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Transition radiation is emitted when physical objects (particles, electromagnetic pulses, etc.)
that have no eigenfrequencies move uniformly through inhomogeneous or nonstationary media.
The effect is kinematic in character and is observed for waves of any physical nature. This review
paper is devoted to the current state of the theory of acoustic transition radiation and transition
scattering in media whose motion can be described by the hydrodynamic equations. The most
characteristic problems in the theory of acoustic transition radiation are discussed, including the
crossing of separation boundaries by a source, emission in a nonstationary medium, and so on. A
number of diffraction problems of the theory are examined (e.g., the emission of sound by a
source moving near inhomogeneities of different type). The last section is devoted to acoustic
transition scattering. Particular attention is devoted to methodological aspects.
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INTRODUCTION

When physical objects that do not have eignefrequen-
cies (we shall refer to them simply as sources) move uni-
formly through homogeneous elastic media, the only possi-
ble form of acoustic radiation is the emission of Mach waves
which appear at ultrasonic source velocities. On the other
hand, in inhomogeneous media, in nonstationary media, or
in the neighborhood of such media, the motion of a source is
accompanied by the emission of the so-called transition radi-
ation, '~3 even when the source moves with subsonic velocity.

The transition radiation effect was discovered in elec-
trodynamics in the middle forties by V. L. Ginzburg and I.
M. Frank, who considered the crossing of the separation
boundary between two media by a moving charge.4 A subse-
quent paper5 considered x-rays emitted in the direction of
motion by a relativistic charge, and showed that the intensity
of this radiation increased linearly with increasing energy of

the charge. The effect thus became the basis for a possible
transition counter, capable of high efficiency at high
charged-particle energy. As a result, there was a consider-
able growth in interest in transition radiation. At present,
this problem is attracting an enormous number of papers in
electrodynamics (see Refs. 1-10 and the references cited
therein).

Transition radiation is produced not only in electrody-
namics but also in acoustics, ordinary and magnetic hydro-
dynamics, superfluid hydrodynamics, and so on. It is clear
that transition radiation is a universal phenomenon: it can
occur in fields of any type. In general, transition radiation
can coexist and interfere with waves produced as a result of
the accelerated motion of a source, or motion with velocity
exceeding the phase velocity of waves in the medium.

We shall review papers devoted to the theory of acoustic
transition radiation in hydrodynamic media. Since, as noted
above, we shall be concerned with general wave phenomena,
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it will be clear that acoustic transition radiation will have
much in common with electromagnetic transition radiation,
for which the transition effect was first discovered. We shall
give a brief description of methods of solution and of the
results obtained for a number of acoustic problems, many of
which have close electrodynamic analogs. The problems
presented below are of definite practical significance and, at
the same time, relatively simple. Our aim was to avoid the
influence of extraneous factors and try to understand the
physics of the phenomenon. At the same time, it was impor-
tant to take into account the obvious connection between the
present review and the reviews previously published in this
Journal of the analogous problems in electrodynamics.

We must first emphasize the specificity of problems re-
lating to moving sources of acoustic radiation. It is well-
known that the motion of a macroscopic body in an elastic
medium is accompanied by the appearance of hydrodynamic
stresses which are nonlinear when the source displacement
velocity is high (they produce vortices, turbulence, and, at
ultrasonic velocities, shock waves, etc.). The classical wave
equation will therefore provide us with a correct description
of either microscopic sources (beams of charged or neutral
particles, bodies in tenuous media, and so on) or the so-
called "nonmaterial" sources, i.e., regions of hydrodynamic
stress transported through the medium and capable of being
produced, for example, by electromagnetic fields (through
the release of heat or striction), moving vortices, turbulent
fluxes, and so on, or, in the case of crystals, by dislocations.
Finally, linear theory can be used to examine the motion of
slender "wings" through a gas, at a small angle to the direc-
tion of flow (small "angle of attack"), and extended bodies
of revolution.'1>12 The shape of such bodies must be elongat-
ed in the direction of motion, smoothly brought to a point at
the rear, and rounded for subsonic and brought to a point
(with a small tip angle) for ultrasonic motion. When these
conditions are satisfied, it may be considered that the gas
flow is potential, which remains the case for low-intensity
shock waves produced during the ultrasonic motion of the
body."

It appears that the emission of acoustic transition waves
was first discussed by Dokuchaev,14 who gave the solution
of, in a sense, the simplest problem, namely, that of the cross-
ing of the separation boundary between two gaseous media
by a body whose linear dimensions were much smaller than
the mean free path of the molecules of the medium.

The emission of acoustic transition radiation by dislo-
cations moving in crystals has been examined in a number of
papers published in the last few years. When a dislocation
crosses a plane of discontinuity in the elastic moduli of a
crystal, this should be accompanied by the emission of sound
by a mechanism that must be regarded as a transition mecha-
nism.15 A well-known analog of this effect is the emission of
sound by dislocations as they emerge on the surface of a
crystal.2' This type of emission was given a theoretical base
in Ref. 15, and was subsequently discovered and investigated
experimentally.16"19 The authors of Ref. 17 succeeded in de-
tecting, in a pure form, the sound accompanying the emer-
gence of dislocations on the surface, having excluded the

nonstationary displacement of dislocations in the interior of
the crystal, which produces sound by analogy with the emis-
sion of electromagnetic bremsstrahlung by accelerated
charges. The spatial distribution of acoustic radiation from
dislocation clusters was measured in Ref. 18, while acoustic
pulses generated by individual dislocations emerging on the
surface were recorded in Ref. 19.

The emission of acoustic transition radiation by a
charged particle crossing the separation boundary between
two media with different acoustoelectric properties was in-
vestigated in Ref. 20. This radiation is due to the motion of
the separation boundary under the influence of the electric
field of the particle.

There is undoubted interest in transition radiation in
the form of the numerous types of surface acoustic waves in
solids. Here, we note the emission of Rayleigh waves by dis-
locations emerging on the surface of the crystal,21 and the
analysis of Gulyaev-Blyustein waves22 generated when a
charged-particle beam crosses the separation boundary
between a piezoelectric medium and a vacuum.

Some problems in the theory of transition radiation in
hydrodynamics are investigated in Refs. 23-27. The emis-
sion of acoustogravitational transition radiation by a mass
source crossing the separation boundary between two me-
dia, in each of which the pressure and density vary according
to the barometric law because of the influence of the gravita-
tional field, was considered in Ref. 28.

One of the factors contributing to the recently growing
interest in this range of acoustic problems is that it is now
possible to use moving opticoacoustic sources to generate
sound.29'31 Such sources take the form of propagating stress-
es produced by inhomogeneous heating of the medium due
to the absorption of optical radiation, or by electrostriction.
They can be created, for example, by scanning the surface of
a liquid with a laser beam,32 or by producing a moving light
spot in a nonlinear medium.33 One of the obvious advantages
of optoacoustic sources is that they do not involve flow ef-
fects, which facilitates the comparision between theory and
experiment. These developments have acted as a stimulus to
studies of different aspects of the theory of emission of sound
by moving sources29-34"38 and, in particular, the emission of
acoustic transition radiation by optoacoustic sources.39"^4

It is well-known that the thermal mechanism is the
most significant among those responsible for the optoacous-
tic effect in optically absorbing media and for low (in com-
parison with the latent heat of vaporization) densities of en-
ergy released in the medium. There have been considerable
advances in recent years in the theory of optical generation
of sound29"31 by the thermal mechanism. The production of
sound in a liquid by laser pulses was one of the questions
investigated in detail. The essential point for our purposes is
that a laser pulse propagating in a medium is also an opto-
acoustic source moving with the velocity of light. The cross-
ing of the separation boundary between two media by a pulse
of this type is accompanied by the emission of acoustic tran-
sition radiation. The generation of sound in a liquid half-
space by laser pulses may therefore be looked upon as a form
of acoustic transition radiation (see, for example, Refs. 30
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and 45-53).
It is thus clear that the optoacoustic source is of particu-

lar interest in the acoustics of moving media. If, at the same
time, the generation of acoustic disturbances is dominated
by the thermal mechanism, the source can also be referred to
as thermo-optic or thermal. Without loss of generality, we
shall then speak of the thermal source, and will include
charged-particle beams in this designation. Actually, the
thermal mechanism of generation of acoustic disturbances is
also found to predominate in the case of heavy charged parti-
cles traveling through condensed media. At the cost of con-
siderable simplification, it may be considered that a particle
moving through a medium is surrounded by an "overheated
region," the linear dimensions of which are largely deter-
mined by the process of hydrodynamic relaxation.54

In addition to the sources listed above, there is also a
source of acoustic disturbances that is characterized by a
force that is opposite to the drag resistance. This mechanism
is significant in aeroacoustics and is discussed in Ref. 14.
When an object with linear dimensions / that do not exceed
the mean free path A travels through a gaseous medium, it is
found that free molecular flow takes place. The drag force
acting on the body moving with constant velocity V is then
given by

F* = -ceSposV
in the case of subsonic motion (V<s) , and by

F* = - aSPo | V | V

in the case of ultrasonic motion (V>s). In these expres-
sions, a is a numerical coefficient that depends on the nature
of collisions between the atoms (or molecules) of the medi-
um and the surface, and also the shape of the body, S is the
effective cross-sectional area,/o0 is the equilibrium density of
the medium, and s is the velocity of sound. The moving body
produces a force F = — F* on particles in the medium that
lie in its immediate neighborhood. If we confine our atten-
tion to hydrodynamic disturbances with characteristic lin-
ear dimensions exceeding the mean free path and therefore
much greater than the linear dimensions of the body, the
force f acting on the body per unit volume can be written in
the form

f = F6 (x— Vt — x0). (I.I)

A moving distribution of mass sources can often act as a
source of hydrodynamic disturbances. The continuity equa-
tion then acquires the additional term

m = u£ (x - \'t - x0), (1-2)
where the function g describes the source distribution and
fj,(f) is its time dependence.

Finally, we must mention one further mechanism of the
generation of sound which is of importance in aeroacoustics.

Lighthill55 has proposed an approach to the determina-
tion of acoustic radiation generated by a turbulent flow oc-
cupying a relatively small region in a homogeneous medium
in which the velocity of sound and the equilibrium density
are constants. He obtained an equation of the form

Tu, (1.3)

where p' represents pressure variations, s is the velocity of
sound, TtJ =pv,Vj +<5,, (/>' ~s2p')-eij is the Lighthill tur-
bulent stress tensor, and etj is the viscous stress tensor.

This equation has the same structure as the wave equa-
tion for the acoustic field generated by a quadrupole source.
It is the starting point of the analysis of the generation of
aeroacoustic noise by, for example, a turbulent flow of air
(or some other nonstationary flow with high Reynolds
numbers) of relatively small spatial extent (such as ajet). It
is often possible to reduce the analysis to the approxima-
tion56-57 in which TtJ ~pvt y, in the region of the jet and is
zero elsewhere.

We are thus already in a ppsition to identify in a prelimi-
nary manner some of the most essential features of transition
radiation in acoustics.

First, in contrast to electrodynamics, there is a great
variety of sources of acoustic disturbances (thermal, mass,
force, etc. mechanisms).

Second, the crossing of the separation boundary
between media by a source is often accompanied by a change
in the source itself (for example, in the case of a thermal
source, by a change in its power output, characteristic linear
dimensions, and thermophysical parameters). It will be
shown below that the radiation emitted in this way interferes
with the transition radiation. In addition, Mach waves
(Cherenkov radiation) are emitted when the source travels
with ultrasonic velocity.

It is clear that interference between three types of radi-
ation can then take place.

Finally, a further important aspect of the difference
between electrodynamic and acoustic problems is the ap-
proach to the problem. In electrodynamics, it is the radiative
energy loss by a moving point particle that is of the greatest
interest, and the basic characteristics of the transition radi-
ation are its spectral density (or the spectral power), its an-
gular distribution, and so on.

In acoustics, on the other hand, it is often important to
have the space-time description of the pressure distribution
because acoustic sensors usually measure not the intensity of
the radiation but, directly, the pressure in the acoustic wave.

Next, in contrast to electrodynamics, the size of the
source often plays an important role in acoustics. The transi-
tion radiation is then an acoustic pulse whose shape is deter-
mined by the structure of the moving source itself and is the
most important feature of the process.

The structure of our paper is as follows.
Section 1 discusses general questions relating to acous-

tic transition radiation, and provides a qualitative analysis of
the radiation process.

Section 2 discusses certain basic problems in the theory
of acoustic transition radiation.

In accordance with the adopted definition, transition
radiation will also be assumed to encompass the radiation
produced by a source moving in a uniform medium near
some particular inhomogeneity (screen, surface irregular-
ity, and so on). As in electrodynamics, this type of radiation
is often referred to as diffracted radiation. The correspond-
ing aspects of the problem will be touched upon in Section 3.
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Section 4 is devoted to transition scattering. By analogy
with transition scattering in electrodynamics, acoustic tran-
sition scattering will be defined as the transformation of
waves and disturbances of any physical nature into acoustic
waves as a result of the interaction of the former with moving
or stationary sources.

1. EMISSION OF SOUND BY MOVING SOURCES

A. Basic equations and energy characteristics of the
radiation

Let us write down the complete set of linearized hydro-
dynamic equations, together with the equation of state and
the equation of thermal conduction in a liquid:

-JU Vdivv - j - f , (1.1)Po -or =
dp'
dt

da'
dt

= — p0div v + m,

P --JTP —

(1.2)

(1.3)

(1.4)

(1.5)

where v is the velocity of the liquid, p',p', T', and a' are the
pressure, density, temperature, and entropy variations about
their equilibrium valuesp0, p0, T0, and <TO, and 77 and g are the
shear and volume viscosities. The quantities Q, f, and m
characterize the effect of the corresponding thermal, force,
and mass sources in the medium (Q is the power density of
thermal sources due to absorption in the liquid, for example,
the absorption of optical radiation, etc., f is the force per unit
volume of the medium, and m is the mass released per unit
volume per unit time). Finally, s is the velocity of sound, P is
the thermal expansion coefficient, and cp is the specific heat
at constant pressure.3'

We shall assume that, at each instant of time, the
sources are localized in a limited region of space. Let /min be
the smallest characteristic linear dimension of this region
(for example, for a thermal source, /min is the minimum di-
mension of the region of absorption of the radiation that
generates the sound waves). Provided the conditions

-*- —?--1 (1.6)

are satisfied, the basic set of equations becomes much
simpler and can be reduced to the following equation for the
pressure variations:

P dQ dm_
idt dt

(1.7)
where a> is the frequency of the radiated sound wave,
v= [(4i//3) + £]/p0 is the kinematic viscosity, x — K/
pffp,S = (l/2s2)[v + x(cp/cy — 1)], andcK is the specif-
ic heat at constant volume.

Condition (1.6) represents the situation where thermal
conduction and viscosity have little effect on the efficiency of
the sound-generating mechanism and provides a lower
bound for the acoustic frequency a>. The same processes re-
strict the acoustic frequencies to the region below the upper

bound, determined by the condition that the absorption of
the generated waves must be small:

(1.8). rr»2 rs2 Ico'«iT' "I-
When this condition is met (and it is valid for most liquids
up to hypersonic frequencies), dissipation in the wave zone
can be neglected and the law of conservation of energy can be
written in the following form for the original system58

Po"J

2Pos'

(1.9)

The first and second terms in this expression represent
the time dependence of the acoustic energy density and its
flux through the bounding surface 2, while the quantity on
the right-hand side is the work done by radiation reaction
forces. We emphasize at once that, for the transition effect
discussed below, the radiated energy will not, as a rule, be
equal to the work done on the source by the field.4' This is so
because, as the source travels from one medium to the other,
its intrinsic (accompanying) field is found to vary, i.e., the
energy of this field varies. The analogous problem of macro-
scopic renormalization of the mass (charge) of a particle
crossing the separation boundary between two media is dis-
cussed in detail in Ref. 1.

We therefore begin with one of the well-known methods
for the evaluation of the spectral energy density of the radi-
ation.

For large distances |x| from the region in which our
process originates (we shall assume that these distances are
large in comparison with the characteristic spatial scale of
the phenomenon), the field may be regarded as a plane wave
in small regions of space. The radiated waves transport a
definite energy, the energy flux being given by the vector
S=p'\ which, in a plane wave, is given by S = ( p ' ) 2n/ p^s,
where n is the unit vector drawn from the origin to the point
of observation. The intensity radiated into the solid-angle
element dfl = sin 0 Ad &<p is, as usual, defined as the amount
of energy flowing per unit time through the area element
d£ = |x|2dfl on a spherical surface of radius |x .centered on
the origin. The total amount of energy passing through the
element d£ is

= At (p')2
|x|2dQ.

Since

we have

i.e., the quantity

l

a»0,

(1.10)

(1.11)

(1-12)

(1.13)
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X/2
| (s/V) —cos6 I '

(1.14)

(ft

FIG. 1. Crossing by a source of the separation boundary £' between media
with different acoustic parameters, and the subsequent rearrangement of
the source "jacket" with the emission of sound.

can be interpreted as the energy radiated into the solid-angle
element dft in the direction n in the form of waves within the
frequency interval dca. The quantity &a>a then character-
izes the angular distribution of the spectral energy density of
the radiation.

B. Zone in which radiation originates

If the process in which we are interested takes place in a
system consisting of contacting regions in each of which
(1.!)-(!.5) with the corresponding values of the equilibri-
um parameters are valid, we must taken into account the
boundary conditions as well. It is precisely the presence of
the boundaries that is usually the reason for the emission of
transition radiation (Fig. 1).

The point is that a source moving uniformly with sub-
sonic velocity is surrounded by an accompanying region of
hydrodynamic perturbations, i.e., a kind of jacket that is
never detached from it. The distribution of this "jacket"
around the source is determined both by its velocity Fand by
the equilibrium parameters characterizing the medium, for
example, the velocity of sound, the density, and so on. (Lines
of equal stress C 1>2 can be drawn around the source, as
shown in Fig. 1.) As it eneters a region of space in which
these parameters have values differing from the original val-
ues, the "jacket" begins to change its shape, tending to the
distribution corresponding to the new medium parameters.
This process cannot occur instantaneously because the
acoustic signal has a finite velocity of propagation and takes
a certain time T to develop. During this time, the source
moves through a distance Lf = VT. It is clear that the dis-
tance Lf over which the rearrangement of the field accompa-
nying the source is practically completed can be referred to
as the formation length.

This length can also be defined as follows. Because of
energy conservation (and the fact that the boundary condi-
tions must be satisfied), the rearrangement of the field ac-
companying the source gives rise to an additional field,
namely, the radiation field. The distance over which the ra-
diation field and the field accompanying the source become
separated by an amount of the order of one wavelength may
be looked upon as the characteristic length for the develop-
ment of the process.1

The formation length is therefore given by

where 9 is the angle between the direction of emission of the
radiation and the motion of the source. On the other hand,
for a source of finite size, the pulse of transition radiation
with characteristic duration rmax (determined by the pa-
rameters of the problem) is formed over the length

Lt. — c o s 6 | -
(1.15)

We note that (1.14) - (1.15) are valid for both subsonic and
ultrasonic motion of the source.

To conclude this section, let us briefly consider the con-
ditions under which the parameters characterizing the
source (velocity, linear dimensions, values of Q and m, and
so on) remain unaltered as the source moves through uni-
form media, and change only when the source crosses a sepa-
ration boundary. This occurs when the characteristic length
L, over which a change in the source parameters actually
takes place,51 is much greater than the formation length Lf.

£>£ f . (1.16)

Since the variation in the source over the length L is accom-
panied by the emission of waves with the characteristic
Doppler frequency59

M ^ 2nV>L (1.17)
» | 1 —(F/s)cos9 | '

it follows that, in accordance with (1.14) and provided
L>Lf, the transition radiation and the radiation due to the
time dependence of the source will have different frequencies
and can be analyzed independently.40 We note that the effect
of absorption features of a condensed medium on the genera-
tion of sound was discussed in Ref. 60.

Finally, we must consider whether the velocity V of the
source can be regarded as constant in the presence of radi-
ation (and, consequently, whether there is an associated
change in intrinsic source energy). Of course, the situation
here is exactly the same as in electrodynamics:1""3 the source
velocity can be regarded as constant (in the absence of exter-
nal forces) because it is assumed that the intrinsic source
energy is infinite. On the other hand, the source velocity can
be altered by external forces, in which case this change
(which gives rise to bremsstrahlung) must, of course, be
taken into account.

2. ACOUSTIC TRANSITION RADIATION

A. Transition radiation from a plane separation boundary

1. We begin with the most characteristic problem,
namely, that of the properties of acoustic transition radi-
ation emitted when a thermal source crosses the plane sepa-
ration boundary between two media. This problem was
solved in Ref. 14 for a small body interacting with a medium
through a force opposite to the drag force. Detailed analysis
of the transition radiation produced when a plane separation
boundary is crossed by an extended opticoacoustic source is
given in Ref. 40. We shall largely follow the latter treatment.

We shall consider that the source moves in the positive
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FIG. 2. Crossing of a plane separation boundary by a source.

direction of the z-axis and is symmetric relative to this axis.
The separation boundary lies in the x, y plane. The velocity
of sound sn and the equilibrium values of the medium pa-
rameters (density pn, volume expansion coefficient/8n, spe-
cific heat cpn, n= 1,2; Fig. 2) undergo a sudden change
across this plane.

The basic equation for the problem is the wave equation

(2.1)
dt1 at

where Dn =PnQn/cpn and Cn(x — \nt) is the amount of
heat liberated per unit volume per unit time.

Equation (2.1) must be augmented with boundary con-
ditions that follow from the requirement that the medium
must be continuous and the pressures must be equal on the
separation boundary, where the first of these conditions de-
mands that the normal component of velocity must be con-
tinuous across the separation boundary. In the linear ap-
proximation, the boundary conditions on z = 0 have the
form

J_
Pi

dpi
Pa

(2.2)

Before we proceed to a presentation of the solution of
our problem, we must consider one general point. Strictly
speaking, transition radiation is the radiation due to a vari-
ation in acoustic parameters along the trajectory of the
source. The simultaneous change in the thermophysical pa-
rameters/?,, , cpn and the quantity Qn on the right-hand side
of (2.1), which characterize the source, contributes the com-
ponent of the resultant radiation that is due to the rearrange-
ment of the source. The radiation due to the change in the
velocity Vn of the source can be referred to as bremsstrah-
lung by analogy with electrodydnamics. Nevertheless, the
emission of sound due to the rearrangement of the source
and the bremsstrahlung radiation can be looked upon as ef-
fects that are essentially related to transition radiation, and
it is interesting to examine their effect on the radiation pat-
tern in this relatively simple formulation of the problem.

Since the problem is homogeneous in time and inx, y, it
is convenient to use the Fourier transformation with respect
to time and the Hankel transformation with respect to the
transverse coordinate r.

p ( x , = dx »„. x (z),

(2.3)

/Vx(z )= \ dr j dt rJ0(Kr)e'^p(x, t).

Substituting (2.3) in (2.1) and (2.2), we obtain^the
following set of equations for the Fourier components p(z)
(the subscripts a> and x are omitted for brevity):

J_ a
Pi

where

z=0 z=0

JL' ei^/vn, (2.4)

. Pi 12=0 = ft 12=0, (2.5)

The solution of (2.4) is the sum of the particular solu-
tion defining the intrinsic field of the source in the medium:

— itl) Dn (to/Km X) . ,17 f l £\r^jntr' — _ n \ i in i otO)2/ V I / n I
h>" r^ . . o i ..V l<T»\ <* n, V*"v/

and the general solution for the radiation field:

pjf =ane±ui™z,where (in = Y((az/sl)—x2. (2.7)

The amplitudes an are found from the boundary conditions
(2.5), and are given by

a, = Pi/P» n IJL K2 ' K

T

^ L
(2.8)

- P^^ n /JL x
(0-n^^l ^ ' X

The field p" is the transition radiation field but only
when (2.7) describes a propagating wave, i.e., when
<o2/s2

n > x2. When to2/s* < «2, the field p" decays exponen-
tially with distance from the boundary and, in this case, we
must put //„ = i^x2 — ((a2 /s2,).

2. To obtain the space-time description of the radiated
field, we must invert the Fourier-Hankel transformation.
The main contribution of the integral with respect to x is
found by the method of steepest descents. To be specific, let
us consider the Gaussian distribution Dm :

Without reproducing in detail the complete calculation, we
give the final expression for the pressure in the wave zone
relative to the "track" of the source on the boundary:40 6)

0

w ro 1nWn (»n C0 1 f
( n)
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where

(6 ) =n v "'
2 cos 6rt

(2-9)

_ __
cos en+zna y i -(sjsn)* sin2 ert

is the wave transmission coefficient of the boundary
(a = 3 — « ) , r,m = lm / Vm is the time taken by the source to
cross the boundary, 1bma = (bm/sn)sin Qn is the travel
time of sound over the projection of the lateral dimension of
the source bm onto the direction of observation, and/^"' are
functions defining the direction of emission. For example,
for the second medium (n = 2),

f <2 ) (9 ) =
1

i (0 ) =
1 — (V2/s2)2 cos2 82

(2.10)

where 0,, 02 are the angles between the direction of observa-
tion and the vector — Vl (for the first medium) and V2 for
the second, respectively, andZna = pnsn/ pasa.

Analaysis of (2.9) shows that the transition-radiation
pulses are also Gaussian and their duration is determined by
the longest of the times T;I , rbin or r/z , rbin , and the polarity
of the pulses may be different.

We note that, when rlm >rbmn , the source can be de-
scribed by a 6-function in the lateral direction. For point
sources, the pulses of sound take the form of 5-functions at
the point of observation.

3. We have described the radiation pattern when the
motion of the source is subsonic in both media. We must now
consider the opposite case, namely, that of a source crossing
the separation boundary with velocities i, and s2 exceeding
the velocity of sound. To be specific, we shall suppose that
F, = V2 = V>sl>s2. The source then radiates the Mach
wave/)"8 in the first medium (see Ref. 40), which propa-
gates at an angle 0 f = arccos(s1/F). This wave is reflected
from the boundary and provides an additonal contribution
to the transition radiation at angles 6 f" < 6l < -rr/2. It is giv-
en by

,Ma\ e,, t, (2.11)

where V(# J"a) is the reflection coefficient for a plane wave
incident on the boundary at the angle 0,:

Z21 cos et' — V1 — (s2/si)2 sin" 9t (2.12)

In the second medium, we have not only the transition radi-
ation but also the Mach wave />5*a propagating at the angle
02*" = arccos($2/JO> as well as the Mach wave p"*_2) .arriv-
ing from the first medium:

(2.13)

where Wl (0) is the transmission coefficient of the boundary
[see (2.12) ] .The Mach wave arriving from the first medium
provides a contribution at angles ir/2 > 02

FIG. 3. Disposition of the wave fronts of radiated acoustic waves for
i2.

40 1— K,//; 2— p"',/'"'; 3— />£,„ ; 4— p^2) •

> 0 a-2) = arcsin [ ( s2/S! ) sin 9 f ] but, when (s2/
5]) sin 0 J"a> 1, the Mach wave in the first medium experi-
ences total internal reflection at the boundary.

Figure 3 shows the disposition of the wave fronts for
this case after source crosses the separation boundary. Ar-
rows show the directions of propagation of the waves.

4. We shall now obtain the expression for the angular
distribution of the spectral density. This is of interest in the
present context because it will enable us to demonstrate clear
analogies with the electrodynamic case. It is readily found
once we have expression (2.9) for the pressure, which is
determined by the method of steepest descents. It is, how-
ever, possible to start directly with the expressions (2.8) for

the amplitude an(—,x\ following the method described in

Refs. 1-3. The principle of this method is that, to find the
radiated energy, it is sufficient to evaluate its asymptotic
value for t-*ao. Substituting the expansion (2.3) into the

expression for the wave energy &n = I dx(p'^)2/pns
2

n and

integrating with respect to r, and then once with respect to x,
we obtain

dz S 5dx dw' dw"x <

dxx dw'dw"(a;a;*)6[u.n(co') —MCO")].

(2.14)
Pn«n

x'«o-/M

Since

the radiation energy is given by

jfn = \ dx \ dco— I/ -5 x2 |anl2- (2.15)
X2«o2/s2i _oo

Finally, let us introduce the angle 62 between the vectors n
and V (forward emission) and the angle 0, between n and
— V in accordance with the expression sin 20n = x2s2

n/mi .7)
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The final result is
oo n /2

j f n = f d ( f l \ de n -2 j t s in0 n -g n , co,
u o

where

(2.16)

(2.17)

and the amplitudes an are given by (2.8), in which
x2 = (a)2/s2

n )sin2 #„, where the angles 6n for n = I and
n = 2 lie in the range between 0 and ir/2.8)

It follows from (2.8) and (2.17) that, when the source
crosses the separation boundary between media with differ-
ent acoustic resistance pn sn, the resulting transition radi-
ation will interfere with the radiation due to the rearrange-
ment of the source itself on the boundary (change in yn and
the characteristic dimensions /„, bn of the source). When
the crossing of the boundary by the source is accompanied
by a change in its velocity Vn, bremsstrahlung radiation is
also produced, and interference between all these types of
radiation takes place.

5. Let us now use the above relationships to consider the
case where the free surface of a liquid is crossed by a source
with a Gaussian distribution and subsonic velocity. From
(2.8) and (2.17), we then have

C n, co —
PoY2 (V/s)3 cos2 9
4n3s [1 — (V/s)2 cos2 6]2

(2.18)
where 0<#<7r/2. Analysis of this expression for low veloc-
ities V-4s shows that this is dipole radiation for />6, i.e.,
<^n,<u ~cos2 #. The characteristic length of the acoustic
wave is then much greater than the characteristic linear di-
mensions of the region in which the sound wave is generated:

For velocities approaching the velocity of sound,
(1 — F2A2< 1), the radiation is concentrated in the narrow
angular rangeO<025 1 — F2/s2<l containing the direction
of motion of the source and, for />Z>, Eq. (2.18) can be writ-
ten in the form

PoT2 (2.19)

The total radiated energy turns out to be

do gn. „ == n

It is interesting to compare the effects of the transition
radiation when the source crosses the free surfce of a liquid
and when the source is suddenly brought to rest in a uniform
medium. In the latter case, we find form (2.8) and (2.17)
that

<£ — PoV3 (F/s)a cos2 9 .

[l-(W«)cos9JT *. 2^~S1Q 0—

(2.21)
where, in contrast to (2.18), the angle 6 lies in the range
O<#<TT. This explains the fact that, as follows from a com-
parison of ( 2. 1 8 ) and ( 2.2 1 ) , for transition-radiation inten-
sity within the solid angle dft for low source velocity ( F<s)
is greater by a factor of four than the intensity radiated when

the source is suddenly stopped. On the other hand, for veloc-
ities F— «, the radiation emitted in both of these cases is
concentrated in the small angular range 0 2< 1 containing the
direction of motion of the source, and the energy parameters
turn out to be the same.

Comparison of (2.17 )-( 2.21) with the analogous elec-
trodynamic problem1"3 demonstrates both the similarity due
to the common wave character of the phenomenon and the
differences due to the specific wave polarization and disper-
sion properties. In particular, for an ultrarelativistic charge,
the angular distribution of the radiation is strongly peaked in
the direction of motion. This can also occur in the acoustic
case (depending, however, on the degree of rearrangement
of the source ) for velocites V— *s2 (^<s2<sl). On the other
hand, for low velocities ( V^sn in acoustics and V4f in elec-
trodynamics), there is an essential difference between the
angular distributions. For example, in the electrodynamic
case, there is no radiation in the direction of motion of the
charge. Moreover, in electrodynamics, the relationship
between the transition radiation emitted by a charge enter-
ing a perfect conductor from vacuum and the radiation when
the charge is suddenly stopped in a vacuum is analogous to
that examined above (in the case of acoustic transition radi-
ation emitted when the free surface of a liquid is crossed by a
moving source and the radiation emitted when the source is
suddenly stopped in a uniform medium).

Finally, there is an essential difference due to the specif-
ic nature of acoustics, namely, the absence of significant dis-
persion in most liquids. This is why the integral

evaluated for a point source, will diverge, and the total ener-
gy of transition radiation must be estimated by taking the
upper limit to be wmax ~s/a, where a is the characteristic
linear dimension of the source. On the other hand, in electro-
dynamics, the corresponding integrals can be evaluated,
even for a point source, when the permittivity is given by the
plasma formula.9'

B. Generation of sound In a liquid by laser pulses.
Interpretation of the effect in terms of the theory of transition
radiation

The generation of sound by laser pulses in liquids has
been investigated in terms of the thermal mechanism in a
large number of theoretical and experimental papers (see,
for example, Refs. 46-53 ) . The most important results were
recently reviewed in Refs. 29 and 30.

A laser pulse propagating through a weakly absorbing
liquid is a thermo-optic thermal source moving with the ve-
locity of light. Transition radiation is produced when the
source crosses the surface of a liquid.39 However, the phrase,
"transition radiation," has not been used in the theory of
sound generation because the velocity of light was assumed
to be infinite in comparison with the velocity of sound.
Sound generation was looked upon as the consequence of the
time dependence of thermal sources acting in the liquid,
whose density was taken to be
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V)e-*f(t), (2.22)

where A is the transmission coefficient for optical radiation
of the surface of the liquid, fj, is the light absorption coeffi-
cient of the liquid, I(x,y) is a function describing the lateral
intensity distribution in the laser beam, and/(f) describes
the time dependence of the intensity [max/(?) = 1].

To illustrate the connection between sound generation
in a liquid by laser pulses in the case of the thermal mecha-
nism and the theory of transition radiation, we must modify
the above approach to some extent. We shall use (2.22) with
/ ( t ) replaced with f(t — z/c) as the thermal-source power
density, where c is the velocity of light. We have already
shown that the transition radiation and the radiation due to
the time dependence of the moving source (in the present
case, due to absorption) may be considered independently
for £>£/, where L is the length over which a significant
change occurs in the source (for a laser pulse, L~/z~' and
L, = CTmax/|l — (c/s) cos<?| is the formation length of
transition radiation, i.e., an acoustic pulse of characteristic
length rmax). In the case of a laser pulse (c>x), the above
condition is equivalent to rmax<r^, where rmM.
= max{rpTfr} (see subsection A), rp is the laser pulse

length, and rb = (b /s)sin 8 and r^ = (l/[is)cos 9 are, re-
spectively, the characteristic times of delay of sound waves
from elementary thermal sources lying in the horizontal and
vertical cross sections of the region of effective heat release
(Fig. 4). Consequently, under the above conditions,the con-
tribution of transition radiation can be examined separately
on the assumption of an unaltered laser pulse. The corre-
sponding expression for the pressure in the case of the Gaus-
sian intensity distribution I(x,y) = /0 exp( — r*/b2 is then
found from (2.9), where we must substitute y,=0,
y2 = (ir3/2CTpb

 2) X ( P/p<fp) (fiAI0), ptsl<pys2 = poS,
yl = F2>5).10) In the case ofalaserpulse of arbitrary shape,
described by the function/(f — |x|/c), we have for rp>r4,

P(X, i)= — 2 | x |
(2.23)

The exponential decay of the laser pulse in the liquid
can also be taken into account by modifying somewhat the

calculation given in Subsection A. (The source function D is
then no longer a function of only the difference x — Vt.)
Under the same conditions, we find that

|x

(2.24)

where
oo

= J

Equation (2.24) is identical with that given in Ref. 47 except
for the fact that, here, we have omitted terms involving high-
er powers of the parameter (yucrp) ~'.

Thus, in this case, the acoustic signal is the sum of two
pulses, the first of which has negative polarity and a shape
reproducing the envelope of the laser pulse. Comparison of
(2.23) and (2.24) shows that this pulse is, in fact, the pulse
of transition radiation.39-40 The additional positive term in
(2.24) that is proportional to i"p/rM , is due to the attentua-
tion of the laser pulse as it propagates through the liquid
(radiation due to the time dependence of the source).

A similar analysis can be performed for other ratios of
the characteristic times of the problem. In particular, when
TH *>rb >r

p > the contribution of the transition radiation can
again be treated separately. In terms of the notation intro-
duced above, we find from (2.9) that

i/0i*Tp -(f-|x|/.>VTg (2.25)^ f a •• " ' ' V \ fP(x, *)=- 2 | x |

The shape of the transition-radiation pulse is now deter-
mined by the lateral intensity distribution in the laser pulse,
and is independent of the shape of this pulse. When the at-
tenuation of the laser pulse during its propagation in the
liquid is taken into account, the expression for the pressure
again acquires an additional positive term proportional to
the small parameters rfc/rM, and is significant for \t — (|x|/
s) | >rb (see Fig. 5). The final result is, of course, identical
with that obtained by a different method in Ref. 47 (see also
the reviews given in Refs. 29 and 30).u)

We note in conclusion that, when the times rp and rb

are comparable with rM, the transition radiation interferes
with the radiation due to the attenuation of the laser pulse by
absorption.

T-

FIG. 4. Region of heat release for sound generation by laser pulses in a
liquid in the case of the thermal mechanism.

FIG. 5. Shape of the acoustic signal generated by a short laser pulse
(T,, >rk >rp ) ,29
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C. Acoustic transition radiation generated by a thermo-optic
source produced by laser-beam scanning of the separation
boundary between two media

This type of transition radiation is of considerable inter-
est because it may be possible to produce practical sources
moving with arbitrary (including near-sonic) velocities.
Theoretical calculations of the transition radiation emitted
in this case are performed in Refs. 40 and 44. These calcula-
tions differ from the analysis given in Subsection A by the
fact that the source treated in Refs. 40 and 44 is asymmetric
relative to the direction of motion, and the presence of the
free (or fixed) surface of the liquid must be taken into ac-
count.

Sound generation produced when a laser beam crosses
the sharp boundary of an opaque screen covering part of the
surface of a uniform liquid39^13 is a well-known analog of this
effect. The transition radiation then takes the form of a sin-
gle acoustic pulse whose shape depends significantly on the
ratio of the characteristic times of the problem, and the am-
plitude is proportional to the Doppler factor

(2.26)
1 —(V/s)cos6 '

Thus, for ultrasonic source of velocities, the pulse changes
its polarity as the direction of observation passes through the
direction of propagation of the Mach wave. This is explained
by the fact that the source overtakes the sound waves pro-
duced by it in directions of observation for which cos 0> s/
V. This property of the transition radiation was predicted in
Refs. 39 and 40 and confirmed experimentally in Ref. 41.

The authors of Refs. 41-44 have carried out a number of
detailed experiments with acoustic transition radiation pro-
duced by thermo-optic sources. The properties of the transi-
tion radiation produced by a laser beam crossing the sharp
boundary of an opaque screen covering part of the free sur-
face of a liquid were investigated in Refs. 41—43 while, in
Ref. 44, the source was produced by scanning a laser beam
over the free surface of two liquids (ethanol and water) sepa-
rated by an acoustically thin transparent film. In the latter
case, the radius of the light spot on the surface of the liquid
was 0.5 cm and the lateral beam distribution was nearly
Gaussian. The laser pulses (A = 1.06 ̂ m) had the dumb-
bell shape of width TZZ 150/zs at half height and total energy
S?;s0.6 J. The scan velocity was varied between 1.05X 105

and 1.7 X105 cm/s, and the laser absorption coefficients due
to the absorbing impurity were the same (/z =0.6 cm""1).
At the distance R = 0.6 m from the point of crossing of the
boundary by the source, the transition radiation recorded at
6 = 21° had the shape of an ./V-pulse which began with the
rarefaction phase with amplitudesp~ 11 ± 3 Pa (Fig. 6).
The results of these experimental studies are in good agree-
ment with the theoretical model of the effect.40'44

D. Transition radiation produced when the source crosses
Inhomogeneities of finite size

When the source crosses inhomogeneities of finite size,
the ratio of the characteristic dimension d of the inhomoge-
neity to the formation length Lf becomes important. After
passing through the inhomogeneity, the source returns to

a 21

*' II

FIG. 6. Acoustic transition radiation from a thermo-optic source pro-
duced by scanning a laser beam over the separation boundary between two
media44: a—geometry of the problem; b—shape of observed acoustic
pulse.

the original medium and, if cf<L/, the change in its intrinsic
field at the boundaries will be unimportant, i.e., there will be
little transition radiation. Of course, in general, the radiation
pattern will also depend on the shape of the inhomogeneity.
Some of the properties of the transition radiation produced
when the source crosses a spherical separation boundary
between two media were discussed in Ref. 62. It was shown
that, when d>-Lf (d is the diameter of the sphere), and the
velocity of the source approaches the velocity of sound sn

(plsl ~/02
x2> so that there is little reflection from the bound-

ary), the radiation emitted is the same as when an infinite
plane layer of thickness d is crossed.

E. Transition radiation from a viscous layer. Effect of
dissipation on the formation of the transition radiation

Dissipative processes have so far been ignored in our
discussion of the different manifestations of the transition
effect. Actually, the absorption of sound due to viscosity
and, even more so, the absorption due to thermal conduction
are small in ordinary liquids. However, the effect of dissipa-
tion on the formation of transition radiation may turn out to
be significant in some cases. The point is that the process
responsible for the generation of transition radiation de-
pends on the ratio of three characteristic scales, namely, the
formation length Lf, the characteristic linear dimensions d
of inhomogeneities in the medium in which the process de-
velops, and the dissipation length Ld which is determined by
the viscosity and thermal conductivity of the medium and
represents the length over which there is a significant dissi-
pative reduction in the amplitude.

In a perfect medium, L d—«•<» and the formation of the
transition radiation is determined by the ratio of Lf and d:
when Lf>d, there is little transition radiation and the field
accompanying the source does not change; if, on the other
hand, Lj-Sd), the transition radiation effect is well defined.

Consider a model in which a point thermal source
crosses a thin infinite layer of a viscous liquid in which trans-
verse waves may be present. Even when the source is poten-
tial (for example, a thermal or a mass source), the intrinsic
longitudinal field will transform into a vortical (rotational)
component on the boundaries of the viscous layer.121 Al-
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though the equation for the vortical component, which has
the form of the equation of thermal conduction, does not
then contain external sources, the generation of transverse
waves occurs as a result of the appearance of shear stresses
on the boundaries (in the region where they are crossed by
the source). This fact is reflected mathematically in the
boundary conditions relating the potential and the vortical
components of the fields.

Thus, the emission of transverse transition waves
should take place in this system when viscosity is significant
in at least one of the two adjacent media. It is well-known
that transverse waves are rapdily attenuated in a liquid but,
nevertheless, their energy must be taken into account in the
overall balance. We shall not examine this question here, and
will confine ourselves to an estimate of the effect of dissipa-
tive processes on the emission of acoustic transition radi-
ation.

Calculations performed at near-sonic source velocity V
(1 — V2/s\<\), where s2=sl + As, |As|<s2 (little reflec-
tion from the boundaries) for negligible source changes
(y,~y2) show that the leading contribution to the transi-
tion-radiation energy in the case of a thin layer with d>Ld is

. PoT2"2

n'sf
sin' nd (2.27)

where d is the layer thickness,

is the formation length in media 1 and 2,

T - * *

is the dissipation length for a wave mode of frequency a, v is
the kinematic viscosity, % — K/P(fP » and x is the thermal
conductivity.

It turns out that if, in addition to the condition d<dd,
we have Lf2 <L d , the transition radiation is concentrated
within the small angular angle 92<\ containing the direction
of motion of the source. It also follows from (2.27) that,
when the formation length Lf2 is much greater than the layer
thickness d, then fn>(a ~ (d /Lf2 )2, i.e., as expected, the en-

ergy yield is small. When Lf<d, the factor sin2/ — — ) oscil-
\2£/i/

lates rapidly with the angle 0, and its average value is 1/2. It
is then readily seen by comparing (2.27) and (2. 17) that the
transition-radiaton energy from the layer is approximately
equal to the sum of the energies radiated from the two boun-
daries (forL/2<L d ). The maximum amount of radiation is
produced when the interference condition
d = (2n + 1)£/2

13) is satisfied. When the layer viscosity is
low and L/2 <£, d , the energy of the transition radiation is
reduced to some extent with practically no effect on the di-
rectivity of the emission. In the opposite case, L/2>Ld, the
radiation is no longer concentrated in the small angular
range 02<1.

Let us now consider the case L d <<f for which viscosity
has a considerable effect. If the formation length L/2 of radi-
ation from the first boundary is small in comparison with the

dissipation length L d, the influence of the first boundary will
be negligible because phonons can be formed and then ab-
sorbed in the layer. If, on the other hand, the formation
length L/2 is comparable with the phonon absorption length
L d, "emitted phonons" cannot be distinguished from "vir-
tual phonons." One can then only speak of the total energy
lost by the source because radiative losses cannot be unique-
ly defined.

F. Transition radiation in a nonstationary medium

As noted in the Introduction, a moving source can also
generate acoustic transition radiation in a spatially inhomo-
geneous medium whose properties are functions of time.
This effect will be illustrated below for a thermal source and
a sharp change in the medium parameters at a particular
time. Suppose that, at t = 0, thre is a sudden change in the
velocity of sound, the medium density, the thermal expan-
sion coefficient, the thermal capacity of the medium, and the
power and characteristic linear dimensions of the source
from svpltpltcfl, gl,l1,b1 to S2,p2,02,cf2,q2,!2,b2, respec-
tively. To determine the characteristics of the resulting radi-
ation, we must solve the wave equation (2.1) for t<0 and
t > 0, and then match the two solutions at t = 0. The match-
ing conditions which follows directly from (1.1) and (1.2),
when/, m, rj, f are all zero, consist of the continuity of dis-
placement and velocity at t = 0. The Fourier components of
the velocity potential (v = V<p) are then given by

aq>k2

dt !=0

(2.28)

(2.29)

where

<p k (k , t)= dxe-«»(p(x, t),

<P(x, *) = - r e ^ q ^ k , t), (2.30)

5 B (k )= j die- *«/>„(!, i=0).

The solutions of (2.28) are

<Pkl = — '

<Pk2= —
I (k)/p8

*<0,

1, t>0.

(2.31)

For t < 0 only the particular solution of (2.28) is the solution
and there is no radiation. When t > 0, two waves are pro-
duced with amplitudes a+ and a_ and propagate along the
vectors k and — k, respectively.

By satisfying conditions (2.29) we obtain the following
expressions for the amplitudes a+ and a_:

_ t f [ l±(nV/* 2 )] ' .P a /P2
2kl I l-[(nV)V«H

U ± (PI/PS) nV/sa] J^
1 —[(nV)«/«?l M-

(2.32)

where n = k/|k| is a unit vector in the direction of k. Hence
it follows that c_( — k) = a*+ (k) so that, for given k, the
amplitude a+ determines the forward emission, i.e., emis-
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sion into the cone 0<^<ir/2, where if> is the angle between
the vectors k and V, and a is the backward-emission ampli-

To obtain the space-time description of the radiated
field, we use the inverse Fourier transformation. Assuming a
Gaussian distribution for the source, we obtain

^], (2.33)

where

/2(9) 1 — (l-
i

(l-7s.2) cosO
(2.34)

rlm = (Im/s2) cos 0, rbm = (bm/s2) sin 9 are the charac-
teristic times for the acoustic waves to traverse a distance
equal to the projections of the longitudinal and transverse
linear dimensions of the source along the direction of obser-
vation, andZ12 = p\Si/p2s2,

 m — 1-2-
In accordance with (2.33), the momentum of the tran-

sition radiation in a nonstationary medium can be represent-
ed by the sum of two momenta of Gaussian form whose
length is determined by the longer of the times T;I , rb and

The angular distribution of the radiation special energy
density can readily be found direclly from (2.32). Substitut-
ing the expansion given by (2.30) into the expression for the

wave energy §P = dx ̂  I —2-) , we obtain
J s2 \ dt )

dx j j dk' dk"ei<k'+k">'! -|p -^P2

0 < c 9 2 < l — V^/s\^\ in the direction of motion of the
source.

3. DIFFRACTIVE EMISSION OF SOUND

A source moving uniformly in a homogeneous medium
is accompanied by a field which is distributed in accordance
with some law in the region surrounding the source. It is
precisely this field and not the source itself (point or ex-
tended) that governs the emission of radiation. Hence, even
when there is no change in the properties of the medium
along the trajectory of the source, but there are some inho-
mogeneities in the neighborhood of the trajectory (for exam-
ple, screens, irregularities, inclusions, and so on), the fields
accompanying the source may become modified. If the
acoustic parameters of the inhomogeneities are such that
total internal reflection takes place at their boundaries,the
resulting radiation is usually referred to as diffractive.15) It is
thus clear that diffractive emission can be treated as a variety
of transition radiation in its widest sense. Moreover, there is
a considerable range of methods available for the solution of
diffraction problems. We now proceed to a presentation of
the results obtained for some basic problems in acoustic dif-
fractive emission, and to a brief discussion of the methods
available for their solution.

A. Emisison of sound by a source traveling near an uneven
surface

Suppose that a point mass source moves with constant
subsonic velocity V= Mas above an uneven but perfectly
rigid surface. The deviations of this surface from the xy plane
are characterized by the shape function 77 (Fig. 7). The basic
equation for the problem is the Helmholtz equation63 for the
Fourier components tpm of the potential:

= dco d9sin Q-

Hence, since & = oj/s2, we find that

(2.35)

(2.36)

For angles 0<0<fl-/2, expressions (2.33) and (2.36)
describe the emission of radiation in forward directions,
whereas for 7r/2<#<w they describe emission in backward
directions.

It is well-known1 that, in electrodynamics, the transi-
tion radiation emitted by a relativistic particle at the separa-
tion boundary between two media is practically the same as
in the case of a sharp change in the permittivity with time.I4)

In acoustics, this coincidence also occurs for
V—*s2(V<s2<Si), but only when the changes involve the
velocity of sound alone. Equations (2.17) and (2.36) then
reduce to the following form for />£:

(2.37)

The emission is concentrated in the narrow angular range

subject to the boundary condition

= 0;

(3.1)

(3.2)

where 7 = p/p0, p is the mass output per unit time,p0 is the
equilibrium density of the medium, and, in the case of ther-
mal sources, -y = /3 g/p0cp.

h A
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We shall confine our analysis to the case of small sur-
face irregularities rj, i.e., 1 71 77 1 < 1 , where Vj. = id /dx + jd/
dy is the two-dimensional differentiation operator. This
problem can be solved by the method of small perturbations,
the validity of the results being restricted by the condition
that the irregularities are small, i.e., A>|i?|. Expanding the
boundary condition (3.2) into a series around z = 0, we can
reduce it to the form

dz 2=0 dz*
(3.3)

The solution of ( 3 . 1 ) with the boundary condition ( 3 . 3 ) will
now be written in the form of an expansion in terms of the
small parameters |

...,whereq n) (|r)|/A,)"- (3.4)

In the zero-order approximation corresponding to the

level surface (17 = 0), we have = 0 and the po-

tential can be expressed in terms of the Macdonald func-
tions:

(3.5)

, wwhere a = —= *- /H-
* "\/Ma2 1, Ma= V/s<\.

The expression given by (3.5) determines the perturba-
tion of the medium by the motion of the source. For large
values of the argument, the Macdonald function can be re-
placed with the asymptotic form: A"0(f)~(i7-/2f)1/2

exp( — f). The perturbations of the medium decay expon-
entially in directions perpendicular to the direction of mo-
tion, so that a source moving with constant subsonic velocity
in a uniform medium above a level surface will not radiate.

The emitted radiation is due to surface irregularities,
which are taken into account in the first approximation in

(3.6)

dz z=o

The solution of (3.6) can readily be written down in
terms of the Green's function of the second boundary-value
problem.

1. Consider the case where a source travels above the
corrugated surface rj = a sin xx. Analysis shows that radi-
ation is emitted in a given direction at frequencies

mx Ma s (37)
m~ i — Mas inOcos tp '

where m = 1,2,... is the order of the spectrum. The fact that
the spectrum is determined by (3.7) and is independent of
the structure of the surface, but depends only on its period
can readily be understood in terms of the following simple
considerations. Let us suppose that the wave ~exp(/k-r
— ia>t is emitted from some point on the surface sinusoid,

but only at the time when the source passes above it. The
wave ~exp{ik-(r + d) — uo(t + d/V)} is then emitted
from the point r + d at the timer' = t + d/V, where d = 2ir/
x is the period of the sinusoid. These waves add coherently if
the phase difference is a multiple of 2ir, i.e., k-d — cod/
V= 2-irm and, since

k-d = fL 2E. sin 6 cos <p ,
S X

Eq. (3.7) follows immediately. There is another graphic in-
terpretation: the quantity xMas is the frequency with which
the source traverses one period of the surface sinusoid, and
the Doppler-shifted radiation frequency is exactly as given
by (3.7). It follows from (3.7) that the frequency com can be
present only in m directions, where

(3.8)"m
xs

tOm
xs

--Ma - 1 ) "

Effective generation occurs for m = 1, and radiation with
m > 1 is suppressed exponentially. The linear approximation
in \ij\/A can be used to calculate the emission spectrum, but
only in the first order. Since 77 is periodic, it is interesting to
consider the radiated power 8?n. Calculations show that this
is given by

poY2 a2x4s
Ma

(3.9)

where /?! = Ma~2 — 1 + sin2 9 sin2 <p), f}2 = Ma~' — sin
9 cos cp.

2. Let us now suppose that the surface is random in x,
but its vertical displacement is normally distributed with the
joint probability density

f\"(x"))

2a2(l — (3.10)

where a2 is the variance and C ( p ) = exp{ — (x' — x")2/
I2} is the height correlation coefficient at the distance
p = \x' — x" |. We then have

v — ien, a — - Mas4

The basic properties of the radiation pattern can be seen
in Figs. 8-9, which show sections of this pattern by the
planes <p = 0, IT; <p = v/4, 5ir/4; tp = ir/2, 3^/2 at frequency
co = 50 c"1 and Ma = 0.5, and also the radiation integrated
with respect to the frequency for Ma = 0.9.

FIG. 8. Section through the radiation pattern at frequency co = 50 s~' and
Ma = 0.5 by the planes <p = 0, ir( 1), <p = ir/4, 5ir/4 (2), and <p = ir/2,
3)7/2 (3).
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FIG. 9. Section through the frequency-integrated radiation pattern for
Ma = 0.9 by the planes <p = 0, IT ( 1), <p = 7r/4, 5ir/4 (2), and <p = v/2,

(3).

We note that, in the case of perfectly soft surfaces, the
factor P ] -#/Ma)2/£2 in (3.9) and (3.11) is replaced
with cos2 6. This means that the effective radiator is a dipole
with a variable dipole moment, moving in the direction per-
pendicular to its axis. Finally, all types of surface produce an
exponential reduction in the intensity of the emitted radi-
ation with increasing height of the source above the surface.

B. Generation of sound by a source moving past a half-plane

Problems involving diffracted radiation can be success-
fully solved by the Wiener-Hopf method. For example, this
method can be used to calculate the emission of sound by a
source moving past a half-plane.24

Consider an extended streamlined body of length / mov-
ing in a uniform medium with constant subsonic velocity
V = Mas ( Ma < 1 ) past the half-plane z = 0, y > 0 in the form
of an acoustically rigid screen. The motion of the body is
confined to thej>z plane and is at an angle ifi to the y axis.The
minimum distance between the edge of the screen and the
source trajectory will be denoted by a (Fig. 10).

Assuming that the motion of the medium is potential,
the basic set of linearized hydrodynamic equations can be
reduced to the wave equation for the velocity potential (p. 16)

The solution of this equation will be sought in the form of the
sum <p = cp (1) + <p <2), where the potential <p (1) describes the
perturbation field in the medium due to a body moving in
infinite space (intrinsic field of the source) and <p(2} repre-
sents the effect of the half-plane.

The term <p (l} is conveniently determined in the cylindri-
cal frame {/, %> £} attached to the moving body, where the £

axis lies along the axis of the body, the beginning of the body
corresponds to |" = 0, and the end to J" = /. The Fourier com-
ponent of this potential is

where/(&>) is determined from the boundary condition on
the surface of the body (the flow velocity must be tangential
to the surface of the body) and is given by17'

(3.13)

Here S(g) = irr(£) is the cross section of the body.
The resulting solution can now be transformed back to

the original fame {x,y, z} and we can use the potential in the
form of a Fourier integral with respect to t and x. The radi-
ation field is then described by the equation

(V 2 + P2X', = 0, (3.14)

where p2 = co2/s2 — g2 (to be specific, we take Im p> 0),
together with the boundary condition on the surface of the
screen

d<f( ' '
-- - (for. z = 0, y>0) (3.15)

dz dz

and the continuity condition for q>(2^ on its continuation

The solution of (3.14)-(3.15) is found by the Wiener-
Hopf method. Let

where F(TJ) is a function of the complex variable rj, to be
determined, and Im ( V/>2 — rj2) > 0 by virtue of the radi-
ation principle. The boundary conditions (3.15) lead us to
the following two integral equations for F(rj):

(eo) e- for

(3.17)

=° for

FIG. 10. Motion of a streamlined body past a half-plane along the trajec-
tory x0(t) — {0, — Vt cos <fi, — Vt sin ^ -I- (a/cos ^)}.

where yu = A sin i/> —
Mas

cos i/>, v = A cos i/> +
Mas

sin

co • — p2. The final expression for the angular
Md s

distribution of the spectral density of the emitted radiation

£„.,
Po Ma2 sa

2
sin 6 -exp [ — 2a (ia/s) n* 6]

(Ma-" — si

(3.18)

The intensity maximum occurs at 6 = ir/2, and there is
no radiation at 6 = 0 and TT. the spectral density decays ex-
ponentially with increasing "impact parameter" a.
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FIG. 11. Passage of a source through a circular aperture of radius R in an
acoustically rigid screen Z. When V~s, the radiation is largely confined
to the forward cone containing the direction of motion.

C. Generation of sound by a source passing through an
aperture in a rigid screen

We now consider a problem of the diffractive emission
of sound, which admits a relatively simple solution.66 Sup-
pose that a point source traveling with velocity V approach-
ing the velocity of sound 1 — Maz< 1 travels along thez axis
of a circular aperture of radius R in an infinite acoustically
rigid screen 2 (Fig. 11). The perturbation of the medium
produced by the source is described by an inhomogeneous
wave equation, the solution of which can be written in the
form of the sum of the Fourier components
<Pa =Va* +^12>» where <p(" is the intrinsic field of the
source [cf. (3.5) and (3.12)]

>- T K (^l
~ 2 n M a s A -

Ma2 Or (3.19)
* v

and <p 12) satisfies the homogeneous Helmholtz equation and
is determined by its derivative in the plane of the screen 2. In
the wave zone, i.e., for |x|>/J, and x| >(«/.$)/{ 2 (Rl is the

characteristic dimension of the region in which -

nonzero), we may write

is

dz' |z'=0
(3.20)

where n is the unit vector in the direction of observation. The

derivative in (3.20) is determined from the
az i z = o

boundary conditions for z = 0. We note that, since
1 — Ma2<l, the intrinsic field of the source is highly com-
pressed in the direction of its motion, and is not very differ-
ent in its properties from a set of plane-waves incident on the
aperture. The problem can therefore be solved by a method
similar to the Kirchhoff method used in the problem of dif-
fraction of high-frequency plane waves by apertures in a
screen. It is well-known that, in this case, the resultant field
<pm = ?> i'' + ?> I2' in the plane of the aperture (r<R) is as-
sumed to be the same as in the absence of the screen:

|2=0 <>z |z=0'

whereas in the shadow (r>R)

= 0.
z=0

This assumption is valid for waves of frequency co >s/R. Eva-
luation of the integral in (3.20) leads to the following
expression for the angular distribution of the spectral energy
density:

2 _ PoT'Ma D [£, r]]
(1 —Ma2}2 '

(3.21)

where

D [t,, ill = i (0 - K

andf =
are dimensionless variables. The total radiated energy is giv-
en by the following order-of-magnitude expression:

(3.22)
K ' R(l — Ma2)3/2 '

i.e., it increases with decreasing R as Ma—>1 until factors
such as the finite size of the source, absorption in the medi-
um, and so on, become significant. As R decreases, the frac-
tion of the field accompanying the source that is "cut off" is
found to increase, and more radiation is emitted. However, it
must be remembered that (3.21) is meaningful for 6)>s/R,
i.e., g >( 1 — Ma2)1/2. The validity of the above approxima-
tion breaks down for frequencies o> Ss/R.

Figure 12 shows a graph of the spectral density as a
function of the variables g, rj. It follows from this graph that
the radiation maximum corresponds to fm ~1, i.e., to the
frequency com « ( s / R ) (Ma~2 - 1) ~1/2.

The condition \\\>((o/s)R \ has a simple interpreta-
tion in this problem. When a plane wave is diffracted by an
aperture, the characteristic scale of the region on which

is significantly different from zero is taken to be the size of
the aperture. In the present case, on the other hand, (3.19)
shows that this scale is the quantity Rl~(s/co)
X(Ma-2-l)-1 / 2 ,sothat

Ma2s
o>(l — Ma2) " 1 —Ma

(3.23)

FIG. 12. Angular distribution of radiated spectral power for different
values of f = (/I - MaVMa )coR /s and y = (Ma/Vl-Ma2)0.

798 Sov. Phys. Usp. 28 (9), September 1985 V. I. Pavlov and A. I. Sukhorukov 798



where Lf is the formation length. Our condition is then writ-
ten in the form |x|>Z,y and signifies that the point of obser-
vation must lie at a distance that is much greater than the
formation length.

In the foregoing discussion, we have used solutions of
certain characteristic problems to exhibit the general prop-
erties of diffracted radiation. The most important of these
are as follows. The spectral density (or power) of the radi-
ation is always found to decrease exponentially with increas-
ing coR A, where R is the characteristic spatial scale of the
problem. For a source traveling above an uneven surface,
this parameter is the height of the trajectory above the sur-
face while, in the case of a source passing through a circular
aperture in the screen, it is the radius of the screen, and so on.
The total radiated energy is inversely proportional to R and
depends significantly on the extent to which the velocity of
the source approaches the velocity of sound.

Diffracted radiation in systems consisting of periodic
structures (periodically uneven underlying surface, periodic
lattice of acoustically opaque screens, and so on) exhibits a
number of features.181 Radiation is emitted in a given direc-
tion only at a finite number of discrete frequencies, and the
spectrum is determined by the period of the structure. Since
the emission process is continuous, the energy characteristic
is not the radiated energy, but the radiated power. Strictly
speaking, we are dealing here not with diffracted radiation,
but diffraction scattering, which is a variety of transition
scattering.

4. TRANSITION SCATTERING IN ACOUSTICS

The phrase "transition scattering" was first introduced
in electrodynamics67 in connection with the scattering of a
permittivity wave by a fixed charge. The use of this terminol-
ogy is discussed in Refs. 1-3.

We shall now briefly describe the distinctive features of
transition scattering.19)

One of the principal differences between transition scat-
tering and transition radiation is that the former can occur
even in the case of a stationary source. An example is the
emission of sound when an unmodulated laser beam is inci-
dent on the wavy surface of a liquid. The instant at which the
source (absorption region) is turned on is accompanied by
the appearance of a pulse of transition radiation, and the
subsequent continuous emission of sound is due to transition
scattering of surface waves into acoustic waves by perturba-
tions produced by the source. If, then, in the general case,
transition scattering by the moving source is described by

w _ kV = co0 - kaV, (4.1)

where a>0, a> and k0, k are the frequencies and wave vectors of
the incident and scattered waves, respectively, and V is the
velocity of the source, then, in the latter case, V = 0 and the
radiation is emitted without change of frequency.

The continuity of the radiation process gives rise to the
second difference between transition scattering and transi-
tion radiation, which is pulsed in character. Transition scat-
tering is therefore characterized not by the energy, but by the
power of the radiation.

Transition scattering with the emission of acoustic

waves can occur for any waves that can exist in the system.
Transition scattering of surface waves into acoustic waves,
which we have just mentioned, is an example. In principle,
transition scattering encompasses a great variety of phenom-
ena involving the transformation of acoustic waves of one
type into acoustic waves of another by different inhomo-
geneities and perturbations. In this sense, transition scatter-
ing in solids is a special case. It involves the transformation
of volume and surface acoustic waves by a periodically dis-
turbed portion of the surface of a solid,68 the transformation
of Rayleigh waves by surface defects (cracks or irregulari-
ties) into longitudinal and transverse volume waves,69"71

and so on.
Emission by a source moving uniformly in a randomly

inhomogeneous medium or in a spatially periodic medium
must be looked upon as a variety of transition scattering.201

These processes are described by (4.1) with a>0 = 0 and, in
electrodynamics, are often referred to as resonance transi-
tion radiation, or, simply, resonance radiation.

A. Transition scattering in a randomly inhomogeneous
medium

As already noted, transition scattering is characterized
by continuous emission along the entire trajectory of the
source. It is clear that, in contrast to transition radiation, the
intrinsic energy of the field of the source in the medium is
now constant on average. Consequently, the radiated power
is wholly determined by the work done by the given source.
It can therefore be calculated in terms of the mean-field radi-
ation reaction.

This method was used in Ref. 72, in which an analysis
was given of acoustic transition radiation (scattering) in an
inhomogeneous gaseous medium, for a point thermal or
force source. Both small-and large-scale inhomogeneities
were considered. By analogy with the electromagnetic case,
the effective permittivity tensor £*J was introduced. It char-
acterizes the relationship between the Fourier transform of
the average momentum per unit volume of the medium and
the velocity y of the perturbations:

<(Po + 6p(r))M«, r)>k = Poef.« (<D, k)<i>,(co, k)>, (4.2)

where e(r) = Sp(r)/p0, | f ( r ) |Xl and 8p(r) are fluctu-
ations in the gas density around the mean value p0.

We shall now reproduce some of the results reported in
Ref. 72 for a thermal source and the exponential correlation
function e ( r ) .

In the case of small-scale fluctuations (/c0/<l, k0 = at/
s0, s0 is the average velocity of sound and / is the correlation
length) and low source velocity (Ma2 < 1), the energy output
is very low: for a slow (Ma2<(&0/)2<l) replacement of the
realizations of Sp, the special power of the radiation is
^w~Ma3, whereas for a relatively rapid replacement
(&0/)2<(Ma2<l), the contributions due to a large number
of inhomogeneities tend to cancel out and fe a ~ (&0/)2/Ma.
When (fco/)2~Ma2< 1, the radiated power has a local maxi-
mum due to the synchronization between the longitudinal
scale of variation of the intrinsic field of the moving source
Ma/&0 and the correlation length p. As the Cherenkov
threshold is approached, &a is found to rise and, at the
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threshold shifted by fluctuations relative to Ma = 1 toward
greater Ma by the amount (2/3)<£2}, the radiated power
reaches the maximum value

gw~ PoV2" (4.3)

where y = /? q/pgcp. For a hypersonic source (Ma2> 1) ,

(4.4)<a<B~4jiSoMa-

It follows from (4.3) that, in contrast to electrodynam-
ics, Cherenkov radiation appears early in the present situa-
tion: it is the dominant effect already at near-threshold ve-
locity.

In the case of large-scale fluctuations (&„/>!) and
Ma< 1, we have % ~ Ma3, and thereafter the radiated power
increases with increasing source velocity. At the Cherenkov
threshold, it is described by (4.3) and, when Ma2>l, by
expression (4.4). The synchronization condition Mas;fc0/
can now no longer be satisfied for Ma < 1, so that the reso-
nance mechanism is no longer observed for the transition
radiation.

B. Transition scattering In a turbulent medium

Transition scattering in a turbulent medium was con-
sidered in Ref. 73 for a force source of the form given by
(I.I). It was assumed that the frequencies of the turbulent
velocity pulsations were small in comparison with the char-
acteristic acoustic frequencies. Dissipative effects and tem-
perature fluctuations were assumed to be negligible. The an-
gular distribution of the spectral power $ ̂  was
investigated in the single-scattering approximation. It was
shown, in particular, that, for low mass numbers Ma<l,
there was a very strong powertype dependence of fc^, on
Ma and the radiation intensity was low. The power emitted
in the direction of motion of the source (0 — 0) was of the
same order as the backward-emitted radiation (6 = Tr);
there was no radiation at 6 = ir/2. The transition radiation
was emitted with maximum efficiency as the Cherenkov
threshold was approached. The radiation was then mostly
confined to the forward cone drawn around the direction of
motion of the source.

C. Transition scattering of surface waves into acoustic waves

In the practical situations encountered in both electro-
dynamics and acoustics, transition scattering can occur un-
der a great variety of different conditions. The general prin-
ciples of transition scattering can be successfully applied
both to the interpretation of known physical phenomena and
to the analysis of new effects. As an example, we shall con-
sider a possible mechanism proposed in Ref. 74 for the gen-
eration of infrasound in the atmosphere/ocean system, the
essence of which can be explained in terms of transition scat-
tering.21'

Finite local inhomogeneities and considerable local ve-
locities can form in the inhomogeneous air stream above the
surface of the ocean. Examples include filamentary and ring
vortices, toroidal Hill vortices,76 and solitary toroidal vorti-
ces77 characterized by an exponential reduction of local ve-
locity at infinity. Since they are located near the surface of

the ocean, these vortices can be the source of quite powerful
infrasound. The point is that a local vortex has associated
with it considerable excess hydrodynamic pressure which
acts as the "intrinsic field of the source." Its interaction with
surface waves gives rise to the scattering of the latter and to a
partial transformation into volume waves: acoustic waves
are radiated into the atmosphere and the ocean. This inter-
pretation is in accord with the theory of transition scatter-
ing. In the case of a fixed source (vortex), radiation is pro-
duced without change of frequency: infrasonic waves are
emitted with maximum efficiency.

In the model discussed in Ref. 74, the emitted radiation
turns out to be practically isotropic. For realistic values of
the vortex parameters, the radiated power may be of the
order of a few kilowatts, and this confirms the importance of
this mechanism for the generation of infrasound in the atmo-
sphere/ocean system.

CONCLUSIONS

Our review of the theory of acoustic transition radiation
is, of course, incomplete. Many aspects of this theory were
not touched upon, or were treated inadequately. On the oth-
er hand, the subject covers a great variety of different topics
and research has only just begun in many of its branches.
Some of these new lines of research were enumerated above
and were also mentioned in Ref. 1, where attention was
drawn to a number of interesting acoustic problems (in par-
ticular, acoustic transition scattering in superfluid helium
II, acoustic transition radiation, acoustic scattering of dif-
ferent types of wave in solids, and so on).

Of course, in both acoustics and electrodynamics, there
is a further transition effect, namely, the analog of transition
bremsstrahlung.1 Transition bremsstrahlung appears in
electrodyamics when two charges separated by a short dis-
tance travel through a medium. It is due to the scattering of
polarization waves produced by one of the charges by the
field of the other. This radiation interferes with ordinary
bremsstrahlung due to the acceleration of charges but, in
contrast to the latter, it does not vanish in the limit of infinite
masses of the "colliding" particles. A similar effect is ob-
served in acoustics, for example, when the surface of a liquid
is scanned by two laser beams, provided the light spots are
near enough to one another.

Obviously, all these transition effects play a definite role
in atmospheric acoustics. It is well-known that the emission
of electromagnetic waves by charges moving in nonuniform
electric and magnetic fields constitutes the electrodynamic
analog of the aerodynamic generation of sound during the
interaction of entropy perturbations and vortical motions
with a nonuniform flow field (see, for example, Refs. 78-
80). However, by analogy with the way transition radiation
in electrodynamics can coexist with synchrotron radiation
(for example, in a strong magnetic field in vacuum1), so also
can the mechanism of acoustic transition radiation (and
acoustic transition bremsstrahlung) be significant in differ-
ent processes of aerodynamic generation of sound.

We hope that the material presented above will act as a
stimulus to the formulation of new problems that will be of
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interest not only in acoustics but also in other branches of
physics.

The authors are indebted to V. L. Ginzburg, at whose
suggestion this review was undertaken.

"It is, however, important to remember that this statement applies only to
"moderate" ultrasonic velocities of the body for which the associated
perturbations of the medium are small. On the other hand, in the case of
hypersonic velocities (Ma>l) , particle velocity perturbations that are
small in comparison with the velocity V of the incident flow may not be
small in comparison with the velocity of sound s. The predictions of the
linear theory are then invalid even in the case of slender pointed bodies
(see, for example, Refs. 11 and 13). Finally, linear theory is also invalid
at near-sonic (Ma—>1) velocities of the body.

2)The phrase "transition radiation" is sometimes interpreted in a broader
sense: it is extended to the radiation due to the disappearance of the
source as it emerges on the surface.

3lWhen striction is taken into account, the right-hand side of (1.1) must
be augmented with the term ( po/Zw) (de/dp)T^!(E2), where e is the
permittivity of the liquid and E is the electic field of the optical radiation
(seeRef. 45).

4)These two quantities will, of course, be equal in the case of diffracted
radiation and transition scattering (Sees. 3-4) when the energy of the
intrinsic field of the source in the medium is constant on average.

5lln real situations, the moving source always varies with time. For exam-
ple, when a laser pulse propagates through a medium, it becomes atten-
uated by absorption. The length L is then L = p ~', where /j. is the ab-
sorption coefficient for the laser radiation. In the case of a particle beam,
the variation of the source with time may be due to the variation in the
energy lost by the particles, i.e., in their velocity (due to deceleration).

6lThe wave zone is defined by the condition for the validity of the asympto-
tic form of Hankel functions for large values of their argument. More-
over, the functionsDm (x) must be smooth. Finally, the condition for the
absence of interference between the transition radiation and the intrinsic
field of the source is written as |x | >L f „ , where the formation length L f „
is given by (1.15). These conditions define the range of validity of (2.9):

sn {'rmax)n 7}.I s in29n ' 1 — (Vm/sn)-cosO

where (rmax )„ = max{r,m, rbm}; m,n=\,2 (see below).
"As before, we include only propagating waves, so that the integral over
x2 in (2.15) is confined to the range x2 < &>2/s2.

8>It is important to recall that (2.17) will also describe the excitation of
lateral waves which decay more rapidly than |x ~' (see Refs. 61 and 40).
A lateral wave is excited in directions On > 9 * (9 J is the angle of total
internal reflection) in the medium in which the velocity of sound is low-
er. Thus, when sl>s2, the lateral wave is excited in the second medium in
directions # 2 >#J = arcsin(i2Ai)- For such angles, (s2/
s, )2 — sin2 02<0,so that the sign of the modulus in (2.17) is important.
The contribution of the lateral wave is shown by the broken line in Fig. 3.

9'We note that, for ultrarelativistic particles, the maximum radiated fre-
quency lies in the region of transparency of any material (<u><upe ), and
the plasma formula e(;u) = 1 — (<y^/<u2) is valid for all media.1

'°We recall that the analysis of the emission of transition radiation from
the plane separation boundary, given in Subsection A, was based on the
assumption that all the source parameters in each of the media remained
constant and could change only at the instant of boundary crossing.

1 "We note that the corresponding expressions in Refs. 29 and 30 contain
the quantity

oo

-5 Atf(t).

Since (2.9) has been obtained for the Gaussian source, it follows that, in
our case, a = ftrrv.

2lWe note that, for example, the force source of the form (I .I) is not
potential and the transition radiation is produced both as a result of the
change in the longitudinal component of the accompanying field on the
separation boundary and as a result of the vortical component.

3lThe conclusions presented above, are, of course, valid even when there
is no viscosity (Ld—*oo). The structure of (2.27) is then, in many re-

spects, similar to that of the corresponding expression for the angular
distribution of spectral density in the case of a charge crossing a layer of
foreign material.1 In particular, the radiation pattern again depends
significantly on the factor sin2(jrrf/2Z,c). At the same time, and in
contrast to the acoustic case, the radiation is not concentrated in the
angular range 6 2< 1 for d<L a.

'""For ultrarelativistic particles, the main contribution to forward emis-
sion is due to high frequencies (a'xo^, in which case fi j = ^2 = 1.'

15lThe basic properties of diffracted radiation in electrodynamics are ex-
amined in the reviews in Refs. 7 and 8.

16)In reality, the motion of the liquid in the case of a streamlined body can
be regarded as potential in all space with the exception of a thin layer
near the surface of the body and the relatively narrow region of the
"wake" behind the body.11 We note that the Lighthill representation
has been used65 to analyze the emission of sound by a turbulent wake
produced at the rear of a streamlined body in a uniform flow.

17)In the case of a point thermal or mass source, the function f(co) is the
solution of the inhomogeneous Helmholtz equation, such as (3.1).

18IA recent paper81 examines the emission of acoustic waves by a body
moving uniformly in a tenuous medium above a periodic structure in
the form of a set of periodically distributed acoustically opaque bands.
The calculation is based on the use of the Huygens-Fresnel principle.

19)They are, of course, the same as in electrodynamics.1"3

2°'As already noted in Section 3, the emission of sound by a source moving
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