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Progress in the search for a unified theory of elementary particles is reviewed. The supersymme-
trical Kaluza-Klein theories are described: 11-, 10-, and 6-dimensional models of supergravity.
The methods of spontaneous compactification, with whose help the four-dimensional theories are
obtained, are described. The properties of the massless sector—zero modes in the Kaluza-Klein
theories—and the question of the stability of vacuum solutions are discussed. An important
criterion for the selection of a self-consistent theory is the absence of anomalies. The basic formu-
las for multidimensional chiral and gravitational anomalies are presented. The mechanism of the
cancellation of the anomaly for Green and Schwarz's 10-dimensional effective field theory of
superstrings with the gauge groups SO (32) and E8 X E8 is described. The basic concepts and the
results of the theory of superstrings are presented. This theory has no divergences and is at the
present time a very attractive candidate for a unified theory of elementary particles.
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INTRODUCTION didates for a unified theory of all known interactions: weak,
The theory of supersymmetry1 is the next step in the electromagnetic, strong, and gravitational,

realization of the hopes of theoretical physics to construct a
unified theory of elementary particles.11 The theory of super- 1-THE KALUZA-KLEIN APPROACH
symmetry has not yet predicted experimentally confirmed
effects, but it has given a number of remarkable "theoretical a>The Problems of grand unification theories
effects," including a result which is fundamental to the Kaluza's fantastic idea7 that space-time has more than
quantum theory of fields2: the construction of a four-dimen- four dimensions has been revived in recent years in the the-
sional model without ultraviolet divergences.21 ory of elementary particles.8 The present development of

We shall briefly describe below some recent results re- this approach started with the work of Scherk and Schwarz9

garding supersymmetry. For convenience, we have divided and Cremmer and Scherk10 in connection with the dual
the presentation into the following sections: the Kaluza- string models. They propose that the extra dimensions
Klein approach, anomalies, and superstrings. It should be should be studied as physical dimensions equivalent to the
kept in mind, however, that the most interesting results have observable four dimensions. It was proposed that the ob-
been obtained at the frontier separating different fields with vious difference between the four observed and the extra mi-
the use of diverse mathematical and physical ideas, which croscopic dimensions be interpreted as a spontaneous break-
clearly demonstrates the striving toward unification and ing of the symmetry of the vacuum or, in other words, the
complex simplicity. This refers primarily to the Green and result of spontaneous compactification of the extra dimen-
Schwarz superstring,5-6 which we shall discuss below, with sions.
the gauge group SO(32) or E8 X Eg—one of the present can- Here we shall review the basic ideas which have led to
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the conclusion that candidates for a realistic unified theory
must be sought amongst—at first glance—strange models in
space-time with more than four dimensions, and in addition
gravity must be taken into account.

As is well known, the grand unification theories,11'12

which have been very successful in explaining the properties
of the standard SU(3) XSU(2)XU(1) model of
electroweak and strong interactions, encounter a number of
problems.

1. The problem of the hierarchy of interactions, i.e., the
necessity of explaining the enormous difference in the mass
scales of the electroweak interactionMw ~ 102 GeV and the
grand unification mass Mx ~ 1015 GeV.

2. The existence of three generations of fermions is not
explained.

3. The problem of chiral fermions, i.e., it is necessary to
explain why right and left fermions enter into the Lagran-
gian unsymmetrically.

4. The choice of the gauge group is largely arbitrary.
5. A large number of parameters is required to describe

the Higgs bosons.
6. Grand unification theories do not include gravity,

although the characteristic mass in these theories Mx ~ 1015

GeV is not very different from the Planck mass MP ~ 1019

GeV.
The solution of the problem of the hierarchy of interac-

tions must be stable with respect to radiation corrections.
This led to the use of global supersymmetry13 in order to
ensure that the value of the ratio A/W/MX is fixed, because
some of the usual divergences in quantum field theory do not
occur in supersymmetrical models, which enables one to
make the ratio Af w /M x constant. To obtain a realistic parti-
cle spectrum in this approach, spontaneous breaking of su-
persymmetry must occur. This is possible only if supergra-
vity is included,14 namely, in a theory including
(N = 1)-supergravity, (N = 1)-supersymmetrical Yang-
Mills theory and a number of N = 1 chiral scalar fields (the
latter ensure breaking of gauge and supersymmetry). It is
remarkable that in the past it was hoped15'16 that gravity
would be important in the theory of elementary particles,
whereas now it has become clear that it is in fact impossible
to construct a phenomenologically satisfactory theory with-
out gravity. But even this theory has its problems: it is not
renormalizable, it has a large number of free parameters, and
it does not solve the problems 2-5 listed above. Therefore,
such a theory cannot be fundamental and is only an effective
theory. If a field theory is regarded as being fundamental,
then such a theory must have a higher-order symmetry than
(N = 1)-supergravity. The symmetry can be raised by two
methods:

the first method consists of studying theories with ex-
tended TV-supersymmetry in (</ = 4)-dimensional space-
time17;

the second method, which dates back to Kaluza and
Klein's idea, consists of studying theories in which the sym-
metry is the group of local (N = 1 )-supertransformations of
a rf-dimensional space18 (d> 4).

A phenomenological theory in the first approach re-

quires a mechanism for breaking (N> 1)-supersymmetry
down to (N = 1)-supersymmetry—spontaneous breaking
of supersymmetry, while the second approach requires a
mechanism for breaking the general-coordinate symmetry
of a ̂ /-dimensional space down to the symmetry of the space
M*xBd~4. The second mechanism is customarily called
spontaneous compactification. However, difficulties linked
to the nonrenormalizability of these theories make it neces-
sary to regard them (we have in mind theories in dimensions
d^lQ), in their turn, as effective theories, which are ob-
tained from a more fundamental theory—superstrings in a
10-dimensional space-time.19 Divergences apparently do
not occur in the theory of superstrings.6'19 It is possible that
extended supergravity also has a hidden symmetry which
will make the theory renormalizable.20 3)

b) Extended supergravity in (d = 4)-dimensional space-time

./V-extended supergravities with N — 1 , . . . ,8 (TV indi-
cates the number of supercharges in the theory) are possible
in d = 4 dimensions. The limit on the number N is associated
with the fact that for N > 8 there arise fields which corre-
spond to particles with spin greater than 2 and a systematic
theory of such fields interacting with the gravitational field
does not exist.118 The maximally symmetrical model of su-
pergravity is (N= 8)-supergravity.17 There exist several
variants of this theory,21>22 but in all these theories the ele-
mentary gauge fields transform according to a group which
cannot include SU (3) X SU (2) X U (1). Therefore, without
appealing to the idea of using composite gauge fields.17'23

(N = 8,c? = 4)-supergravity cannot be regarded as realistic.
Attempts at constructing a realistic theory based on N-

supergravity with 2<N<4 interacting with matter fields
have not produced a satisfactory model, because for these
models it is difficult to provide a mechanism for breaking
supersymmetry down to N = 1.

Thus a realistic theory with extended supersymmetry in
a four-dimensional space-time does not exist at present. The-
ories in multidimensional (d>4) space-time are more
promising. The basic idea here is to construct a geometrical
model with d > 4, from which a more complicated realistic
theory is obtained for d = 4 with the help of spontaneous
compactification. We note, incidentally, that the four-di-
mensional theories with extended supersymmetry were con-
structed precisely with the help of the simplest dimensional
reduction from multidimensional theories.

c) Supergravity in (d> 4)-dimensional space-time

The maximum dimensionality of space-time with which
supergravity can be constructed is equal to II.1 2 1 The maxi-
mum number (N = 8) of extended supersymmetries in
d = 4 dimensions is related to the maximum dimensionality
11, since in the dimensional reduction (see below) the 32-
component spinor-generators of the simple supersymmetry
Qsf, s/ = 1,. . . ,32, separate in the 11-dimensional theory
into eight groups (N — 8) of four-component spinor-gener-
ators with the extended supersymmetry—Qai, a = 1,2, 3,4;
/ = ! , . . . , 8—in four-dimensional space. For d = 11 there
are no multiplets containing fields solely with spin J, J<, 1
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TABLE I.

Composition of multiplets Boson part of the Lagrangian

Gravitational multiple!

if>M—a Rarita-Schwinger field

AMNP—an antisymmetrical tensor M, N,

= J d"»[y« —^

6(4!)2

N=\

N=2

Gravitational multiplet

Vector multiplet (AM,if>);

\l!M—a Rarita-Schwinger field

BMf—an antisymmetrical tensor

/I—a Dirac field
q>—a scalar
AM—a Yang-Mills field

M,N,P=0,\,..,9

Gravitational multiplet

(<M.^M>-# UP ); Antisymmetrical tensor multi-
plet

111
' « « *

3 — 2a> rr rr MNK

~ " H>a*H

"MNK —

); Gauged multiplet (AMJ.); (Hy- --Gt/

permultiplet) (if ,<}')•,

5 +(~'—Self (anti)-dual intensity

if/M and A—Left fermions

X—Right fermions
<f>'—Scalars, parametrizing
HP(n- 1,1),
4>—Scalar, ^—Sp(n) Spinors
M,P= 0,1 5; a = l,...n(2n + 1)—Isotopic
index, / = l,...,4n,A = l,...,2n

Ga—Kahler metric

The gravitational constant x is equal to 1 ;g is the Yang-Mills constant; e^, is the field of coordinate frames; FUN is the Yang-
Mills intensity; HMNK is the intensity of the field BMP up to Chern-Simons terms of the gauge field AM; e = ^det\guff\.
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(multiplets of matter fields),119 and there is thus only one
possible unification theory.18 This theory contains an 11-
dimensional field of coordinate frames e^ (44 boson degrees
of freedom), the gravitino field i/>^a (128 fermion degrees of
freedom), and an antisymmetrical tensor of rank three
AMNK (84 boson degrees of freedom).

Table I shows the components of the models of super-
gravity, including the possible interaction with matter mul-
tiplets, depending on the dimensionality of the space-time;
only the most realistic candidates for a unified theory are
shown. Multiplets of matter fields exist only for d<, 10.119 In
the 10-dimensional case the only possible candidate is the
(N= l)-Yang-Mills multiple!.120 This multiple! contains
only spin-1/2 fields and gauge fields and does not contain
scalar fields. For d = 10 there are three theories ofsupergra-
vity: (N= l)-supergravity,24 (N = 2)-supergravity,25 and
(N= 2)-chiral supergravity.26 (N= 1, d= 10)-supergra-
vity interacts with a multiple! containing gauge fields (see
Table I); in addition, the gravitational constant is the only
independent constant.]}}

The (N = 2, d = 6)-theory contains several multiplets:
a gravitational multiplet, an antisymmetrical tensor multi-
plet, a gauge multiplet, and a hypermultiplet. The hypermul-
tiplet includes scalar fields ̂ ', on which additional restric-
tions are imposed: they are parameters of the noncompact
quaternion Kahler manifold HP (n = 1, n ) (the number n is
related to the dimensionality of the gauge group).

The study of the physical properties of these theories is
based on the mechanism of spontaneous compactification.

<1) Spontaneous compactification: vacuum solutions

The mechanism of spontaneous compactification in
theories of the Kaluza-Klein type consists of the follow-
ing.8"10 Equations describing the gravitational field, possibly
interacting with matter fields, are studied in a rf-dimensional
space-time. A solution of special form (vacuum solution) to
these equations, corresponding to the representation of the
(/-dimensional manifold in the form Md = M4XBd~*,
where A/4 is a four-dimensional space-time (preferably
Minkowski space, but often the anti-de Sitter space is also
studied) and Bd ~4 is the compact "inner" space, is sought.
The vacuum metric gMN has the block form:

here x? are coordinates on M 4 and ym are coordinates on
3d ~ 4 . Einstein spaces29 (i.e., the Ricci tensor is proportion-
al to the metric ) are usually considered for M 4 and Bd ~ 4 . It
is natural to suppose that the vacuum solution must be stable
in some sense and must exhibit a symmetry. Then all fields,
which we denote by 3>(x, y), are expanded in terms of har-
monics (eigenfunctions of the mass operators M 2) on
3d-4:

ond order in the fluctuations with respect to the vacuum
solution. The equations for the effective four-dimensional
theory are obtained by integrating over y and describe an
infinite set of mass states with masses of the order of l/L,
where L is the characteristic length of Bd ~ 4 , and a finite set
of massless states—the zero modes. IfL is chosen to be of the
order of the Planck length, then mass states with an extreme-
ly large Planck mass, far removed from experimentally
accessible limits, are obtained.4' In this approach only the
massless particles are observable. Thus the extra dimensions
are manifested at low energies only in the special (depending
on the model) form of the interactions of massless particles.

The equations of motion of the gravitational field in a d-
dimensional space have the form

i , i 1 \D ___ a D 71 A <j i l l )n MN 2 oMN — M N — -^SMAM V * * A 7

where TMN is the energy-momentum tensor of the matter
fields, and A is the lambda term. When A = 0, the vacuum
with TMN = 0 corresponds to the compactification
Md = AT X 3d ~r, where AT is a Minkowski space and B is a
Ricci-flat compact space. The space B can be chosen as the
(d — r)-dimensional torus Td~r. This theory, however,
has only abelian gauge fields (see below), and it is desirable
to have a more nontrivial compactification because in the
vacuum the tensor TMN differs from zero.

The block representation of the metric gMN is compati-
ble with the equations if it is assumed that

^.uv = — YlSuv (•*), 1'mn =•= fsgmn (</)• d-2)

From (1.1) and (1.2) it follows that Md = M4xBd~4,
where M 4 and Bd ~ 4 are Einstein spaces, i.e.,

A)
j_2

„ _
il:n.'.i

:he expansion coefficients <pk (jc) are interpreted as physical
lields. The mass operator is given by some differential opera-
tor on Bd ~ 4 , determined by expanding the action up to sec-

S

The vacuum solutions for the fields can be of two types:
1. solutions which do not break the maximal symmetry

of the four-dimensional space-time, i.e., the components of
the vector and tensor fields differ from zero only in the inner
space (the rank-four tensor can be proportional to e^^—
the totally antisymmetrical tensor of rank four), and

2. solutions admitting breaking of the maximal symme-
try of the four-dimensional space, the so-called cosmological
solutions.

If the interaction of gravitation with the vector, tensor,
and scalar fields without the potential term, i.e., the term in
TMN proportional to gMNv((f>), is studied, then in the first
case it turns out that y2 = yl — Y\, where y\ is a constant
which is of the same order of magnitude but several times
greater than y\- Because the energy is positive, T00>0, the
constant 7, is positive. It then follows from (1.3) that if
A = 0, then M4 is an anti-de Sitter space (adS4), while
Bd ~ 4 is a compact space, and it is impossible to obtain a
vacuum solution in the form of a flat four-dimensional space
with TMN 7^ 0. If, on the other hand, TMN includes a poten-
tial scalar term, then the solution q> = const is equivalent to
the introduction of a A term and a flat space M 4 is possible
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with a curved space Bd 4 , as in fact happens in the (d = 6,
N = 2) -theory.

The following possibilities exist for constructing a solu-
tion corresponding to a Minkowski space for M 4 and
TMN 7^0 without the effective A term:

include terms with higher-order derivatives,32'33 radi-
ation corrections,86 or ghost fields,30 5) which appear for hy-
permultiplets containing noncompact spaces,34 and

adopt the hypothesis31 that there are several time di-
mensions, i.e., use, for example, the signature
(- + + + - + ... +)-3 0

e) Mechanisms for spontaneous compactlflcation

The basic problem in constructing the compactification
Md — M 4xBd~* is to find the solutions of the classical
field equations whose energy-momentum tensor satisfies the
conditions (1.3a) and (1.3b). We shall study the vacuum
solutions in which only the boson fields are different from
zero, i.e., it is necessary to find the solution of the equations
following from the Lagrangians presented in Table I which
are consistent with the splitting ( 1.3a) and ( 1.3b).

The following mechanisms of spontaneous compactifi-
cation are known:

1 ) the mechanism proposed by Freund and Rubin35

which uses a special ansatz for antisymmetrical tensors, as
well as Englert's mechanism;

2 ) embedding the connection for the group of internal
symmetries into the Lorentz connection37-50;

3 ) monopole or instanton mechanism38;
4) compactification induced by scalar chiral fields39'40;
5) compactification induced by radiation corrections.86

The Freund-Rubin mechanism

This mechanism is usually used in (N = 1, d= 11)-
supergravity. The solutions of the equations of motion for
the boson fields — the Einstein equations with TMN

= FMKPLF*PL — ̂ gMNF2 and the equations for the anti-
symmetrical tensor field

= — 2ta (x) e^vxa, FmnM = —

in this case R^v = — 1(U 2g^v , ym are the Dirac matrices,

(1.4)

consistent with the block form ofgMN , are sought in the form

^nvp* = e (x) /e^p^; (1.5)

/is a constant and the remaining components ofFMNPQ are
equal to zero. The equations ( 1.3a) and ( 1.3b) are obtained

andRmn.

Englert's mechanism

Equation (1.4) also has more complicated solutions,
leading to an energy-momentum tensor of the form (1.2).
For solutions of Englert's type,36 the tensor FMNPQ also has
nonvanishing components in the inner space. A solution of
the Englert type was first constructed on a sphere S 7 with
torsion. It can be constructed83'84 on any Einstein space B 7,
on which the metric satisfies the equation Rmn = 6/1 2gmn

and which admits at least one Killing spinor, satisfying the
equation [ Vm — (A /2)ym ]rj = 0. Then the solution is given
by the following ansatz:

Mechanism for embedding the Yang-Mills connection Into the
Lorentz connection

This mechanism37'50 is based on the fact that with a
given metric a Yang-Mills connection satisfying the condi-
tion of parallelizability

DpFMN = 0; (1.6)

where D is the Yang-Mills derivative, can be constructed in a
uniform Riemannian space.

For the case when the space 3d ~ 4 is a sphere 5** ~ 4 and
the gauge group includes the group O(d = 3) as a subgroup,
the intensity of the gauge field, satisfying (1.6) and the Bian-
chi identities, has the form

Fa — r (1 mn — ' (1.7)

r is the radius of the sphere and e"m is the field of coordinate
frames. The formulas for F"£n in the case when 3d ~* is a
uniform space B /H can be found in Ref. 37.

The monopolar mechanism

In the particular case of an abelian gauge group, the
monopolar mechanism coincides with the Freund-Rubin
mechanism, for which the antisymmetrical tensor of rank
two—the intensity of the electromagnetic field
Fmn = ce(y)emn, where emn is the totally antisymmetrical
tensor of rank two—differs from zero. This mechanism of
compactification is used in (d = 6, N — 2)-supergravity.28

Compactification with the help of chiral fields

The equations have the form

The following ansatz is used39: (j>m (x, y)=ym,
gmn = — (2//l2)Amn; gMV is the Minkowski metric; and,
hmn is a metric of constant positive curvature.

Gell-Mann and Zwiebach40 also studied the case when
hmn is the metric of constant negative curvature. In this case
they constructed the spontaneous dimensional reduction
onto a noncompact surface of finite area.

f) Zero modes

1) Gauge fields

In the foregoing discussion of vacuum solutions it was
pointed out that only the massless states (the zero modes of
the mass operator, i.e., the Beltrami-Laplace, Dirac, and
Lichnerowicz operators) are observable at low energies in
the Kaluza-Klein theory. To obtain an effective low-energy
theory for massless gauge fields, the following standard
"Kaluza-Klein ansatz" is used:
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l (x) A* (x) K™ (y) Kn* (y) gmn (y),
f 1 Q ^

proach44 to the Kaluza-Klein theory and in 11-dimensional
supergravity.36,45

where (J^U), is the vacuum solution on
M 4 X-3d ~ 4 . It is presumed that B has a group of isometrics
G with the Killing vectors Kma (y), where a runs through
values equal in number to the dimensionality of the group G.
Under infinitesimal transformations of the coordinates
ym _^ym + £a ^ffmc, ^y) ^ the quantities A^(x) transform
like gauge fields:

Thus Yang-Mills fields with the gauge group G arise in the
Kaluza-Klein theory as components of metrics. Within the
framework of a purely multidimensional gravity, a metric of
the form (1.8), generally speaking, does not satisfy the equa-
tions of motion,41 and the standard Yang-Mills Lagrangian
is not obtained for the fields A ".8i43 Compactification on a
torus (in this case the group G is abelian) and the case
B = H, where H is a compact semisimple Lie group, are im-
portant exceptions. In this case, the left-invariant vector
fields are the Killing vectors Kma for the biinvariant metric
on H and the relation (Killing-Cartan)

holds. In this case the ansatz (1.8) satisfies the equations of
motion. This is also valid for the case when B is a uniform
space. In both cases the gauge group is reduced to some sub-
group of the group G. The compatibility of the ansatz (1.3)
with the equations of motion can also require that scalar
fields be included (as in Kaluza's initial work). In the pres-
ence of matter fields the ansatz (1.8) can be consistent with
the equations of motion ( as, for example, in 1 1 -dimensional
supergravity41), but each specific model must be analyzed
separately.

2) Scalar fields

Scalar fields play a very important role in modern gauge
field theories,12 because they provide the Higgs mechanism
of spontaneous symmetry breaking and a large number of
parameters is required to describe them. The geometrical
interpretation of scalar fields therefore becomes important.
Scalar fields as components of a metric appear in Kaluza-
Klein theories,7'8'42 but the results depend strongly on the
model and their interaction in this case is described by exotic
Lagrangians, which have little in common with the standard
Yang-Mills-Higgs Lagrangian.

It was proposed in Ref. 43 that the Kaluza-Klein theory
with dynamic torsion be studied and definite components of
the torsion be interpreted as scalar fields. If linear connec-
tion coefficients T^,N are given, then the torsion tensor is
defined as TP

MN — TF
MN — TP

NM. We shall assume that there
is no torsion in the flat Minkowski space, and we shall set
T^m =8*<Pm(x). Then a Yang-Mills-Higgs Lagrangian is
obtained for the scalar fields 4>m (they transform L ^cording
to some gauge group).

We note that torsion also appears in Weinberg's ap-

3) Fermlon fields

The massless fermion with spin 1/2 is described in the
Kaluza-Klein theory by the Dirac equation in c?-dimensional
space:

= 0,
or

(1.9)

here VM is the covariant derivative, f1 VM is the usual four-
dimensional Dirac operator, and Y" ^ m ls tne Dirac opera-
tor in the space B. It is evident from (1.9) that the eigen-
values of the operator y™ Vm will play the role of mass for the
four-dimensional theory. In particular, the low-energy ob-
servables will be the zero modes of Y" Vm, corresponding to
quarks and leptons.46 The number of zero modes (i.e., the
number of quarks and leptons) depends on the geometry of
the manifold B. For example, on manifolds with positive
curvature, which often arise with compactification, the
Dirac operator does not have zero modes at all (Lich-
nerowicz's theorem47). Fortunately, theories of supergra-
vity also contain Rarita-Schwinger spin--| fields, some of
whose components appear in four-dimensional space-time
as spin-J fields. The Rarita-Schwinger operator can have
zero modes on manifolds with positive curvature also.

In the Kaluza-Klein theories with fermions, however,
the following basic problem arises.46'48 As is well known, the
observed right and left fermions transform according to dif-
ferent (complex) representations of the gauge group. This
symmetry cannot, however, be obtained with the help of
multidimensional gravity. There is a theorem, due to Atiyah
and Hirzebruch,49'50 stating that for any continuous symme-
try group the zero modes of the Dirac operator form a real
representation. Witten50 showed that the same is true for the
Rarita-Schwinger operator on compact uniform manifolds.

Two methods for solving this problem of chiral fer-
mions were proposed. The first method is to introduce addi-
tional gauge fields50'51 (aside from those which appear as
components of the metric). Such fields always exist in the
theory of superstrings.19 When a nontrivial configuration of
these fields exists in the inner space, the problem of chiral
fermions can be solved.50'51 The other method is to study
noncompact inner spaces with finite volume.52 This method
may be useful in 11-dimensional supergravity.53

The problem of chiral fermions is related to the problem
of anomalies (see below).

At the present time most examples of spontaneous com-
pactification have been developed in detail for the case when
the space Md is represented as a direct product
Md = M 4XBd ~ 4 , i.e., it is a trivial fibering over M 4. In the
more general case, spontaneous compactification can be ac-
companied by the appearance of a structure with nontrivial
fibering on Md with M 4 as the basis. A model example of
this type is studied in Ref. 123.

Aside from the method of spontaneous compactifica-
tion, the method of dimensional reduction is also used to
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obtain a four-dimensional theory from a multidimensional
theory.61 In this case, the condition of G in variance is im-
posed on the metric on M4XG/H instead of the require-
ment that it satisfy the equations of motion. This metric is
described in terms of fields on M 4.

g) Cosmology—a window into higher dimensions54

The spontaneously broken symmetry is restored at high
temperatures.55 From the viewpoint of spontaneous com-
pactification, therefore, under the extreme conditions of the
early stages of evolution of the universe space-time has its
own "true" 10 (or 11) dimensions. Compactification then
occurs in principle into all possible vacuum solutions. As a
result, "islands," in which space-time can have a different
topology,122 different dimensionality,56 and different signa-
ture30'31 6) can form. The existence of tunneling transitions
and the formation of bubbles (compare Ref. 57) of one vacu-
um into another vacuum has not been excluded.

The process of inflation of the universe could be related
to the collapse of inner dimensions.58

The Kaluza-Klein theory can in principle be checked
experimentally, since in this approach the fine-structure
constant and the gravitational constant are functions of
time.59

Since the theory of superstrings does not contain diver-
gences,6 this theory could shed light on the nature of the
cosmological singularity. It is proposed in Ref. 60 that the
big-bang phase was preceded (more precisely replaced) by a
nonlocal string phase with d = 10, after which spontaneous
Compactification and phase localization (i.e., the strings
transformed into the usual particles), followed by expan-
sion, occurred.

h) Spontaneous Compactification of (d - 11)-supergravity

In this section we shall describe the vacuum solutions of
11-dimensional supergravity. In principle, all vacuum solu-
tions must be studied, because tunneling transitions can oc-
cur and different solutions can be realized in different islands
of the universe.

The simplest Compactification is obtained when M 4 is a
Minkowski space, while B7 = T1 is a 7-dimensional torus.
The massless sector gives Cremmer and Julia's (d = 4,
N= 8)-theory,12 which has (global E7) X [hidden local
SU(8) ]-symmetry (the hidden gauge symmetry is realized
on composite gauge fields, formed from scalars and their
derivatives).

The other solution with (N = 8)-supersymmetry62 has
the form M1' = adS 4 X S7, where adS 4 is the anti-de Sitter
space and S1 = SO(8)/SO(7) is a 7-dimensional sphere
with the standard metric. This theory has [local SO(8)]
X [ hidden local SO (8) ] -symmetry. There are no other solu-
tions with (A^=8) supersymmetry.63 It turns out that
SO(3, 2) (anti-de Sitter symmetry)-boson symmetry to-
gether with (N = 8) fermion symmetry can be extended up
to the OSp(4|8) supersymmetry.64 The massless sector in
the linear approximation65 is given by the de Witt and Nico-
lai21 (d = 4,^ = 8) gauge supergravity, which was obtained
from the theory17 by introducing gauge fields for the SO(8)

subgroup of E7. In the nonlinear theory, however, this coin-
cidence may not occur.66 Other22 gauge versions of (d = 4,
N= 8)-supergravity, corresponding to noncompact sub-
groups of E7, also exist.

The sphere S7 admits, aside from the standard metric, a
second Einstein metric67 (squashed metric), which gives a
theory with SO(5) X SU(2) -gauge symmetry and (N=\or
N = 0) -supersymmetry, depending on the orientation of S7.
The 7-dimensional uniform spaces Npqr = SU(3) XU(1)/
U( 1) xU( 1), where p, g, and r describe different embed-
dings of U (1) X U (1), each admit two Einstein metrics also.
These solutions have SU(3) xSU(2)-gauge symmetry and
(N = 1) supersymmetry.68

The gauge group SO(8) for elementary gauge fields
does not contain the phenomenological SU(3)
XSU(2)XU(1) subgroup. More complicated vacuum so-
lutions must therefore be studied in order to obtain a realistic
theory. As pointed out by Witten,77 it is remarkable that
n = 1 is the minimum dimensionality of the space B" con-
taining the SU (3) X SU (2) X U (1) group of isometrics.

Each compact uniform space G /H, where H is the max-
imal subgroup, admits an Einstein metric,69 and therefore
such 7-dimensional spaces are solutions of the equations of
(d = 11)-super gravity. The group of isometrics of this met-
ric coincides with G. For the more interesting case of the
gauge group G = SU(3)XSU(2)XU(1) introduced by
Witten,77 the corresponding Einstein space has the form

Mpqr = SU (3) X SU (2) X U (1)/SU (2) X U (1) X U (1),

where the integers/), q, and r characterize the nature of the
embedding of the denominator into the numerator. The re-
maining 7-dimensional Einstein spaces of the form G /H are
described in Ref. 77.

For the spaces Mpqr withp^q, the holonomy group is
SO(7) and supersymmetry is completely broken. For/) = q
the holonomy group is SO(3) and (N = 2)-supersymmetry
exists.

The complete particle spectrum has been obtained for
solutions of the Freund-Rubin type both on the sphere S 7and
on arbitrary uniform spaces.72 In addition to the massless
gauge multiplets there also exist quasimassless multiplets, in
which the scalar does not have a mass, but all other states
with spin /, /<J do. Such multiplets could play the role of
matter multiplets interacting with gauge supergravity, and
they can participate in the super-Higgs mechanism. The
effective potential of the theory in this case changes, and it
has not been excluded that the problem of the cosmological
constant can be solved in this manner.

All models constructed based on the compact spaces B1,
however, suffer from the following drawbacks:

1. they do not solve the problem of chiral fermions;
2. supersymmetry is broken down to N = 0 or TV* = 2

(but not to N = 1) in those cases when the gauge symmetry
group is SU(3)XSU(2)XU(1) ; and,

3. in d = 4 dimensions an anti-de Sitter space is ob-
tained rather than a flat space, and the relation between the
gauge coupling constant and the cosmological constant is
such that one of them is necessarily unrealistic.

It is proposed in Refs. 52 and 53 that the difficulties
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with the chiral fermions be overcome by considering for B a
noncompact space with finite volume.

If it is possible to construct a dynamic theory of com-
posite gauge fields, in spite of the appearance of ghosts103 for
rf>4, then in this case the hidden SU(8) gauge symmetry of
the de Witt-Nicolai theory would be sufficient for pheno-
menology, and it would even be possible to obtain chiral
fermions.23'42 In the 11-dimensional program, however,
even if it is possible to overcome the difficulties enumerated
above, the problem of the nonrenormalizability of the
11-dimensional supergravity remains.

I) Spontaneous compactlflcatlon of 10-dimensional models

Ten-dimensional supersymmetrical field models play a
special role, since they are obtained in the low-energy limit
from superstrings.19

The construction of the vacuum solution for this theory
encounters a difficulty73 related to the equation for the scalar
field

VArVMcp + -g^e-^2 + -2|re-2<P#2 = 0. (1.10)

It is evident from here that if <p = const and the components
F and H are nonzero only for the inner closed space with
positive signature, then Eq. (1.10) is not satisfied, because
the left side of (1.10) contains sums of positive terms.

Thus under the usual assumptions spontaneous com-
pactification of the form M4XM6 does not occur in this
theory, if M 4 is a space with the maximal group symmetry.
This difficulty can be circumvented in the following manner.
It is hypothesized in Ref. 31 that there exist regions of the
universe in which the metric has a different signature. The
solutions of the effective field theory of superstrings5 and a
theory27 of the form M * X adS 3xB3, where M 4 is a Min-
kowski space, adS3 is a three-dimensional anti-de Sitter
space (containing a time variable), and B3 is a compact
space (in this situation one must apparently not talk about
spontaneous compactification, since adS3 is noncompact,
but rather about spontaneous reduction), were found in Ref.
30. Thus the hypothesis31 that several time dimensions exist
in the dynamic Kaluza-Klein theory makes possible the so-
lution of the problem of the cosmological constant. A solu-
tion of the problem of ghosts in theories with additional time
dimensions is proposed in Ref. 130.

The vacuum configuration for the effective Green-
Schwarz field theory is constructed in Ref. 32. This configu-
ration has (AT = 1 )-supersymmetry and a four-dimensional
Minkowski space and compactifies into a Ricci-flat (the re-
quirement of (N = l)-supersymmetry in the Minkowski
space leads to a Ricci-flat inner space in an analogous man-
ner in 11-dimensional supergravity also104) Kahler mani-
fold and produces four generations of chiral fermions. This
configuration does not satisfy Eqs. (1.10) of the Green-
Schwarz theory, but is rather a solution of a modified theory
with an additional term containing higher-order derivatives,
which is obtained from an E8XE8 superstring.74

j) Stability of vacuum solutions

The vacuum solution must be stable with respect to
classical or quantum perturbations.

One criterion for stability is the absence of ghosts and
tachyons in the spectrum calculated in the linear approxima-
tion against the background formed by the vacuum solu-
tion.75 Another criterion is that any perturbation must have
a higher energy than the vacuum.76 If the solution exhibits
supersymmetry, then it is stable.77-78 This follows formally
from the fact that the Hamiltonian is equal to the sum of the
squares of supercharges and vanishes only in the supersym-
metrical state. In particular, supersymmetrical solutions in
(Ar>4)-supergravity are stable, though here the scalar po-
tential is not bounded from below.76

The nonsupersymmetrical solutions can also be stable,
for example, for topological reasons.79 This occurs, for ex-
ample, for the Einstein-Maxwell (d = 6)-system with com-
pactification on the sphere S2 with the help of the Dirac
monopole80 and for the (d = 8)- theory of instanton com-
pactification on the sphere S4.81

The necessary and sufficient condition for classical sta-
bility82 of a solution of the Freund-Rubin type, compacting
onto B~*(Rmn = ygmn ), is that all eigenvalues A of Lich-
nerowicz's operator AL, acting on the symmetrical trans-
verse traceless tensors hmn,

(here A is the Beltrami-Laplace operator), must satisfy the
inequality A > y/2. In particular, the solution (squashed 5"7)
is stable. The spaces MMr give stable solutions only for

_p_
<7

i.e., for p and q in some neighborhood of the symmetrical
solution wiihp/q = 1.

Solutions of Englert's type are unstable, if B7 admits at
least two Killing spinors.84 Englert's solution on a deformed
(squashed) sphere S7 is also unstable.85

Even the stable classical solutions can be unstable in the
quantum theory. Single-loop corrections were studied in
Refs. 86.

Aside from the conditions of vacuum stability, the the-
ory must also satisfy the condition that there be no anoma-
lies.

2. ANOMALIES

The chiral anomalies associated with the destruction of
invariance and appearing in the triangle diagram with mass-
less fermions are well known.12'87 The anomalies enable ex-
plaining the decay ir0—>2y on the basis of current algebra,
and also solving the U( I ) problem in quantum chromodyn-
amics.

An anomaly also appears when the Yang-Mills field in-
teracts with a linear combination of vector and axial cur-
rents, as, for example, in the standard SU (2) X U ( I ) theory
of electroweak interactions. Since in the presence of anoma-
lies gauge invariance and, therefore, unitarity break down in
the gauge theory, the theory with anomalies is inconsistent.
In particular, the usual SU(2) X U ( I ) theory makes sense
only for interaction with quarks, when the anomalies cancel.
An anomaly cannot be cancelled by adding local counter
terms to the Lagrangian.
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We shall present the basic formulas for four-dimension-
al anomalies.88"91

Abelian anomalies arise as a result of the breaking, at
the quantum level, of the symmetry if>(x)^eluMr> i/>(x) of
the classical Lagrangian describing the interaction of mass-
less fermions with a Yang-Mills field. In the quantum case
the divergence of the axial current/'^ = i/ry^y^ is equal to

i
fi ji-iA— : pixvpa f r p p
"11 / * I 5 _ 9 *-• 11 1 llv* n(7*

The appearance of abelian anomalies can be interpreted as
noninvariance of the fermion measure in the path integral92

under a chiral transformation.
Nonabelian anomalies also arise in the triangle diagram

with massless fermion lines and are associated with the
breaking of the nonabelian symmetry if(x)— *e'uM^ $(x),
u(x) = u" (x)Aa at the quantum level; A" are the generators
of the algebra of the gauge group G.

We shall study the interaction of the Yang-Mills fields
A^ (x) with chiral (left) fermions:

exp[ir(,4)]= \ di|3dijjexp[i

(2.1)

Under the gauge transformation A^ — ̂  + D^u (D^ is a
covariant derivative) the functional T(A) transforms as

r (A) -> r (A + DU) = r (A) + 21 (A, «), (2.2)

i.e., the generator of the gauge transformations on function-
als of A is — iD^S/SAp. If T ( A ) were gauge invariant, as
follows from formal transformations, then we would have
D^ST/SA ° (x) = 0. But, a careful calculation taking into
account regularization gives the following result:

sr
(i)

tr

(2.4)
The formula (2.4) leads to a violation of covariant current
conservation in the presence of an external gauge field:

The formula (2.4) shows that there is no invariance relative
to infinitesimal gauge transformations. With respect to the
gauge transformations A^ —>-A J = g ~ 1 ( x ) ( A f t — id^)g(x)
T ( A ) transforms as follows:

<+1 (2.5)

where d — 4 and the integration is performed over
R5

+ ={(xM,x5)|x5>0>; a)d+i(A) is the density of the
Wess-Zumino action (it is the (d + 1) -dimensional Chern-
Simons class); for d = 4 the following formula holds:

(2.6)

The formula (2.5) contains gauge fields which depend on
the points of a (d + 1)-dimensional space, and any continu-
ation of the fields A^ (x) into the (d + 1)-dimensional space
can be used (if there are no topological obstacles, which can
lead to quantization of physical parameters; see Refs. 89-91,
93 for a more detailed discussion).

The appearance of geometrical characteristics in the
formula (2.5) is not accidental. The appearance of anoma-
lies is itself a result of the nontrivial topology of the space of
orbits of the gauge group. The normalization of a nonabelian
anomaly is fixed by the normalization of an abelian anomaly,
which represents a local variant of the Atiyah-Singer index
theorem.96'91 An interpretation of anomalies in terms in co-
cycles is given in Ref. 94.

a) Chiral anomalies In higher dimensions

Theories of the Kaluza-Klein type, which lead to chiral
fermions, are potentially anomalous. They are comprehensi-
ble only if the anomalies cancel. In order to follow the can-
cellation of anomalies, their explicit form must be known,
i.e., formulas of the type (2.4) must exist. Gauge anomalies
in a multidimensional space have recently been calculat-
ed.88"91 We shall present below the derivation of the formu-
las for nonabelian anomalies in a 2« -dimensional space, us-
ing the language of differential forms.71 Since
SUT(A) =8l(t/,/4) corresponds to an infinitesimal transfor-
mation of the gauge group, the following condition must
hold (the Wess-Zumino conditions95):

6K2I (A, v) - 6D9l (A, u) = 91 (A, [u, v]). (2.6')

The condition (2.6) imposes nontrivial restrictions on
the possible form of the anomalies. We shall show that the
following functional of A and u satisfies Eq. (2.6):

,d-^2n+2(A). (2.7)

Let us clarify the notation81 used in (2.7): the
&2n + 2 (A) — (2n + 2) form in the (2n + 2)-dimensional
space (two auxiliary variables are introduced) belongs to
the Chern-Pontryagin class,

(2.8)

d ~ l f l 2 n + 2 ( A ) is a (2/1+ 1 ) -form co°2n + , (A ) such that

Q2n+z(A) = d(a°2n+i(A). (2.9)

The form o°B + \ ( A ) exists, since the condition of local
solvability dtl2n + 2 = 0 evidently holds.

The expression Su <a°n + , (A ) denotes variation by an
infinitesimal gauge transformation. In order for the applica-
tion of the operator d" l to Su cu2n + , (A ) to make sense, we
verify that dSu «°« + 1 = 0. Indeed,

d5ucojn+1 = 6U = 6uQ2n+2 = 0
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because of the gauge invariance of fl2n + 2

there exists a 2/j-form a>\n (A, u), such that
Therefore

We shall show that (2.7) solves (2.6). We have

6A»2n+i (A) = (due to (2.10)) = 6U do>in (A, v)

= (fin andd commutate ) = d6tto)Jn (A, v),

and therefore the identity

(6U60 — 6r6u — 8[U| „]) o)2n+i (A) = 0

can be written in the form

Integrating the relation (2.11) over the (2n + 1)-dimen-
sional manifold whose boundary is M2", because of Stokes
formula we obtain the relation

)- J ) = J

which proves that (2.7) solves (2.6).
The formula ( 2.6) is convenient for following the possi-

ble cancellation of the anomalies, since the expression (2.7)
for the form fl2n + 2 has a simple form. Thus in order to
reveal the cancellation of anomalies in the 2n -dimensional
theory, because of (2.6) it is sufficient to perform the calcu-
lations in a (2n + 2 ) -dimensional space. We note that the
trace in ( 2. 8 ) is calculated in a representation corresponding
to fermion fields. In supersymmetrical theories fermions ac-
quire significance in the adjoint representation, and for these
theories tradi enters in (2.8). On the other hand, the contri-
bution of gauge fields to the Lagrangian of supersymmetri-
cal theories is written as a trace in the fundamental represen-
tation, so that in the formula for fl2n + 2 it is convenient to
recalculate tradj as the trace in the fundamental representa-
tion. In particular, for (N= I , d = 10) Yang-Mills gauge
theory we have

•vYM 15 -32) G = SO(«),(2.12a)

EgxE, . (2.12b)

We note that Eq. (2.7) determines 8104, u) to within a
coefficient, which can be found directly from the Feynman
diagrams or with the help of Fujikawa's method.92 The nor-
malization of abelian anomalies, which is most simply calcu-
lated using the Atiya-Singer index theorem, also fixes the
normalization of the nonabelian anomalies.96'91

b) Gravitational anomalies

Alvarez-Gaume and Witten discovered in spaces with
more than four dimensions a new type of anomaly with pure-
ly gravitational vertices, corresponding to the breakdown of
general-coordinate invariance.97 Purely gravitational anom-
alies appear in spin-1/2 and spin-3/2 Weyl spinors in spaces
with dimensions d = 4k + 2, k = 0, 1, 2, . . . .The boson
antisymmetrical field BMN also contributes to the gravita-
tional anomaly.

We shall present the answer for the form Clf2, corre-
sponding to the 10-dimensional purely gravitational anoma-
ly in (N = 1 )-supergravity, interacting with matter:

%= - [i+ (n-496)/13824] (tr

— l(n -496)77560] trfl6; (2.13)

where n is the number of left spin-1/2 fermions from the
matter multiplet.

Mixed anomalies, corresponding to diagrams in which
gauge fields and the energy-momentum tensor appear at the
vertices, also arise.

As shown in Ref. 97, for (d = 10, N = 2) chiral super-
gravity the anomalies are immediately cancelled.

c) Cancellation of anomalies

Remarkably, for (N + 1, d = 10)-supergravity inter-
acting with an SO (32) - or E8 X Eg gauge field (these models
are obtained in the low-energy limit of a type I string) some
of the terms in (2.12) and (2.13) vanish. The last term in
(2.12a) vanishes for n = 32 and the last term in (2.13) van-
ishes for G = SO(32) and EsxE6, since n = 496 is the di-
mensionality of the adjoint representations of SO (32) and
Eg X Eg. As shown in Ref. 5, the remaining anomalous terms
can be compensated by the addition of local terms to the
starting action. These terms contain higher-order deriva-
tives and can be obtained from the low-energy expansion of
the superstring.

Cancellation of anomalies also occurs for (N = 2,
d = 6)-supergravity interacting with multiplets of matter
fields (see Table I) for the gauge group E6 X E7 X U (1).'25

3. SUPERSTRINGS

The theory of superstrings has a paradoxical history.
This theory arose in the study of hadron phenomenology,
but it literally forced itself to be considered as a fundamental
unified theory of elementary particles. At the end of the
1960s, the study of hadron interactions with the help of dis-
persion relations and Regge dynamics led to Veneziano's
dual resonance model, which satisfactorily describes the
phenomenology of mesons.105

The dual resonance amplitude can be represented with
the help of a set of oscillators, and it was shown that these
oscillators can be viewed as normal excitations of a relativis-
tic string. The theory contains states with negative norm
(ghosts), which are absent only if the space-time has a criti-
cal dimensionality d = 26 (it is possible that the inclusion of
conformal anomalies'06 and the correct choice of the ground
state107'128 can lower this dimensionality). The appearance
of an unphysical dimensionality led later to a revival of the
Kaluza-Klein idea. The fermion degrees of freedom were
included in the Raymond-Neveu-Schwarz model,108 for
which the critical dimensionality is d = 10. This model was
one of the sources of the modern theory of supersymmetry.
However, the string model of hadrons, though it was intu-
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itively attractive (the idea of quarks connected by a string is
very convenient), encountered the following problems. First
of all, to eliminate ghosts the parameter of the model (the
slope coefficient in the Regge trajectory a') must have an
unphysical value. Second, particles with imaginary mass—
tachyons—remain in the theory even with critical dimen-
sionalities. Finally, the theory contains spin-2 massless ha-
drons, which do not exist in nature.

A radically new interpretation enabling the solution (or
at least circumvention) of these problems of string models
was made by Scherk and Schwarz,9'109 who showed that the
spin-2 particles can be viewed as gravitons, and the theory of
strings can be viewed as a unified theory of elementary parti-
cles, including gravity. In this case, the characteristic length
scale of the theory L ~ (a1) ~' / 2 can be naturally assumed to
be of the order of the Planck length, L ~ 10~33 cm (while for
the string model of hadrons L~ 10~13 cm). This program
was developed by Schwarz and Green in the theory of su-
perstrings.19 They constructed two types of explicitly super-
symmetrical theories of superstrings (differing by the values
of the supercharges) without ghosts and tachyons with
d = 10. Each theory of superstrings has a massless sector
plus an infinite set of massive excitations with arbitrarily
large spins. The massless sector has the same set of states as
some supersymmetrical field model (with d = 10) into
which the superstring transforms in the low-energy limit
(a1—>0). Superstrings of the first kind can be open (with free
ends) or closed. The interaction of the massless excitations
of open strings in the low-energy limit is described by the
supersymmetrical Yang-Mills theory and that of closed
strings is described by (N= l,d= 10)-supergravity. Each
of these field models has chiral anomalies. However, in the
low-energy field theory, describing both closed and open su-
perstrings of type I, the anomalies cancel for the gauge
groups SO (32) and E8XEg.5 Type-II superstrings can only
be closed. The massless sector in the low-energy limit is de-
scribed by (N=2, d= 10)-supergravity. The anomalies
here also cancel.97

An important property of superstring theories is the
absence of ultraviolet divergences. These theories are finite
at the one-loop level and there are grounds for expecting
finiteness in higher-order loops also.6 The absence of diver-
gences has formally a simple explanation. A superstring has
two dimensional constants—the gravitational constant x
and the Regge parameter a'. The parameter a' essentially
plays the role of a cutoff parameter, and for a' > 0 we have a
finite string theory. In the limit a'—>-0 a renormalizable field
theory which includes gravity is obtained. The physical rea-
son for the absence of divergences lies in the fact that we are
dealing with an extended object.

The theory of superstrings, as it is now understood,
must be studied in the spirit of the Kaluza-Klein approach
and is not directly related to hadronic strings, from which it
originated.9' A satisfactory relationship can be imagined as
follows. Quantum chromodynamics must be obtained from
the superstring, and a hadronic string must be obtained from
QCD in the limit of a large number of colors.'12

It is well known that in order to satisfy the condition of

causality, the interaction of two extended objects must be
local.16 Vacuum fluctuations prevent the interactions from
being local and, generally speaking, lead to a breakdown of
causality. If, however, the model is supersymmetrical, then
the vacuum fluctuations are cancelled, and interactions can
be taken into account systematically.

a) Free strings

1) Boson string

In of-dimensional space-time Md with the coordinates
XM, M = 0 ,1, . . . , d — 1, and the metricgMN (x) the world
surface of the string is given by the equation XM = XM (a, r),
where a and T are space- and time-like coordinates, respec-
tively. The action for the string has the form

Jl'—I'J da
Ti (3.1)

where £ = (a, T), TJ"P (g) is the metric on the world surface
of the string, da = (d/da,d/dr), and T~ I/a' is a dimen-
sional parameter (the tension of the string) . The metric gMN

is, generally speaking, nontrivial; it should be determined
dynamically from the extremum of the effective ac-
tion. 19'107-115>116 In the theory of superstrings, however, only
the case when Md is a Minkowski space with the metric
gMN = diag ( — 1, + 1, . . . , + 1 ) (as well as the case of
compactification on a 6-dimensional torus19), to which we
shall adhere below, has been analyzed in detail.

n

S = -jT j da j diif#da.x
t (5) d^ (Q. (3.2)

The solution of the classical equations following from the
action ( 3.2) for an open string (dax' = 0 with a = 0, TT) can
be written in the form

x1 (a, T) = xl + p;T + i 2 —

where x', p',a'n,x
+,p+ are constants.

Canonical quantization leads to the commutation rela-
tions

[o4, <} = m8m+n> 06ij-

The mass operator is

and has a tachyon as the lowest eigenstate. The Poincare
algebra is closed only in d = 26 dimensions. The appearance
of this critical dimensionality could be related to the quanti-
zation procedure in the light-like gauge, and the possibility
that it will somehow be possible to quantize the string direct-
ly in four-dimensional space-time has not been excluded.

2) The free superstring

The action for a superstring in a light-like gauge has the
form
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5= — - da dt

where/?"1" is a constant.
We shall study a superstring in the critical number of

dimensions d= 10. The action (3.3) isSO(8) invariant. We
recall that the SO(8) algebra has three nonequivalent 8-di-
mensional representations, one vector and two spinor. We
shall use the indices / and/ for the vector representation, a
and 6 for one spinor representation, and a and b for the other
spinor representation. In the expression (3.3) pa are 2x2
Dirac matrices (Pauli matrices), the Fermi field A"A has a
two-component spinor index A and an eight-component
spinor index a. The solution of the equations of motion for
AaA has the form

(3.4)

and the anticommutation relations have the form

In this case there is no tachyon, the lowest states of the
mass operator form a massless supermultiplet consisting for
open type-I strings of a vector A' and a spinor ifP , which
coincides with the Yang-Mills multiplet in a space with
d — 10. It may be assumed that these states transform ac-
cording to some representation of an arbitrary gauge group.

For closed strings with periodic boundary conditions
the solutions of the equations of motion are written in the
form

(3.5)

T)=

1°2 (n T\ — >; /O a/>-i2n(T+o)/v ^u, iy — /j <^n c .
n= — oo

There are two supersymmetry generators (supercharges),
which in this case coincide with Q i° and Q o°. If both super-
charges are conserved and belong to the same representation
of the SO(8) group, then such a (closed) string is called a
type lib string. This theory is a chiral theory (mirror anti-
symmetrical). The superstring is said to be of type Ila if the
supercharges belong to different spinor representations of
SO (8). Finally, if only one of the supercharges is conserved,
then such a (closed) superstring is of type I.

The massless spectrum of a type-I closed superstring
has the following composition (with d = 10): one graviton
g*J, one antisymmetrical tensor B'J, one scalar <f>, one spinor
iff, and one Rarita-Schwinger state iff'. The answer to the
question "What is the spectrum of the massless states in the
four-dimensional space-time?" depends on the compactifi-
cation procedure. For the simplest compactification onto a
6-dimensional torus an extensive set of massless particles,
not observed in nature, is obtained.

b) Interacting strings

Interaction between strings is introduced very simply.
Two strings can either join at their ends, forming a third
string, or a string can separate into two strings. The orienta-
tion of the strings is taken into account. The orientation is
related to the direction of the wave traveling along the closed
string. The substitution CT-̂ -TT — a corresponds in the formu-
las (3.5) to the interchangean ++an, Q

 l
n->-+Q2

n- At the same
time, for type-I strings nothing changes, and they turn out to
be nonorientable, while for type-II strings the orientation
changes. For an open string (type I) it is possible to intro-
duce an internal isotopic symmetry group, if a "quark" and
"antiquark" are placed on its ends. Joining the ends of such a
string, we obtain a closed string; it will be oriented if
"quarks" differ from "antiquarks," as, for example, for the
group SU(n). On the other hand, type-I strings are nonor-
ientable, and the isotopic group SU(/z) is therefore forbid-
den. A theory of superstrings using only the gauge groups
SO(n) and Sp(2«) has been developed.19-114

However a theory of closed superstrings, which in the
low-energy limit is described by (d = 10, N = 1 )-supergra-
vity interacting with a supersymmetrical Yang-Mills theory
with the gauge group E8 X E8 or Spin (32)/Z2, was recently
constructed.74 This theory was obtained as a hybrid of a
(d = 10) fermionic string and a (d = 26)-bosonic string
with the help of the compactification of 16 extra bosonic
coordinates onto the maximal torus with a definite radius
( 2 6 — 1 0 = 1 6 = 8 + 8!). This string does not have ghosts
and tachyons and is free of anomalies.

Interacting superstrings are described by introducing
field operators *[V(<r), &((?), x + , p+] (for closed
strings) and <J>a6 [x' (a), &* (a),x+,p+] (for open strings)
in a manner analogous to the way the interaction of point
particles is described by transforming from the primary
quantum variables x, p to second-quantized field operators
<p(x); here d* (cr) are anticommuting functions, 5 = 1 , . . . ,
8; a and b are isotopic indices. Unlike the usual quantum
fields, which depend on the point x, here * and $ are opera-
tor functionals. (Functionals of anticommuting functions
can be defined mathematically in the spirit of Ref. 113.) The
Hamiltonian corresponding to the dynamics in the variable
x+ [see (3.2)] is the sum of a free Hamiltonian and the
interaction Hamiltonian ̂ int. For a type-II theory the Ha-
miltonian ̂ int has an interaction of the form xV3:

where K is the gravitational constant,

(3.6)

A16 is a 8 function, the operator AT contains variational de-
rivatives, and *(O, *(2), *(3) are field operators of the
corresponding arguments.
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For open strings there are also terms of the type <I>3
)

*3, <t>2* and 4>4,
The perturbation theory for superstrings is in many

ways reminiscent of the old perturbation theory in the quan-
tum theory of fields before the introduction of Feynman dia-
grams. A covariant formalism does not exist at the present
time.

It is interesting that in contrast to quantum supergra-
vity, where the interaction is a nonpolynomial function of x,
in the theory of superstrings the interaction has the simple
form (3.6).10) There are no ultraviolet divergences (at least
in the one-loop theory). The transition from gravity to the
superstring can be compared to the transition from the un-
renormalizable four-fermion weak interaction to the mod-
ern theory of the electroweak interaction.

Spontaneous compactification for the low-energy field
theory of superstrings is discussed above in Sec. li. The solu-
tions of the equations of the effective Green-Schwarz field
theory of the form adS3 X S' X S3 X S3 are obtained in Ref .
129. Solutions of the form M 4 XII3 X B3 where M 4 is Min-
kowski space, II3 is a compact manifold with constant nega-
tive curvature, and B3 is a manifold with positive curvature,
are constructed in this theory in Ref. 130. It is assumed that
the six extra dimensions are time-like. The conditions on
compactification, with which a satisfactory four-dimension-
al theory of massless fields without ghosts is obtained, are
also discussed in Ref. 130.

The possible phenomenological consequences of the
vacuum configuration proposed in Ref. 32 with the Ricci-
flat Kahler manifold with SU(3) holonomy group, for
which the starting E8 X Eg gauge group is broken down to
E6XE8, are examined in Ref. 131. It is shown that further
breaking of gauge invariance by the Higgs mechanism and
breaking of the supersymmetry with the help of the gluon
condensate can lead to models which are in qualitative
agreement with (d = 4, N = 1) low-energy theories of su-
pergravity.14

Low-temperature field theories of superstrings contain
terms with higher-order derivatives, which, generally speak-
ing, can destroy unitarity. It is shown in Ref. 132 that for a
certain ratio of the constants in front of these terms there are
no ghosts.

CONCLUSIONS

In conclusion, returning to the problems formulated in
Sec. 1 which the fundamental theory must solve, we shall list
once again the models which seem to deserve the greatest
attention at the present time.

1) Maximally symmetrical models of supergravity:
d = 11, N = 1 and d = 10, N = 2. The problem of chiral fer-
mions and of the cosmological constant remain unsolved.

2) The gauge chiral (d = 6, N = 2) model. Here there
is a compactification on a Minkowski space, chiral fermions
can be obtained, and cancellation of anomalies has been
shown for some gauge groups. However, classical stability of
the vacuum solution is obtained only for two generations of
fermions.

3) (d = 10, N= 1)-supergravity, interacting with

SO (32) - or E8 X E8-gauge fields, free of anomalies. This the-
ory could be realistic in the sense that it could lead to an
effective four-dimensional SU (5) gauge theory with an arbi-
trary number of generations.

All these theories have one other drawback in common:
they are formally nonrenormalizable. It can be stated with
some degree of confidence that this problem is solved in the
theory of superstrings.

4) The theory of superstrings makes possible the solu-
tion of problems associated with quantum numbers—the
problem of chiral fermions and the problem of generations—
and eliminates divergences in quantum gravity. It should be
emphasized that a gauge group (E8XE8 or SO (32)) has
been distinguished for the first time on the basis of theoreti-
cal considerations.

Important dynamic questions such as spontaneous
compactification, spontaneous breaking of gauge symmetry,
calculation of a realistic mass spectrum, and other problems
remain unsolved.

At the present time, however, the theory of superstrings
appears to be very attractive as a possible candidate for a
unified theory of elementary particles. This theory is capable
of providing qualitative answers to many questions in the
physics of elementary particles. Only the future can tell
whether or not a quantitative theory agreeing with experi-
ment can be constructed.

"In this short paper, we restrict the citations largely to recent publications
and reviews, without considering the history of the problem.

2)We have in mind the (N = 4) supersymmetrical Yang-Mills theory (see
Ref. 3) and its generalizations of the soft-inclusion of mass type.4

3'The method of the inverse problem, hidden symmetry, and higher con-
servation laws in superspace for a supergravity-like (N=4) supersym-
metrical Yang-Mills theory are studied in Refs. 110,98,20,99, and 117.
The supersymmetrical formulation of this theory is given in Ref. 100.
The geometrical formulation of (N = 1) supergravity is given in Refs.
101 and 102.

4lMore precisely: if — Ak, k = 1,2,. . . , are the eigenvalues of the Laplace
operator with the Dirichlet or Neumann boundary conditions on an n-
dimensional compact Riemannian manifold with volume v, then the esti-
mate /lt >c, (fc A>)2/" holds for all k.'"

"Compact spaces with negative curvature appear in the spontaneous re-
duction of the theory with ghost fields.30

61 We note here that the existence of additional space-time dimensions in
the Kaluza-Klein approach into which an observer can be placed even in
an imaginary way, apparently opens up the possibility for a new interpre-
tation of quantum theory, different from the Copenhagen interpretation
and from Everett's interpretation.124

7'As an illustration we present the Maxwell equations in the language of
differential forms. We introduce the one-form A = A^ dx* and the two-
form F = (1/2 )/•„„ dx" A dxv. Then the relation F^ = d^Av- B^A^ is
written in the form/= dA. The equation d^F^ + d^F^v + dvF^ = 0
will have the form dF = 0, and the equation d^ F <™ = 0 is written in the
form d*F = 0, where *Fis the two-form dual to F. The Yang-Mills equa-
tions can be written in an analogous manner. The exterior product of
differential forms with matrix coefficients is formed according to natural
rules.

8)We shall use the notation of S. P. Novikov93; it is natural to denote by
d~' the operator inverse to the operator of exterior differentiation d.

"Freund126 proposed that the 10-dimensional superstring can be obtained
from the 26-dimensional boson string.

10)It has been hypothesized that the theory of interacting superstrings may
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