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Theoretical and experimental investigations of nuclear magnetic resonance in rare-earth Van
Vleck paramagnetic materials are reviewed. The majority of the observed aspects of the phenom-
enon is explained by the interaction of nuclei with the residual electronic magnetic moment in the
singlet ground state and the modulation of this interaction as a result of the coupling of the
electronic moments among themselves and with the oscillations of the crystal lattice, and also by
various spin-spin interactions involving enhanced nuclear moments. At liquid helium and higher
temperatures the most significant effect is the modulation of the hyperfine interaction resulting
from real thermal transitions of Van Vleck ions between the ground state and the nearest excited
states. Within the framework of a single simple theory based on the randomly varying in time
hyperfine interaction Hamiltonian, a description is given of the temperature dependence of the
shifts and widths of NMR lines, of the spin-lattice relaxation times of nuclei within Van Vleck
ions and within diamagnetic atoms, and also of the frequency and orientation dependences of
these quantities. The theory is in agreement with experiment not only qualitatively, but to a
significant extent also quantitatively without resorting to any adjustable parameters. Some spe-
cial features of nuclear magnetism of Van Vleck paramagnetic materials at ultralow temperatures
are also considered.
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INTRODUCTION it has no magnetic moment in the ground electronic state but
has a paramagnetic susceptibility far in excess of its diamag-

Van Vleck paramagnetism is as ubiquitous as diamag- netic susceptibility. Striking examples of Van Vleck para-
netism; however, it exhibits far more diversity in its manifes- magnets are afforded by crystals which contain rare-earth
tations than does the latter. This is because the Zeeman ef- ions with an even number of electrons in their unfilled 4f
feet usually appears as a small perturbation of a system's shells, i.e., Pr3+, Eu3+, Tb3+, Ho3+, and Tm3+. The
energy spectrum, the gross features of which are determined ground-state multiple!2S + ' L} of these ions is often split by
by interactions far stronger than the magnetic ones. Whereas the crystal field so that the lowest levels are singlets or non-
diamagnetism affects the system energy through a term qua- magnetic doublets, while the excited levels are separated
dratic in the applied magnetic field, Van Vleck paramagne- from the ground state levels by intervals of the order of 10-
tism affects it through linear terms which are treated by sec- 100 cm"'. The isotopes I41Pr, 159Tb, 165Ho, and 169Tm are
ond-order perturbation theory. The great variety of present in 100% abundance, and have non-zero nuclear
zero-order spectra a system can have (and hence the inter- spin; therefore, compounds of these elements exhibit not
mediate states available) thus predisposes the Van Vleck only electronic but also nuclear magnetism. Paramagnetic
paramagnetism to take on a huge range of possible values. By ("chemical") shifts of the nuclear magnetic resonance
custom, one refers to a material as a Van Vleck paramagnet if (NMR) lines in such systems, as a rule, are strongly aniso-
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tropic and attain immense values right up into the hundreds.
This leads to interesting peculiarities in the magnetic reso-
nance of the nuclei of rare earth ions, which permit one to
classify their resonance behavior as intermediate between
the usual NMR and EPR.

The first researcher to turn his attention to the above-
mentioned peculiarities was S. A. APtshuler; following his
suggestions, Zaripov1 carried out calculations of the NMR
characteristics of Van Vleck systems. Independently, El-
liott2 also carried out calculations on the spectra of 151Eu
and 153Eu in europium ethyl sulfate. Experimentally, reso-
nance was first observed in corundum, where it was due to
impurity ions of5' V3 +.3 NMR of RE ions in the singlet state
was first detected in 1967.4 APtshuler also pointed out that it
was possible to use Van Vleck paramagnets to obtain ultra-
low temperatures.5 The implementation of this proposal by
Andres and Bucher in intermetallic rare earth compounds6'7

generated additional interest among physicists in this class
of materials. And, while the earliest systematic investiga-
tions of the NMR of Van Vleck paramagnets were carried
out within the confines of the University of Kazan, 13~5'8~15

at the present time these phenomena are being studied at a
whole series of scientific centers specializing in the areas of
magnetism and low temperature physics (see e.g., Refs. 16-
21).

The characteristic energy level pattern for RE ions with
Stark splitting of the ground multiple! in the crystal field—
i.e., an ensemble of narrowly-spaced levels with energy inter-
vals of the order of 10-100 cm"'—leads also to a series of
other peculiarities of rare-earth compounds, in particular
structural instabilities in the low-temperature regime. These
instabilities manifest themselves in the form of the coopera-
tive Jahn-Teller effect (see the review of Ref. 22), the giant
magnetostriction observed in a series of crystals,23-24 anoma-
lies in elastic constants,25'27 and finally the distinctive field
and temperature dependences of EPR linewidths for impuri-
ty ions.28'29 Naturally, the NMR spectra and relaxation
characteristics of rare-earth Van Vleck paramagnets bear
the imprint of all the wealth of physics of the materials under
investigation; thus, a correct interpretation of the results of a
NMR study of these materials is of general interest to physi-
cists.

Recent works in this field have established a common
viewpoint from which one can interpret the general pattern
of nuclear magnetic resonance and relaxation in dielectric
systems with singlet ground states. The key elements of this
pattern prove to be the fluctuating hyperfine interactions
between nuclei and electrons in the unfilled 4f shells of the
RE ions. The present review is also devoted to an exposition
of ideas and insights which have recently been accumulating
in this area of physics; Semen Alexandrovich Al'tshuler, a
corresponding Member of the Academy of Sciences of the
USSR, is the initiator and guiding spirit behind all the inves-
tigations and results presented herein. In the first section of
the review, the questions under discussion pertain for the
most part to the origins of the intrinsic NMR spectra of nu-
clei of RE ions with singlet ground states (in the future, for
brevity we will call these ions "Van Vleck ions"). A discus-

sion of the fundamental physical ideas is presented here
along with illustrations of the very striking peculiarities
which characterize the phenomena in question. The second
section is devoted to an analysis of the various interactions
which give rise to broadening of the resonance lines. The
third section contains an examination of that part of the
NMR line width and spin-lattice relaxation that are due to
rapid fluctuations of the hyperfine interactions, which in
turn are for the most part a consequence of the migration of
electronic excitations of the system. Other relaxation mech-
anisms are also discussed here.

Insofar as our goal is to elucidate the distinctive fea-
tures of the NMR spectra and relaxation characteristics of
Van Vleck ions, we have consciously restricted ourselves to a
selection of specific topics of study, choosing to investigate
two crystals in which these distinctive features are most
strikingly evident—thulium ethyl sulfate, Tm(O2H5SO4)3

X9H2O (TmES), and thulium lithium difluoride LiTmF4.
In view of the aforementioned goals we have set, this is for a
number of reasons an optimum choice of crystals. First of
all, the crystals TmES and LiTmF4 are dielectrics; this fact
frees us from the necessity of including effects due to electri-
cal conductivity. Secondly, these crystals possess rather high
symmetry (trigonal and tetragonal, respectively) and their
structures have been studied in detail. Thirdly, the crystal-
line electric field acting on the Tm ion also possesses rather
high symmetry, and the energy levels and wave functions of
the Tm3+ ion are well-known. Fourthly, the 169Tm nucleus
has no electric quadrupole moment; this allows us to avoid
unnecessary complications connected with the effects of
quadrupole interactions. The above-mentioned circum-
stances allow us to determine with maximum precision the
degree of reliability of our theoretical models; the detailed
computational procedure used for the specific compounds
we have chosen is in turn applicable to arbitrary dielectrics.
As regards intermetallic Van Vleck paramagnets, the quali-
tative features of their behavior are similar to those of dielec-
trics although here the RE ions are essentially coupled by
superexchange through the conduction electrons, and this
keeps us from making precise quantitative estimates. We re-
fer those readers who are interested in details of the NMR
spectra of Van Vleck ions in dielectric crystals to the original
articles: Pr2(SO4)3.8H2O,4'n'3°-32 Pr(NO3)3-6H2O,30

Pr(Re04)34H20,30 PrF3,
20-33 PrAlO3>

34 PrVO4,
35-36

Cs2NaPrCl6,
37 Cs2NaTbCl6,

37 HoVO4,
38 Rb2NaHoF6,

39

Tm3Ga5012,
40 Tm3Al5O12,

41 TmVO4,
42^4 TmPO4,

44^6

Cs2NaTmCl6,
37 TmAsO4.

47 The relatively rare case of a sys-
tem whose ground state is a nonmagnetic doublet is encoun-
tered in the cubic crystal Cs2NaHoCl6.

48 Information about
NMR in intermetallic rare-earth compounds can be found in
Refs. 49-55, 21.

1. FUNDAMENTAL PROPERTIES OF VAN VLECK
PARAMAGNETS AND THEIR USE IN ULTRALOW-
TEMPERATURE TECHNOLOGY

a) Electronic and nuclear paramagnetlsms

Our first concern will be to calculate the magnetization
of RE Van Vleck paramagnets. Let us write down the Hamil-
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tonian for the Van Vleck ion in question separately, in the
form

w =
JI. (1.1)

The Hamiltonian ̂ 0 determines the ion's electronic energy
level structure in the absence of a magnetic field. Provided
that we confine ourselves to investigating the rare-earth ions
alone, we need only deal with that group of levels which
arises from the crystal-field splitting of the ground-state
multiple!2S+' Lj of the free ion. The remaining multiplets,
as a rule, are separated from the ground-state multiple! by an
energy interval of the order of 104-105 cm~ l , while the total
splitting of the separate multiplets is of the order of 103

cm~'. Under these circumstances we are justified in writing
down the electronic Zeeman energy ̂ eZ and hyperfine in-
teraction 2?u in the form (1.1). The term ̂ /z of the per-
turbation <^" in (1.1) is the nuclear Zeeman energy, f^B is
the Bohr magneton, &, is the Lande g-factor and YI is the
nuclear gyromagnetic ratio. If the nuclear spin is /> 1/2,
then the perturbation must also include the nuclear quadru-
pole energy 3FiQ; it does not change the general pattern of
the phenomenon in any essential way, but introduces quanti-
tative complications into the calculation; therefore in what
follows we will not write it out explicitly.

The energy spectrum determined by <#*0, and the corre-
sponding wave functions (inthe/Af, representation) can be
calculated with the help of this or other models of the crystal
fields, or found from experiment. TmES (thulium ethyl sul-
fate) will serve as a typical example of a crystal in which the
lowest electronic state of the RE ion is a singlet; the energy
levels of the Tm3+ ion (3H6) and wave functions are dis-
played in Table I. One can find analogous tables for LiTmF4

in Refs. 26, 57. A model electron-nuclear spectrum is shown
in Figure 1. In the absence of the perturbation 3f", this spec-
trum consists of a ground singlet, and an excited-state doub-
let with excitation energy A ( = 32 cm~' in TmES and
LiTmF4). In a magnetic field the doublet \d lj2} is split (the
magnitude of the splitting is denoted by ft f l ) . Every term
involving the nuclear spin (/ = 1/2) is twofold degenerate,
and inclusion of the hyperfine and Zeeman interactions <%"„

FIG. 1. Schematic model of electronic-nuclear energy levels.

and 2fIZ will lead to further splitting of the electron-nuclear
states. We note that Fig. 1 recalls the sort of model spectrum
investigated in the theory of nuclear magnetism, where one
studies the coupling of nuclear and electronic spins (see e.g.,
Refs. 58,59). This coupling is modelled by means of an arti-
ficial separation of the pairs of spins 5= l/2and/= 1/2. In
Van Vleck systems, such pairs can be separated in a natural
way, and Fig. 1 can be regarded as an electron-nuclear pair
spectrum with S = 1,1= 1/2, along with an initial splitting
of the electronic states described by a Hamiltonian AS"!
where A > 0.

Let us now calculate the equilibrium magnetization for
one ion M = Tr(/>M), where p = exp( -^o^J/Sp
exp( — jffo^O is the density matrix of the system, /?„ = I/
kT and the magnetic moment operator is
M = — &,//„ J + YI & I = M7 + PJ . Let us transform the
expression for the average moment according to the Kubo
formula60

exp [-ft, (*

nki) 3?'(*•*)- • • • ] '

where
X (A) + AjU(A) —

exp( -A^T0) =gy//BHJ
fi HI. For temperatures which are

TABLE I. Energy levels and wavefunctions of a Tm3+ ion in a thulium ethyl sulfate
Tm(C2H5SO4)3.9H:,O crystal.56

Energy (cm l)

Calculated*

300,1
273,6
221,0
214,8
198,1
157,1
110,0
31,3
0

Experiment

302,5
274,0

198,9
157,3
110,9
32,1
0

Wave function

0,707] +3)-0,707| —3)
0,895] ±4) — 0,446 |T2>
0,697

Is) =0,707
|Pl2> = 0,953

0,707
0,446

Id, »} = 0 305
|0> = 0,119

•With crystal-field parameters C° = 130.5 cm"1, C
= 427.3 cm~'

+6}-0, 168) 0}+0,697 1 -6)
+ 6> — 0,707 | —6}
±5}— 0,305|=Fl>
+ 3}+0,7071 —3)
±4> +0,895 |T2>
±5} + C,953|Tl)
+ 6}+0,986|0) + 0,119| -6)

S = - 65.9 cm- ', C J = - 28.6 cm- ', C I
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not too low, i.e., &7> \%f'\, we can confine ourselves to the
first terms of this expansion; then the electronic magnetiza-
tion in first approximation is equal to

P.
MH - xH, XaP = rirt J dX Tr (p</p (X) /„),

o
where /90 is the density matrix for the unperturbed Hamil-
tonian &f0. Calculating the trace in the representation in
which <^0 is diagonal, we obtain in this way the Van Vleck
formula for the susceptibility

XS 1ft, l / '><*'

Here,

-P»E?)]; (1.2)

(1.3)
m

|/), |/') are states whose (unperturbed) energies both equal
E °. For a system with a nonmagnetic ground state, this for-
mula is also suitable for use at very low temperatures, when
only the ground state level is populated; for a ground-state
singlet level, we obtain the temperature-independent suscep-
tibility

The magnitude of the nuclear magnetization is in first ap-
proximation no different from the usual

the contribution of the second order approximation

X
fr »*

dXt \d^2 Tr (Po IJ» (A4) /0 (Xz) + Ja* j

may turn out to be the dominant one. A simple calculation
leads to the following expression for the nuclear magnetiza-
tion

, 0.5,
which corresponds to an "enhanced" external magnetic
field.

The contributions in M., = Tr( pMj ) to second and
third order correspond to a magnetization induced in the
electronic shells by the nuclear moments. This doubly-en-
hanced magnetism is especially marked at very low tempera-
tures \%f\ % kT. Under these conditions, the calculation of
the magnetization is simplified because only the nuclear sub-
levels of the electronic singlet are populated. The energy and
eigenfunctions of the nuclear multiple! are calculated in the
following approximate manner: let us write down the elec-
tronic state to second order in the perturbation ^"61

|0>= 1 0> -

Here, Pa = gj^Ha + Ajla and it is understood that re-
peated Greek indices are to be summed over. The electronic
ground state energy of the system can in this particular ap-
proximation be viewed as an effective nuclear spin Hamil-
tonian

The term quadratic in field gives a common shift of all
the multiple! levels; the term quadratic in the spin 7, where
/ = 1/2 likewise reduces to a constant (IaIe—>- l/46ap ) and
is significant only for /> 1/2, when it gives rise to the so-
called "pseudoquadratic" correction to the nuclear quadru-
pole energy.62 For / = 1/2, the spin Hamiltonian can be re-
written in the following form

(1.6)

Here we introduce the paramagnetic NMR shift tensor a,
the effective gyromagnetic ratio tensor y and the enhanced
magnetic field H'. The splitting of the nuclear doublet for an
arbitrary orientation of the magnetic field is equal to
H co0 = YI HH',H' = %/H'2, while the stationary electronic
states can be written in the form

/ £ , Ajgj\ift m \ IT )

(°a»-\ ^f~ - / a»/ //«7

+ T»-

(1.7)

where N^,N2 are normalization factors. Now, neglecting en-
tirely the fact that other electron-nuclear states excepting
(1.7), are populated, we obtain after some calculation the
following expressions for the magnetization:

m, irth 2kT

Tmt

(1.8)

(1.9)

(1.10)

For kT>fia>0, as was to be expected, m7 coincides with
(1.5), while the direction of m7 (according to (1.6) this is
also the quantization axis Z of the nuclear spin, and the di-
rection of the effective "enhanced" field H') is in general
different from the direction of the Van Vleck magnetization
MH. Usually MH greatly exceeds all other contributions to
M, but, as Bleaney63 has remarked, for very low tempera-
tures when the nuclear spin system is obviously polarized
even by a weak magnetic field, it is possible for M7 to be the
dominant term. For crystals with axial symmetry, all the
components of M lie in the plane containing the symmetry
axis c and the magnetic field direction. Fig. 2 illustrates the
"fan" of these components for thulium ethyl sulfate when
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FIG. 2. Components of the magnetic moment of a '"Tm3"1" ion in the
TmES crystal. The external magnetic field H0 makes an angle with the
crystal c axis of 0= 1°, while the effective (enhanced) field H' at the
nucleus and the nuclear moment m, make an angle 0' = 44°, the (Van
Vleck) electronic moment MH makes an angle of 74°, and the electronic-
nuclear moment M7 makes an angle of 89°.

the external field is oriented at an angle of 1" to the c-axis.
When the system has axial symmetry the paramagnetic shift
tensor has two independent components (along the princi-
pal axes—a || and a±). The part of the magnetization due to
the nuclear spin, for fi «0</cr< A, conforms to the usual Cu-
rie law:

which corresponds to an "enhanced" nuclear magnetic mo-
ment YI fi (1 +a)I.

b) Distinctive features of nuclear magnetic resonance

Let us move on to a more detailed examination of the
distinctive features of NMR in Van Vleck paramagnets, for
the specific examples TmES and LiTmF4. Within the frame-
work of the second-order perturbation theory used in section
la) the spin Hamiltonian of the thulium nucleus can be writ-
ten in the simple form

. sin 6 cos q> + Iv sin 6 sin <p)

(1 .11)

where 6 and <p are the polar angles of the vector H in the
principal axis system of the tensor y. Measurements of thu-
lium NMR in TmEs for the temperature range 1.6°-4.2° K
show64'65'77 that the parameters in the spin Hamiltonian dif-
fer by more than a factor of 50:

li.
2n

2n

= 0.4802 (5) kHz/Oe,

= 26.12 (10) kHz/Oe.
(1.12)

(in LiTmF4,
66>67 the analogous parameters equal 0.965 and

24.11 kHz/Oe respectively). Because of the extraordinarily
strong anisotropy of the effective gyromagnetic ratio, fixing
the orientation of the external field H to lie along the c-axis
of the TmES crystal is very difficult. One can see this from
the angular dependence of the resonance field for a fixed-
frequency spectrometer (Fig. 3). In practice, it is possible to
observe the top of the peak in //rra for 0 = 0 only by dint of
careful adjustment of the tilt of the cryostat in the interpolar
gap of the electromagnet. Using a magnetic moment for the
thulium nucleus of — 0.231 fiN

 62 (HN is the nuclear magne-
ton), we first find a gyromagnetic ratio y1/2ir= — 0.352

IS

6̂
- 10

2
u

(C

8c

0

—
_

-

-

-

' £
1 ̂ ^r— — ̂ tT7~*>g

# n
1

1— i— L J. 1 TT_i i i i i i 1 — i — i — i — i—,
-60 -30 0 30 60

Angle 0, deg.
90

FIG. 3. Angular dependence of the resonance magnetic field for the 169Tm
nucleus in the TmES crystal (the temperature is 4.2 °K, the resonance
frequency is 7.5 MHz).

kHz/Oe, and then, using (1.6) and (1.12), the principal
values of the paramagnetic NMR shift tensor at helium tem-
peratures:

a,, =0.364. (2), OA = 73.2 (3). (1.13)
The reason for such strong anisotropy in the susceptibility
[see (1.4) and Table I] is obvious: the longitudinal field
(operator Jz) mixes into the ground state singlet |0) only
the high-lying state \s), while the transverse field (operator
Jx) couples |0) with the next excited state—the doublet
| r f l , 2>-

We note that the corresponding transverse Van Vleck
susceptibility^?, generally speaking, depends on the orien-
tation of the magnetic field in the plane perpendicular to the
crystal c-axis. This dependence is due to the anisotropy of
the electronic Zeeman interaction (a fourth-order effect
which we have not allowed for), and the magnetostrictive
deformation (a third order effect). Both effects are quadrat-
ic in the magnetic field, and in strong fields they are easy to
detect by nonresonant methods (TmPO4, Ref. 68). In the
weak fields we deal with here, however, this angular depen-
dence can only be measured by the NMR method (LiTmF4,
Ref. 69).

The test of how precisely we have aligned the orienta-
tion of H along the TmES crystal c-axis is not only maximum
resonance field but also minimum NMR linewidth (Fig. 4).
The linewidth 8H, measured in oersteds, increases monoton-
ically with movement away from the perpendicular orienta-
tion to parallel, varying as l/sin#; this implies that the
linewidth 8v in frequency units remains constant with angle
between 3° and 90°. In the angular interval 0 to 3° a sudden
narrowing of the line occurs. This sort of angular depen-
dence in linewidth is well known in EPR.70 Local stress in
crystals plays an important role in the EPR linewidth, lead-
ing to a spread in values of theg-tensor and "wandering" of
the crystal field axes. Since the paramagnetic NMR shift is
directly related to the Stark splitting of the electronic energy
levels, the contribution to the NMR linewidth introduced by
crystalline structural defects also plays an important role in
our case. The principal cause of inhomogeneous broadening
proves to be the scatter in values of the perpendicular com-
ponent aL of the line shift due to local distortion of the sym-
metry of the crystalline electric field.64'67'71"73 By virtue of
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FIG. 4. Angular dependence of the resonance line width of the 169Tm
nucleus in TmES (the temperature is 4.2° K, the resonance frequency is
3.9 MHz).

the inequality \yL \>\YI\ \, the inhomogeneous contribution
to the NMR linewidth of thulium in TmES remains constant
over a wide interval of the angle 6, and only when the orien-
tation of H is almost exactly parallel to the c-axis does it fall
abruptly. In view of this, it is evident that the dipole
linewidth must also be minimal,71-73 because the scatter in
Larmor frequencies of the thulium nuclei is determined not
only by the local fields from magnetic centers (e.g., Tm3+

ions, *H nuclei and paramagnetic impurities) but also by the
magnitude of the effective gyromagnetic ratio, which is very
small for 6 = 0. We will not enter into an in-depth analysis
here of the causes of NMR line broadening (Section 2 is
devoted to this); we will remark only that for low tempera-
tures the huge electronic magnetic moments MH, which are
the same in magnitude and direction for all Van Vleck ions,
have absolutely no effect on the resonance line width, and
that the conditions for observing various resonances in Van
Vleck paramagnets (including NMR of diamagnetic
atoms73"76 and EPR of paramagnetic impurity centers76) are
almost the same as in diamagnetic crystals.

As the temperature is increased, the crystal enters a
temperature region in which rapid jumps between levels of
the 4f shells become possible, and the nucleus is subjected to
other rapidly-varying time-dependent hyperfine fields
caused by thermal excitations of electrons. Now, in place of a
single precession frequency for the nuclear spin there is a
spectrum of frequencies. For sufficiently rapid changes in
the electronic states a single line is observed, as before; how-
ever, this line undergoes an additional shift if the frequency
spectrum under discussion is not symmetric relative to the
NMR frequencies of the Van Vleck ions in the singlet state.
A temperature dependence of this kind in the NMR line shift
aT was observed for the first time by Jones49 while he was
investigating intermetallic compounds of praseodymium

•*»/•* II

1,05-

1,00-

0,80 -
I5T,K

FIG. 5. Temperature dependence of the paramagnetic NMR shift of
169Tm in TmES.78 The solid curve is calculated from formula (1.2).

and thulium. Later this effect was also observed in dielectric
compounds of thulium,64-66 praseodymium36 and hol-
mium.39 In all articles in which the interpretation of experi-
mental data is discussed, the proportionality relation
aT ~XT is used, which is based on the intuitive substitution
of a time averaged value for the hyperfine field on a "statisti-
cally averaged" nucleus. As experiment shows (see Fig. 5),
this simple approach, under the assumption of rapid relaxa-
tion transitions between energy levels of the paramagnetic
ion, ensures good results. In Sec. 3 we will give it a rigorous
justification.

The temperature-dependent shift of the resonance line
is inseparably bound up with the nuclear magnetic relaxa-
tion time and linewidth. While for low temperatures the
linewidth is mainly determined by collective interactions,
with an increase in temperature the role of intra-atomic elec-
tron-nuclear coupling becomes increasingly important.
Fluctuations in the hyperfine magnetic field at the nucleus
usually have components perpendicular to the external mag-
netic field. The Fourier spectrum of these field components
contains resonance frequencies which induce transitions
between nuclear energy levels, i.e., nuclear relaxation. There
is a deep analogy between the situation under study here and
NMR phenomena in liquids. Theform^ J(/)-IoftheHamil-
tonian for fluctuations in the hyperfine interaction attests to
the presence of the peculiar "scalar relaxation of the second
kind." 58 Central to the pursuit of this analogy is the ques-
tion of the correlation time for the fluctuation process,
which, as will be shown in Sec. 3, coincides with the life time
of a Van Vleck ion in an excited electronic level.77-78 In mag-
netically "dilute"crystals the life time of an electronic exci-
tation is usually limited by electronic-vibronic interactions,
and equals the inverse of the probability for spontaneous
emission of a phonon with the corresponding energy A. In
magnetically "concentrated" crystals, however, the magnet-
ic dipole-dipole interaction between Van Vleck ions is a sig-
nificantly larger effect, thanks to which the electronic excit-
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FIG. 6. Increase of the NMR line width of 169Tm in TmES as a function of
reciprocal temperature.77'78 Curve 1 is for H||c, the resonance frequency is
3.9 MHz; curve 2 is for Hie, the resonance frequency is 11 MHz. The
straight lines correspond to the dependence ~exp( — 46/T).

JO'

to-
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FIG. 7. Relaxation rate for longitudinal magnetization of 169Tm in TmES as
a function of reciprocal temperature.79 Curve 1 is for H||c, the resonance
frequency is 7.5 MHz; curve 2 is for Hie, the resonance frequency is 13 MHz.
The straight lines correspond to the dependence ~exp( — 46/71-

ed states are rapidly transported from one ion to another79

(calculatd estimates of the transition probability are dis-
cussed in Sec. 2).

On the basis of general ideas relating to this "scalar
relaxation of the second kind," 5S one can at once infer that
the relaxation rates \/T, and l/T2 will have the same tem-
perature dependence. One can also foresee the nature of this
dependence, if one notes that the corresponding correlation
functions for the electronic magnetization must contain the
transition probability for an ion into an excited state, i.e., a
Boltzmann factor exp( — A/£T). Experiment fully con-
firms these hypotheses: both the additional NMR linewidth
(Fig. 6) and the spin-lattice relaxation rate for 169Tm in
TmES (Fig. 7) vary with temperature according to an expo-
nential law with parameter A = 32 cm~' (46 °K), precisely
equal to the energy difference between the ground state and
the doublet \dl, 2 )• In Sections 2 and 3 we will show how,
given full information about the crystal structure and elec-
tronic energy spectrum, one can estimate with fair precision
the magnetic relaxation rate for nuclei of Van Vleck ions.
Here, however, we present only the well known experimen-
tal data for nuclear relaxation due to fluctuations of the hy-
perfine magnetic field (Table II).

c) Nuclear magnetic cooling

The intermediate character of magnetism in the materi-
als we have studied naturally suggests that they be applied to
the technology of magnetic cooling. The method of obtain-
ing ultralow temperatures by means of adiabatic demagnet-
ization of the usual paramagnetic salts has limitations con-
nected with the comparatively high (10~2-10~3 °K)
temperatures associated with magnetic ordering of the elec-
tronic spins. Up to recent times, the only method of obtain-
ing temperatures below 10~3 °K was adiabatic demagnetiza-
tion of nuclear moments in metals (for example, the nuclei
63Cu and 65Cu in metallic copper). In principle, nuclear
cooling is no different from electronic cooling; however, for
engineering feasibility it requires very strict initial condi-
tions, specifically ratios H /T approximately 1000 times as
large as those required for the latter. Because of the small
values of the nuclear magnetic moments under realizable
conditions, one does not succeed in making full use of the
entropy (and correspondingly the cooling capacity) of the
nuclear cooling stages; for example, for a temperature of 20
mK, an external field of strength 80 kOe decreases the en-

TABLEII. Experimental data on spin-lattice relaxation of 141Pr and 16*Tm nuclei in dielectric Van
Vleck paramagnets: T f ' = A exp( — A'//c7*).

Crystal

Pr2(S04)3.8H2CMo
Pr(N03)s.6H203o
Pr(Re01)34H203°
TmES ", ««
LiTmF4 '•
TmP04 "
TmV04 «

Temperature,
°K

6—9,2
3,5—5,5
2,5—5,2
3,0—5,0
2,5—4,2
2,5—3,4
0,3—1,0

Orientation of
magnetic field

arbitrary

H ± c
H| |cH J . C
H||c

^,sec-'

8,4-10'
4,0-106

2,2-106

1,8.10"
4,4-106

3,1-106

1,4-104

A', cm-1

55
27
19,7
32
27
25,6
1,5
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tropy of copper nuclei by only 2.1%. Therefore, the sugges-
tion by AFtshuler (Ref. 5) that Van Vleck paramagnets be
used as nuclear refrigerants quickly found application in
cryogenic engineering.6'7 The phenomenon of magnetic field
enhancement at the nuclei of Van Vleck ions is used to pro-
duce demagnetization under less strict initial conditions
than are usual for nuclear cooling: alternatively, under the
latter (i.e., stricter) initial conditions one can utilize a larger
fraction of the entropy of the sample. For example, the same
field of 80 kOe decreases the nuclear entropy of the TmES
crystal familiar to us by 2.1% already at 0.29 °K (the tem-
perature of liquid He3), while at T = 20 mK this field almost
removes it all (94%).

In experiments on magnetic cooling, it is important to
have good heat contact between the spin system and the lat-
tice. Therefore the highest priority was given to searching
for suitable intermetallic Van Vleck compounds,80 in which
due to the presence of conduction electrons the nuclear spin-
lattice relaxation time is always far shorter than in dielec-
trics. Selecting the compound PrNi5, Andres and Darack81

were able to attain temperatures of 0.8 mK and cool 3He
down to 1 mK. Later, Pobell and coworkers82 attained a
temperature of 0.19 mK using the same material.

An important circumstance must be noted here which
has hindered to a significant degree further progress in at-
taining lower temperatures. Due to the conduction electrons
of intermetallic compounds of rare-earths, there is a strong
s-f exchange interaction and a high magnetic ordering tem-
perature for nuclear spins; for example, the compound PtNi5

mentioned above has a Tc of 0.42 mK.83 At the present time,
RE intermetallics are most efficacious80'82 when used in the
first (preliminary) stage of a combination "nuclear refrig-
erator," which uses as a second stage the traditional material
copper.

In dielectric Van Vleck paramagnets, the coupling of
nuclear spins with vibrations of the crystal lattice is much
weaker than in the intermetallics. This keeps us from using
them for cooling other materials, but does not interfere with
our obtaining low temperatures for the nuclear spin system
itself: for 169Tm in TmVO4, 0.1 mK,44 for 169Tm in TmPO4,
0.4 mK,44 for 165Ho in HoVO4, 1 mK.24 It is possible, how-
ever, that these dielectrics may yet be successfully used to
supercool nuclei of 3He by direct (cross-relaxation) trans-
port of the spin temperature of Van Vleck ion nuclei through
the crystal-liquid interface.85

2. SPIN-SPIN INTERACTIONS

a) Interaction of 4f electrons with nuclei of diamagnetic
llgands

Let us first examine the interaction of the 4f electron
shell of a Van Vleck ion with the nuclear moments of dia-
magnetic atoms; we will assume that the electronic orbits of
the atoms do not overlap, and that the RE ion and ligand
nucleus interact as point magnetic dipoles (cf. Ref. 75). The
Hamiltonian of these pairs in an external field H takes the
form

analogous to (1.1), but with the substitution of the dipole-
dipole interaction term 2F}1 for the last term. Correspond-
ingly, the effective nuclear spin Hamiltonian of the ligands
has the form 2fl = — y, #H(1 +L)l,, analogous to
(1.6), where the tensor shift L occurs as a result of the com-
bination of^j, andgjfj,BH'J in second-order perturbation
theory. In crystals of TmES and LiTmF4 the components of
the Van Vleck susceptibility x\ are verv small; thus, the
NMR spectra of the ligands in the field H||c are of no practi-
cal interest. Let the magnetic field be perpendicular to the c-
axis (z) and make an angle <p with the a-axis (x). Then the
components of the shift tensor equal

Here
=• xi (S4 cos cp + 25 sin q>).

- 3*?) r?, 22 = S (r? - 3?}) r?,
(2.2)

r, is the radius vector between the ligand and the /th Tm3+

ion, and the summation extends over all the Tm3+ ions sur-
rounding a given nucleus. At the frequency o)0 = YiH0, reso-
nance of the ligand nucleus is observed in the field

l (2.3)

If | L „ | < 0. 1 , then in place of ( 2. 3 ) we can use the approxi-
mate formula

- sin - cos 2<p •

(2.4)

Expressions (2.1), (2.3), and (2.4) correspond to the low-
temperature case, when the Van Vleck ions are in their elec-
tronic ground states. Upon heating of the crystal, rapid re-
laxation transitions take place between Stark levels of the
RE ions; the local field at the ligand nuclei is then"averaged
out" and is found to be simply proportional to the paramag-
netic susceptibility of the crystal at the given temperature.

The width A// of the proton magnetic resonance spec-
trum in the TmES crystal is at helium temperatures almost
8% of the applied magnetic field (Ref. 74). By studying the
dependence of this resonance spectrum on th angle op, one
can attempt to determine the coordination of the hydrogen
atoms.73 In yttrium ethyl sulfate, the position of every atom
in the lattice was found in Ref. 86 by the method of neutron
diffraction, so that one can assume that in our case the only
unknowns are the lattice parameters of TmES at liquid heli-
um temperatures. In order to obtain the latter, it is sufficient
to determine the coordinates of a few protons — for example,
those which go into making up the molecules of water of
crystallization. The water-of-crystallization protons [H(4),
H(5A), H(5B) in the notation of Ref. 86] are nearest to the
RE ion, and are subject to the action of the strongest local
field; in the NMR spectrum for a field Hie, their lines always
turn out to be the outermost ones. Thus, the problem reduces
to selecting those lattice parameters for which the calculated
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FIG. 8. Local magnetic field at protons belonging to molecules of water of
crystallization (graph a), and spectral width of proton magnetic reso-
nance (graph b), in crystals of TmES for a temperature of 4.2° K.73 Solid
curves—calculations using lattice parameters a0 = 13.59 A, c0 = 6.86 A;
dotted curve—calculation with lattice parameters for YES.

differences of the resonance fields of the protons H(5A),
H(5B) and H(4) coincide with the observed values of AJ7.
Figure 8a shows the results of a calculation of the local fields
at the protons of the water of crystallization, performed with
the lattice parameters a0 = 13.59 A, c0 = 6.86 A. In calcu-
lating the local field at the protons using formula (2.4) a
value of x° = 7.07 X 10~25cm3/ion was taken for the Van
Vleck susceptibility of the Tm3 + ion obtained from measure-
ment of the paramagnetic NMR shift of 169Tm [see (1.4),
(1.6), and (1.13) ] using the following calculated values of
the Lande g-factor and hyperfine interaction constant62'77:
gj = 1.1638, Aj/h = — 393.5 MHz. The good agreement
between the measured and calculated spectral width (the
continuous curve in Fig. 8b) lends plausibility to the chosen
values of a0 and c0; for comparison, in Fig. 8b we show by a
dashed line the results of an analogous calculation with the
lattice parameters for YES,86 which are only 2% higher than
ours.

b) Interaction of nuclei of Van Vleck Ions with one another

In the first Section, by dint of investigating the interac-
tions of Van Vleck ions with an external magnetic field, we
convinced ourselves that the nuclear magnetic moment, sur-
rounded by the shell of 4f electrons, behaves simply as an
anisotropic dipole moment n = fi yl. The Hamiltonian for
the interaction of two such dipoles in a coordinate system
related to the principal axes of the axially-symmetric crystal
electric field takes the form

? + tJivy + v H /i,z)

As a result of interaction (2.5) the NMR line is broadened.
In the second moment of the resonance absorption line, only
the "secular" part of the dipole-dipole interaction Hamil-
tonian, i.e., the part which commutes with the nuclear Zee-
man interaction Hamiltonian, gives any contribution. Let
the external field H have some arbitrary direction, which is
specified in the coordinate system we have chosen by the
angles 6 and <p. Then the Zeeman Hamiltonian for a pair of
nuclei 3? = %?\l) + JT12) (see 1.11) can be transformed to
diagonal form

j%?z = _ fhH (J1Z 4- I2Z) , v = /Til cos2 9 + vising,
(2.6)

once we have switched to the new coordinates (X, Y,Z ) . This
transformation is effected by rotating the old coordinate sys-
tem by an angle <f> around the z-axis and an angle 9 ' around
the X-axis. The value of d ' is determined from the relation
sin 6 ' = (yL/y)sin 6. In the new coordinate system, the se-
cular part of the Hamiltonian takes the form

« = (7li cos* 6-4-

7^ sin2 6 • sin 2<p — j-

~3yll Yi sin 26-~V (xcos<f-\- ysiny), (2.7a)

= Yi (4-Yisin26 + Yi i cos20) (l-^-j

. (2.7b)

Here, x =xl—x2, y=yt —y2, z = zt— z2 are the differ-
ences of the corresponding coordinates of the RE ions. In the
TmES and LiTmF4 crystals the ratio yj/yf is very large.
Thus, in a field H parallel to the c-axis of the crystal,
B\2>A 12, and so the interaction of the enhanced magnetic
moments of the thulium nuclei are essentially purely dia-
magnetic in character.

The second moment of the NMR line of 169Tm, which is
broadened due to the interaction (2.7), is calculated in the
usual way (Ref. 58):

Substituting (2.7a) and (2.7b) into (2.8), and transforming
the latter (taking into account the usual considerations of
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symmetry) yields for the tetragonal LiTmF4 crystal71

M/J) [radVsec2] = ̂ r [^ (2v1i + YD2

cos2e-7lsin29)226

~ sin* 0 (S8 + cos 4<pS9)] .

(2.9)
Here

= 2 (rj - 3*3)* rj10, 27 = S z? (x] + yj) rj10,

28 = S (*J + y})* rj", 2, = S (*J - 6^? + J$ rj".

(2.10)

For crystals of trigonal symmetry like TmES, 29 = 0. If the
external field H is directed along the c-axis, then for both
crystals we have

S . (2'U)

c) Interaction of nuclei of Van Vleck ions with dlamagnetic
ligand nuclei and with paramagnetic Impurity ions

The secular part of the dipole-dipole interaction Hamil-
tonian for the various sorts of spins contains, as is well-
know, only the operator 7|r7£. The quantization axes for
spin 1 (the RE ion nucleus) and spin 2 (the ligand nucleus)
are different; the direction of thez'-axis (Z) is determined as
in (2.6), while thez"-axis is in fact directed along the field H
(see Sec. 2a) . By means of simple transformations, the secu-
lar part of the nuclear interaction Hamiltonian between the
RE ion and the ligand can be put into the form

ll - 71Z7"2I -*£- [ (Vn cos* 0 — i- vl sin* 8 ) ( 1 - *1

— 3yi sin2 6 sin 2cp • -p-

- - - (Y II + Yi) sin 26 -̂ - (x cos sin cp)] .

The principal consequence of the interaction between
the nuclear moments of Van Vleck ions and the ligand nuclei
is inhomogeneous broadening of the resonance lines. The
corresponding contribution to the second moment of the
NMR line for 169Tm in crystals of LiTmF4 type equals71

^[|(2Yl, -visin2 e)2 2«

For the TmES crystal, which has trigonal symmetry,
29 = 210 = 0. Into formula (2.13) we insert the sum

;?_u?\ r7io. (2.14)

The contribution from ligands to the second moment of the
NMR line in a field H||c is proportional to y|, and in the
TmES and LiTmF4 crystals turns out to be negligibly small.

We now turn to paramagnetic impurity ions. If S is the
effective spin of the impurity center, andgy, g± are the prin-
cipal components of theg-tensor, then the secular part of the
7-5 dipole-dipole interaction Hamiltonian in a coordinate
system tied to the crystal axes takes the form

(g\ Yl + S-lY I I ) sin 26. -£- (x cos q> - y s i n t p ) .

(2.15)

Here, g = -y/g^ cos2 0 + gf sin2 6 , and the direction of z'",
i.e., the quantization axis of the electron spin S, is fixed by
the polar angles <p and Os = arctan [ ( gx /g^) tan 6 ]. The im-
purity spins are distributed over the sites of the crystal lattice
in a random fashion, and so in calculating the contribution of
M (

2
IS) to the second moment of the NMR line shape of a Van

Vleck ion there arises the question of how to perform the
lattice sum. Nearest-neighbor spins produce local fields
which are so strong that their NMR frequencies lie far out-
side the limits of observed resonance linewidths. Therefore,
it is necessary to exclude the corresponding terms from the
sum (2.10). The indeterminateness of this "truncation" pro-
cedure can be eliminated by empirical means. To do this, we
have adopted the following procedure: in 2f -e- 2f we retain
the terms with r} >RS, choosing Rs to be the distance at
which a spin 5 creates a local field twice as big as the ob-
served NMR linewidths of Van Vleck ions. Then the expres-
sion for the second moment of the NMR line shape takes the
form73:

> =/a-

rt 1 vS
^6

(2.16)

d) Nuclear resonance line broadening of Van Vleck Ions

Knowing the atomic coordination for crystals of RE
ethyl sulfates86 and the lattice parameters for TmES at low
temperatures (see Sec. 2a) it is possible for us to calculate
the various contributions to the second moment of the NMR
line for 169Tm, and by means of a comparison of the calculat-
ed values of 3/2 with measured ones, to establish the princi-
pal causes of resonance line broadening in real crystals. Re-
sults of calculations and experiment73 are shown in Fig. 9.
Contributions to the second moment due to interaction of
the 169Tm nuclei with one another (curve 1) and with [H
nuclei (curve 2) were calculated using formulae (2.9) and
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FIG. 9. Angular dependence of the second moment of the NMR line of I69

Tm in TmES.73 The temperature is 4.2 °K, the resonance frequency is 3.9
MHz (see text for clarification).

(2. 13) with the following values inserted into their lattice
sums (in units of 1044 cm-6: 2jm = 0.862, S*m = 0.028,
2jp" = 0.138, 2? = 136.9, 2? = 48.2, 2? = 147.2. Accord-
ing to EPR data, the crystal under study contained impurity
atoms of Tb3 + (/= 4.6XKT4), Er3+ (/=4.6xlQ-4)
and Yb3 + (/= 1.5XlO~4). Ions of Tb3+ in ethyl sulfate
have the highest magnetic moments ( g^ — 17.72, gi = 0
(cf. Ref. 62), and so their effect on the NMR linewidth of
thulium is very noticeable. An investigation directed specifi-
cally at the dependence of M £/S) on the concentration of the
impurity Tb3+ showed that formula (2.16) is correct if in
the lattice sum we discard terms with r, <RS =20 A. The
contribution from Tb3+ ions to the second moment is shown
by curve 3 of Fig. 9. When making estimates of the various
contributions to the second moment of the thulium NMR
line, we must not neglect inhomogeneous broadening of the
line. A distinctive feature of the non-dipole part of M2,
which is a result of local distortion of the crystal field sym-
metry, is its quadratic dependence on the resonance frequen-
cy:

X {(1 2 cos* 0 <6a1|> + (1 +aj.)2 sin' 9 <6al>

The first and second terms in the curly brackets are due to
scatter in the values of the paramagnetic NMR shift of thu-
lium, while the third is from "wandering" of the c-axis. Stud-
ies of the frequency and angular dependences of M2 show
that principal cause of inhomogeneous NMR line broaden-
ing of thulium in crystals such as LiTmF4 and TmES was
scatter in values of the perpendicular component of the para-
magnetic shift aL . In particular, for a crystal of TmES,
which was measured in Ref. 73 at frequencies from 3 to 150
MHz, the value of (8a\ )/(l+ai)

2 was found to be
4.8xlO~5. The corresponding nondipole contribution is
shown in curve 4 of Fig. 9. Adding all four of these contribu-
tions to M2, we obtain finally curve 5, which is in fairly good
agreement with experimental results. The rather small devi-
ation ( -500 kHz2 for angles 0>2°) can be related to the
paramagnetic impurities erbium and ytterbium.

The quantitative analysis we have carried out makes it
possible to understand the origin of the surprisingly strong
anisotropy of the second moment of the thulium NMR line.
The small value of Af2 in a field H||c is a result of the "switch-
ing-off" of all the sources of line broadening other than the
dipole-dipole interactions of thulium nuclei with one an-
other by virtue of the inequality \y\\ < \yL . The magnitude
of M2 in the field Hie at a frequency of 3.9 MHz is computed
in the following manner: in percentages, the interaction of
thulium nuclei with one another makes up 4% of the mea-
sured value of M2, the "thulium-proton" interaction makes
up 56%, the "thulium-paramagnetic impurities (Er and Tb)
interaction" makes up 25%, and interaction with defects in
the crystal structure makes up 15%. A large part of the
linewidth is due to scatter in the local magnetic field coming
from the protons. This scatter is so large that spin echo of
thulium nuclei can be observed in a homogeneous external
field.13'64'73 The signal echo at 7-15 MHz can be described by
an exponential function u(r)~exp[ — (r/TJ)1-9], which is
close to a Gaussian (T* = 4 microseconds). The Fourier
transform of this signal echo (the dashed curve in Fig. 10)
almost coincides with the distribution function of the reso-
nance frequencies of thulium nuclei in the local fields of the
protons. To calculate this distribution function, we confine
ourselves to one molecule of ethyl sulfate, that is half of a
unit cell. The local fields h, = yP fi(r} - 3*2)/2/f, created
by the thirty-three protons at the thulium nucleus, are dis-
tributed within an interval from 0.85 Oe (H2O) to 0.06 Oe
(CH3). After summation, the total local field equals
A2 = ± A! + A2 ± ••• + ^33- In the high-temperature ap-
proximation (yL fiH4kT),ihe + and — signs are equally
probable. Fixing them in some random fashion, it is not hard
to find the distribution of magnitudes of/t2 and consequent-
ly the distribution of resonance frequencies. The results of
calculations given in Ref. 73, in which 2000 sign combina-
tions were included, are depicted by the dashed line in Fig.
10. As is clear, it agrees well with experiments on pulsed
NMR.

e) Transport of thermally excited 4f electron states

We have investigated spin-spin interactions in Van
Vleck paramagnetic crystals, along with the experimental

FIG. 10. Fourier transform of the spin echo signal of 169Tm nuclei in
TmES in a homogeneous external field Hie. The resonance frequency is
13 MHz. The dashed line is the distribution function for resonance fre-
quencies in the local fields of the nearest protons.
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manifestations of these interactions, at low temperatures
when only the lowest 4f electronic energy levels are populat-
ed. With an increase in temperature, the excited energy lev-
els become populated according to the Boltzmann distribu-
tion. The 4f electrons now spend part of their time in excited
states, and during this time interval the nucleus of the para-
magnetic ion is exposed to the influence of other nuclei ac-
cording to the strength of their hyperfine fields. In the third
Section we will discuss in detail the consequences of such
fluctuations in the hyperfine field; here we will only attempt
to answer the question: how long is the lifetime of a state of
the 4f electron shell with a given energy A?

We can assume that the lifetime of an excitation is limit-
ed by spin-lattice relaxation processes, and can be deter-
mined from the inverse of the transition probability w^ for
spontaneous emission of a phonon with energy A. For an
estimate of the magnitude of wt, we turn to the experimental
data on electron spin-lattice relaxation of Ce3+, Pr3+,
Nd3+, Sm3+ ions in crystals of LaCl3, LaMgN, LaES.87 In
these crystals, the nearest excited levels of the 4f electrons
differ from the ground state doublets by an interval of
A = 44—48 °K, while the magnitudes of the pre-exponential
factor ( n > , ) in the two-phonon relaxation rates—which are
typical of resonance fluorescence rates—vary from ion to ion
but cannot exceed a limit of 6 X 108 to 4 X 109 see"'. Thus, on
the average the probability of spontaneous emission of a
phonon of energy 46°K equals 2x 109 sec""1 which corre-
sponds to a lifetime of r=;5x 10~'° sec for an electronic
excitation.

However, this estimate for the lifetime of an electronic
excitation is inadequate for the case of concentrated magnet-
ic crystals, in which the Van Vleck ions are separated by
rather small distances and are coupled by strong dipole-di-
pole interactions (or in intermetallic compounds, by ex-
change). Let us show that these powerful spin-spin relaxa-
tion mechanisms reduce the lifetime by approximately an
order of magnitude compared to what we obtained earlier.
Let <%*!! be the dipole-dipole interaction Hamiltonian for an
ion with an / th neighbor, where m and n are excited states

i|>i = Pi I di > + ?i I da >. ^2 = Pz I ̂ i > + 92 I d 2
}

(2.17)
of the ion and its neighbor, respectively. Then the "depar-
ture rate" for the excitation from the ion is written in the
form

* \QM ;•

(2.18)
I , n

Here, g(o) ) is a form factor, which for definiteness we choose
to be a Lorentzian function

camn is the frequency difference between the excited states m
and n, equal to 0 and ft for the two possible values of /z in the
sum (2.18). We introduce the notation:

(2.20)

and rewrite (2.18) in the form
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(2.21)

The first term in (2.21) corresponds to transitions of the
type ̂ l0-.^", ^2°. caused by the interaction

1 _!>L(1_3cos2e;)
4 ri

(2.22)

Since this process occurs with conservation of the excitation
energy (A + fi ft/2, or A — ft ft/2), the frequency differ-
ence in (2.18) is zero. The second term in (2.21) isduetothe
transitions ^Su— ̂ 'Wz1'— *•$" which are accompanied by
a change in excitation energy of magnitude ± ft ft. The ma-
trix elements of the corresponding operator

E + F = — <jin2 ft ^-2llPi rfl) r(0 I -2i<pj HI) H0\Bill v*i ^c «/ j_ «/ _i_ ~y~ C t/ _ «/ _ I

(2.23)

in the general case differ from the matrix elements of (2.22);
therefore, in (2.21) x^\. Let us turn again to the TmES
crystal, in which the excitation energy of the doublet is ex-
actly equal to 46°K. Transitions of the first type occur here,
for the most part, due to the two nearest neighbors of the
Tm3+ ion (r, = 1 A,0/ = 0,tr), while transitions of the sec-
ond type are due to the six neighbors on the next coordina-
tion sphere (r, = 8.7 A, 6, = 66°,114"), so that x^\,
r0 = 8XlO~ u sec, and for a constant external magnetic
field oriented perpendicular to the c-axis of the crystal the
lifetime of an ion in an excited state equals 5 X 10~ u sec.

It is obvious that such an estimate of the transport time
of an electronic excitation suffers from excessive oversimpli-
fication. In practice one would have to take into account
successively all the interparticle interactions and the spread
of energy levels of neighboring ions as a consequence of
structural defects in a real crystal. This could give rise to a
still larger reduction in the magnitude of r, and a change
in the relation between the form-factors and the transition
probabilities for the various processes. It is important to em-
phasize, however, that even an approximate estimate gives
us a very short lifetime for an ion in an excited state, which
(through fifl) depends on the crystal orientation in the
magnetic field. Electronic excitations are also responsible
for the very peculiar kinetics of the nuclear spins.

3. NUCLEAR MAGNETIC RELAXATION

Because the excited electronic energy levels of an ion
are situated comparatively close to the ground state, they are
noticeably populated even at helium temperatures, so one
might expect that lines should appear in the NMR spectrum
at frequencies corresponding to hyperfine fields due to excit-
ed states. In fact, however, the population determines not
only the fraction of excited ions at a given moment of time,
but also the average time that a particular ion spends in an
excited state. In other words, the electronic state of an ion
fluctuates, so the nucleus is subjected to a random interac-
tion which makes the hyperfine field change with time;
hence, the resonance spectrum depends essentially on the
fluctuation rate. In the general case, the effective magnetic
field at the nucleus in the presence of fluctuations varies both
in magnitude and direction. If in addition to this we note that
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the excited electronic states are often not singlets but mag-
netic doublets, then a full theory of resonance absorption
appears to be hopelessly complicated. There are, however,
two decisive aspects of this situation which simplify the
theoretical interpretation of the experimental data on nu-
clear magnetic relaxation in Van Vleck paramagnets: the
shortness of the correlation time of fluctuations compared to
the inverse resonance frequency, and the relative smallness
of the population of excited electronic states in the tempera-
ture interval in which resonance is observed.

a) Resonance llneshapes under adlabatic conditions77

If the external magnetic field is parallel to the crystal c-
axis, then as soon as a change of the electronic states of the
rare-earth ions takes place, the magnitudes of the effective
magnetic fields at their nuclei also change, giving rise to a
jump in the NMR frequency. Therefore it is advantageous at
this point to use a variant of the adiabatic theory of motional
narrowing of resonance lines, which is based on a model of
random variation of the resonance frequency.58 Let the reso-
nance frequency take on the values <o0, <ov, eu2,... with proba-
bilities W0, Wlt W2,...; correspondingly, let irmn be the tran-
sition probability per unit time for a spin to go from a state of
frequency a>m to one of frequency &>„; let — irnn be the prob-
ability of departure of a spin from the «th state. These proba-
bilities conform to the obvious relations

Wmnmn Wnnnm. (3.1)

In the problem under discussion here, Wm is the Boltzmann
factor for the various electronic states, irmn is the transition
probability between these states, and — ir~n

 l is the lifetime
of the nth state. If quantities related to the ground state sing-
let were denoted by the subscript O, then for temperatures
much smaller than the excitation energies we have

The resonance line shape is given by the expression
I((o) = Re(WA-'l), where W = (W0,Wlt ...), 1 is a col-
umn vector all of whose elements are 1, and the matrix A~ '
is the inverse of the matrix Amn = i(com - CD) Smn + irmn.
When two frequencies are present, the line shape function
takes the fairly simple form:1'

(3.2)

This lineshape function illustrates in a standard way the
merging of two resonance lines with frequencies a>0 and w, as
the transition rate between the two frequencies increases,
and the confluence of the lines into a single one centered
around an intermediate frequency when

The case W0^ Wlt and correspondingly ITOI ^tr10, has been
investigated in the book by Burshtein, for example (Ref.
88). It is very significant that the correlation time of the
random process, which equals

+ «„)-*, <3'3>T,. = (n,

Am}

the smaller of the lifetimes of the two states. For W0^ Wv the
principal maximum of the function (3.2) is always found in
the vicinity of <y0> regardless of the relationship between
Aw, = 6>j — a}0 and T~ '; in this case, the function reduces to
the Lorentzian function:

/(Cl))«W. : r. . . . -.. (3'4)

where

6w= -r

In the case of three electronic energy levels, the function for
the line shape also has the form (3.4) if it is assumed that
transitions between excited states have low probability, i.e.,
7r12, 7T21=:0 and consequently that — i7-22 = ^2o.
— ITn = trio- We remark that this condition will always be

fulfilled if the two excited states correspond to a magnetic
doublet, as in the case of LiTmF4 or of TmES. Actually, the
probability of a spin-lattice transition between nearly degen-
erate levels is small when such transitions are caused by low-
frequency phonons, due to the small spectral density of the
latter; in addition, transitions due to dipole-dipole interac-
tions between neighbors are to first order forbidden. The line
shift and its width are determined by the formulae

i Amx | nmHM Aco2
6(0 =

Acoj (3.6)

which are natural generalizations of (3.5).
Turning now to the problem of the temperature depen-

dence of the NMR frequency, we note that a simple propor-
tionality relation between the line shift and the paramagnet-
ic susceptibility follows from Eq. (3.6) under the condition
irm0 > | A<»m |. Then taking into account (3. 1 ), it also follows
from (3.6) that

CO - 2 1res - 0)0 + AcO, + A(02 - 2 1
"10 "20

i.e., the observed resonance frequency is a weighted average
of all the electronic frequencies, with Boltzmann weighting
factors. As long as

,-ii.f.M (3-7>

where the brackets signify an average over the correspond-
ing electronic states, the resonance frequency can be ex-
pressed in terms of the susceptibility [see (1.6) ]:

(3.8)

is determined in this case by the largest transition rate, i.e.,

It is clear that for this relation to hold, a comparatively large
transition rate is required out of the excited electronic levels
only.

As an example, let us examine the temperature depen-
dence of the NMR line shift and broadening of 169Tm in the
TmES crystal. Confirming to our exposition of the theory
discussed above, we attach to the electron states |0), \d^)
and \d2) under investigation (see Fig. 1) the indices 0,1 and
2, respectively. Only these three states of the 4f electron shell
are involved in determining the temperature variation of the
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thulium line width and NMR frequency. The remaining
electronic levels lie far higher ( > 100 cm"1), and the likeli-
hood of their being populated can be neglected. For calculat-
ing the frequencies <y, from formula (3.7), the singlet and
doublet wave functions must be chosen correct to linear or-
der in the magnetic field terms; this is not difficult to do,
using the information in Table I. As a result, we obtain

wd — co0 = Aw +

where

co2 — <DO =— Aco + T], (3.9)

I Ep-
_

Ed

and we denote by |s) and | pli2) the states mixed into |0) and
\d 1>2) by the magnetic field. Inserting once again the prob-
ability of relaxation transitions in formula (3.6):

i A N

J110 « Jta, = T1 "01

no,= T-'exp( w

we find for fi n<&7XA that

(3.10)

2A(°2T C::D ( —
- I + A<B«T» 6XP I kT

(3.11)

For the case of rapid fluctuations, A&>r-< 1, and there are no
longer any adjustable parameters in the formula for the line
shift. Inserting the calculated magnitudes of the matrix ele-
ments, along with the values of the Lande g-factor (the cal-
culation of which was presented earlier) and hyperfine-in-
teraction constants of the free ion, we obtain the temperature
shift parameter of the nuclear spin Hamiltonian:

(3.12)

As for the line broadening, the increase which one measures
experimentally is connected with the quantity F in the Lor-
entz function by the simple relation SvT = r/w/3~. In Figs.
11 and 6, we present results of measurement of the tempera-
ture variation of the paramagnetic shift and broadening of
the NMR line of 169Tm in thulium ethyl sulfate for a magnet-
ic field oriented parallel to the crystal c-axis. The calculated
curve for the shift, obtained from formula (3.12), is in fairly
good agreement with experiment. This is an indication that
in the case studied here the rapid-fluctuation condition is
indeed realized. The line broadening obtained from theory is
in good agreement with experiment (Fig. 6, line 1), if we use
for the correlation time the value TC =3.4xlO~1 0 sec,
which does not violate the rapid-fluctuation condition.
Within the temperature region under investigation, the role
of the correlation time is played by the inverse transition
probability (in units of time) from excited electronic states
to the ground state. As we have already explained earlier, the
rather large value of this transition probability is guaranteed
by the dipole-dipole interaction between the rare-earth ions,

\»

V\»

V

v.\.\
0,10 0,15 0,20

FIG. 11. Increase of the paramagnetic shift of the NMR line of 169Tm in
TmES as a function of reciprocal temperature,77'78 for a field H||c. Dashed
line: the results of a calculation using formula (3.12).

although one should not overlook the electron-vibronic in-
teraction. The smallness of the correlation time for the ran-
dom process which represents the variation of the magnetic
field at the nucleus allows one to proceed to an investigation
of nuclear relaxation for arbitrary orientations of the exter-
nal magnetic field.

b) Relaxation of nuclei of rare-earth Ions for rapid
fluctuations of the hyperflne field7*

For arbitrary orientation of the external magnetic field
relative to the crystal axes, the effective field at a rare-earth
ion nucleus, as a result of thermal fluctuations of the elec-
tronic states, changes both in magnitude and direction. Be-
cause of this, the possibility of applying an adiabatic theory
is excluded; however, as a consequence of the smallness of
the correlation time of the random process mentioned above,
it is possible to use the nonadiabatic theory of Redfield and
Bloch-Wangsness58 to analyze the behavior of the nuclear
magnetization. The situation which we have chosen to study
is reminescent of the "scalar relaxation of the second kind"
in liquids; however, the special behavior of the electronic
angular momentum J of thevrafe-earth ion in the crystal field
and external magnetic field requires that we make some mo-
difications in the theory in order to adapt it to anisotropic
systems.

Let us write down the Hamiltonian for a spin / = 1/2
nucleus:

$g = _ Y^HI + AjU (t), (3.13)

where the electron angular momentum J(f) depends in a
random fashion on time. Let us further cast (3.13) in the
form

,1
se = se i + <$?'(*),

where the index 0 signifies an average using the equilibrium
electronic density matrix p., determined by the Hamiltonian
(see 1.1):
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(3.14)

Then the ensemble average of &"(t) reduces to zero, while
the effective nuclear Hamiltonian £l?l becomes a function of
temperature. For low temperatures this Hamiltonian leads
to (1.6).

The equation of motion for the nuclear spin takes the
form58

H'Ja-S /-P'P (K) Tr{(a-a0)[[/a,/_pl/„,]},
PfS' (3.15)

where (I) = Tr (erl), a is the density matrix of the nuclear
system, a0 is its equilibrium value, and the indices a, f$ dis-
tinguish the cyclic components of the vectors; the z-axis is
directed along the effective field H', and a>0 is the resonance
frequency. We denote byjp*p the spectral density of the cor-
relation function Kp.p for the fluctuations of the random
process:

becomes appropriate to calculate a quantum correlation
function.

oo

=(-T-)2 J (3.16)

which, as usual, is taken to be real (the imaginary part leads
to an additional small level shift). As long as the hyperfine
field in the excited electronic states is far larger than in the
ground state (<y0<Ao>), and A<arc < 1, the condition o>0rc < 1
certainly holds; this condition takes the place of the "strong
narrowing" condition for which j(a)0)zzj(Q). The/?//?'
components of the tensory^ are in our case small, because
Eq. (3.15) takes the form of the Bloch equations with relaxa-
tion parameters

1 d 1 • • (3.17)

Clearly, estimates of the line broadening and spin-lattice re-
laxation times lead to evaluation of the correlation functions
KPV(t).

The simplest and most transparent calculation of these
quantities is a semiclassical one,77 which reveals to us once
more that the shortest lifetime of a stationary electronic state
plays the role of a correlation time. However, in small mag-
netic fields (where the degree of smallness varies for each
orientation) the splitting fi ft of the excited electronic doub-
let can be smaller than the linewidth connected with the fini-
teness of the lifetime ( ~TC ). In this case, the excited states
can be superpositions of the stationary doublet states, and it

= Tr {pj (3.18)

For a consistent calculation of this function, we would have
to include in the Hamiltonian 2fA both the lattice and the
electron-lattice interaction, which would ensure a quasi-
continuum of levels associated with the lattice "heat bath";
as a result, the correlation function would be attenuated with
time. In place of this approach, we will, as before, use for
3FA the Hamiltonian of an individual ion (3.14) and we will
deal with the damping semi-phenomenologically, taking ad-
vantage of the presence of a characteristic time TC , by simply
inserting into the right-hand side of (3.18) the factor
exp( — t/Tc). Naturally, in the case of large splitting
(ftrc > 1), the correlation calculated this way coincides with
the classical one.

Again, as a concrete example, we investigate the ion
169Tm3+ inTmES; as before, we will consider the three low-
est-lying electronic states. It is convenient to calculate the
correlation function (3.18) in a basis in which the electronic
Hamiltonian 3f^ is diagonal. The doublet \d 1>2) in first or-
der is split only by the parallel component of H. For a given
nuclear resonance frequency v = y, \H'\/2ir, the magnitude
of the magnetic field, and with it the Zeeman splitting of the
doublet, depend strongly on the field orientation:

a cos 6' \ 2 , I 6vsin»6' \2 /•> i qx
I'll / ' V YI

Here, Y\\ > Yi are tne measured parameters for the nuclear
spin Hamiltonian, the angle 6' determines the orientation of
the field H' (see Sec. 1), and

—• (3.20)

The degree of mixing of |<f,) and \d2) within the states i/>i,i/>2

[see (2.17)],which correspond to the Zeeman sublevels of
the doublet, is also strongly dependent on the orientation of
the external field:

bv sin2 e'/Yj._£i__
Pi /(acos6'/Y|j)a + (6vsin29'/

= (3.21)
)» + (ocose'/Y||)

(the coefficients/^, g2 are found from the orthogonality con-
ditions applied to ̂ i,^2) • Calculations lead to comparatively
simple expressions for the relaxation rates, which are suit-
able for arbitrary magnetic field orientations:

? = (27,)-' + 2 f-^-)2^ [a* cos" 6' + W sin* 6' (9 + exP ( ~^) •

(3.22)

(3.23)

Let us enumerate the basic features of the relaxation
characteristics we have obtained. First of all, the relaxation
rates T ̂ 1 and T^~', in contrast to the results obtained in
earlier works,67'89 explicitly include the hyperfine interac-
tion constant. This result is related in an obvious way to our

use of the short correlation time condition (^^rc<^), and
reflects the fact that with a weakening of the hyperfine cou-
pling the electronic motion has less influence on the nuclear
relaxation. For such large correlation times it is natural to
replace the factor of TC in expressions (3.22), (3.23) by
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T~l(Aj/fi) ~2X(d \JZ \d)~2. The necessity for such a sub-
stitution follows from formula (3.11) for the linewidth when
the field is in parallel orientation, which is valid for arbitrary
fluctuation rates. As a result, relaxation parameters are ob-
tained which are indeed independent of the hyperfine inter-
action. If in these expressions we consider rc to be due en-
tirely to the electron-phonon interaction, then the quantity
T~I exp( — A/kT), which now determines the relaxation
time coincides with the probability of an electron spin-lattice
transition from the singlet to the doublet level, which was
regarded earlier as a standard measure of the nuclear relaxa-
tion rate.

Secondly, formula (3.22) predicts strongly anisotropic
spin-lattice relaxation around the parallel orientation (the
factor sin2 0'). For parallel orientation we are dealing with
adiabatic conditions, and this fact is in no way connected
with the size of the correlation time rc. For this reason, the
above-mentioned anisotropy has also been deduced in pre-
vious calculations.89 Thirdly, the line width T f l (we re-
mind the reader that this is the part of the width caused by
the fluctuation mechanism) in parallel orientation does not
depend on the resonance frequency; for other orientations
this dependence has a rather complicated character, but in
strong fields (which nevertheless do not violate the condi-

a,f .2,0

FIG. 13. Pre-exponential factor for the transverse relaxation rate of '69Tm
nuclei in TmES as a function of the squared resonance frequency.78'79 The
straight lines correspond to the formulae ,4 35. = 0.6 X 108 + 2. 1 X 10~ V

-

crystal in the magnetic field the relaxation rate changes with
temperature according to the exponential law T '2~ '
= Ae exp( — A/&D with a single parameter A = 32 cm~ \

in full correspondence with (3.23). A frequency dependence
of r2~ ' for parallel orientation, as is expected, is not ob-
served. For two other orientations of the crystal in the mag-
netic field (6 — 35° and 90°) we were successful in perform-
ing measurements over a broad range of frequencies; the
experimental results are shown in Fig. 13. For low frequen-
cies, when the temperature broadening is relatively small
and the line shape strongly non-Lorentzian, the precision of

tion Slrc < 1) it simplifies: Jf ' = c' + c V; c' and c" are measurement of T2 is insufficiently high. Such measure-
parameters which depend on 9 and T. As distinct from Tt ',
the dependence of T 2~"', on orientation is rather smooth over
the entire range of variation of 6.

Let us now turn to the experimental data of Refs. 64,78,
79. Measurements of the magnitudes of a! for temperatures
from 4.2 °K to 15 °K showed that the NMR line shift is
strictly proportional to the paramagnetic susceptibility of
the crystal (Fig. 5). This again confirms the assumption of a
short correlation time. Samples of the temperature depen-
dence of the transverse relaxation rate, obtained at various
frequencies, are shown in Fig. 12. For any orientation of the

ments at high frequencies (v>20 MHz) give the expected
quadratic dependence: Ag ~c' + c'v2.

The results presented here convincingly argue in favor
of the assumptions of our theoretical model and open up the
possibility of deriving from experiment the value of the cor-
relation time—the single adjustable parameter in Redfield's
theory. And here we encounter a feature which at first glance
is somewhat unexpected: the correlation times obtained in
this way depend on the orientation of the external magnetic
field. One of the consequences of this dependence is the no-
ticeably large angle which the line A 35. (v

2) makes with the
abscissa in comparison with^ (v2) (Fig. 13), whereas for
TC , which does not depend on orientation, the difference in
the slopes of A e, according to formula (3.23), should be very
small. The dependence of rc on 6 is very evident in the ex-
periments which measure TV The orientational dependence
of T f ' (9) for T = 4.25 °K is displayed in Fig. 14. A sharp
decrease in T,~' as 0—>Q predicted by the theory is clearly

0,10 0,15 T, K~

FIG. 12. Transverse relaxation rate for magnetization of 169Tm nuclei in
TmES as a function of reciprocal temperature.78'79 The external magnetic
field is perpendicular to the crystal c axis; Tf' = A exp( — 46/7"). The
resonance frequencies (lines 1 to 4) are 152, 42, 18 and 5 MHz, corre-
sponding to pre-exponential factors of 3.53,0.92,0.53 and 0.25 (in units of
108sec~').

rf,*
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*>

10 20 30 W SO 60 70 80 90
0,deg

FIG. 14. Orientation dependence of the spin-lattice relaxation rate for
169Tm nuclei in TmES at a temperature of 4.2 °K. The resonance frequen-
cies are 7.5 MHz for B = 0 to 6 = 50', and 13 MHz for 0 = 3° to 6 = 90°.
The solid line is calculated using formulas (2.22) and (3.22).
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manifested; however, by virtue of the extremely strong an-
isotropy of the tensor a, the magnitude of sin2 6' is close to
unity in the angular interval 3*£0<90*; thus the observed
growth (roughly by a factor of four) in the nuclear spin-
lattice relaxation rate for a change in 0 from 90° to 7.5° can
only be due to the growth of the correlation time rc.

If the lifetime of an ion in an excited state were regulat-
ed by the ground-state electron-vibronic interaction, then
r~' would be the probability of a spontaneous transition of
an ion into the ground state with emission of a phonon of
energy A ± fi ft/2. As long as fi ft is much smaller than A for
all orientations, any dependence of r~' on 6 due to variation
of fi ft must be completely negligible. In this way, we are led
to the conclusion that the lifetime of the Tm3+ ion in an
excited state is determined for the most part by interparticle
interactions of dipole-dipole type, quadrupole-quadrupole
type, or through the phonon field. Approximate estimates of
rc (&), developed in subsection 2d are in qualitative, and to a
significant degree quantitative, agreement with experiment
(Fig. 14).

In the perfectly parallel orientation H||c, a small trans-
verse component of the hyperfine field which induces relaxa-
tion transitions can be present as a consequence of local dis-
tortions of the symmetry of the crystal potential. The local
distortions can be both static (structural defects) and dy-
namic, i.e., caused by lattice vibrations. In insufficiently per-
fect crystals this effect can almost entirely mask the sharp
dip in T f ~ ' in the vicinity of 9 = 0, which apparently is what
is occurring in LiTmF4 (Refs. 67, 76).

e) Relaxation of nuclei of dlamagnetic atoms

As a result of electrons from the ground-state shell of
the rare-earth ions making transitions between various
states, the magnetic field varies randomly not only at the
nuclei of the RE ions themselves, but also at the nuclei of
paramagnetic impurity centers and neighboring diamagne-
tic atoms, such as at 19F atoms in LiTmF4 or protons of
TmES. Such fluctuations can in turn induce relaxation at
these magnetic centers also. For the case of nuclear reso-
nance of 19F and 'H, the condition for rapid fluctuations
<y0rc < 1 is fulfilled with a wide margin, and for calculating
the spin-lattice relaxation time one can use formulae (3.16)-
(3.18). Thus, the interaction between the above-mentioned
nuclei and the 4f rare-earth ions' electrons can be regarded
as a random process. Of the possible interactions, the most
obvious is the magnetic dipole-dipole interaction; the per-
turbation Hamiltonian in this case can be written in the form

(3.24)

Here the summation is over the rare-earth ions surrounding
the nucleus, while rt is the distance from the nucleus to the
/th ion. Let us rewrite (3.24) in the form

where

We will consider the fluctuations of different ions to be un-
correlated; this approximation is correct when each ion has a
large number of neighbors. Then the correlation function for
the random quantity G(t) is easily expressed in terms of the
single-ion correlation function K^ (t) which was already
introduced in the previous section

Here, the angular brackets denote an average with respect to
the equilibrium distribution function (classical or quan-
tum). Correspondingly, the relaxation times also can be ex-
pressed in terms of the spectral functions of the previous
subsection and a few lattice sums, for example

(3-25)

We remind the reader that the Z-axis is here directed along
the effective magnetic field Heff at the diamagnetic atom,
and that the difference in direction between Heff and H is not
as marked as for the nuclei of the basic rare-earth ions. For a
three-level system of the type discussed earlier we can write
out the relaxation times for the case H||c (in this case the
only component of the spectral density different from zero is

(d\J,\d)* 2 rl« sin* 6, cos* 6, exp ( - -A.) ,

(3.26)(d\Jz\d)2

Here, 0, is the angle between the t-axis and the radius vector
rt . In Fig. 1 5 we show the results of measurements of TI for
the 19F nuclei in LiTmF4.

76 The dashed line gives a calculat-
ed result: Tf 1 = 1.25-103 exp( -46/r) from formula

FIG. 15. Spin-lattice relaxation of nuclei of 169Tm (curve 1) and 19F
(curve 2) in LiTmF4 with an impurity concentration of 0.01% Er3"1".76

The external field was parallel to the c-axis, the resonance frequency was
10.6 MHz. The dashed line is the calculated relaxation rate for "F [see
(3.26), (2.18)].
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(3.26), using the necessary data on crystal structure,90 the
wave function of the Tm3+ ion in the crystal field,26'57 and
also the value TC = 1.2x 10~u sec, which is obtained from
formula (2.18) for the probability of a dipole-dipole transi-
tion of the excitation to a neighboring ion. Agreement with
experiment should be acknowledged as being entirely satis-
factory, keeping in mind that the calculation was performed
without using any adjustable parameters.

We note also that if NMR of the nuclei of the diamagne-
tic atoms is sampled often and up to significantly higher tem-
peratures than for nuclei of the basic rare-earth ions, the low
temperature condition W0t> W^ W2 ceases to hold, and this
leads to complicated expressions for the correlation func-
tions. Thus, in (3.26) for W^W2, in place of the factor
exp( - L/kT) we will have [ 1 + 4 expX ( - 2A/
fcD] X [ 1 + 2 exp( - AA71)]~3 expX ( - A/fcT"). With
an increase in temperature other complications emerge
which are difficult to take into account quantitatively, e.g.,
the populating of higher-lying levels and the appearance of a
temperature dependence of the correlation time rc. For ex-
ample, for /t7> A, the electron-phonon contribution to T~ l

depends linearly on temperature, because at high tempera-
tures stimulated transitions to the ground state predominate
over the spontaneous ones.

Paramagnetic impurity centers with small intrinsic re-
laxation rates to the lattice of the type associated with 5-state
ions can be even more effective in relaxing neighboring rare-
earth ions by means of fluctuations. In this case, the small-
correlation-time condition, in view of the large EPR fre-
quency, will obviously often be violated. Under these
circumstances, the relaxation times can be calculated ap-
proximately from formulae (3.25) and (3.26), substituting
(y, fi/fj.z) for the g-factor of the impurity ion.

d) Relaxation via paramagnetic impurities

The effectiveness of relaxation processes which are con-
nected with thermal excitation of electronic states of the ba-
sic RE ions decreases as the temperature falls according to
exp( — A A 7"). For sufficiently low temperatures, the usual
nuclear relaxation mechanism for dielectrics via paramag-
netic impurity centers comes into play. This is clearly in
evidence in Fig. 15: the temperature variations of the relaxa-
tion rates of the 19F nuclei for T< 5 °K and the 169Tm nuclei
for T< 3 °K slow down abruptly, and for very low tempera-
tures the nuclear moments of thulium relax at most ten times
faster than the fluorine nuclei. The latter fact shows clearly
that relaxation of unlike nuclei proceeds by a single channel,
namely by paramagnetic impurities. The observed factor-of-
ten difference in the rates T f ' is easily obtained, once one
multiplies the concentration ratio (nTm/nF = 1/4) by the
square of the ratio of their magnetic moments
(Trm/Tr =36). The character of the relaxation processes
which take place in such complex systems, which consist of a
nuclear Zeeman reservoir (I) with heat capacity c:, a dipole-
dipole reservoir (DDR) of impurities (d) with heat capac-
ity cd, and a lattice-vibration reservoir (/), depends on the
relation between the rates at which thermal equilibrium is
established between its constituent parts.

Let us examine the conditions for relaxation of the thu-
lium nuclei in axially-symmetric crystals of the LiTmF4 and
TmES type, confining ourselves to the case of a magnetic
field oriented along the c-axis. For estimates of the relaxa-
tion rates, we will use well-known relations,59'91"93 modify-
ing them to correspond to the problem at hand. Thus, we set
the spin-spin relaxation rate of paramagnetic centers r2 '
equal to the Larmor frequency of a spin S in the local field
created by the neighboring impurity spins:

"» ~ Ha*

(a is the crystal lattice constant). We note that in this for-
mula we have used the value gL, since the rate r2 ' is deter-
mined by the oscillating local field created by the transverse
components of the magnetic moment of the impurity ion. It
is reasonable to use the second moment of the impurity EPR
line [see (2.11)] as a "mean-square NMR frequency":

. (24 +g\)

Nuclear relaxation via paramagnetic impurities is caused by
interactions of the type I_SZ, i.e., interactions between the
transverse components of the nuclear moment and longitu-
dinal components of the electronic moment. Thus, in order
to investigate the relaxation of thulium nuclei in a magnetic
field H||c, we must use the quantities yL and gy in the well-
known formulae for the rate of energy transfer from the nu-
clear Zeeman reservoir to the lattice (T^ ') and DDR im-
purities (T {^l). As a result, all the information of interest to
us on the relaxation of nuclei of Van Vleck ions via impurity
centers is lumped into the following relations:

Tib 5

2n

,
SCil

-sch2 (3.27)

_£!_

Here, d is the radius of the spin diffusion barrier, «Tm is the
concentration of Van Vleck ions, T^' and T dj ' are the rates
of energy transfer from the DDR impurities to the nuclear
Zeeman and lattice reservoirs, respectively; T^ is the impuri-
ty spin-lattice relaxation time.

Let us now turn to experiment.67 In Fig. 16 we show
results of measurements of the relaxation rates of the longi-
tudinal magnetization of thulium nuclei in three crystals of
LiTmF4, containing the impurity ion Er3+ in the following
concentrations: /Er = 1 x 10-4 (1), 4XKT4 (2), and
3x 10~3 (3). As is clear, for the lowest temperatures the
relaxation rate does not depend on temperature, while its
functional dependence on impurity concentration is close to
quadratic. Let us undertake to calculate an estimate of the
rate Tj^ '• Taking into account that the Er3+ ion possesses a
large magnetic moment (gy = 2.960, gL = 8.074)76 we get
a radius for the diffusion barrier equal to 20 A. Then for the
three samples of LiTmF4 that have been studied, the follow-
ing values of T ̂  ' are obtained: sample 1—2.6 see"', sample
2—41 sec"', sample 3—2.3 X103 sec"'. The corresponding
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FIG. 16. Spin-lattice relaxation of 169Tm nuclei in LiTmF4 with an impu-
rity concentration of 0.01% (curve 1), 0.04% (curve 2) and 0.3% (curve
3) of Ei3+ ions.67 The external magnetic field was parallel to the c axis of
the crystal, the resonance frequency was 10.6 MHz.

experimental values of the longitudinal relaxation rates
T f ' — for sample 1, 2 sec" ', sample 2, 30 sec~ ', and sample
3, 1 . 3 X 1 03 sec ~ ' — confirm that the quantity d was reasona-
bly chosen. Detailed estimates of the rates (3.27), using
well-known values76 for the time TI show that in the example
under discussion, the inequalities T ̂  ' , T ̂  l •< T dj l are real-
ized, and the relaxation rate for longitudinal magnetization
of the thulium nuclei measured in a high magnetic field coin-
cides with the energy transfer rate from the nuclear Zeeman
reservoir to the DDR (Er3+) impurity centers. Thus, for
low temperatures the spin-lattice relaxation of nuclei of Van
Vleck ions in crystals which contain paramagnetic impuri-
ties does not differ in principle from nuclear relaxation of
diamagnetic atoms. Here, the role of the 4f electrons is only
to enhance the dipole-dipole interactions of the nuclei with
paramagnetic centers on account of which the rate of nu-
clear relaxation appears larger than usual by a factor of
(1+a)2.

We note that for very low temperatures (kT<g\\jj,3H),
where there is significant electronic polarization due to the
impurity ions, the effectiveness of the relaxation mechanism
discussed here will, according to ( 3.27 ) , once again decrease
sharply. It is precisely this phenomenon which gives rise to
the well-known "freezeout" effect of the nuclear polariza-
tion.94 In this case, evidently, the nuclear spin-lattice relaxa-
tion comes about via direct energy transfer from the spins to
the lattice.

e) One-phonon relaxation processes and nuclear acoustic
resonance

In addition to real transitions between electronic states,
caused, let us say, by dipole-dipole or electron-vibronic ion
interactions, there are other effects which can modulate the
hyperfine field at the rare-earth ion nuclei. Lattice vibrations
perturb the crystal potential, and thus can lead to a small
variation in the magnetization in each of the electron states,
inlcuding the ground-state singlet state. Because of this vari-
ation, there arises the possibility of direct relaxation transi-
tions between nuclear sublevels with emission or absorption
of a single phonon of the appropriate frequency. The effec-
tive spin-phonon interaction Hamiltonian has the following
form

(3.28)
where erS is the deformation tensor. If the nuclear spin
/ = 1/2, then only the first term is present in af'^- The spin-
phonon interaction constant can be expressed in terms of the
deformation potential:

AF = SFa,ea|), (3.29)
ap

if in the formula determining the effective nuclear spin Ha-
miltonian in the ground state we write the electron wave
function and energy intervals to first order in the perturba-
tion Av. As a result we obtain

-<0 0) <0 |0>, (3-30)

where the energy and wave functions are of zero order with
respect to the deformation perturbation. The form of the
tensor PaprS is precisely the same, only in place of the coeffi-
cient gjfJ,B in (3.30) the hyperfine interaction constantly
should appear. The electron-phonon interaction constants
in (3.29) can in principle be calculated on the basis of refine-
ments of crystal field theory,95 or found from experiments on
the change in spin-lattice relaxation of paramagnetic impu-
rity ions with pressure. We note that for magnetic fields
usually used in experiments, i.e., of magnitude of a few kilo-
oersteds, the contribution to the relaxation of nuclear spins
with/> 1/2 from the first term of ̂ ^ (3.28) is comparable
in magnitude and even exceeds somewhat the contribution
of the second terms, whereas for electron spins, as a rule, the
most important contribution to the relaxation comes from
components of the Hamiltonian which are quadratic in the
spin variables.87

If the Debye model is used to describe the lattice vibra-
tions, the relaxation rate for transitions between nuclear sub-
levels /,/can be written in standard form96:

(3.31)

where a>0 is the transition frequency, d0 the crystal density,
1/u5 = (2/5yf ) + (3/5 y'), and v, and v, are the longitudi-
nal and transverse sound velocities; Ur is a combination of
components of the second-rank tensor Ur6 determined by
Eq. (3.28) which transforms under rotations like a set of
normalized real-valued spherical harmonics. The coeffi-
cients gr in (3.31) are quantities of order unity.

Abragam and Bleaney16 suggested the following ap-
proach for making approximate estimates of the relaxation
times (3.31). We confine ourselves to investigating only
those terms in 3f'eS which are linear in the field. Then in the
matrix element of the operator Ur , we can separate out the
factor gjfj,sAjH \J |/A, where \J \ is a quantity of the same
order of magnitude as the matrix elements of the operator
Ja . In absolute value, this factor is of just the same order of
magnitude as the energy ft a>0> whereas the remaining part of
the matrix element ( i \ U r \ f ) can be approximately repre-
sented by the form (0 1 VT C0 / 1 0} . But just this expression is
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obtained when we calculate the relaxation rate for transi-
tions between states /, / of the electronic Kramers doublet
mediated by the interactions (3.29), since the matrix ele-
ments {/| Vr | /) are different from zero only because of the
first-order correction to the states /', / due to the magnetic
field. The only difference between the nuclear and electronic
situations involve the resonance frequencies; this difference
is evident in the expression:

0.32)

where rlel is the electronic spin-lattice relaxation time of
Kramers rare-earth ions with splittings comparable to A in
the crystal field, and which are embedded in a host matrix
with the approporiate density and sound velocity.

The relaxation mechanism we are discussing here is
very weak. According to Valsfel'd's calculation,89 the relax-
ation time for 169Tm nuclei in TmEs for a temperature of
4.2 °K in a field of 500 orsteds perpendicular to the c-axis of
the crystal must be of the order of 10" sec. However, the
probability of a direct relaxation transition grows with in-
creasing magnetic field as H 4. Assuming// = 80 kilo-oerst-
eds, we obtain T, = 150 sec at T= 0.02 °K. Clearly, these
estimates hold out some hope that by using the spin system
of Van Vleck ion nuclei one may be successful in cooling to
ultralow temperaures by "brute force" methods.

The method of nuclear acoustic resonance proves to be
suitable for studying the nuclear spin-phonon interaction us-
ing a moderate magnetic field. Resonance absorption of ul-
trasound can be regarded as the inverse phenomenon to
magnetic relaxation,87 since it too is mediated by one-
phonon processes. Therefore, the considerations discussed
earlier are relevant also to the making of estimates of the
magnitude of absorption of sound by nuclei of Van Vleck
ions. The absorption coefficient of sound87 due to transitions
between nuclear sublevels /,/ takes the form

where n is the nuclear concentration, g (a>) is the form factor
of the NMR line normalized to unity, er is analogous to Ur,
i.e., a spherical-tensor combination of the components of the
rank-two tensor Aa tpp consisting of a unit vector in the di-
rection of propagation of sound/I and its polarization <p. Due
to the high concentration of absorbing centers and the fre-
quency, which is large compared to what is usual incNMR,
one obtains the magnitudes of the above-mentioned coeffi-
cients wholly from experimental measurments. The first nu-
clear acoustic resonance observed in a Van Vleck paramag-
net was detected in praseodymium trifluoride33; the
resonant ion was 141Pr (/= 5/2). The measurement was
conducted at a temperature of 4.2 °K using longitudinal ul-
trasound frequencies from 21 to36 MHz. An estimate of the
absorption coefficient gave a value of the quantity a~ 10~6

cm"1. Strong resonance absorption (<r~3 cm"1 for
T= 1.6°K) of longitudinal acoustic waves with frequency
800 MHz in single-crystal HoVO4 were seen by Bleaney et
a/.97 By studying resonance absorption of sound in various
propagation directions and polarizations one can obtain al-
most all the spin-phonon interaction constants, and along

with them reliable estimates of the one-phonon relaxation
rates of Van Vleck ion nuclei.

CONCLUSION

Summing up this discussion of nuclear magnetic reso-
nance in rare-earth Van Vleck paramagnets, we remark that
most of the observable aspects of the phenomena are success-
fully explained by the interaction of the nuclei with the resid-
ual electronic magnetic moments of the RE ions in the sing-
let ground state, and by the modulation of this interaction
due to the coupling of the electronic moments among them-
selves and with the lattice vibrations of the crystal. For low
temperatures (AT<A), the pattern of the NMR spectra re-
duces to one which was well-understood and described some
time ago.15'16 With an increase in temperature (beginning at
liquid helium temperatures or higher) the most important of
the above-mentioned phenomena turns out to be modulation
of the hyperfine interaction, resulting from real transitions
of the Van Vleck ions between the ground state and the near-
est excited states. We have described the temperature depen-
dence of the shift and broadening of NMR lines, the spin-
lattice relaxation times for nuclei within Van Vleck ions and
nuclei within diamagnetic ions, and also the frequency and
orientation dependences of these quantities, within the
framework of a single simple theory based on the assumption
of a hyperfine interaction Hamiltonian which varies ran-
domly with time. This theory agrees with experiment not
only qualitatively, but also to a significant degree quantita-
tively; moreover, the agreement is obtained without resort to
any adjustable parameters. We have studied the electronic
excitations of Van Vleck ions by viewing them as localized
quasiparticles, diffusing in a random fashion between lattice
sites. This theory can be further refined by interpreting these
excitations as excitons in molecular crystals.98 It is also use-
ful to take a more rigorous look at the case of intermediate
fluctuation rates ( o>0rc ~ 1 ) , which is encountered in EPR of
. . . -yo -)Q
impurity ions. •

At present, the focus of intense experimental investiga-
tion of nuclear magnetism in Van Vleck paramagnets, along
with nuclear magnetism in general, has moved to the area of
ultralow temperatures. Here, the most interest attaches to
such problems as nuclear magnetic ordering, 16-83>84'99'100

coupling of nuclear spin systems with other spins in the crys-
tal and with the crystal lattice,3 1>32>43'44 and direct contact of
the nuclear spins in the solid state with nuclei in a liqud He3

environment.85'101 A marked slowing down of nuclear relax-
ation processes makes experiments at ultralow temperatures
very protracted and complicated. One can hope that the spe-
cial peculiarities of Van Vleck paramagnets will significantly
alleviate this situation, and thereby open up new possibilities
for NMR experiments.

"Translation editor's note: The numerator of Eq. ( 3.2 ) which is quadratic
in the Wt appears to be inconsistent with the expression
I(o)) = Re(WA~'l) preceding it which is linear in the Wt.

'M. M. Zaripov, Izv. Akad. Nauk SSSR Ser. Fiz. 22, 1220 (1956).
2R. J. Elliott, Proc. Phys. Soc. 70, 119 (1957).
3S. A. Al'tshuler and V. N. Yastrebov, Zh. Eksp. Teor. Fiz. 47, 382
(1964) [ Sov. Phys. JETP 20, 254 (1965) ].

781 Sov. Phys. Usp. 28 (9), September 1985 L. K. Aminov and M. A. Teplov 781



"S. A. Al'tshuler and M. A. Teplov, Pis'ma Zh. Eksp. Teor. Fiz. 5, 209
(1967) [JETPLett. 5, 167 (1967)].

5S. A. Al'tshuler, Pis'ma Zh. Eksp. Teor. Fiz. 3,177 (1966) [ JETP Lett.
3,112(1966)].

6K. Andres and E. Bucher, Phys. Rev. Lett. 21, 1221 (1968).
7K. Andres and E. Bucher, J. Appl. Phys. 42, 1522 (1971).
"R. M. Mineeva, Fiz. Tverd. Tela (Leningrad) 5, 1403 (1963) [Sov.
Phys. Solid State 5, 1020 (1963) ].

9R. M. Mineeva, Fiz. Tverd. Tela (Leningrad) 8, 2222 (1966) [Sov.
Phys. Solid State 8, 1764 (1967)].

10L. Ta. Shekun, Fiz. Tverd. Tela (Leningrad) 8, 2929 (1966) [Sov.
Phys. Solid State 8, 2340 (1967) ].

"M. A. Teplov, Zh. Eksp. Teor. Fiz. 53, 1510 (1967) [Sov. Phys. JETP
26,872 (1968)].

12M. A. Teplov, Fiz. Tverd. Tela (Leningrad) 10, 2548 (1968) [Sov.
Phys. Solid State 10, 2009 (1969) ].

13S. A. Al'tshuler, F. L. Aukhadeev, and M. A. Teplov, Pis'ma Zh. Eksp.
Teor. Fiz. 9, 46 (1969) [JETP Lett. 9, 26 (1969)].

14S. L. Tsarevskii, Fiz. Tverd. Tela (Leningrad) 12, 2047 (1970) [Sov.
Phys. Solid State 12, 1625 (1971)].

15S. A. Al'tshuler and M. A. Teplov, Problemy magnitogo rezonansa
(Problems in Magnetic Resonance), Nauka, M., 1978, p. 14. M. A.
Teplov, Proc. 2nd Int. Conf. on Crystal Field Effects in Metals and
Alloys, Zurich (Ed. A. Furrer) Plenum Press, N. Y., 1977, p. 318.

16A. Abragam and B. Bleaney, Proc. R. Soc. London A 387,221 (1983).
"E. 3. Veenendaal, H. B. Brom, and W. J. Huiskamp, Physica B 121, 1

(1983).
18L. E. Erickson, Phys. Rev. B 16, 4731 (1977).
19R. M. Shelby and R. M. Macfarlane, Phys. Rev. Lett. 47,1172 (1981).
20L. Nielsen, J. Less-Common Metals 94, 243 (1983).
21V. Zevin and E. Barboy, Z. Phys. B 39, 173 (1980).
"G. A. Gering and K. A. Gering, Rep. Prog. Phys, 31, 1 (1975).
23K. P. Belov, G. I. Kataev, R. Z. Levitin, S. A. Nikitin, and V. I. Sokolov,

Usp. Fiz. Nauk 140, 271 (1983) [Sov. Phys. Usp. 26, 518 (1983)].
24S. A. Al'tshuler, V. I. Krotov, and B. Z. Malkin, Pis'ma Zh. Eksp. Teor.

Fiz. 32, 232 (1980) [JETPLett. 32, 215 (1980)].
25B. Luthi, M. E. Mullen, and E. Bucher, Phys. Rev. Lett. 31,95 (1973).
26F. L. Aukhadeev, R. Sh. Zhdanov, M. A. Teplov, and D. N. Terpi-

lovskii, Fiz. Tverd. Tela (Leningrad) 23, 2225 (1981) [Sov. Phys. Sol-
id State 23, 1303 (1981)].

"R. T. Harley and D. I. Manning, J. Phys. C 11, L633 (1978).
28F. Mehran and K. W. H. Stevens, Phys. Rep. 85, 123 (1982).
29F. Mehran, K. W. H. Stevens, T. S. Plaskett, and W. J. Fitzpatrick,

Phys. Rev. B 27, 548 (1983).
30I. S. Konov and M. A. Teplov, Fiz. Tverd. Tela (Leningrad) 18, 853

(1976) [ Sov. Phys. Solid State 18, 490 (1976) ].
31F. L. Aukhadeev, V. A. Grevtsev, I. S. Konov, M. S. Tagirov, and M. A.

Teplov, Fiz. Tverd. Tela (Leningrad) 18, 2107 (1976) [Sov. Phys.
Solid State 18, 1228 (1976)].

32M. A. Teplov, M. Shtaudte, and G. Feller, Fiz. Tverd. Tela (Lenin-
grad) 22, 2460 (1980) [Sov. Phys. Solid State 22, 1433 (1980) ].

33S. A. Al'tshuler, A. V. Duglav, A. Kh. Khasanov, I. G. Bol'shakov, and
M. A. Teplov, Pis'ma Zh. Eksp. Teor. Fiz. 29,680 (1979) [JETP Lett.
29,624(1979)].

34I. S. Konov and M. A. Teplov, Fiz. Tverd. Tela (Leningrad) 19, 285
(1977) [Sov. Phys. Solid State 19, 163 (1977)].

35B. Bleaney, F. N. H. Robinson, S. H. Smith, and M. R. Wells, J. Phys. C
10, L385 (1977).

36B. Bleaney, R. T. Harley, J. F. Ryan, M. R. Wells, and M. C. K. Wilt-
shire, J. Phys. C 11, 3059 (1978).

"B. Bleaney, A. G. Stephen, P. J. Walker, and M. R. Wells, Proc. R. Soc.
London A 381, 1 (1982).

38B. Bleaney, F. N. H. Robinson, M. R. Wells, Proc. R. Soc. London A
362, 179 (1978).

39A. V. Egorov, L. D. Livanova, M. S. Tagirov, and M. A. Teplov, Fiz.
Tverd. Tela (Leningrad) 22, 2836 (1980) [Sov. Phys. Solid State 22,
1655 (1980)].

40E. D. Jones, J. Phys. Chem. Solids 29, 1305 (1968).
41E. D. Jones and V. H. Schmidt, J. Appl. Phys. 40, 1406 (1969).
42B. Bleaney and M. R. Wells, Proc. R. Soc. London A 370, 131 (1980).
43H. Suzuki, T. Inoue, Y. Higashino, and T. Ohtsuka, Phys. Lett. A 77,

185 (1980).
44H. Suzuki, T. Inoue, and T. Ohtsuka, Physica B 107, 563 (1981).
45H. Suzuki, Y. Higashino, and T. Ohtsuka, J. Low Temp. Phys. 41, 449

(1980).
46B. Bleaney, J. H. T. Pasman, and M. R. Wells, Proc. R. Soc. London A

387,75 (1983).

47B. Bleaney, J. F. Gregg, M. J. M. Leask, and M. R. Wells, J. Magn.
Magn. Mater. 31-34,1061 (1983).

48B. Bleaney, Proc. R. Soc. London A 376, 217 (1981).
49E. D. Jones, Phys. Rev. Lett. 19,432 (1967).
50E. D. Jones, Colloq. Int. C. N. R. S. 2,495 (1970).
"H. T. Weaver and J. E. Schirber, Phys. Rev. B 14,951 (1976).
"H. T. Weaver, J. E. Schirber, and B. Morosin, Solid State Commun. 23,

785(1977).
53N. Kaplan, D. L. Williams, and A. Grayevsky, Phys. Rev. B 21, 899

(1980).
54A. A. Kosov and S. L. Tsarevskii, Fiz. Tverd. Tela (Leningrad) 17,

2306 (1975) [Sov. Phys. Solid State 17,1525 (1975)].
"K. Satoh, Y. Kitaoka, H. Yasuoka, S. Takayanagi, and T. Sugawara, J.

Phys. Soc. Jpn. 50, 351 (1981).
56R. G. Barnes, R. L. Mossbauer, E. Kankeleit, and J. M. Poindexter,

Phys. Rev. A 136, 175 (1964).
"F. L. Aukhadeev, R. Sh. Zhdanov, M. A. Teplov, and D. N. Terpi-

lovskii, Paramagnitnil rezonans (Paramagnetic Resonance), Kazan'
(Publ. Univ. Kazan', 1983), no. 19, p. 3.

58A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press,
Oxford, 1961 [Russ. Transl., IL, M., 1963].

59V. A. Atsarkin, Dinamicheskaya polyarizatsiya yader v tverdykh die-
lektrikakh (Dynamic Nuclear Polarization in Solid Dielectrics),
Nauka, M., 1980.

'"R. Kubo and K. J. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
61L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika, Nauka, M.,

1974 [Engl. Transl., Quantum Mechanics, Pergamon Press, Oxford,
1977].

62A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of
Transition Ions, Clarendon Press, Oxford, 1970 [Russ. Transl., Mir,
M., 1972 (v. 1), M., 1973 (v. 2)].

63B. Bleaney, Proc. R. Soc. London A 370, 313 (1980).
MF. L. Aukhadeev, 1.1. Valeev, I. S. Konov, V. A. Skrebnev, and M. A.

Teplov, Fiz. Tverd. Tela (Leningrad) 15,253 (1973) [Sov. Phys. Solid
State 15, 163 (1973)].

65R. Yu. Abdulsabirov, I. S. Konov, S. L. Korableva, S. N. Lukin, M. S.
Tagirov, and M. A. Teplov, Zh. Eksp. Teor. Fiz. 76,1023 (1979) [Sov.
Phys. JETP 49, 517 (1979)].

"I. S. Konov and M. A. Teplov, Fiz. Tverd. Tela (Leningrad) 18, 1114
(1976) [Sov. Phys. Solid State 18, 636 (1976)].

"L. K. Aminov, M. S. Tagirov, and M. A. Teplov, Zh. Eksp. Teor. Fiz.
79, 1322(1980) [Sov. Phys. JETP 52, 669 (1980)].

68V. A. loffe, S. I. Andronenko, I. A. Bondar', L.P. Mezentseva, A. N.
Bazhan, and Ch. Bazhan, Pis'ma Zh. Eksp. Teor. Fiz. 34, 586 (1981)
[JETP Lett. 34, 562 (1981)].

69S. A. Al'tshuler, A. A. Kudryashov, M. A. Teplov, and D. N. Terpi-
lovskil, Pis'ma Zh. Eksp. Teor. Fiz. 35,239 (1981) [JETP Lett. 35,299
(1982)].

70P. L. Scott, H. J. Stapledon, and C. Wainstein, Phys. Rev. A 137, 71
(1965).

7IA. V. Egorov, M. V. Eremin, M. S. Tagirov, and M. A. Teplov, Zh.
Eksp. Teor. Fiz. 77, 2375 (1979) [Sov. Phys. JETP 50, 1145 (1979)].

72A. A. Kudryashov, S. L. Korableva, M. S. Tagirov, and M. A. Teplov,
Fiz. Tverd. Tela (Leningrad) 25, 1887 (1983) [Sov. Phys. Solid State
25,1090(1983)].

73A. V. Egorov, A. A. Kudryashov, M. S. Tagirov, M. A. Teplov, Fiz.
Tverd. Tela (Leningrad) 26,2223 (1984) [Sov. Phys. Solid State 26,7,
1351 (1984)].

74M. A. Teplov, Zh. Eksp. Teor. Fiz. 55,2145 (1968) [Sov. Phys. JETP
28, 1136(1969)].

75M. V. Eremin, I. S. Konov, and M. A. Teplov, Pis'ma Zh. Eksp. Teor.
Fiz. 73, 569 (1980) [Sov. Phys. JETP 46, 297 (1977)].

76A. A. Antipin, I. S. Konov, S. L. Korableva, R. M. Rakhmatullin, M. S.
Tagirov, M. A. Teplov, and A. A. Fedff, Fiz. Tverd. Tela (Leningrad)
21, 111 (1979) [Sov. Phys. Solid State 21, 65 (1979)].

77L. K. Aminov, M. S. Tagirov, and M. A. Teplov, Zh. Eksp. Teor. Fiz.
82, 224 (1982) [Sov. Phys. JETP 55, 135 (1982)].

78L. K. Aminov and M. A. Teplov, Paramagnitnil rezonans (Paramag-
netic Resonance), Kazan' (Publ. Univ. Kazan', 1983), no. 19, p. 64.

79L. K. Aminov, A. A. Kudryashov, M. S. Tagirov, and M. A. Teplov,
Zh. Eksp. Teor. Fiz. 86, 1791 (1984) [Sov. Phys. JETP 59, 1042
(1984)].

80K. Andres, Cryogenics 18,473 (1978).
81K. Andres, and S. Darack, Physica, B + C 86-88, 1071 (1977).
82F. Pobell, Physica, B 109-110, 1485 (1982).
83M. Kubota, R. M. Mueller, C. Buchal, H. Chocolacs, J. R. Owers-

Bradley, and F. Pobell, Phys. Rev. Lett. 51, 1382 (1983).

782 Sov. Phys. Usp. 28 (9), September 1985 L. K. Aminov and M. A. Teplov 782



84H. Suzuki, N. Nambudripad, B. Bleaney, A. L. Allsop, G. J. Bowden, I.
A. Campbell, and N. J. Stone, J. Phys. (Paris) 39, C6-800 (1978).

85A. V. Egorov, F. L. Aukhadeev, M. S. Tagirov, and M. A. Teplov,
Pis'ma Zh. Eksp. Teor. Fiz. 39, 480 (1984) [JETP Lett. 39, 584
(1984)].

86R. W. Broach, J. M. Williams, G. P. Felcher, and D. G. Hinks, Acta
Crystallogr. Sect. B 35, 2317 (1979).

87S. A. Al'tshuler and B. M. Kozyrev, Elektronnii paramagnitnii rezon-
ans soyedinenii elementov promezhutochnykh grupp (Electron Para-
magnetic Resonance of Transition-Metal Compounds), Nauka, M.,
1972.

88A. I. Burshtein, Kvantovaya kinetika (Quantum Kinetics), Novosi-
birsk (Publ. Univ. Novosibirsk, 1968), part 1.

89M. P. Vaisfel'd, Fiz. Tverd. Tela (Leningrad) 14, 737 (1972) [Sov.
Phys. Solid State 14, 628 (1972) ].

'''R. E. Thoma, G. D. Brunton, R. A. Penneman, and T. A. Keenan,
Inorg. Chem. 9, 1096 (1970). I. A. Ivanova, A. M. Morozov, M. A.
Petrova, and I. G. Podkolzina, Izv. Akad. Nauk SSSR Neorg. Mater.
11,2175(1975).

"L. L. Buishvili, Zh. Eksp. Teor. Fiz. 49,1868 (1965) [Sov. Phys. JETP
22, 1277(1966)].

92G.R.Khutsishvili,Usp.Fiz.Nauk96,441 (1968) [Sov.Phys.Usp.il,
802 (1969)].

"A. Abragam and M. Goldman, Rep. Prog. Phys. 41, 395 (1978).
94M. Borghini, Phys. Rev. Lett. 16, 318 (1966).
95L. A. Bumagina, V. I. Krotov, B. Z. Malkin, and A. Kh. Khasanov, Zh.

Eksp. Teor. Fiz. 80, 1543 (1981) [Sov. Phys. JETP 53, 792 (1981)].
96L. K. Aminov, Spektroskopiya kristallov (Spectroscopy of Crystals),

Nauka, L., 1978, p. 116.
97B. Bleaney, G. A. D. Briggs, J. F. Gregg, G. H. Swallow, and J. M. R.

Weaver, Proc. R. Soc. London A 388, 479 (1983).
98L. K. Aminov, Fiz. Tverd. Tela (Leningrad) 23, 2167 (1981) [Sov.

Phys. Solid State 23, 1266 (1981) ].
"M. T. Huiku and M. T. Loponen, Phys. Rev. Lett. 49, 1288 (1982).
100J. Roinel, V. Bouffard, G. L. Bachella, M. Pinot, P. Meriel, P. Rou-

beau, O. Avenel, M. Goldman, and A. Abragam, Phys. Rev. Lett. 41,
1572(1978).

101P. C. Hammel, M. L. Rourkes, Y. Hu, T.J. Gramila, T. Mamiya, and R.
C. Richardson, Phys. Rev. Lett. 51, 21 (1983).

Translated by F. J. Crowne

783 Sov. Phys. Usp. 28 (9), September 1985 L K. Aminov and M. A. Teplov 783


