0 + u) can thus be ex-
panded in a series in the velocity u. Retaining the first two
terms of this series, we find that Eq. (3.8) reduces to an
equation for the change in the mean velocity v0.

-TTT^' (3-9)

and a Langevin equation for the relative velocity u,

where the dynamic friction coefficient is

(3.10)

(3.11)

Equation (3.10) describes the relaxation of the velocity
distribution of resonant atoms to a steady-state distribution
with a width which depends on the mean velocity v0. The
scale time for the relaxation of the velocity distribution is
determined by the reciprocal of the friction coefficient,
TV =P~l, according to (3.10). According to (3.11), the
time ra is a nonlinear function of the mean velocity. At the
mean velocity

_ iai—T8 TS
vo - k Vte* k

the relaxation time reaches its minimum value

GR

(3.12)

(3.13)

This time is equal in order of magnitude to the time rf given
by (3.2).

Over a time f s2r™~Tf, a steady-state velocity distribu-
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tion of the atoms is thus established. The steady-state solu-
tion of Eq. (3.10) is the Maxwellian distribution

w . . , f M
M = K -2H*irr

Mu* (3.14)

with a temperature determined by the velocity diffusion co-
efficient and the dynamic friction coefficient,

^ = 4§ .̂ (3.15)

At the time at which the narrow distribution of mon-
ochromatized atoms is formed, with t~rs^T" and
y0~ (|ft | —ys)/k, the temperature in (3.15) is given by

rz«-|g-. (3.16)

The width of the velocity distribution, Svz, is related to the
temperature Tz by

M •

We thus see that the quantity Svz is smaller than the velocity
interval ys/k by a factor ^•fty^/R , which would ordinarily
be of the order of 10-100.

At v0 = 0, with the retarding force of the radiation pres-
sure stopping atoms, the minimum possible temperature is
estimated to be (for ]ft|>^s)

r ll \ " I / 1 1 *7 \

z = -rr—. (3.17)

In the case discussed above, of Ca atoms with the pa-
rameter values G=10 and |ft |=48y, we would have
7"z~8-10~4Kat the time at which the narrow velocity dis-
tribution is formed, and with v0 = 0 we would have

c) Difficulties and necessary conditions in experiments
1) Two stages In the evolution of the velocity distribution

The time evolution of the velocity distribution of an
atomic beam which is being slowed down by a laser beam can
be thought of as consisting of two stages.29'48'49

In the first stage, a narrow velocity distribution is estab-
lished (this is the kinetic stage of the evolution). The scale
time for the attainment of this velocity distribution is29

(3.18)
•' ~ " ~ Gtorec '

Over this time, the radiation pressure force changes the ve-
locities of the resonant atoms by an amount of order
Ayz zzYs /k, while the width of the narrow peak in the veloc-
ity distribution reaches the value 8vz ~ (2fiys/M)in.

The second stage in the evolution of the velocity distri-
bution is the slowing down of the atomic ensemble to vanish-
ingly low velocities (the "gas-dynamic" stage of the evolu-
tion ).29-28'49 The relative lengths of the first and second
stages are determined by the ratio of the characteristic veloc-
ity interval of the effect of the radiation pressure force
(which is of the order of y^ 1 + G /k ) and the initial veloc-
ity of the atomic ensemble (i>0~|ft | /fc) which is at reso-
nance with the laser beam. In the case |n|>7\/l + G> i-e., a

case in which the change in the velocities of the atoms in the
course of the slowing down is greater than the scale velocity
interval for the effect of the radiation pressure force, the time
of the second stage is49

>T,. (3.19)

The typical duration of the second stage in the case in which
resonance transitions in the atom are used is r2 = 10 ~3-
10~2 s, and the corresponding distance over which the light
interacts with the beam is /sl-10 m. Clearly, such large
interaction lengths hold little promise for producing slow
atoms. In other words, it is necessary to shift the velocity
peak effectively from the center of the distribution to vanish-
ingly low velocities.

Let us examine the basic problems which arise in ex-
periments on the production of beams of cooled atoms.

2) Cyclic nature of the interaction

The change in the velocity of an atom during the re-
emission of N photons in the case in which an atomic beam is
subjected to a resonant laser beam propagating in the oppo-
site direction is Ay = NvTK. In the case in which the change
in the velocity of the atom is comparable to its mean velocity
in the beam, v, the number of re-emitted photons must be of
the order of Ar~iJA>recs;104-105. The reason why such a
large number of photons must be re-emitted is the small val-
ue of the photon's momentum in comparison with the mean
thermal momentum of an atom. The large value of the num-
ber of re-emitted photons shows that a substantial change in
the velocity of an atom can be achieved only if there is a
prolonged cyclic interaction of the atom with the resonant
radiation. Experimentally the basic factor which leads to a
loss of the cyclic nature of the interaction of an atom with
radiation is either optical pumping into one of the hyperfine
levels of an atom or an instability of the laser frequency.

3) Dopplershift

As atoms are slowed down by a laser beam, there is a
change in the Doppler shift of the absorption frequency of an
individual atom with respect to the laser frequency. The effi-
ciency of the slowing down of the atoms drops sharply. The
scale value of the change in the velocity of an atom in the
course of monochromatization is Ay ̂ ys/2-ir^ 102-103 cm/
s, or an insignificant fraction of the width of the original
velocity distribution. For a subsequent efficient slowing of
the atoms, it is necessary to eliminate the Doppler shift
which has occurred.

Three methods have been used to eliminate the Doppler
shift during the slowing down of atoms: 1) changing the
laser frequency to match the changes in the absorption fre-
quency of the atom; 2) changing the frequency of the atomic
transition by means of a magnetic field; and 3) introducing a
field-induced increase in the width of the absorption line of
the atoms by increasing the laser intensity.

4) Diffusion and geometric dispersal of atoms

As we have already mentioned, a velocity monochro-
matization is unavoidably accompanied by a diffusion of
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atoms in both velocity space and coordinate space. As a re-
sult of these effects, the atoms are heated, and the transverse
dimension of the atomic beam increases. If the velocities of
the atoms are reduced substantially ( AD x v), the increase in
the transverse dimension of the atomic beam may be signifi-
cant, as we will show below. Another factor tending to in-
crease the transverse dimension of the beam is the finite di-
vergence of the beam, which determines the transverse
component of the velocity of the atoms. A decrease in the
longitudinal velocity component increases the time spent in
the interaction zone, and, since the transverse velocity of the
atoms varies only slightly in the process, an increase in the
transit time leads to an increase in the transverse dimension
of the atomic beam at the end of the interaction zone.

Both the diffusion and the geometric dispersal of the
atoms will cause a transverse displacement of the atoms out
of the laser beam and terminate the interaction of these
atoms with the laser field. The increase in the transverse
dimension of the atomic beam can be estimated in the follow-
ing simple way. After the scattering N photons by an atom,
the transverse velocity of the atom becomes

vrecy (3.20)

where A0> is the angular divergence of the atomic beam, and
vrec is the recoil velocity. Correspondingly, the transverse
dimension of the atomic beam is given by

i.Int

d= f v±dt.
o

(3.21)

The number of photons re-emitted by an atom during uni-
form-deceleration motion is

atlnt
"res

(3.22)

where a is the acceleration of an atom, and tint is the time
over which the atom interacts with the radiation. According
to (3.20)-(3.22), the increase in the transverse dimension of
the atomic beam due to diffusion and geometric dispersal is

With the typical parameter values a = 10* cm/s2,
tint = 10~3 s, and A0> = 10~2 rad, we find cfs; 15 mm.

5) Saturation of the excited transition

Saturation of the transition works in two ways. First, it
is only in the saturation regime that the rate of re-emission of
photons by an atom reaches a maximum, so that the length
of the zone of the interaction with the laser beam reaches a
minimum for the given decrease in the velocity of the atoms.
Second, a pronounced saturation of the atomic transition
will lead to a resonance of the radiation with atoms in a
velocity interval comparable to the width of the original ve-
locity distribution.

d) Experiments on the laser cooling of atomic beams

Most of the experiments which have been carried out on
velocity monochromatization and radiative slowing down

have used a collinear interaction of the atomic beam with the
laser beam, since it is only in this geometry that beams of
slow atoms can be formed. Three resonance methods have
been used for radiative slowing down; the three differ in the
way in which the Doppler shift between the frequency of the
atomic transition and the laser frequency is eliminated.

The first report of a slowing down of atoms was in Refs.
11 and 12, where it was demonstrated that it is possible to
achieve a pulsed slowing down of an atomic beam by scan-
ning the frequency of the laser beam along the Doppler ab-
sorption line. In this case the light acts efficiently on the
atom by virtue of the continuous adjustment of the laser
frequency to match the resonance frequency of the atom as it
is being slowed down. This method was developed further in
the experiments of Refs. 16,17, and 50, where the frequency
of the atomic transition was continuously adjusted by means
of a nonuniform magnetic field, while the laser frequency
was held fixed (scanning the frequency of the atomic transi-
tion). The third method13'15-51'52 for the radiative slowing
down of an atomic beam makes use of an intense laser beam
with fixed frequencies in the Doppler absorption line of the
atoms (steady-state monochromatization).

We will discuss each of these approaches separately.

1) Scanning the laser frequency

When there is a significant deformation of the velocity
distribution by the pressure exerted by a laser beam with a
scanned frequency co,, it is necessary to satisfy the following
condition at each instant:

(t) = w0 — kv. (3.24)

This condition ensures that the radiation pressure force in
(2.15) will be at its maximum. Differentiating (3.24) with
respect to the time, and using expression (2.15) for the radi-
ation pressure force, we find the optimum rate of the fre-
quency scanning to be

dtp;
"dT

(3.25)

All the research which has been carried out has used
beams of sodium atoms interacting with laser radiation at
the 3S1/2 — 3P3/2 transition (Fig. 11). A prolonged cyclic
interaction of an atom with radiation was achieved in Refs.
11 and 12 through a preliminary optical orientation of the
atom by circularly polarized (a+) laser radiation (Fig.
1 la). For this purpose the laser beam was adjusted to reso-
nance with the 3S1/2(F = 2) - 3P3/2CF' = 3) transition.
The radiation excited transitions involving a change
Awjjr = 1 in magnetic quantum number. As a result of the
stimulated and spontaneous transitions, the atom quickly
reached the F = 2, mF = 2 sublevel. The scale time for the
orientation at a laser beam intensity /, =;0.1 W/cm2 was
about 100rsp = 1.6//S, much shorter than the transit time of
the atoms through the interaction zone (;= 1 ms).

The transitions
F=2(mF=2)-F' = 3>(m'F= -2,-1,0,1,2)

are forbidden by the selection rules in this case. Consequent-
ly, an atom which has reached the F=2, mF = 2 sublevel
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FIG. 11. Ground and first excited levels of the sodium atom and
schemes for a cyclic interaction with a laser beam, a—Interaction
with a single-frequency beam of polarization <7+; b—interaction
with a two-frequency beam.

interacts cyclically with the radiation, undergoing transi-
tions between two quantum states.

An interaction of a cyclic nature was arranged in Ref.
53 through a two-frequency excitation of sodium atoms
from two hyperfine sublevels of the ground state (Fig. 1 Ib).
The two-frequency laser beam was produced as a single-
mode laser beam passed through an electro-optic modulator.
At the exit from the modulator the fundamental frequency
was accompanied by side components differing from the fun-
damental frequency by the modulation frequency of the
crystal.

The experimental arrangement used in Refs. 11,12, and
53 to monochromatize the velocity distribution of a beam of
sodium atoms slowed down by a counterpropagating laser
beam is shown schematically in Fig. 12. In this arrangement,
the collitnated beam of atoms (2) emitted from source 1 is
bombarded by a counterpropagating light beam 3, whose
frequency is adjusted to resonance with the 3S1/2 — 3P3/2

transition. The velocity distribution of the atoms along the
axis of the atomic beam is determined from a fluorescence
signal excited by a probe laser beam 4. This probe beam is a
single-frequency beam, with a scannable frequency; it propa-
gates at a small angle with respect to the laser beam. To keep
the intense laser beam from distorting the fluorescence sig-
nal excited by the probe beam, the intense laser beam was
periodically interrupted by a mechanical chopper for the
time required for measurements. The fluorescence signal

was measured only in those time intervals in which the in-
tense beam was cut off by the chopper.

Figure 13 shows an experimental curve of the fluores-
cence intensity as a function of the frequency of the probe
laser beam.53 Curve 1 is the original velocity distribution of
the atomic beam, measured in the F = 1 and F = 2 sublevels
of the ground state. Curve 2 directly reflects the longitudinal
velocity distribution of the atoms in the beam which results
from the slowing down of the atoms by the counterpropagat-
ing laser beam. The arrows show the directions and the range
of the scanning of the laser frequency. The mean velocity of
the atoms in the narrow velocity distribution is us 2-104 cm/
s, and the width of the velocity distribution is Ay ~ 2-103 cm/

2) Scanning the frequency of the atomic transition

Another possibility for prolonging the resonance inter-
action of the atoms with the laser beam in the slowing down
of an atomic beam is to fix the laser frequency and scan the
frequency of the atomic transition. The frequency of an
atomic transition can be changed either by applying an elec-
tric field (by virtue of the Stark effect) or by applying a
magnetic field (by virtue of the Zeeman effect). The field
must be varied in such a way that the frequency shift of the
atomic transition due to the interaction with the electric or
magnetic field is equal to the Doppler shift.

This resonance-interaction regime was achieved in

FIG. 12. The experimental arrangement of Refs. 11 and 12 for observing
velocity monochromatization of an atomic beam. 1—Beam source; 2—
atomic beam; 3, 4—laser beams; 5—fluorescence detector. Shown at the
bottom is the deformation of the velocity distribution for two different
lengths of the zone in which the atoms interact with the radiation.

KOO 600 200 0 V, m/s

FIG. 13. Radiation slowing-down of sodium atoms during frequency
scanning of the laser beam.53 1—Original velocity distribution; 2—veloc-
ity distribution after the interaction of the atoms with the laser beams;
arrows—directions and ranges of the scanning of the laser frequencies.
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FIG. 14. a: Experimental arrangement for experiments on the slowing-
down of sodium atoms during scanning of the frequency of an atomic
transition. 1—Source of atoms; 2—solenoid; 3—intense laser field; 4—
probe laser beam; 5—atomic detector; 6—mechanical laser-beam chop-
per, b: Longitudinal cooling of an atomic beam during scanning of the
frequency of an atomic transition.16 Points—Original velocity distribu-
tion (the two peaks at the left correspond to zero velocities); v0—velocity
of the atoms at resonance with the radiation at the beginning of the inter-
action; Au—width of the peak of the monovelocity atoms; uc—central
velocity in the peak.

Refs. 16 and 17 in the following way. A beam of sodium
atoms is sent through a nonuniform magnetic field, which
varies linearly along the beam axis. The magnetic sublevels
are split and shifted in the magnetic field, so that there is a
change in the frequency of transitions between sublevels of
the ground and excited states.

For the 3S1/2 — 3P3/2 resonance transition of the sodi-
um atom, the constant of the Zeeman frequency shift of the
transition is yz = 14 GHz/T in the case of circularly polar-
ized radiation. The change in the absorption frequency of an
atom due to the change in the Doppler shift is offset by the
magnetic field, which is varied in accordance with
B = Bb + 5OA/1 — (2az/v2), whereBb is the static magnetic
field, the second term is the spatially varying magnetic field,
and a is the acceleration of an atom. For B0 = 0.16 T and
Bb = 0.05 T, a resonance interaction of the radiation is
achieved with atoms with an initial velocity y0 = 900 m/s,
over a distance / = 90 cm.

In the experiments, the fundamental laser beam (circu-
larly polarized) excites the transition 3S1/2(.F=2,

mp = 2) — 3P3/2(/" = 3, m'p = 3) of the sodium atom. The
static magnetic field B0 makes it possible to avoid a parasitic
optical pumping to the F = 1 sublevel of the ground state
(Fig. 11), since in a magnetic field of this magnitude the
splitting of the magnetic sublevels is substantially greater
than the radiation widths of the sublevels. In this case the
probability for the transition (F= 2, mF =2) — (F' = 3,
m'f = 3) is many orders of magnitude higher than the proba-
bilities for other possible transitions.16

Figure 14a shows the layout of an experimental appara-
tus used to slow down sodium atoms during a scanning of the
frequency of an atomic transition. The retarding laser beam
is directed opposite to the atomic beam. The intensity of the
laser beam is 30 mW, and the diameter of the laser beam is 5
mm. The atomic beam moves inside the laser beam over the
entire interaction distance—from the atomic gun to the de-
tection zone. The velocity distribution of the atoms is mea-
sured at the end of the interaction zone with the help of a
second laser beam (a single-mode beam whose frequency
can be tuned along the Doppler absorption line of the atomic
beam). The intense field is cut off by a mechanical chopper
during the measurements.

Figure 14b shows the deformation of the velocity distri-
bution. The points show the original velocity distribution.
The two peaks at the left in this figure are the fluorescence
signals from the atomic beam as it is excited by the perpen-
dicular laser beam. Their positions on the frequency scale
indicate a zero longitudinal velocity for the atoms; here v0 is
the velocity of the atoms which are at resonance with the
radiation at the beginning of the interaction, while yc is the
mean velocity of the narrow velocity distribution formed as a
result of the interaction of the atoms with the laser beam.
The width (Ay) of the peak in the velocity distribution is vc/
10.

The minimum velocity reached in those experiments
was ymin = 4-103 cm/s. The minimum width of the velocity
distribution was Aymin & 103 cm/s, corresponding to an ef-
fective temperature of 0.07 K. The authors attribute the
limiting value of the velocity, ymin, to two factors: a) the
scattering of the atomic beam by sodium vapor in the
chamber and b) velocity diffusion of the atoms. The atomic
density at the minimum temperature was « = 105 atoms/
cm3.

One of the basic parameters characterizing the laser
slowing down of atoms is the atomic density in a unit veloc-
ity interval at low velocities, dn/du. In these experiments,
this parameter was dn/dvzz 102 (atoms/cm3)/(cm/s).

3) Steady-state monochromatization

During steady-state monochromatization, both the fre-
quency of the laser beam and the frequency of the atomic
transition remain fixed in the interaction of the beam atoms
with the radiation. Steady-state monochromatization has
been implemented with sodium atoms.14-15 A cyclic interac-
tion of atoms with the radiation has been achieved by using
two-mode laser radiation (Fig. lib). The distance between
the axial modes was chosen equal to the distance between the
hyperfine components of the ground state. One mode excited
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FIG. 15. a—Experimental velocity distribution of an atomic beam after
irradiation of sodium atoms by a resonant laser beam (the interaction
length is / = 20 cm; the intensity of the laser beam corresponds to a satura-
tion parameter G = 40); b—theoretical deformation of the velocity distri-
bution found from a solution of the Liouville equation (a horizontal divi-
sion on the oscilloscope trace corresponds to 1.3-104 cm/s, while that on
the frequency scale corresponds to 220 MHz).

sodium atoms on the transition 3S1/2(.F = 1) — 3P3/2, and
the other on the transition 3Sj/2(F = 2) — 3P3/2. Clearly,
for this type of excitation of the atom, for an arbitrary polar-
ization of the laser beam, there is a reliable excitation of the
atom from any sublevel F=l,2 of the hyperfine structure of
the ground state. Both of the modes are tuned within the
Doppler absorption lines of these transitions. At the tem-
peratures of the atomic sources which have been used, the
overlap of the absorption lines of the transitions
3S1/2(F = 1) -3P3/2, 3S1/2(F=2) -3P3/S could be ig-
nored. The two modes acted on the same velocity group of
atoms and deformed the velocity distributions in theF = 1,2
levels identically.

Figure 15a shows an experimental profile of the de-
formed velocity distribution found during steady-state mon-
ochromatization of an atomic beam. This curve directly re-
flects the longitudinal velocity distribution of the atoms in
the beam which results from the nonlinear slowing down of
the atoms by the counterpropagating laser beam. To find the
dependence w(v), the laser beam was tuned to resonance
with the atoms at the maximum of the initial thermal veloc-
ity distribution. The deformation of the velocity distribution
observed experimentally was caused primarily by the radi-
ation pressure force. The velocity diffusion was of minor
importance because of the small transit time of the atoms
through the zone of the interaction with the intense laser
beam. At an average atomic thermal velcoity v = 8-104 cm/s
the interaction time is r = 2.5-10"4 s. Over this time, the
velocity distribution can broaden the narrow velocity peak

•10 v, 70* cm/s

FIG. 16. Steady-state monochromatization of an atomic beam for various
durations of the interaction with the laser beam.

by no more than

« 300 cm/s ,

where we have taken the diffusion coefficient in the form
C=r yt4c for an estimate. On the other hand, the typical ve-
locity interval of the change in the force under the experi-
mental conditions was 5.6- 103 cm/s. Since the velocity diffu-
sion in the longitudinal direction did not have any significant
effect on the deformation of the velocity distribution, the
experimental results turned out to agree well with results
calculated on the deformation of the distribution from Liou-
ville equation (3.3). In particular, we show for comparison
in Fig. 15b the calculated dependence for the same param-
eter values as for the experimental curve in Fig. 15a. In the
experiments of Refs. 14 and 15 the ratio of the width of the
initial velocity distribution to the width of the narrow peak
of monochromatized atoms was/t = Ayin/Ayfin = 19. This
degree of monochromatization corresponds to a lowering of
the temperature of the relative motion of the atoms from an
initial Tin = 573 K to a final Tfln = T-m//j.2 = 1.5 K. Figure
16 shows examples of the velocity monochromatization of a
beam of sodium atoms for various durations of the interac-
tion of the atoms with the radiation. We see that as the dura-
tion of the interaction is increased the velocity peak shifts
toward zero and simultaneously shrinks.

A detailed experimental study of the velocity monoch-

H, arb. units
w(u), 10"

atom/s
cm/s

-H-i
u, to''cm/s o 5 JO3 1,5-n1- 2,510'' u,Cm/S

50

FIG. 17. a—Density of atoms in the peak of the
monochromatized velocity distribution of the
atomic beam as a function of the mean velocity of
the peak during slowing-down; b—low-velocity
part of the velocity distribution (2) in a cooled
atomic beam. Shown for comparison is the velocity
distribution (1) for the original uncooled beam.
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romatization in the slowing down of a beam of Na atoms by a
resonant laser beam was made in Ref. 52. The primary result
of that study was the determination that a significant slow-
ing down leads to a sharp decrease in the intensity of the
atomic beam (Fig. 17a). The reason for this radical decrease
in the intensity of the beam of slowed-down atoms turned
out to be a transverse spreading of the atomic beam due to a
velocity diffusion in the transverse direction, which removed
atoms from the region of the interaction with the laser beam
(which caused the slowing down of the atoms). The opti-
mum conditions on the configuration of the laser beam, the
interaction time, and the interaction length—the optimum
conditions for achieving low effective temperatures of the
atomic beam while keeping the beam intensity high—were
found. As a result, an intense, steady-state beam of Na atoms
with an effective temperature of 1 K was found. The intensi-
ty of this slowed-down atomic beam with T= 1 K exceeded
the intensity of the original atomic beam by a factor of 3-103

(Fig. 17b). At this temperature, the density of atoms in a
unit velocity interval is dn/dv = 2-103 (atoms/cm3)/(cm/
s).

4. RADIATION COLLIMATION AND TRANSVERSE COOLING
OF ATOMIC BEAMS

a) The idea behind the method

In the preceding section we examined the effect of a
laser beam on the longitudinal velocity component of the
atoms in a beam and the longitudinal cooling of the atomic
beam which results. The question of the transverse velocities
of the beam atoms, on the other hand, was discussed only in
connection with the slight increase in these velocities due to
diffusion. It is legitimate to ignore the transverse velocity of
the beam atoms in this way only in a certain stage of the
longitudinal cooling, in which the longitudinal velocity is
substantially higher than the transverse velocity. The diver-
gence of an atomic beam is typically 10~2-10~3 rad, so that
when atoms are slowed down by a factor of 102-103 the lon-
gitudinal velocity becomes comparable to the transverse ve-
locity, and the divergence of the atomic beam approaches 1
rad. This circumstance means that in a certain stage of the
slowing down of the atomic beam there must be a transverse
cooling of the beam.

Despite the complete understanding of the physical
ideas underlying methods for radiation cooling of atoms, it
was only recently that specific schemes were found for irra-
diating atoms to achieve transverse cooling of atomic beams.
These schemes are based on the use of the forces of resonance
radiation pressure which are exerted on atoms in axisym-
metric light fields to reduce the velocities of the atoms in the
direction transverse with respect to the axis of the atomic
beam. Curiously, the possibility of reducing the transverse
velocities of an atomic beam through two-dimensional radi-
ation cooling was first mentioned by Hansch and Schaw-
low.7

Figure 18 shows one of the schemes54 for transverse
radiation cooling of an atomic beam. In this arrangement,
the beam of atoms 2 emerging from source 1 is irradiated by
an axisymmetric light field 3, whose frequency a> is red-shift-

D- I

FIG. 18. Radiation atomic-beam collimator. 1—Source of atomic beam;
2—atomic beam; 3—conical axicon; 4—light beam incident on the axi-
con. The propagation directions of the light field in the axicon are shown
at the bottom.

ed with respect to the frequency of the atomic transition, <a0.
The axisymmetric field is formed by the reflection of a plane
light wave 5 from a conical mirror surface 4 (a reflection
axicon). In the axisymmetric field produced by the reflec-
tion axicon, an atom whose velocity is directed away from
the axis of the cone experiences a radiation pressure force,
which is directed toward the axis of the cone if ca «a0. This
force causes a rapid contraction of the velocity distribution
of the atoms transverse with respect to the axis of the cone in
the region of the axisymmetric field. This contraction in turn
causes a sharp decrease in the angular divergence of the
atomic beam, i.e., a collimation of the beam.

b) Collimation of a thermal atomic beam

1) Basic estimates

We provide some simple estimates of the degree of colli-
mation of a beam which is moving at a thermal velocity at
room temperature.54

The evolution of the transverse atomic velocities in the
field of an axicon is determined both by the radiation pres-
sure, which contracts the transverse velocity distribution
w(vp), and the diffusion of atomic momenta, which broad-
ens the distribution w (vp ). For transverse velocities vp satis-
fying the condition \vp < \H | /k, the radiation pressure force
reduces to a friction force:

Fp = - (4.1)

where the dynamic friction coefficient 0 is given by (3.11).
The velocity diffusion coefficient vp agrees with (2.35),
(2.37), within a numerical factor determined by the field
polarization. Correspondingly, the steady-state distribution
of transverse velocities in the axicon is determined by the
temperature10

(4.2)

Using this temperature, we can find the collimation an-
gle of an atomic beam which determines the free dispersal of
the atoms in the direction transverse with respect to the z
axis at the exit from the axicon:

e= (4.3)
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here vz is the average velocity of the atoms along the axis of
the atomic beam. The limiting collimation angle is (for

I, arb. units

1/271Y/M (4.4)

For a beam of Na atoms irradiated on the 3S-3P transition
by a laser beam with a wavelength A = 5890 A, and with
Uz = 5-104 cm/s, the minimum collimation angle is
^min = 10~3. These numerical estimates show that the geo-
metric divergence of an atomic beam can be reduced effec-
tively by means of an axisymmetric light field.

The collimation angle 6 characterizes the divergence of
an atomic beam only at the exit from the axicon. In the inte-
rior of the axicon, the beam divergence is weaker, since it is
determined not by the free dispersal of the atoms but by the
slow diffusive broadening of the beam.

Let us estimate the divergence of an atomic beam due to
the spatial diffusion of atoms. For this purpose we use the
Einstein relation to estimate the spatial diffusion coefficient.
Assuming the intensity of the collimating radiation to be low
(G<1), and assuming a frequency deviation fl = — 7, we
find

D (4.5)

We can use (4.5) to estimate the effective beam divergence
which is caused by the diffusion of the atoms in the direction
transverse with respect to the z axis. Determining the effec-
tive divergence angle a as the ratio of the diffusion width of
the beam to the transit distance of the atoms, z = vz /int, we
find

(4.6)

For a beam of Na atoms with z = 10 cm the divergence
angle is cr;s7-10~5, much smaller than 0min. Consequently,
this numerical example shows that the irradiation of a ther-
mal atomic beam by an axisymmetric field makes it possible
to transport the atoms through an axicon with a small beam
divergence and without loss of atoms.

2) experimental studies

The first experiment on the radiation collimation of a
beam of sodium atoms was carried out in Ref. 18 in the ar-
rangement shown in Fig. 18. A two-frequency dye laser
tuned to the D2 component of the line of the sodium atom
was used for a cyclic interaction of the atoms with radiation.
The difference between the two laser frequencies was chosen
to be 1772 MHz, so that one frequency excited atoms from
theF = 1 (3S1/2) level to theF'= 2(3P3/2) level, while the
other excited atoms from the F=2(3S1/2) level to the
F' = 3(3P3/2) level (Fig. 11). The intensity distribution of
the atoms along the transverse coordinate was measured.
Figure 19 shows profiles of the atomic beam before and after
the interaction with the laser beam. These profiles demon-
strate an increase in the intensity of the atoms in the beam
and a contraction (collimation) of the atomic beam. Mea-
surements of the diameter of the atomic beam before and

-Z Z /?, mm

FIG. 19. Intensity distribution of a beam of sodium atoms in the trans-
verse cross section before (1) and after (2) interaction with the field of an

after interaction with the laser field can be used to calculate
the change in the transverse velocity of the atoms in the
course of their collimation. For the case in Fig. 19, these
calculations show that the transverse velocity of the atoms is
reduced from 5.5-102 cm/s to 1.6 cm/s. This decrease corre-
sponds to a decrease in the temperature of the transverse
motion from 42 mK to 3.5 mK. Estimates from (4.2) yield a
fairly close temperature (1.8 mK).

The collimation of an atomic beam is very sensitive to
the position of the frequency of the laser field with respect to
that of the atomic transition. The degree of collimation was
measured as a function of the radiation frequency in Ref. 18.
Figure 20 shows how the intensity of atoms at the center of
the beam depends on the frequency of the collimating field.
We see from this figure that for a negative frequency devi-
ation beam collimation is observed, while for a positive devi-
ation decollimation is observed. This behavior of the curves
confirms that the observed effect is in fact due to the radi-

-60 -40 -20 0 20 Av,MHz

-8y 0 'if

FIG. 20. Radiation collimation of an atomic beam. Intensity of the atoms
at the center of a beam bombarded by a laser beam inside a conical axicon
as a function of the field frequency.
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ation pressure force, which has a dispersive dependence on
the frequency of the laser field in the field of the standing
light wave.10 In addition to the radiation pressure force, the
gradient force (Sec. 2) may influence the transverse motion
of the atoms. This force has been used at large power levels to
focus atomic beams.55"57 Estimates show, however, that the
effect of this force under these experimental conditions was
negligible. We might also note that, as can be seen from Fig.
20, for each power of the laser beam there exists an optimum
value of the frequency of the collimating field. The optimum
frequency deviation of the collimating field has a ^l + G
dependence on the laser intensity, in agreement with the cal-
culations in Ref. 10.

c) Transverse cooling of a slowed-down atomic beam

An atomic beam which is slowed down by the pressure
of a counterpropagating laser beam always undergoes a
transverse spreading because of the diffusion of the atomic
velocities in the light field. For this reason, the slowing down
of the atomic beam is unavoidably accompanied by a loss of
slow atoms. If we use, in addition to the laser beam causing
the slowing-down, an axisymmetric light field with wave
vectors directed transverse with respect to the beam axis
(Fig. 18), we can achieve a significant suppression of the
divergence of the atomic beam. Estimates54 show that when
an atomic beam is slowed down in the arrangement of Fig. 18
the minimum width of an atomic beam slowed down to zero
mean velocity can be

?raln : ,/JL
V 66RG (4.7)

here ft is the frequency deviation, and G is the saturation
parameter for the laser beam causing the slowing-down.

For the slowing-down of a beam of sodium atoms to
zero mean velocity^ the width of the atomic beam reaches
tfmin ~0.15 cm for the parameters values \fl\/y = 50 and
G = 10, according to (4.7). In the absence of a collimating
field, the beam width should be three orders of magnitude
greater; i.e., slow atoms are lost if there is no collimating
field.

The combination of laser slowing-down with collima-
tion represents an important step toward the production of
cold atomic beams.

5. THREE-DIMENSIONAL RADIATION COOLING OF ATOMS

a) A qualitative look

The one-dimensional and two-dimensional cooling of
atoms discussed above can be extended to three dimensions.
There are a variety of configurations of optical fields which
would cause a three-dimensional cooling of atoms. For ex-
ample, we could place four light beams with frequencies
(Oi «y0 at the vertices of a regular tetrahedron and direct
them toward the center. As the number of beams is in-
creased, the optical fields can be made more complex. In
particular, six beams could be directed from the centers of
the faces of a cube toward the center of the cube.

To obtain a qualitative understanding of the action of
such optical fields in cooling an ensemble of atoms we con-

FIG. 21. Radiation pressure force as a function of the velocity projection
v, for the case of two counterpropagating light waves; deformation of the
atomic velocity distribution w(v,) for (a) H<0and (b) ft >0 for dura-
tions ta < f, < t2 of the interaction of the atoms with the radiation.

sider the simplest case, of two counterpropagating waves of
identical intensities and frequencies; the waves are propagat-
ing along one of the coordinate axes, e.g., along ± z [a field
of the type in (2.22) ]. Figure 21 shows the radiation pres-
sure force as a function of the velocity projection vz in the
case of two counterpropagating waves, along with the profile
of a rather arbitrary initial velocity distribution of the atoms.
It can be seen from Fig. 21 that in the case of a negative
frequency deviation the radiation pressure force is directed
opposite to the velocity of the atoms, while if the frequency
deviation is positive the force will be in the same direction as
the velocity vz. In the former case, a narrow velocity distri-
bution centered at vz =0 will therefore eventually be formed
from a broad initial velocity distribution. In the latter case,
two narrow velocity distributions, which move along the
± z directions as time elapses, will form.

The case of a negative frequency deviation is of particu-
lar interest since in this case there is a decrease in the modu-
lus of the velocity of each atom; in other words, radiation
cooling of the atoms along the z axis occurs.7'10 For the
three-dimensional optical fields mentioned above, an analy-
sis of this sort of evolution of the atomic velocities along the
coordinate axes leads to analogous conclusions, i.e., to the
possibility that the moduli of all three projections of the
atomic velocity will be reduced, so that a cooling of an atom-
ic ensemble will indeed occur.

b) Steady-state velocity distribution

To derive the temperature of the steady-state atomic
ensemble we describe the motion of the cold atoms by means
of a stochastic Langevin equation. Following Ref. 10, we
consider the case of the cooling of atoms by the field formed
by six beams, directed from the centers of the faces of a cube
toward the center of the cube (Fig. 22), i.e., a three-dimen-
sional standing light wave:

(5.1)
0=1-6

where ka and ea are the wave vectors and polarization vec-
tors of each of the six waves.
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FIG. 22. Centrally symmetric field formed by six laser beams.

We restrict the discussion to the case of a slight satura-
tion, in which the partial saturation parameters Ga satisfy
the condition

(5.2)

In this case we may assume that the radiation pressure force
is the sum of the partial forces set up by the six independent
waves. Each of the partial forces is determined in the case of
a slight saturation by expression (2.18) in the limit <?< 1:

Fa = a [1 + (Q - (5.3)

where the parameters Ga may be different because of the
different orientations of the polarization vectors of the dif-
ferent waves.

Analogously, the velocity diffusion tensor can be writ-
ten as six tensors corresponding to the individual waves. In
accordance with (2.35) and (2.37), the components of the
partial velocity diffusion tensor can then be written

+ Tfc) + (a- (5.4)

where the quantities 77° have the same meaning as au in
(2.35).

For simplicity we consider the case of a symmetric ori-
entation of the polarization vectors ea, in which case we
have r)" = 1/3. We also assume that the atomic velocities are
quite small:

IvK-ir1. (5.5)

The forces Fa and the tensor components C " can then be
expanded in power series in v around v = 0. As a result, the
total radiation pressure force, consisting of the sum of the
partial forces, is, in first order in v,

F = -Mpv, (5.6)

where the dynamic friction coefficient & is defined by

--^-j"'. (5.7)

For the velocity diffusion tensor we find the following
expression in the zeroth order in v:

+ H-)"1. (5.8)

cold atoms under the influence of friction force (5.6) and the
stochastic force responsible for the diffusion of the atomic
velocity is

-d-l=_pv + l(f). (5.9)

A steady-state solution of Eq. (5.9) is reached in a time
t>/? ~' and is Maxwellian,

(5.10)

with a temperature10

M£_jY_/_v I I Q I \7 ~ pfcB ~ 2fcB I mi "*" Y '• (5.11)

The minimum temperature of the atomic ensemble is
reached at fl = — y and is10

(5.12)' mln
"D

Condition (5.5) holds automatically, as we can now verify.
The radiative cooling of atoms in a resonant field thus

makes it possible to lower the temperature of an atomic en-
semble to a level determined by the natural width of the
atomic transition. At a low saturation level (£7< 1) this mini-
mum temperature does not depend on the field intensity. For
a typical value of the natural line width of an optical transi-
tion, 7/27r~ 107 Hz, the minimum attainable temperature is
of the order of Tmin ~ 10~3 K. According to (5.9), the scale
time required for the attainment of the steady-state tempera-
ture is determined by the reciprocal of the dynamic friction
coefficient: rcool ~/7 ~'. In particular, the scale time for the
cooling of an atomic ensemble with G<1 is

— JL
G R •

(5.13)

The Langevin equation describing the motion of the

For Na atoms (the 3S — 3P resonant transition), for exam-
ple, with G = 0.1 this time is rcool = 3-10~5 s.

A more detailed discussion of various schemes for the
radiation cooling of atomic gases can be found in Refs. 10,
42-45, and 58-65.

6. LOCALIZATION OF COLD ATOMS

The successful development of laser methods for cool-
ing atoms has recently attracted research interest to the
problem of stably localizing cold atoms in a bounded spatial
volume. The successful resolution of this problem might be-
come the next logical step toward the ability to manipulate
the velocities and coordinates of individual atoms. The stor-
age of cold atoms is particularly attractive for reaching an
ultimate goal of laser spectroscopy: ultrahigh-resolution
measurements of the absorption spectra of individual atoms.

The problem of localizing neutral atoms has not yet
been finally solved. While in the case of charged atomic par-
ticles we have well-developed methods for localizing parti-
cles in a nonuniform static electric field in the presence of a
static magnetic field (Penning confinement systems) or in a
nonuniform rf electric field (rf confinement system),66 in
the case of neutral atoms it has yet to be proved that stable
localization is possible at all. On the other hand, the fact that
the potential well required for localizing cold atoms would
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be quite shallow raises the hope that this problem will also be
solved successfully. While at room temperature the depth of
the potential well required for spatial localization of atoms
would have to be of the order of 0.1-1 eV, a well depth of
only 10~7-10~6eV would be sufficient for localizing atoms
with a temperature ~ 10 ~3 K.

The three methods which have now been proposed for
localizing neutral atoms are based on the confinement of the
atoms in optical, magnetic, and electric fields, respectively.
We will discuss each approach separately.

a) Problem of a radiation atomic confinement system

The problem of the localization of a neutral atom in an
optical field was first formulated by Letokhov.67 He suggest-
ed that atoms might be localized at the nodes or antinodes of
a standing light wave whose frequency was far from frequen-
cies of atomic transitions. The idea of the localization of
atoms in a region determined by the length of a light wave
was subsequently discussed in Refs. 68 and 69.

This idea was subsequently extended to a resonant light
wave.70'71'37 A special study of the case of a resonant stand-
ing wave showed, however, that the idea of the trapping of an
atom at a node or antinode of a light wave was incompatible
with the spectral structure of the energy bands of the transla-
tional motion of an atom in the field of a standing wave.72

Since the widths of the allowed and forbidden energy bands
turned out in all cases to be equal in order to magnitude,
calculations72 showed that stable localization of an atom at
the node or antinode of a wave was not possible.

Since it is not possible to localize an atom in a region
with dimensions of the order of the length of a light wave,
attention has turned to the possible localization of atoms in a
large region formed by the intersection of light
beams.33'34'39'73"77 All the ideas for developing a radiation
confinement system for atoms have been based on the use of
radiation forces to cool and localize the atoms in an optical
field simultaneously. It has been assumed that the field fre-
quency should be chosen below the frequency of the reso-
nant atomic transition so that the optical field can cool an
ensemble of atoms.

Three methods have been proposed for forming a poten-
tial well for cold atoms. In the first approach, a gradient
force forms a potential well. This approach will use the opti-
cal field formed by the intersection of several beams. In par-
ticular, it has been suggested that six laser beams be used;
they would propagate along the + x, +y, and + z direc-
tions of a Cartesian coordinate system.33'34 The second sug-
gestion is based on combining the use of the gradient force
with the use of the radiation pressure force.73 In particular, it
has been suggested that the optical field set up by two coun-
terpropagating divergent light beams might be used. It has
been suggested that the gradient force would confine the
atoms in the direction transverse with respect to the com-
mon axis of the beams, while the radiation pressure force
would confine the atoms in the direction along the
axis.73-74'77 Finally, the third approach75'76 has a potential
well being set up by a radiation pressure force in a centrally

symmetric optical field produced by divergent Gaussian
beams.

Subsequent study of all these suggestions has shown
that none of them solves the problem of stably storing cold
atoms. Minogin78 showed that the potential barrier set up by
the gradient force does not exceed the average kinetic energy
of cold atoms. Ashkin and Gordon77 found that the potential
of the radiation pressure force in the centrally symmetric
fields considered in Refs. 75 and 76 does not have an absolute
minimum.

b) Localization of atoms in magnetic confinement systems

A second possibility for prolonged storage of cold
atoms is to localize them in a nonuniform magnetic field by
making use of the effect of the magnetic dipole force on an
atom.79 The fields required for localizing atoms could be
produced in toroidal or spherical magnetic confinement sys-
tems of the type used to store ultracold neutrons (see the
review by Golub and Pendlebury,80 for example). As an ex-
ample here we will discuss the conditions for the accumula-
tion and storage of cold Na23 atoms in a toroidal magnetic
field.79

The toroidal system for trapping the atoms is shown
schematically in Fig. 23. Six direct currents create a nonuni-
form field whose modulus increases from the center to the
periphery of the cross section of the torus in proportion to
the square of the distance from the axial line:

H ( r ) = HT^r, (6.1)

where a is the minor radius of the torus, and /7T is the field at
the surface of the torus.

The motion of a cold atom injected into the magnetic
field of a toroidal confinement system depends on the orien-
tation of the dipole moment jx of the atom with respect to the
vector H (Fig. 23b). If n and H are antiparallel, the atom is

FIG. 23. a: Toroidal magnet ring for storing atoms (Lu L2, L3—laser
beams; A—beam of injected atoms), b: Magnetic lines offeree in a cross
section of the storage ring.

822 Sov. Phys. Usp. 28 (9), September 1985 Balykin eta/. 822



1,6

FIG. 24. Energy of the interaction of a Na23 atom with the magnetic field,
normalized to the hyperfine-structure interval AJT = 1772 MHz.

attracted toward the center of the torus, while if n and H are
parallel the atom is repelled from the magnetic field region.

In the case of Na23 atoms, only atoms in the 3S1/2

ground state in the hyperfine sublevels F= 1, mF = — 1
and/" = 2, mF = 2 or 1 can be confined in a toroidal magnet-
ic confinement system (Fig. 24). The confining force acting
on the atoms is weakest for atoms in the F= 1, mF = — 1
state.

Two basic conditions must be met for stable localiza-
tion of atoms near the axial line of a torus. First, the depth of
the potential well must be significantly greater than the aver-
age kinetic energy of the cold atoms moving transverse with
respect to the axial line of the torus. Second, the centrifugal
displacement of the atoms must be small in comparison with
the minor radius of the torus. Simple estimates for the case in
which the temperature of the transverse motion of the atoms
is Ttr = 10~3 K (the limiting value in laser cooling) and in
which the temperature of the longitudinal motion of the
atoms is T, = 10~2 K (increased by an order of magnitude
because of the need to inject the atoms into the confinement
system) show that it is completely feasible to satisfy these
conditions. For example, with H = 600 G we would use
R = 30 cm and a = 3 cm.

The storage time of cold atoms in a magnetic confine-
ment system is determined by the following factors: the finite
height of the potential barrier, collisions with particles of the
residual gas, and the formation of molecules in binary colli-
sions. Estimates show that in a comparatively weak magnet-
ic field (hundreds of gauss) and at a low residual gas pres-
sure ( 5 10 ~10 torr) the time over which cold atoms can be
stored in a magnetic confinement system can be as long as
several hours.

For the injection of atoms into magnetic confinement
systems, they must first be slowed down by a counterpropa-
gating laser beam (Fig. 23a). The injection of atoms can be
time-varying or steady-state. In the time-varying case, the
beam of slow atoms is directed into the confinement system
with the magnetic field turned off. After the field is turned
on to its maximum value Hm, the confinement system traps
the atoms which were in the axial region of the torus at the
time at which the field was turned on. In this approach, only
a small number of atoms can be trapped in the system. In the
case of steady-state injection, the atoms can be injected by

using a counterpropagating laser beam to slow down the in-
jected atomic beam in the region of the injection. Since the
levels of an atom are split into several components in the
magnetic field of the confinement system, we could evident-
ly use a multifrequency beam to slow down the atoms, in a
process in which the atoms undergo a cyclic interaction with
the laser beam. In the steady-state regime, the density of cold
atoms in the confinement system can be quite high, e.g., of
the order of 1010 atoms/cm3.

c) Localization of atoms in electrostatic confinement
systems

The idea of using an electric field to localize atoms can
be outlined as follows81: An atom in an electric field experi-
ences a shift U of its energy levels by virtue of the Stark
effect. The magnitude of this Stark shift is U = - (1/2 )aE2

for a nondegenerate level, where a is the polarizability of the
atom. The direction of the force acting on an atom in an
electric field, F = —VU, depends on the sign of the polariz-
ability of the atom, a. If this polarizability is positive, the
atom will be attracted into the region of the maximum field.
If the polarizability is negative, the atom finds a stable posi-
tion near a minimum of the field. For the ground state of an
atom the polarizability is always positive (the Stark shift is
negative), while for the excited states of an atom the polariz-
ability is, on the contrary, negative. Atoms in an excited
state should thus tend toward a region with a minimum elec-
tric field. A minimum electric field exists, for example, in the
field configuration produced by the configuration of elec-
trodes used in if quadrupole ion confinement systems (Fig.
25). The square of the electric field inside the quadrupole
system is given by

£2 = (J>jj (x2 +1/2 + 422) R~4, (6.2)

and the energy of the interaction of an atom with the field is

(6.3)

where £lx , fly , and flz are the frequencies of oscillation of
the atom along the x, y, and z axes; M is the mass of the atom;

FIG. 25. Diagram of an electrostatic quadrupole confinement system8 ll82

for localizing neutral atoms. Dashed lines—Surfaces of hyperbolic elec-
trodes 1,2; solid lines—cross sections of surfaces E2 = const (Refs. 84 and
85).
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and R0 is the radius of the annular electrode. For the confine-
ment of atoms in an electrostatic confinement system we
would be interested primarily in highly excited Rydberg
atoms, since the polarizability of an atom is proportional to
the square of the principal quantum number. It was found in
Ref. 82 that the maximum depth which can be achieved for
the potential well for a sodium atom in the 16P state is
U= 17 cm"1 = 2.1-10"3 eV. This value is determined by a
crossing of levels which differ in the sign of the Stark slope.
The field required for producing such a potential well is rath-
er low: E = 2.5 kV/cm. A confinement system with these
characteristics can capture 0.25% of the atoms of a vapor at
a temperature of 500 K. The lifetime of excited Rydberg
atoms is in the range 10~5-10~3 s, and this time determines
the time over which the atom will be confined in a confine-
ment system of this type. Wing82 has suggested that the con-
finement time might be increased by exciting atoms by
means of a cw laser beam, and a steady-state population of
the excited state might be sustained in this manner.

7. CONCLUSION: SOME APPLICATIONS OF COLD ATOMS

A long list of potentially useful applications of the pres-
sure of a resonant laser beam in controlling the motion of
atoms has recently been discussed in the literature. General-
ly speaking, the basic fields of application can be seen clearly
from the fact that the diffusion of the atomic velocity which
is associated with the radiation pressure opposes a directed
change in the atomic velocity under the influence of the radi-
ation pressure force. For this reason it is difficult to expect
that the resonance radiation pressure could be used for any
significant acceleration of atoms. At the same time, all the
examples discussed above show that the resonance radiation
pressure can be used exceedingly effectively in cases in which
it is necessary to change the velocity of an atom by an
amount of the order of the mean thermal velocity at room
temperature. In this connection we could expect that the
most important applications of resonance radiation pressure
will involve slowing-down of the thermal motion of atoms.

In turn, cold atoms are of considerable interest in such
research fields as atomic and molecular physics, ultrahigh-
resolution spectroscopy, and quantum metrology. The use of
cold atoms is extremely interesting for studying collision
processes, phenomena associated with the formation of
chemical bonds, and condensation. In this field of applica-
tions, laser methods for cooling atoms may become an im-
portant complement to the widely used methods involving
supersonic nozzles for cooling gases. The use of cold atoms
in spectroscopy and quantum metrology will make it possi-
ble to eliminate some fundamental causes of the broadening
and shift of narrow spectral resonances due to finite velocity
of motion: the Doppler effects of first and second orders and
transit-time broadening. For these reasons, the use of cold
atomic particles can sharply improve both the resolution of
spectroscopic studies and the accuracy of quantum frequen-
cy standards.83>84

Other applications follow from the circumstance that
cold atoms can be stored and confined for a long time in
magnetic confinement systems.79 The accumulation and

storage of localized atoms make it possible to solve the prob-
lem of improving the sensitivity of several research methods
which are used in atomic physics, spectroscopy, and nuclear
physics. In particular, the confinement of atoms in magnetic
fields can make it possible to carry out spectroscopic studies
of radioactive atoms produced in countable numbers
through nuclear reactions.

Let us conclude by taking a more detailed look at some
of the ideas which have been advanced in these fields in re-
cent years.

The cooling of atoms opens up several interesting possi-
bilities for producing narrow and, especially, ultranarrow
resonances free of Doppler broadening.

First, during the cooling of atoms the Doppler broaden-
ing is eliminated for all the quantum transitions, not only
from the excited transition or associated transitions. This
circumstance is of major interest for producing ultranarrow
resonances on forbidden quantum transitions of cooled par-
ticles. This possibility was discussed for both ions85 and
atoms10 in the earliest suggestions regarding laser cooling of
atomic particles.

Second, in the case of cold atomic particles there is a
substantial decrease in the contribution of the quadratic
Doppler effect, which is the primary obstacle to the produc-
tion of ultranarrow and superstable resonances with quality
factors Q> 1011. For the He-Ne/CH4 laser, for example, the
shift and inhomogeneous broadening of the resonance due to
the quadratic Doppler effect amount to about 150 Hz at
T = 300 K. In order to reduce the shift and broadening of
the narrow resonance in CH4 at A = 3.39 fj,m which are
caused by the quadratic Doppler effect to a level of Sv/
vs 10~15, for example, it will thus be necessary to lower the
temperature of the CH4 molecules to

6v „K- (7.1)

Such a low translational temperature of free atoms and mol-
ecules would probably be unattainable by any methods other
than radiation cooling.

Third, the low velocity of the atoms in a cooled beam
substantially increases the time over which the atoms inter-
act with a probe light field. There is accordingly a decrease in
the transit-time broadening of narrow resonances; this
broadening is the basic obstacle to the production of ultra-
narrow resonances of absorption saturation and two-photon
absorption. For example, the transit-time broadening of a
narrow resonance in CH4 could be reduced to Av/v~ 10~l3

at a beam diameter a = 10 cm by lowering the temperature
to

M2«0.01K. (7.2)

The increase in the duration of the interaction with a light
beam for slow particles would be particularly convenient for
use in combination with the method of spatially separated
optical fields.86

Fourth, ultracold atoms can be accumulated and stored
in a magnetic confinement system for neutral atoms. In this
case the duration of the interaction of the atomic particles
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TABLE I. Characteristics of the cooling and probing quantum transitions of Mg24, Ca40, and
Sr88 atoms which would be suitable for achieving ultranarrow resonances by the laser-cooling
method.

Atomic isotope Mg2' Ca41 Sr81

I. Strong optical transition for
cooling
1. Wavelength, A
2. Natural line half-width, MHz
3. Saturation intensity, W/cm2

4. Temperature of cooled atoms,
K

5. Velocity of cooled atoms,
cm/s

II. Weak optical transition for de-
tecting the narrow resonance
1. Wavelength, A
2. Radiation width, Hz
3. Doppler half-width after

cooling, MHz
4. Shift due to the quadratic

Doppler effect, Hz

3'50-3'P, 4'S0-41P, S'So
2852 4226 4607
39.4 17.4 12.8
0.44 0.06 0.03

2-10-

117 57

6-10-4

34

3'S0-3
3P, 4'S0-4

3P, 5'S0-5
3P,

4571 6573 6893
68 420 6400

2.6

5-10-3

4.9

3-10-"

with the field is essentially unlimited, and the transit-time
broadening vanishes completely. By taking this path we
could expect to produce ultranarrow spectral resonances in
experiments with a minimal number of atomic particles.

For producing very narrow resonances of radiation-
cooled atoms, the intercombinational transitions of even iso-
topes of alkaline earth atoms (Mg24, Ca40, and Sr88), for
example, would be completely suitable. These atomic iso-
topes also have strong allowed transitions suitable for laser
cooling. The basic characteristics of the allowed cooling
transition and the intercombinational probe transition of
these atoms are listed in Table I (Ref. 84).

From this table we see just what laser cooling will
achieve immediately in terms of the production of narrow
resonances and just what is potentially possible with the help
of cooled atoms. We see that a pronounced cooling of atoms
reduces the Doppler width of any quantum transition by a
factor of about 103, but the residual Doppler broadening is
103-105 times the limiting width set on the narrow reson-
ances at the probe transition by radiation broadening. This
potential possibility should be realized in combination with
other methods for eliminating Doppler broadening. For ex-
ample, one could use the method of saturation of absorption
in a beam of cooled atoms. In this case, the width of the
resonance will be caused primarily by the finite time over
which the atom interacts with the probe field. However, be-
cause of the low velocity of the cooled atoms, the diameter
(a) of the probe beam which would be required to prevent
this broadening is comparatively small (a Z 2 cm for Mg24,
a Z0.14 cm for Ca40, and a Z S-ICT2 cm for Sr88). Conse-
quently, the combination of the method of deep laser cooling
of atoms with the method of absorption saturation would be
quite capable of producing ultranarrow resonances with
widths 102-103 Hz. In cases where it is not possible to
achieve the maximum possible cooling of atoms the presence
of a nonzero velocity can be offset by increasing the diameter

of the probe light beam or even by resorting to the method of
spatially separate optical fields.

Another possibility of significant interest is laser cool-
ing in systems for detecting individual atoms. Here we have
two methods for increasing the selectivity of the detection.87

First, the laser slowing-down of the beam of atoms to be
detected makes it possible to increase the transit time of the
atoms through the detection region. For example, in an ar-
rangement for fluorescent detection an increase in the transit
time of the atoms through the laser beam exciting the flu-
orescence would make it possible to increase the number of
scattered photons, with the result that the selectivity of the
detection would be sharply increased. Second, a slow beam
of atoms to be detected could be directed into a magnetic
confinement system. Prolonged confinement of the atoms in
the confinement system would also allow a sharp increase in
the selectivity of the detection of individual atoms.
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