Instantons versus supersymmetry

A.l. Vainshtein, V.|. Zakharov, and M. A. Shifman

Institute of Theoretical and Experimental Physics, Moscow

Usp. Fiz. Nauk 146, 683-707 (August 1985)

The present review is a revised version of lectures given at the Bakuriani (Georgia) Workshop on
High Energy Physics (January 1985). A discussion is given of the recently discovered phenomen-
on of instanton-generated dynamical symmetry breaking in supersymmetric gauge theories with
matter. For a definite choice of the matter multiplets, the gauge invariance is necessarily spontan-
eously broken, the gauge bosons acquire mass, the variation of the coupling constant ceases, and a
weak-coupling regime sets in. This sometimes also involves spontaneous breakdown of the super-
symmetry. A description is given of the fundamental aspects as well as the specific dynamical

scenarios realized in the most typical models.
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1. INTRODUCTION
Supersymmetry (SUSY)'? is at present the most ac-
tively investigated and rapidly growing trend in theoretical
elementary-particle physics. There is a steady and profuse
flow of studies devoted to supersymmetric theories and their
possible applications (see, for example, the reviews of Refs.
4-11). One of the most important problems whose solution
is expected from supersymmetric models is the problem of
the hierarchy of masses. The experimentally observed and
theoretically existing (hypothetical) scales are the rungs of a
gigantic ladder, each step along which takes us up by many
orders of magnitude: from several tens of electron volts—the
neutrino mass (?)—up to 10'° GeV—the Planck mass.

Supersymmetry offers hope!? for an explanation of the
hierarchy of masses, for two interrelated reasons. First,
owing to the absence of renormalizations in perturbation
theory'* —the so-called nonrenormalization theorems—the
fields are protected from acquiring large masses in the loop
diagrams. Therefore, if a mass difference is introduced in the
Lagrangian from the outset, it is preserved in all orders in the
coupling constant and need not be sustained in an artificial
manner. Second, and more importantly, one can expect the
symmetry to be broken dynamically by effects which are
exponential in the inverse coupling constant, since the
above-mentioned theorems hold only in perturbation the-
ory. Thus, the theory contains a natural small parameter,
and one can hope for an explanation of the mechanism which
gives rise to the hierarchy of masses.

It is the problem of dynamical breakdown of SUSY to
which the present review is devoted. Thus, from the flow of
contemporary literature on supersymmetry we have chosen
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only one little stream (the review is based on Refs. 14-20),
which, however, may in due course become a deep river if the
hopes for an explanation of the hierarchy of masses are justi-
fied. At any rate, we are dealing with a very beautiful theo-
retical phenomenon.

From the technical point of view, the most important
step is the use of instantons.?! Hitherto, instantons, which
are very instructive for an understanding of the structure of
non-Abelian theories, have not had reliable practical appli-
cations (see the review of Ref. 22). Here we deal with the
case in which the instanton contribution is well determined
and leads to a qualitative effect—spontaneous breakdown of
the color symmetry or supersymmetry.

We shall remind the reader of some well-known exam-
ples of spontaneous symmetry breaking, noting the analo-
gies with, and differences from, the phenomenon which we
intend to discuss in detail.

At first sight, supersymmetric gauge theories are very
similar to “‘ordinary” quantum chromodynamics. In the
simplest case, the only difference refers to the representation
of the color group with respect to which the fermions trans-
form. In the case of supersymmetric gluodynamics, the fer-
mions, the so-called gluinos A 3, transform according to the
same adjoint representation as the gluons. However, if mat-
ter fields are added, then in addition to the matter fermions
(quarks) their scalar partners (scalar quarks) are also intro-
duced.

In the case of quantum chromodynamics, we know
from the phenomenology of the strong interactions that
chiral symmetry is spontaneously broken (see, for example,
the textbooks of Ref. 23). Namely, whereas it is possible to
perform parity-changing chiral rotations in the strong-inter-
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action Lagrangian in the limit of massless u and d quarks, the
physical spectrum is noninvariant with respect to these rota-
tions: there is no degeneracy with respect to the parity. The
spontaneous symmetry breaking is characterized by the ap-
pearance of a quark condensate:

(@ 70, (.

where¢* are the quark fields, ¢* = u*,d", and a is the color
index.

In supersymmetric theories, we shall also be concerned
with the calculation of various condensates in the vacuum
and thus learn about spontaneous breakdown of a given sym-
metry. In particular, we shall discuss the gluino condensate:

(A°A%) # 0, (1.2)
where a is the color index, a = 1, 2, 3 in the case of the group
SU(2).

However, in the case of quantum chromodynamics we
are dealing with a theory with strong coupling, so that there
are no consistent methods of calculating the condensates.
For example, the quantity {(gg) is extracted from the pheno-
menology of pion interactions. On the other hand, in super-
symmetric theories (more precisely, in the variants dis-
cussed below), all the phenomena make themselves felt
when the constant is small. More importantly, in the case of
quantum chromodynamics the color symmetry is not
broken, whereas supersymmetric theories are characterized
above all by dynamical breakdown of the color symmetry.

In this sense, the situation is more reminiscent of the
Glashow-Weinberg-Salam model of the electroweak inter-
actions, in which the “color” scalar field forms a vacuum
condensate (see, for example, Ref. 23). In this model, the
potential energy of the scalar field has the form

Voo (@) =C (99 — V¥,

where @ is the doublet of scalar fields and v is a constant.
Then it is obvious that the minimum of the energy corre-
sponds to a nonzero expectation value of the scalar field:

(E?‘P) vac = v (1.4)

If v is large, we are dealing with a classical field and can
speak of the average value, not only of the square of the field,
but of the field itself. The vacuum expectation value of the
electrically neutral component of the Higgs field ¢ is non-
zero.

The theories discussed here also exhibit spontaneous
breakdown of the color symmetry, and the scalar color field
“drops out.” In contrast to the theory of the electroweak
interactions, however, the existence of a potential energy of
the form (1.3) in the Lagrangian is not postulated. The ef-
fective potential is generated dynamically by the instantons.
It is this meaning of the words “dynamical symmetry break-
ing” which is frequently encountered in the present paper.

We shall discuss mainly the case in which the vacuum
expectation value of the scalar field is large, the gauge fields
acquire a large mass, and the effective coupling constant is
always small. One may ask how all these small or large quan-
tities appear parametrically if there is no constant of the type

(1.3)
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v in the Lagrangian. The answer to this question in super-
symmetric theories is quite unexpected for anyone whose
“intuition” is derived from the experience of working with
quantum chromodynamics.

Namely, the set of Lagrangian dimensional parameters
in supersymmetric theories is the same as in QCD. These are
the parameter A, which determines the value of the effective
coupling constant, and the masses of the particles of matter
(quarks):

A, my, m,,

In the simplest case of quarks with a single flavor, the vacu-
um expectation value of the scalar field ¢,,. can be estimated
as

q)“c’\:A(A)UA,

my

(L.5)

and g, islarge, @,.. > A, if m; €A! Thereis nothing like this
in QCD: Here the masses of the u and d quarks can be as-
sumed to be zero with good accuracy, and no quantities be-
come infinite.

The mechanism which gives rise to the condensate
(1.5) can be explained as follows. In the massless limit, the
lowest state of the theory—the vacuum—is not fixed at all in
the framework of perturbation theory. There are directions
in the color space in which the scalar field can take an arbi-
trary value without increasing the energy of the state. This
property of the potential energy is built into the supersym-
metry of the theory and is not fortuitous, and it is maintained
in all orders of perturbation theory (see the nonrenormaliza-
tion theorems mentioned above).

For this reason, the value of the vacuum field ¢,  is
determined by small perturbations. These perturbations in-
clude the mass term in the Lagrangian (if m <A, the mass
term is small) and instanton effects. Instantons are distin-
guished by the fact that they represent the principal nonper-
turbative contribution and break the degeneracy of the vacu-
um with respect to the quantity @. It is in this way that the
unexpected results of the type (1.5) arise. We stress again
that all the calculations are in essence simple and can be
performed in full.

Dynamical breakdown of color symmetry occurs in a
rather large class of models, the simplest of which was de-
scribed briefly above—supersymmetric QCD with a single
quark flavor. The breakdown of supersymmetry itself takes
place in theories with so-called chiral matter, i.e., in models
in which the numbers of left- and right-handed fermions in
the Lagrangian are different. The fact that the chirality of
matter is a necessary condition for the breakdown of super-
symmetry has long been known—from consideration of the
so-called Witten index.>* However, it has only now been
demonstrated explicitly that this same condition is also suffi-
cient, at least in certain cases.

The plan of the review is as follows. In Sec. 2 we de-
scribe supersymmetric quantum chromodynamics—a the-
ory which is discussed in some detail in the present review.
Section 3 is devoted to instantons in supersymmetric gauge
theories. This section lays the groundwork for the discussion
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in Sec. 4 of the physical effects mentioned above—spontane-
ous breakdown of color symmetry and supersymmetry.

2. SUPERSYMMETRIC QUANTUM CHROMODYNAMICS
a) Description of the model

Tobegin with, we give general information about super-
symmetric quantum chromodynamics—the composition of
the particles and the structure of the interaction vertices. We
consider here the simplest variant: the gauge group SU(2),
with one flavor of matter.

The gauge sector of the model includes three gluons and
three spinor superpartners—gluinos—for whose description
itis possible to use either a four-component Majorana (real)
field or a two-component Weyl (complex) field.

With regard to matter, we recall that the Dirac quark
field in ordinary QCD is equivalent to two chiral fields—one
left-handed and one right-handed field, both of which trans-
form according to the fundamental representation of the
group SU(2),, i.e., are color doublets. If we go over from
particles to antiparticles, the right-handed doublet can be
rewritten as a left-handed antidoublet. Further, since all the
representations of the group SU(2) are (pseudo)real, the
antidoublet is in-essence identical to the doublet and, thus,
the Dirac quark reduces to two left-handed fields—color
doublets.

In order to describe a single flavor in the supersymme-
tric variant, it is necessary to introduce two chiral (left-
handed) superfields S, and .S, which transform according
to the fundamental representation of the group SU(2),. In
what follows, we shall use the notation S 7, wherea = 1, 2 is
the color index ( f=1, 2). In terms of components, the
chiral field has the usual form

S = @ (x1) + V20%, (z) + OF (z,), 2.1)
where the indices @ and fare omitted, 8" is a two-component
Grassmann spinor, and F is an auxiliary field, introduced in
the Lagrangian without a kinetic term. The fields of the
quark and scalar quark are denoted by ¥ and @, respectively.
The coordinates 6 and x; are the standard coordinates on
which the chiral fields depend. We give their transformation
law under superdisplacements with parameters £ and :

(z1)

=z .— 21'9&9&,

= §(zy) .= —41’90‘;&,

(2.2)

80, =¢,.,

where a, & = 1, 2 are Lorentz indices.
If we employ the superfield language, the Lagrangian of
the model can be represented in the very compact form

# = 5o Tr | 2w 7 § 2005857278

+(z S d05*'S,;+He. ),  (2.3)

where ¥V is a superfield of general form containing a gluon
four-potential, and W, is the chiral superfield of the intensi-

ties,

W, (ay, )= D2 (e Dye")
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= [ikg (20) —8,D (31) — 6PGp () + 827 A% (z1)],
Gap=— 5 (0. AF +0,. 45 +14 - A7),

A =(0) A Ou= {, 0. (2.4)
Further, the fields ¥ and W, are matrices in the color space;
for example, V' =V"r*/2, where 7° are the Pauli matrices.
The coupling constant g is included in the normalization of
the field V. The symbol D, denotes the spinor derivative,
and &, denotes the covariant derivative.

We note that the studied model with one flavor pos-
sesses global SU(2) invariance associated with the field
transformations §'; «»S,. The symmetry holds even in the
presence of a mass term [see (2.3)]. This SU(2) group,
which we shall call the flavor group, owes its existence to the
fact that the representations of the color group SU(2), are
(pseudo)real. All the indices corresponding to the SU(2)
groups (color, Lorentz, and flavor) can be lowered and
raised by means of the £ symbol according to the general
rules.

If we go over to the components, the Lagrangian (2.3)
includes: a) the kinetic terms of the gluon, gluino, quark,
and scalar quark; b) the matter mass terms; ¢) the normal
gauge vertices; d) a coupling of the quark, gluino, and scalar
quark of the type $7 yA°, where T° = 7° /2 are generators
of SU(2). in the fundamental representation; e) the square
of the D terms,

1
AT = 7 DD

We call attention to the unusual—positive—sign of this
term in the Lagrangian. It originates from W? |-; the kinetic
term of the field D is absent, and it can be eliminated by
making use of the equation of motion. In pure gluodynamics
D* =0, but the introduction of matter in the form Se” S
adds to the Lagrangian the term

AZ® — DRgiTeg). (2.4")
Finally, after eliminating the auxiliary field D°, we arrive at
the following expression for the self-action of the scalar
fields:

2 — —
Veor = z,% DD, D= —f (@7t e+ 0tte),  (2.5)
where we have taken into account the fact that the genera-
tors of the group SU(2) reduce here to 7° /2.

This information is sufficient to understand the aspect
of the models which is the basis of the entire range of phe-
nomena under consideration.

We shall assume that the scalar fields are independent
of x, and we shall suppose at first that m = 0 (effects due to
the introductiom of a small matter mass will be taken into
account later). Then it is easy to see that the minimum of the
potential (¥, = 0) is attained not only for zero values of
@, but also along entire directions, which we shall call
troughs (the term “flat directions” is used in the literature).
In fact, let
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q>1=v((1)), q>2=v((;). (2.6)
It is obvious that for any v the values of D° are equal to zero.
Moreover, if m = 0, then the values of the F terms are also
equal to zero.

In addition, the infinite degeneracy of the vacuum—the
existence of the trough (2.6)—holds not only at the classical
level but also with allowance for all orders of perturbation
theory. This fact follows from the renormalizability of the
theory and from the nonrenormalization theorems,'® which
say that the entire effect of perturbation theory reduces to a
renormalization of the wave functions of the fields.

In this respect, supersymmetric theories are fundamen-
tally different from nonsupersymmetric ones. In the ordi-
nary theory, say, with

£ = 0,0 *+ 4i 0% + (p¥P + H.c.)s

we could also assume that at the classical level the mass of
the field @ and its self-action are absent. In other words,
Vpor = 0 at the classical level. However, both a mass and a
self-action would necessarily occur even at the single-loop
level, so that it is necessary to write the corresponding coun-
terterms in the Lagrangian from the outset, thus automati-
cally destroying the indifferent equilibrium in the potential
energy.

Thus, in supersymmetric theories with matter it is pos-
sible to carry out quantization and to develop perturbation
theory near any point of the trough as soon as there is an
indifferent equilibrium in the perturbation theory. The cen-
tral question is whether the degeneracy is removed when
nonperturbative effects are included.

Before answering this question, we shall discuss the
structure of the model with v7#0 in somewhat greater detail.
It is obvious that the regime with v #0 corresponds to spon-
taneous breakdown of the color symmetry, when, as usual,
there is a rearrangement of the spectrum: the gauge bosons
become massive, “‘eating up’’ certain scalar fields, which
change into their longitudinal components. Owing to the
supersymmetry, the growth of the mass of the vector fields is
accompanied by a growth of the mass of their spinor partners
as well.

We recall that in the ordinary (nonsupersymmetric)
SU(2) model with one complex Higgs field (a color doub-
let), which is equivalent to four real fields, three of them can
be made to vanish identically by using the gauge invariance
of the model, while the remaining, fourth field, developing a
vacuum expectation value v, gives a mass m, = gv to the
three vector bosons. The deviation of this field from v repre-
sents a physical Higgs particle.

In the supersymmetric variant, instead of gauge free-
dom we have freedom with respect to supergauge transfor-
mations

S — €A,
where A is the chiral superfield, A = A® 7%, and the lower
component A is an arbitrary complex function»? (x, ). Us-
ing this freedom, in the topologically trivial sector it is al-
ways possible to assume that three of the four chiral super-
fields $*/ are identically equal to zero,
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87 (1) =874 (z)s 2.7)

where ¢ (x; ) is a singlet chiral superfield without color or
flavor indices. Then the three chiral superfields go over into
the “longitudinal”” components of the vector superfield ¥*,
which becomes massive if the vacuum value of ¢ is nonzero.
Thus, the relation (2.7) is an analog of the unitary gauge in
the ordinary Higgs model. Substituting (2.7) into the La-
grangian (2.3), we see that all the particles in the vector
supermultiplet become massive,

my = g {¢)= gy, (2.8)
while the singlet superfield ¢ remains massless.

The possibility of using the supergauge condition to dis-
pose of the fields “‘eaten” by the Higgs mechanism is a gen-
eral one. In fact, we see that the coordinate corresponding to
motion along the bottom of the trough is the color and flavor
invariant S ¢S / = 2¢%.

It is instructive to examine how the degrees of freedom
are redistributed when the color symmetry is spontaneously
broken. Before the symmetry breaking, we had three mass-
less gluons (six degrees of freedom) and three massless
gluinos (six degrees of freedom), four complex scalar fields
(eight degrees of freedom), and four Weyl matter fermions
(eight degrees of freedom). After the spontaneous symme-
try breaking, there are three gluons, three real scalar fields,
and three Dirac spinors, all with mass (12 boson and 12
fermion degrees of freedom ), one complex scalar field, and
one Weyl spinor with zero mass (two boson and two fermion
degrees of freedom).

Thus, if v#0, the theory splits into two sectors—the
sector of massive particles, which form SU(2) triplets, and
the sector of massless particles. In this last sector, both the
color and the flavor SU(2) groups are realized trivially,
since the massless particles are singlets with respect to both
groups.

At low energies (€m) ), the superfield ¢ is sterile, and,
in particular, its vacuum value is not fixed—for any constant
¢ the energy is equal to zero, which reflects the presence of
troughs. In this language, the question of whether of not the
degeneracy is removed by nonperturbative effects can be for-
mulated as follows: does there exist in the low-energy La-
grangian for §, which is obtained after an integration over all
the heavy degrees of freedom, a nonzero superpotential?

b) Instantons and the dynamics of flat directions

It remains for us to demonstrate the emergence in
SQCD of an effective potential which removes the contin-
uum degeneracy and fixes the value of ¢, ... = v#0. It
turns out that the problem of the effective potential can be
investigated almost completely without performing any cal-
culations. By analyzing only the general properties of the
model, it is possible to fix the functional form of the superpo-
tential, apart from a numerical constant, whose specific val-
ue is in general not very important (though the fact that it is
nonzero is important—a fact established only by direct cal-
culation; see Sec. 3).

First of all, on what variables can the effective potential
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depend? Since the vector superfields are massive, in the low-
energy region there remains a dependence only on ¢. As in
any low-energy expansion, in the leading approximation the
dependence on the derivatives of the superfield ¢ can be ne-
glected.

The ensuing analysis will be clearer if we temporarily
dispense with the unitary gauge and return to a gauge of
general form. In this gauge, the required variable must be
constructed from the superfields S, and S, , and it must ob-
viously be invariant with respect to the symmetries present
in the model—the color and flavor SU(2) groups.

The only invariant which can be constructed from the
matter superfields in this case is

I =845,  a, f=1,2, (2.9)

which is equal to 2¢°.
The effective superpotential, if it exists, must have the
form

Z g = { €07 (7 @, 8) +He.,

where fis some function.

The form of the function f'is readily established if we
recall that the required SQCD Lagrangian possesses an addi-
tional invariance associated with axial rotations of the
gluino and matter fields. At the classical level, there exist
two conserved axial currents. One of them, the so-called R
current J 5, is the superpartner of the energy-momentum
tensor and the supercurrent and corresponds to the follow-
ing rotations:

ha =g, Yl —>emlIOP,,  f — 2D,

In the superfield language, the last two transformations are
equivalent to a simultaneous phase transformation of the
superfields S and the parameter &:.

S/ —exp (%— f}) 8!, 8, exp (i%)86,.

The other current J 2’ affects only the matter fields; the
transformations corresponding to it are

Yl ey,
or, in the superfield notation, S/ (x.,0)—exp(iy)S’/
(x1,0). The quantum effects destroy the conservation of
both currents because of the well-known triangle anomalies.
However, one linear combination of the two currents re-
mains anomaly-free. Without plunging into a discussion of
the anomalies—the interested reader should turn to the spe-
cial literature—we point out that the strictly conserved
(with allowance for the anomalies) current for the gauge
group SU(2) has the form

R 9 M
Ju _§Ju~

¢f — eivg?,

(2.10)

Thus, the effective SQCD Lagrangian must be invariant
with respect to the transformations

S§f — 71087, B, — %0,. (2.11)
At the same time, the variable 7 goes over into exp( — 2ii#)1,
and the only possible invariant expression for the superpo-
tential obviously reduces to
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CAS |
Saf'Saf ’

F o = S d28-const - [T (z;, 8)]4 = S 28 (2.12)
here the factor A has been written on the basis of dimen-
sional arguments, and C is a numerical constant.

It is this factor A® (& is the first coefficient of the Gell-
Mann-Low function, equal to 5 in the SU(2) model with
one flavor) which enters into the expression for the single-
instanton measure. Thus, there is every reason to expect that
the superpotential (2.12) obtained from the analysis of the
symmetries oi the model is indeed generated in the single-
instanton approximation. In Sec. 3 we describe the instanton
calculus developed by us, by means of which it is easy to
examine explicitly the appearance of the superpotential
(2.12) and to find in principle the value of the numerical
constant C. Since it is important for us only that C #0, in the
ensuing equations we shall assume that C = 1.

Returning to the unitary gauge, we see that the superpo-
tential (2.12)

L]

Lo ~ | a0 p+He

T 0 (2.13)

leads to the appearance of a nonzero F term of the superfield

¢, namely,
_ AE Aﬁ N
FZF’ Fz'(—p_sl (2.14)
which corresponds to the potential energy
. Alo
Vo= | F ?= 1o (B)

The instanton contribution to the energy has slightly
bent the flat bottom of the trough, raising slightly the coordi-
nate origin (Fig. 1). In other words, the solution with a zero
value of the scalar field in the vacuum is unstable, and the
theory pushes itself away from the origin.

In the limit of massless matter, the vacuum state does
not exist at all. Indeed, the larger the vacuum field |@ |, the
lower the potential energy, and the true supersymmetric
minimum V_,, = 0 is attained for infinite values of the con-
densates.

If we wish to have a normal theory with a vacuum state,
we must “block the exits from the troughs” by somehow
raising slightly the bottom of the trough for large values of
the scalar field. In the model under consideration, stabiliza-
tion is easily achieved by introducing a small mass term
mS? | [see (2.3)]. Then instead of (2.14) we have (Fig. 2)

FIG. 1. SQCD with one massless flavor: the potential energy correspond-
ing to the self-action of the scalar field along the bottom of the trough.
Curve 1 is for perturbation theory, and curve 2 is with allowance for the
effective potential induced by the instanton.
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FIG. 2. Potential energy (see Fig. 1) after the introduction of the matter

mass term (m<A).

As |2

—=—mw+¢v nmzh¢—ﬁ' (2.15)

If m«A, the vacuum value of the field ¢, which minimizes
the potential (2.15) (¥, =0, and the SUSY is not
broken!), is large,

Plae = == A¥V2m 12> A2, (2.16)

and this justifies the assertions formulated above—the spon-
taneous breakdown of the color symmetry and the validity of
the method of effective potentials and of the entire calcula-
tion as a whole.

We note that the solution for the gauge-invariant quan-
tity (S*/S, ) is doubly degenerate. The twofold degener-
acy is in complete agreement with the fact that the Witten
index in the SU(2) model is equal to two. This degeneracy
reflects the spontaneous breakdown of the discrete symme-
try Z, inherent in the model.

To conclude this subsection, we outline briefly an alter-
native method for the determination of the vacuum conden-
sates (see Refs. 15, 18, 20, 29, and 30). If we assume that
@vac =V#0, the instanton calculus described in Sec. 3
makes it possible to fix the gluino condensate:

(%) =

The last relation is valid for any v» A. In order to find the
values of {14 ) and v individually, we can make use of the
supersymmetric Ward identity, the so-called anomalous
Konishi relation®

(2.17)

D25 ev S = 4mS, ;8% -1 5:1?‘ Tr W2. (2.18)
It is obvious from Eq. (2.18) that in the supersymmetric
vacuum

(A°*AS) = constsmul, (2.19)

Combining (2.17) and (2.19), we come back to our pre-
viously established result for the vacuum scalar field, glven
in (2.16).

3. INSTANTONS

As we have already mentioned, we intend to discuss
instanton effects. In this preparatory section, we shall give a
brief description of instantons in supersymmetric theories.
Of course, there is no possibility of giving a new account of
the whole “instanton alphabet”—this is the subject of a sep-
arate review,?> and we shall concentrate on the aspects
which are important for what follows. Somewhat paradoxi-
cally, the instanton calculus in supersymmetric theories is

simpler than, say, in quantum chromodynamics. In fact, all
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the nonzero modes, whose analysis requires the greatest ex-
penditure of labor and time, cancel in the supersymmetric
calculation, and the problem becomes a purely classical
problem—the description of the family of solutions of classi-
cal equations of motion in Euclidean space-time. Therefore
we hope that the material will be comprehensible even to
readers who have not previously been specially concerned
with instantons.

The original instanton of Belavin, Polyakov, Schwartz,
and Tyupkin?! is the solution of the duality equations for the
gluon field, which we shall give here in a somewhat nonstan-
dard notation:

AV — — (8 (x— o)} + 8% (2 — )Y
aa “

1
i) g D

We use a spinor notation for the vector indices; in particular,
instead of the four-potential 4, we have introduced the
quantity 4., with one dotted and one undotted SU(2) in-
dex,4,,=A,(0,) 44,0, = (1,0). What is more unusual, a
spinor notation is used also for the color indexa [a = 1,2, 3
for SU(2). ]. Instead of 4° we have introduced A"® accord-
ing to the rule
= A ( 14 )1’ op, (3.2)
p
The intensity of the gluon field corresponding to the instan-
ton is
- vs8 | &0 p? ¥ __q -
Gos = — 1 00+ 88D ez e =0
Further, x, and p are parameters, which are called the center
of the instanton and its dimension (radius), respectively.
The action for the instanton is

Sipst = 222 (3.3)

g27

where g is a coupling constant, so that the instanton contri-
bution to the physical amplitudes is proportional to
exp( — 877 /g*) and we are dealing with effects which are
exponentially small in the inverse coupling constant.

The parameters x, and p can be introduced directly by
solving the classical equations. It is more important here
that their existence follows from the symmetry of the classi-
cal Lagrangian. The Lagrangian of the gluon field is invar-
iant with respect to the group of conformal transformations,
whose generators we denote by P,, (displacements in x
space) K, (special conformal transformations), M,,; and
M,; (Lorentz rotations), and D (dilatations). We recall
again that a and & are spinor indices, and the relation with
the possibly more customary tensor notation is given, for
example, by P, = P, (0, )44, Where o, = (1,0).

The commutation relations between the generators of
the group of conformal transformations can be found, for
example, in the review of Ref. 5, and we shall not write them
here.

In the most general form, the relation between the sym-
metry of the classical Lagrangian and the parameters of the
type x, and p is as follows. We begin with some solution of
the classical equations. Applying to it the symmetry trans-
formations, we obtain a whole family of solutions, corre-
sponding to the introduction of parameters of the type x,
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and p or collective coordinates. In our case, x, is obviously
associated with displacements, while p is associated with di-
latations or with a change of scale.

It is easy to see, however, that the number of parameters
is smaller than the number of generators of the symmetry
group. The reason for this is as follows. In general, there can
exist a stationary subgroup of transformations whose action
on some classical solution reduces to unity. For the standard
instanton which we are discussing at the moment, the sta-
tionary subgroup contains the generators M,; of Lorentz
rotations—the instanton field has a definite chirality. The
stationary subgroup also contains a linear combination of
Lorentz rotations M, and global rotations 7,4 in the color
space, namely,

Myp + Top, (3.4)
where 7° = 77 /2.
Finally, the stationary subgroup contains K,

+ 20°P,,.

In general, we would have to introduce collective co-
ordinates corresponding to global color rotations. However,
in the final analysis we shall always consider quantities
which are scalars in the ordinary and color spaces, for exam-
ple, G2, the square of the gluon field intensity. The genera-
tors 7,5 do not act on such objects, and there is no need to
include in the analysis the corresponding collective coordi-
nates (the orientation of the instanton in the color space).

We turn now to supersymmetric gluodynamics. The
symmetry group of the Lagrangian is then extended to the
superconformal group, the generators enumerated above be-
ing supplemented with Q, and Q, (the generators of super-
transformations) and S, and S, (the generators of super-
conformal transformations). For a more detailed discussion
of the group, we refer again to the review of Ref. 5.

The generators Q, and S, complement the stationary
subgroup—the instanton field is chiral, as we have already
mentioned. (The action of S, is associated with multiplica-
tion by x_,,, and $* x,,, effectively has the same chirality as
Q..) As to the generators Q, and S, their action on the
initial boson solution (3.1) is nontrivial and must generate
new solutions of the classical equations, which this time are
obviously fermion solutions. The classical Dirac equation
for the gluino field in an external instanton field has the form

Z0 =0, (3.5)

and its solutions are also called zero fermion modes because
of the procedure for calculating the fermion determinant in
an external boson field.

It is also easy to obtain the explicit form of these zero
modes on the basis of symmetry arguments if we take into
account the fact that for supertransformations

Bhg ~ Gopeb, (3.6)

where £# is a parameter of the transformations and G, is
the gluon field intensity (in the spinor notation ). For super-
conformal transformations

By ~ Gaazﬁ;’ga. (3.7)
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where,, is a parameter. It is easy to see directly that after the
substitution G,z = (Gog )ins: the right-hand sides of (3.6)
and (3.7) actually satisfy the Dirac equation (3.5); how-
ever, this is also obvious beforehand from the supersym-
metry.

We mention that in the case of ordinary chromodyna-
mics the zero modes are sought directly?® as solutions of the
Dirac equation. Here they have a simple geometrical mean-
ing and are related to the symmetry of the classical Lagran-
gian.

It is clear that the supersymmetry will be realized com-
pletely only if we introduce, in addition to x, and p, fermion
collective coordinates of the instanton. In order not to
frighten the reader, we note at once that the fermion coordi-
nates have the meaning of the coefficients of the zero modes
in the general expansion of the fermion field with respect to
the eigenfunctions of the Dirac operator. The “classical”
spinor field is then obviously linear in this coordinate, and
the calculation is simple. However, we cannot exclude the
possibility that there are boson fields, say, quadratic in the
fermion coordinates. Such fields correspond to repeated ap-
plication of the supertransformations, and in what follows
we will have explicit examples of this kind. Maintaining the
supersymmetry explicitly at each step, we will be able to find
at once the entire family of solutions which must be taken
into account in the functional integral together with the
original instanton. In themselves, the collective coordinates
can be introduced by means of the following simple formal
procedure. We introduce the generalized displacement oper-
ator

7" (Zgy 0, O, E) == ¢iPYog—18,Q¢~iBPgiDInp (3.8)
where 6, and B are Grassmann collective coordinates.
Further, in order to determine the law of transformation of
the collective coordinates under superdisplacements, we
multiply the operator ¥ (x,, p,8,, ) from the left by, say,
exp( — i Q¢) and, using the commutation relations for the
generators, we reduce the result of this multiplication to a
redefinition of the initial parameters:

exp (— iQe) 7" (2o, , 0y, B)=T" (a, p', 0, B') F, (3.9)

where F is some transformation from the stationary group.
We note that since the expansion of the exponential function
with respect to the Grassmann numbers contains a finite
number of terms, the transformations of the coordinates also
have an algebraic character.

Thus, we can establish the law of transformation of the
collective coordinates under superdisplacements with the
parameters € and £:

6 (IO)az; = —4i(8y)q E&’ 8p= —4i (_EB) p?,

8 (eo)a = E€q, SB = - 4iB& (56)-

The only thing that is used in the derivation is the commuta-
tion relations of the generators of the group of superconfor-
mal transformations.

It is somewhat more complicated to find the explicit
dependence of the superfields associated with the instanton

(3.10)
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from the collective coordinates introduced in this way. To
solve this problem, we must above all bear in mind that the
superfield as a function of the coordinates x; and 8 and of
the collective coordinates is an invariant with respect to the
simultaneous supertransformation of both of them. It is
therefore convenient as a preliminary step to construct the
invariants from (x;,0) and (x,, p,6,, B). Similarly, if we
follow the Poincaré invariance, the corresponding combina-
tion is the difference (x — x, ), which is obviously invariant
with respect to the simultaneous displacement of x and x,,. It
is equally obvious that the instanton field depends on
(x—xp). B
It is easy to see that the combination §,,, where

§a=(e_eo)a+($_$0)aaﬁé9 (3.11)

transforms relatively simply,
68, = —4i &) €.
and the quantity

(3.12)

[

I
is an invariant of the supertransformations.

It is now clear that the instanton superfield W? of the
intensities has the form

Gpt (3.13)

[z — zo)2+p14"
In fact, let us first consider the case of collective Grassmann
coordinates equal to zero: 8, = B = 0. Then we are dealing
with the purely boson solution (3.1). In the superfield W2,
the boson term appears as the coefficient of 62 [see (2.4)].
From this we know the result for W2 when 8, =8 =0. All
that is necessary to obtain the complete result (3.13) is to
extend 8 /p? to the invariant 8 /p? . The skeptically inclined
reader can see, for example, that the expression (3.13) cor-
rectly reproduces the zero fermion modes which appear in
the coefficients of the zeroth and first powers of 6. (We note
that the transformations of x; — x, are discussed below in a
more general context. )

For explicit calculations, it is also necessary to know the
measure of the integration with respect to the collective co-
ordinates:

dp (p, Zo» B0, P) 68 = CA® diz, dp? 4%, dB. (3.14)

Tr W2=const-

The measure of the integration is of course invariant with
respect to the supersymmetry transformations.

Suppose that we now add matter fields with one flavor.
The instanton field (3.1) remains as before. We can also find
the solution of the equations for the scalar field p, Z%p = 0,
in a given external vector field:

v (3.15)

where a is the color index, f is the flavor index, and v is the
vacuum expectation value of the field ¢ (see Sec. 2).

It shouid be noted that the fields (3.1) and (3.15) are
not exact solutions of the classical equations, since in the
equations for the vector field in the presence of a scalar field
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there is a source which is not taken into account. At large
distances, this source is equivalent to a vector-field mass and
leads to an exponential decrease of the field 4,,. According-
ly, there is an addition to the instanton action, which is now
given by*®

Sbos=—8;1T’ + 4n2p2p2, (3.16)
It can be seen that for p 7 0 we are strictly speaking not deal-
ing with an extremal of the action. Nevertheless, the instan-
ton contribution can be important—a detailed discussion of
this problem can be found in the original papers.?®*¢ We
shall be interested in the generalization to the case of super-
symmetry.

The novelty of the situation with regard to the scalar
field consists in the fact that the field (3.15) is noninvariant
with respect to the displacements generated by ( Qf), as can
be seen at once if we make the transformation (2.2) of the
coordinates. Therefore we cannot now include Q,, in the sta-
tionary subgroup, but we must introduce a new collective
coordinate 8, .

The transformation law for the new set of collective co-
ordinates can be found as usual by introducing the operator

T (xy, 0, 6y, 60, B) = etPxog—1QB0p - iBBp~ Q8D In p 3.17)

and multiplying it by exp( — i Q¢) or exp( — iQe). Without
dwelling on the details of the calculations, we indicate that
66,= 5 — 4iB @9,
and the transformations of the other collective coordinates
were found earlier [see (3.10)].
Further, proceeding with the construction of the invar-
iants, we note that, apart from @ introduced in (3.11), there
is a simple transformation law for the quantity ¥, where

Z e (zL— xo)m; + 4ib, (90)& .

In fact,
~ o~ e o I N 3.18)
Ga:a& = 41‘7:“%5 & ba? 4i (ef) =2 (

The list of superinvariants takes the form
B s Pl G (.19

More precisely, our discussion refers to chiral fields. An
analogous technique can be developed for antichiral fields
and for superfields of a general form.

From the expressions (3.19) it is clear how to introduce
collective coordinates into the chiral superfield. If for
6, =8, =B = 0 the ficld depends on x, and 6, in the gen-
eral case we must make the substitution

(21, — zo)t e} 0 (S .
BrannetlE e 2 (320

In particular, for the square of the superfield S*/ this pre-
scription leads to the expression

3 172 .
(8%)ynet = (SGISG; Jinst = 2 ;:—;p’ s (3.21)

where a is the color index and fis the index of global SU(2).
The expression (3.13) for #? remains as before, since
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the difference between x; — x, and X in this case is unimpor-
tant because of the factor 82, which is equivalent for the
Grassmann numbers 57 (8).

In order to elucidate the physical meaning of 8,, we
expand (3.21) with respect to 6, for 8, =B =0, x, =0in
the form?°

2 . = Pt p49%
(8?2)pst = 202 [ﬁ——pr-'_ 4ze°‘xm;63 o m_%,,—]
(3.22)

and, comparing with the general expression

— o] 5 af . Y — (o b .y 02
Sr=qp . +2V 2(09%) @ ; +120 .7 — (479 )1 8

observe that the spinor matter field is
¥ =2V 200 8 o

(yisthe Lorentzindex, a is the colorindex, and Fis the index
of global SU(2); F*/ = 0 according to the equations of mo-
tion).

Apart from a factor, the spinor field (3.23) is identical
to the ordinary fermion zero mode.?* The Grassmann pa-
rameter 6, (more precisely, the two parameters 6§ and 63)
is proportional to the coefficients of the expansion with re-
spect to these zero modes.

Thus, supersymmetry gives a geometrical meaning to
the zero mode of matter.

Now that we have introduced the collective coordinates
and constructed superinvariant expressions for the instan-
ton superfields, we come to the most nontrivial aspect of
models with matter, one of the key aspects of the formalism
which has been developed—the measure of the integration
with respect to the collective coordinates. In the purely bo-
son case, this problem—the measure of the integration in the
theory with scalar particles and spontaneous breakdown of
the gauge symmetry—was solved in the pioneering work of
Ref. 26. In the SU(2) model with two doublets of Higgs
scalars, the result?® is proportional (in the Bogomol’nyi lim-
it) to

(3.23)

(Ap)b_%f_ ddxoe—lm’v’p’, (324)
where b is the first coefficient of the Gell-Mann-Low func-
tion, and v* = (¢ }), f=1, 2. The exponential function
exp( — 477 v?p?) reflects the fact that in the classical ap-
proximation the instanton action already depends on one of
the collective coordinates, p. This dependence is in turn ex-
plained as follows: the instanton in the presence of scalar
fields with nonzero v is not an exact extremal but gives only
an approximate solution of the classical equations, so that
the complete classical action varies slowly as a function of p.
In other words, in the integration in the functional space we
use the saddle-point method in all directions along which the
action varies rapidly, and we study explicitly the dynamics
of one of the directions, on which the action depends weakly.

At first sight, it appears that the only change introduced
into 't Hooft’s result by the supersymmetrization reduces to
the addition of differentials of the fermion collective coordi-
nates, d? 6,d26,d?B. It is easy to see, however, that the mea-
sure of the integration becomes noninvariant with respect to
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the supertransformations. More precisely, using the trans-
formation laws (3.10) and (3.17), we find that it is the expo-
nential function exp( — 47%v*p* ) which spoils the superin-
variance.

Fortunately, this unpleasant feature does not in any
way indicate an incurable defect of the formalism, but it
merely reveals an error in our naive discussion. The point is
that in supersymmetric theories the concept of the radius is
generalized, and the instanton amplitudes contain a quantity
which we have called the invariant radius. In SQCD with
one flavor,

péav = p2 [1 + 4i (8sB)] (3.25)

[cf. (3.19) ]. In terms of p,, , the measure of the integration
with respect to the collective coordinates reduces to?

dpe~5 = const- vi: ds7,d20,d20,d2B %ﬂi e"'m”"’%nv, (3.26)
in which the numerical constant, which is nonzero, can in
principle also be readily calculated. The difference between
exp( — 47 v?p?) and exp( — 42 v?pl,) is related to the
fact that the SQCD Lagrangian contains Yukawa vertices of
the type gpAy. If for A and 3 we substitute the zero modes of
the gluinos and matter, and for @ we substitute the solution
(3.15), it can be verified that the corresponding contribu-
tion to the action is actually contained in pZ,. For further
details, see Ref. 20.

Using the elements of the instanton calculus outlined
above, it is easy to calculate explicitly the effective superpo-
tential which arises in SQCD with one flavor in the single-
instanton approximation. It is convenient to formulate the
problem as the problem of finding the energy associated with
an instanton having the center (x,, 6, ) and “living” in the
external field S/ (x; ,8).

For a constant external field which does not depend on
x and 6 at all (S*/S, , = 207 ), the result is in fact given in
(3.26). All that we must do is to generalize it to the case of
weakly varying external fields. Since we are interested in the
low-energy limit, the derivatives with respect to x and 6 of
the external (super)field can be consistently neglected.
Then the effective superpotential will obviously depend only
on 5%/ (x5,85)8, s (x0,65), and to find this dependence it is
sufficient to make the substitution

20 — 8% (zg, By) Say (Zor B0)
in Eq. (3.26).

Expanding the exponential function in (3.26) with re-
spectto (8, B) and performing the integrations with respect
to dp?, d*8,, and d*B, we arrive at the following effective
action:

(3.27)

Af (3.28)

Agqp = const- S d4z,d20, 397 (oo 6y Sur e 00"
) 0 [}

This same expression was obtained in Sec. 2 on the basis of
general arguments. A concise diagrammatic representation
of the problem of the effective superpotential is given in Fig.
3.

Some other examples of instanton calculations, both in
this simplest model and in more complicated cases (for ex-

Vainshteln et a/. 717

| o



FIG. 3. Diagram for the effective superpotential induced by the instanton
in the SU(2) model with one flavor.

ample, SQCD with two flavors), are given in the original
paper of Ref. 20.

4. CLASSIFICATION OF THE MODELS. SPONTANEOUS
BREAKDOWN OF SUSY

We hope that an acquaintance with the simplest exam-
ple, supersymmetric quantum chromodynamics, has given
the reader a general idea of how dynamical symmetry break-
ing takes place as a result of instantons and how the weak-
coupling regime arises. In the model discussed in Sec. 2, the
color symmetry is spontaneously broken, while SUSY re-
mains unbroken.

This circumstance—the survival of supersymmetry—is
a consequence of the index theorem.?* In theories with a
nonzero Witten index (and in the studied model with the
gauge group SU(2) and nonchiral matter the Witten index is
equal to two), spontaneous breakdown of the supersym-
metry is impossible.

One of the most striking aspects of the studied phenom-
enon is its universality. In almost any model with matter,
there is a classical degeneracy of the vacuum in the form of
troughs, and together with them there arises a potential pos-
sibility for destabilization of the “trivial” vacuum corre-
sponding to zero values of the scalar fields—a destabiliza-
tion triggered by instanton effects.

The schemes according to which large vacuum conden-
sates can develop are extremely diverse. By introducing
some kind of multiplets of matter in a definite set, we realize
a specific scheme from the very rich spectrum of dynamical
scenarios which include (as particular cases) the spontane-
ous breakdown of color symmetry discussed in Sec. 2 and the
spontaneous breakdown of SUSY.

A systematic study of the various versions was underta-
ken in Ref. 19. We shall list here the basic, most typical
situations, and then dwell on the simplest model which in-
volves spontaneous breakdown of the supersymmetry in the
weak-coupling regime.

a) Catalog of dynamical scenarios

First of all, we describe the general structure of the su-
persymmetric models to which the present review is devot-
ed. The gauge sector includes gluons and gluinos, which
transform according to the adjoint representation of the
gauge group G. The following groups have been investigated
in detail in the literature:

G =SU(N), G-=80(N).
Some examples with a gauge group in the form of a direct
product of the type G = SU(N) XSU(M) or G=SU(N)
X U(1) have also been analyzed.
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As regards the structure of the “material” sector, by
combining multiplets of matter in various representations
and in various numbers, it is possible to obtain a great num-
ber of variants, which can be divided into two fundamentally
different classes: nonchiral and chiral matter.

In the first case, a mass term can be attributed to all the
matter fields without breaking the gauge symmetry (and
SUSY). Supersymmetric QCD belongs to this class, and, as
we have already noted, spontaneous breakdown of SUSY
cannot occur in these models.

Chiral matter is matter for which the introduction of a
mass term is forbidden by gauge invariance. The Witten in-
dex for chiral matter has not been calculated, so that the
possibility of a zero value of the index has not been excluded,
and searches for spontaneous breakdown of supersymmetry
have had to be restricted in advance to this class of models.

We note that whereas nonchiral matter admits a very
large arbitrariness in the choice of the multiplets of fields, for
chiral matter the arbitrariness is much smaller, since there
exists the very stringent requirement of cancellation of the
“intrinsic” axial anomalies in the theory. For example, for
the gauge group SU(5) the theory is anomaly-free only if the
material sector contains the same number of quintets and
antidecuplets of chiral superfields.

After fixing the set of multiplets of matter, the next
thing to do is to investigate the problem of troughs. This
investigation in turn is divided into several stages, which are
conveniently formulated as an algorithm.

Step 1. We consider the classical Lagrangian with the
Yukawa and mass terms switched off in the superpotential.
(In models with nonchiral matter the superpotential can in
general contain both types of terms, while in models with
chiral matter only Yukawa terms are admissible.) If the
Yukawa and mass terms are neglected, there remain in the
Lagrangian only the gauge interactions

S dewe, S d20 d285e Vs,

where S is a generalized notation for the matter superfields.
Step 2. We write the expression for the D terms:

D= — Z gZEITaCPf; (4.1)
f

" here @/ are scalar fields, which are the lower components of

the superfields S/, fis the flavor index, the summation in
(4.1) being over all the multiplets of matter, and T ¢ are the
generators of the gauge group in the corresponding represen-
tation. Further, two variants are logically possible.

The system of equations D° = 0 has only the trivial so-
lution with zero values of all the scalar fields. In other words,
there are no troughs. An example of this situation is pro-
vided by the SU(5) model with one quintet and one antide-
cuplet of matter.!® In this case, the gauge symmetry remains
unbroken, a strong-coupling regime is realized, and the
problem of spontaneous (nonperturbative) breakdown of
SUSY can be investigated only by means of indirect meth-
ods, which will not be discussed in the present review. We
note in passing that the arguments of Refs. 14 and 15 favor
spontaneous breakdown of supersymmetry in the above-
mentioned model with one quintet and one (anti)decuplet.
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We shall concentrate below on another, richer variant,
which potentially leads to spontaneous breakdown of the
color symmetry and to a weak-coupling regime. We shall
assume that the system of equations D° = 0 has nontrivial
solutions in the space of the scalar fields. If we represent the
energy of the self-action of the scalar fields

Voo = e 0=k 3 (3 o)
a f

in the form of a profile, we can in this case pictorially repre-
sent the system of equations as a network of “‘ravines” or
“valleys,” whose bottoms in the approximation under consi-
deration are completely flat and correspond to the zero level
Voo =0, and whose walls have a steepness determined by
the gauge coupling constant g. (In fact, the solutions of the
equations D° = 0 give a set of points lying at the bottom of
the ravines.) In the simplest example of SQCD with one
flavor (see Sec. 2), a ravine extended as a straight line from
the coordinate origin ¢ ;, = ¢, = O to infinity; in more com-
plicated models, ravines, starting from the origin, bend and
branch out, forming a ramified network analogous to what
exists in real mountain ranges.

As far as we know, a general method of solving the
equations D* =0 has not been developed. Certain tech-
niques which facilitate the determination of the valleys in
frequently encountered cases are described in Refs. 19 and
26. We stress that the task of finding the valleys, particularly
in models with chiral matter, is a rather complex technical
problem, and the solutions frequently have a most whimsical
appearance.

In order to avoid unsubstantiated statements, we repro-
duce here one of the families of valleys which we found in the
SU(5) model with two quintets ¥1’* and V'®* and two
(anti)decuplets X () and X & (this model was discussed in
Refs. 15 and 19).

It is most convenient to represent the solution in a polar
parametrization in which it depends on three numbers—a
radius 7 and two angles a and 6. In this parametrization, the
following values of the scalar fields from the quintets and
antidecuplets correspond to a vacuum trough:

(4.2)

ay 0-
0 2 4.3a
Vi = 0 , ye=10 , ( )
ay 0
0 0
0 0 0 s 0O
0 0 b 00
xo——] 0o -6 00 ¢ (4.3b)
2 —s 0o 0900
0 0o —f 0 0
0 d0 0¢g
—d 00 00
xo——21 o000 oof, (4.3¢)
2 000 0 &
—g 0O 0 —hk O
where
ay;=rcosf, a,=rcosa-tgh
' M ' (4.42)

cos? O—costa
an=rtgl l/sm” 8+ cosTa
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rcosa
_——
cos® Vsin® 0 fcosta

b=r Vsin2 0 - cos? a,

f=r cos & cos? B —cos? a0 (4.4b)
7 cos® sin? 9 -cos?a’
r
=T 20— cos?
d=—0 V cos2—cos? a,
g=rcosa, h=rsinb,

By varying 7 in the interval (0, « ) with fixed « and 4, we
move along the bottom of the trough, from the coordinate
origin in the space of the scalar fields to infinity.

Step 3. Each point at the bottom of the trough corre-
sponds to V. = 0. Thus, there is an infinite degeneracy of
the vacuum (which is preserved also in any order of pertur-
bation theory). Further, the orderly structure of our catalog
is broken, since we are again faced with the need to set forth
several alternative possibilities.

An effective superpotential which removes the degener-
acy of the vacuum energy may or may not occur in the single-
instanton approximation. An example of the situation in
which the degeneracy is not removed and the bottom of the
trough remains flat is the gauge theory with extended
(N = 2) supersymmetry?® or SQCD with N >N, and with
strictly massless quarks'® (¥ and N, are the numbers of
flavors and colors, respectively). Further analysis is re-
quired in this case, since the vacuum state of the theory is not
determined uniquely. In fact, the same Lagrangian describes
a set of theories, which differ by the values of the condensates
and by completely different physics in different phases (for
example, the phase with unbroken gauge symmetry and con-
finement and the phase with broken color symmetry). A
more detailed discussion can be found in Ref. 28; here we
merely note that, apart from the dependence on which of the
phases is realized, such models necessarily contain a strictly
massless scalar meson (dilaton). According to the super-
symmetry, this implies the presence of a whole supermulti-
plet of strictly massless particles.

From the point of view of the present review, another
situation is of greater interest—the instanton generates a
nonzero superpotential. In all the models with an instanton
superpotential analyzed in the literature, the effective super-
potential leads to the expulsion of the theory from the coor-
dinate origin (see Fig. 1), which seems natural. In fact, the
larger the value of the scalar field, the more strongly sup-
pressed is the instanton contribution to the vacuum energy,
and as (@ ) tends to infinity along the bottom of the trough
the instantons are no longer effective and E,,.—0." If no
further measures are taken, the theory is unprotected against
the formation of infinitely large condensates, since this is
advantageous energetically. In this variant, there is no vacu-
um state at all.

Thus, there arises the problem of stabilization of the
theory at large @ by means of the introduction of mass or
Yukawa terms in the superpotential at the classical level. In
other words, if the theory is to have a true vacuum state, it is
necessary to close the exits from all the troughs at large val-
ues of the scalar fields by raising their bottoms slightly. In
theories with nonchiral matter, the problem is readily solved
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by adding mass terms (see the discussion of SQCD with one
flavor in Sec. 2). In the case of chiral matter, we have at our
disposal only Yukawa terms. If we consider only renormali-
zable theories, the set of Yukawa terms (cubic in the matter
superfields) is restricted by symmetry considerations, and
stabilization of the theory for large values of (g ) is not al-
ways possible.

As an example, we mention the SU(N) model (N is
even, N>6), in which there is one supermultiplet of matter,
which transforms with respect to color as an antisymmetric
tensor X[, and N — 4 supermultiplets in the fundamental
representation, ¥*.'* The general form of the Yukawa clas-
sical superpotential is

Wa = k99X 1 VinVie, (4.5)

where f, g = 1,2,...,(N — 4) are flavor indices, and the ma-
trix 4 of Yukawa constants satisfies the conditions A7, = A,
| | €g. The instanton generates a superpotential which is re-
pulsive from the coordinate origin, and the interaction (4.5)
does not guarantee stabilization in all directions. As a result,
this model evidently has no vacuum state.

Our catalog is completed by the most interesting dyna-
mical scheme with spontaneous breakdown of supersym-
metry in the weak-coupling regime. If in a model with chiral
matter there are troughs, if an instanton generates a repul-
sive superpotential, if the theory can be completely stabi-
lized by Yukawa terms in such a way that the escape to
(@) = o is impossible—if all these ““ifs”" are satisfied, then
in such a model dynamical breakdown of SUSY will almost
certainly occur. It is here, along this path, that we must ap-
parently concentrate our efforts in the search for a realistic
theory of quarks and leptons, provided, of course, that the
theory is indeed constructed on the basis of supersymmetry.
Historically, the first “toy’’ model with spontaneous break-
down of SUSY in the (controllable) weak-coupling regime
was the SU(5) model with two quintets and two antidecu-
plets.!>!*

The conditions enumerated above are necessary but in
general not sufficient.

Two criteria are known from the literature,
which guarantees spontaneous breakdown of SUSY.

Criterion 1. Suppose that the Yukawa terms in the su-
perpotential, introduced for the sake of stabilization at large
@, do not contain any matter supermultiplet S (or a linearly
independent combination of supermultiplets). In this case,
the gluino condensate is an order parameter—the nonzero
vacuum expectation value

(M) 50
implies spontaneous breakdown of the supersymmetry. In
fact, if the supermultiplet S appears in the Lagrangian only
in the form Se” S |, then the anomalous Konishi identity**
takes the form

D= (SeVS) = (numerical constant) x W2,

18,19 each of

(4.6)

where D is the spinor derivative. If this is the case, then the
vacuum expectation value of 2 is equivalent to the vacuum
expectation value of the operator D28e”S. On the other
hand, for unbroken supersymmetry it is obvious that
(D*8e¥S) =0.

720 Sov. Phys. Usp. 28 (8), August 1985

Criterion 2. Suppose that we are considering a theory in
which either troughs are completely absent or they are
“blocked” by Yukawa or mass terms in the superpotential
(in such a way that their bottoms are raised slightly by an
increase of the scalar fields). If in such a theory some exact
continuous global symmetry (for example, axial symmetry)
is spontaneously broken, then SUSY is also spontaneously
broken.

We shall outline the proof®’! in its general features,
omitting certain subtle details. (A similar discussion in the
particular case of extended (N — 2) supersymmetry is con-
tained in Ref. 28.) If a continuous global invariance is spon-
taneously broken, there is a massless Goldstone boson 7.
Suppose that the supersymmetry of the theory is not broken.
Then 7 must be accompanied by massless superpartners, in
particular, a scalar particle o with spin 0. Since the field 7,
being a Goldstone field, appears in the Lagrangian with a
zero potential ¥, (7) = 0, the potential for the field o must
also vanish and, as a consequence, the vacuum expectation
value (o) is not fixed. In other words, the field o appears in
the role of a dilaton which connects the various vacua with
the same—zero—energy.”’ However, this conclusion con-
tradicts the initial assumption that there are no absolutely
flat directions in the Lagrangian. The only possibility of get-
ting rid of the contradiction is to conclude that the symmetry
is spontaneously broken.

We note that the two criteria given above are not com-
pletely independent. In fact, if some superfield does not enter
into the classical superpotential (see Criterion 1), then there
exists an axial current—a linear combination of the matter
current S and the R current—which is strictly conserved.
Further, the operator A°* A {, is obviously noninvariant with
respect to the transformations generated by this current.
Therefore the AA condensation automatically implies spon-
taneous breakdown of the corresponding axial symmetry.

In conclusion, we present Table I which summarizes
the situation for a number of models considered in the litera-
ture (see Ref. 19, which also gives a list of earlier refer-
ences). The next subsection is a mini-review of the simplest
model in which there is spontaneous breakdown of super-
symmetry in the weak-coupling regime.

b) Dynamical breakdown of SUSY: the SU(3) x SU(2) model?

If we set ourselves the task of constructing a model with
chiral matter and troughs, the result may be suggested by the
scheme of Glashow, Weinberg, and Salam. Since only the
pedagogical aspect is important for us here, we shall go even
further, following Ref. 19, and simplify this scheme: we shall
retain only one generation of matter, eliminate the hyper-
charge, and discard the g particle, which is a singlet with
respect to both color and the weak isospin and interacts only
with the boson which gauges the hypercharge.

Proceeding in this way, we in fact obtain SQCD with
three colors and two flavors, u and d. In other words, the
matter sector includes the following chiral (lefi-handed) su-
perfields:

(o, =0 (a=1,2,3;f=1,2), g d, (47)
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TABLE 1. Dynamical scenarios realized in certain models with matter discussed in the literature [N, is the
number of colors, N is the number of flavors, G is the gauge group, m is the mass (of the supermultiplet of
matter), and A is the scale parameter which determines the variation of the gauge coupling constant].

1) Model SQCD SQCD SQCD
Matter m=0 Ne< N, —1, N,=N_-1,
sector my =m;=.. m; <A,
=my <A i=1,.,N¢
Scheme No vacuum SU(N, ) is broken The color symmetry
state down to is completely
SU(N, — N;), and broken (weak-
SUSY is not broken coupling regime),
and SUSY is
not broken
2) Model SQCD G =SU(4) G = SU(N),
N is even,
N>6
Matter Ne>N, —1, One anti- One anti-
sector m,&m,<... symmetric tensor symmetric
<my <A Xy, m#0 tensor X
and N—4
(anti)multiplets
in the funda-
mental repre-
sentation
Scheme The color sym- SU(4) =0(6) is No vacuum
metry is completely broken down to state
broken (weak- Sp(4) = O(5), and
coupling regime), SUSY is not broken
and SUSY is
not broken
3) Model| G =SU(N), G =SU(N) G =SU(5)
Nis odd,
N>T
Matter One antisym- One symmetric Two quintets
sector | metric tensor tensor S; and two
X and and N + 4 antidecuplets
N-—-4 (anti)multiplets
(anti)multiplets in the fundamental
in the funda- representation
mental repre-
sentation
Scheme No vacuum An instanton The color symmetry
state superpotential is is broken (weak-
not generated, coupling regime),
and the vacuum and SUSY is
degeneracy is spontaneously
not removed broken

SQCD
N,>N, —1,

my=..=my

An instanton
superpotential is

not generated,

and the color
symmetry and SUSY
are not broken

G =SU(5)

One quintet
and one
antidecuplet

The color sym-
metry is not
broken (strong-
coupling regime),
and SUSY is
apparently broken

G =SU(3)XSU(2)

u, d quarks
and v, ep

The color symmetry
is completely
broken, and

SUSY is
spontaneously
broken (Sec. 4b)

Further, the flavor interaction of the left-handed particles
(u®,d*) (but not the antiparticles #_, d,!) is gauged. The
corresponding gauge bosons W * , W~ , and W° and their
superpartners obviously transform according to the adjoint
representation of the group SU(2) of the weak isospin. It is
here that the asymmetry appears between right- and left-
handed matter.

Finally, since an odd number of left-handed doublets
(u*,d%), a = 1,2,3, in the group SU(2) is forbidden by the
anomaly,*? it is necessary to add one more doublet of chiral
superfields, a lepton doublet

L = {v, e} 4.8)

We obtain altogether 14 left-handed Weyl spinors plus their
superpartners; the fifteenth left-handed spinor &; is ex-
cluded from the discussion, as we have already mentioned.
It is easy to verify that there exists no mass term which
is invariant with respect to the gauge group
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G =SU(3) XSU(2). If we confine ourselves to the class of
renormalizable theories, the only admissible interaction,
apart from a (super)gauge interaction, is given by Yukawa
terms in the classical superpotential, which can be chosen in
the form

Wa=hQd,L ey (f, ' =1, 2), (4.9)
where 4 is the Yukawa constant. We call attention to the fact
that the field &, does not appear in W, ; we shall make use of
this fact later.

As in the usual scheme of Glashow, Weinberg, and Sa-
lam, we assume that the SU(3) gauge constant g, is much
greater than the SU(2) gauge constant g, and, in addition,
that

h < gy €8s (4.10)

In the limit #—0, the model possesses troughs, the de-
termination of which does not present any problems. Name-
ly, if
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a) 0 _ a _ 0
u°‘=(0), d°‘=(b), ua=(0), da=(b),
0 0 0 0
L'=(0, VIeE=T0 ), (4.11)

where a and b are arbitrary complex parameters, then all the
D terms, with respect tobothSU(3) and SU(2), vanish. The
Yukawa term (4.9) guarantees stabilization by raising
slightly the bottom of the troughs for |a|, |b |— .

For a#0 and b #0, the whole gauge symmetry is com-
pletely broken, since 11 ( = 8 4 3) chiral superfields are ea-
ten by the super-Higgs mechanism, giving a mass to all 11
vector supermultiplets present in the model. Three light
chiral superfields remain massless in this approximation
(h=0).

We now include nonperturbative effects, taking into ac-
count only the instantons with respect to the gauge group
SU(3), but neglecting the SU(2) instantons by virtue of the
smallness of g, . For the reader who is acquainted with the
preceding material, it will evidently not be difficult to write
at once the effective superpotential induced by the instanton:

=2

Weﬂ'.inst - det {(‘)‘Q} H (412)
where A; is ascale factor which determines g, , the factor 2 is
introduced for convenience, and

det {00} = (u¥u,dPdy — ud, duy). (4.13)
This superpotential “expels” the scalar field from the coor-
dinate origin (i.e., from the region @ = 0 and/or b = 0) and
generates spontaneous breakdown of the gauge invariance
and the supersymmetry. Under the condition (4.10), this
symmetry breaking takes place in the weak-coupling regime.

To prove the breakdown of SUSY, we can use Criterion
1 (see Sec. 4a), since i, does not appear in W,. Figure 4
demonstrates that the model actually has a nonzero conden-
sate (A4 ), where A is the octet of SU(3) gluinos.

To obtain more detailed information, it is necessary to
investigate the superpotential (W, + Wz ins )- The proce-
dure is standard: first, combining (4.12) and (4.9), we find
all the F terms as functions of the scalar fields; next, we
substitute the scalar fields lying at the bottom of the troughs
[see (4.11)]; then, we minimize the potential V,,, = Z|F|?
with respect to g and b, thus fixing the vacuum values of the
scalar fields and the vacuum energy. The following values
were obtained in Ref. 19:

FIG. 4. Single-instanton contribution to the gluino condensate (A4 ) in
the SU(3) X SU(2) model with two flavors. The SU(3) instanton con-
tains six zero gluino modes and four matter modes. The crosses label the
vacuum scalar fields, which are determined by the parameters a and b.
The heavy dot labels the operator A4.
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Ay

0 e 1298, b 125 5%,

e
E ..~ 3.59R09TAS. (4.14)

In the limit ~—0 the parameters @ and b tend to infinity as
expected, and this justifies the assertion about the weak-cou-
pling regime (the masses of the gauge bosons are
me~gAh~ V" 5 w).

The sector of light particles contains a Goldstone
(strictly massless) fermion, the “‘electron,” whose existence
can be deduced from 't Hooft’s self-consistency condition*
for the anomalous triangle induced by the hypercharge. It
also contains a neutral fermion with mass ~11.34%7 A,.
Among the spinless bosons there are one strictly massless
Goldstone boson, corresponding to spontaneous breakdown
of a certain axial invariance, and one charged and three neu-
tral scalars with masses 4 %7 A,.

5. CONCLUSIONS

The problem of dynamical breakdown of supersym-
metry by nonperturbative effects in four-dimensional gauge
theories was raised in Ref. 12. The protracted search for such
a scheme has finally been crowned with success. We may
consider that we have received an extra and very valuable
gift: when SUSY is spontaneously broken in theories with
matter, the gauge symmetry is as a rule also broken, so that
we have a weak-coupling regime, which is completely con-
trollable theoretically.

Now that the fundamental possibility of the phenomen-
on has been proved, priority is being given to the search for a
realistic scheme based on the mechanism which we have de-
scribed above. The first steps in this direction have been tak-
en in Refs. 14 and 19. We do not discuss the corresponding
results in this review, referring the reader to the original
literature, since the progress in this direction is clearly in-
complete in character. The proposed schemes do not seem to
us completely satisfactory, for either esthetic or purely phen-
omenological reasons. At best, they have the status of “se-
mirealistic models,” which, however, is recognized by their
authors. Thus, the main work lies ahead of us, and its result
is not known.

At the same time, there is now little doubt that instan-
tons in supersymmetric theories, whose analysis represents
an extremely fascinating theoretical problem, will play a key
role in the solution of practical problems facing those inves-
tigating these models.

The authors are grateful to I. Dremin, on whose initia-
tive the present review was written.

D In Ref. 19 it was shown that under certain conditions the instanton
superpotential might, on the contrary, raise the bottom of the trough
slightly at large @, tending to “slide” the theory to the coordinate origin.
However, models in which such a regime is realized for all the troughs
are as yet unknown.

) The field o cannot describe a Goldstone boson corresponding to sponta-
neous breakdown of any other global symmetry, since in this case the
values of (o) would have to form some compact manifold. In Ref. 9
arguments were put forward to show that the manifold {o} is noncom-
pact!
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