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A review of elementary-particle models based on low-energy supersymmetry is given. Supersym-
metry is used in these models to compensate the quadratic divergence in the radiative correction
to the mass of the Higgs boson in the Weinberg-Salam model and to solve the hierarchy problem
in grand unification theories. The standard low-energy SU(3) » SU(2)L ® U( 1) theory is re-
placed in this approach with the supersymmetric theory. A large number of new particles with
masses Mw is predicted. The properties of these particles and possible experimental searches for
them are discussed. Models based on different ways of supersymmetry breaking are considered.
The central place is given to models with supersymmetry breaking due to supergravity, which
have been particularly actively discussed in the last two years. Proton decay in supersymmetric
GUT models is analyzed. Introductory ideas on supersymmetry, necessary for the understanding
of most of this review, are presented in Section 1 and in the Appendix.
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1. INTRODUCTION

Different symmetries have always played a major role
in the development of elementary-particle physics. It ap-
pears that it all started with the good old isotopic symmetry
generalized by Gell-Mann and Ne'eman to SU(3) symme-
try—the so-called eightfold way. The next to appear was
chiral SU(2)L XSU(2)R symmetry, which lies at the basis
of current algebra. Local symmetries developed at the same
time: non-Abelian Yang-Mills theories grew out of the quan-
tum-electrodynamic U ( l ) theory, namely, the SU(2)L

X U (1) theory of weak interactions and the colored SU (3)
theory of strong interactions. The internal symmetries enu-
merated above stand under the umbrella of the Poincare
symmetry of space-time: all reasonable models of particle
interaction must be Poincare-invariant.

A. The Kaluza-Klein program

There has long been a tendency to erase the boundary
between internal and spatial symmetries. The first step in
this direction was made by Kaluza and Klein,1 who noted
that the local Poincare invariance of the extended (5-dimen-
sional) space-time can be implemented in the form of the
general covariance of the 4-dimensional manifold + elec-
trodynamics [local U( 1) invariance] in the same 4-dimen-
sional space. In the Kaluza-Klein approach, the "extra" di-
mensions were looked upon as compact, with a small radius
of the order of the reciprocal of Planck's mass. The symme-
tries of these compact manifolds show themselves, at dis-
tances much greater than their radius, as internal gauge sym-
metries (in the case of five dimensions, one of the "extra"
dimensions closes into a ring and leads to U( 1) electrody-
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namics; U(1)XU(1) symmetry can be realized in 6-dimen-
sional space and, possibly, SU(2) symmetry can be realized
by closing two extra coordinates into a sphere, and so on).
At Planck distances, dynamics is complicated. In particular,
states corresponding to motion in the inner space begin to be
excited and have masses of the order of Planck's mass (the
spectrum of these states is infinite).

The idea of geometrization of internal symmetries looks
particularly attractive at the present time, since additional
local symmetries arise naturally in the Kaluza-Klein ap-
proach and we know that gauge SU (3) X SU (2) X U (1) in-
variance lies at the basis of low-energy ( < 100 GeV) dynam-
ics. At first sight, rigorous geometrization a la Kaluza-Klein
is impossible for the following simple reason: only boson
fields can be obtained from the metric, while all matter that
surrounds us consists of fermions. This shortencoming of the
entire approach was pointed out by Pauli in his footnote to
the English-language edition of his book.2 But it is precisely
at this point that supersymmetry3 (SUSY) comes to our aid.
According to SUSY, each boson found in nature (or, more
precisely, in the fundamental Lagrangian of all fields and
interactions) has a corresponding fermion. Supersymmetry
extends the Poincare group and is, in this sense, spatial. Its
structure is most clearly defined in superspace which, in ad-
dition to the boson coordinates XM , contains anticommuting
(Grassman) fermion coordinates Oa. We thus have the basic
possibility of constructing all fundamental particles out of
the extended superspace metric. This path leads to consider-
able difficulties (in particular, it is difficult to obtain chiral
fermions4). Nevertheless, the program as a whole looks very
tempting and—this is an important point for us—SUSY is
the necessary component of modern attempts to construct
unified field theories according to the Kaluza-Klein recipe.

To avoid misunderstanding, we emphasize that the uni-
fied SUSY theory (./V=8 supergravity in 4-dimensional
space?) may turn out to have no relation to the Kaluza-
Klein program.

B. The problem of hierarchies

At the end of 1982 and the beginning of 1983, experi-
ments performed on the CERN collider resulted in the dis-
covery of the W and Z bosons. These are intermediate vector
bosons responsible for weak interactions, and their masses
(Mw = 80.9 ± 1.5 GeV, Mz = 95.6 + 1.4 GeV) are equal,
to within experimental error, to the values predicted by the
SU(2)L XU(1) theory of Glashow, Weinberg, and Salam.
In addition to the vector W and Z bosons, the
SU(2)L X U( 1) theory of weak interactions predicts the ex-
istence of a further type of particle, namely, the scalar Higgs
bosons (in the minimal variant, there is only one neutral
Higgs boson). The discovery of these particles is awaited
with even greater impatience than the discovery of the vector
bosons. Scalar fields are essential for SU(2)xU( l ) symme-
try breaking and the assignment of nonzero mass to the vec-
tor bosons in a renormalizable manner. At the same time,
elementary scalar fields lead to internal difficulties for the
theory. When radiative corrections are taken into account,
all the constants of the fundamental SU(3)

X SU ( 2 ) L X U ( 1 ) -symmetric Lagrangians are renormal-
ized logarithmically, which means that they are not very
sensitive to details of the dynamics at ultrahigh energies (of
the order of the grand unification mass AfOUM ~ 1015GeVor
the Planck mass M P ̂  1019 GeV). Actually, the constants
change only by a factor of a few units in the mass range 100-
1019 GeV. The so-called "decoupling" of low-energy and
high-energy parts of the theory takes place. The only excep-
tion is the mass of the scalar field, which is renormalized
quadratically, so that the nucleating mass ( ~ 100 GeV) ac-
quires the increment ~gMP and is pulled up into the high-
energy scale. At the same time, we recall that it is precisely
the negative quadratic mass of the Higgs field,
M\i -- (100 GeV)2, that gives rise to the SU(2) L XU(1)
symmetry breaking and determines the order of magnitude
of the W and Z boson masses. The fundamental Higgs field
of the Weinberg-Salam model disrupts the scale decoupling
and implicates the weak interaction in the Planck mass scale
(or the grand unification mass scale which is equally inad-
missible). This is the essence of the so-called "problem of
hierarchies." 5 In the theory involving the fundamental sca-
lar particles, mass hierarchy at the

g2- \Q-2<M\/M\ <g~2~ 102

level is natural, but the required hierarchy is

The masses of the spinorial particles are renormalized
logarithmically (the simple example is for the renormaliza-
tion of the electron mass in quantum electrodynamics). In
SUSY theory, the boson and fermion masses are degenerate
and there is no quadratic boson mass renormalization. This
is the supersymmetric version of the solution of the hierar-
chy problem.6 It has been under intensive investigation for
the last three years, and the present review is devoted to this
development. The cancellation of quadratic divergences in
SUSY theory occurs when the contributions of loops in
which bosons and fermions propagate are combined. SUSY
ensures that the moduli of the corresponding integrals are
equal and the fermion loops have the additional negative
sign because of Fermi statistics.

As already noted, in SUSY models, a boson corre-
sponds to each fermion, and vice versa. Each supermultiplet
contains an equal number of bosons and fermions. Unfortu-
nately, the known bosons (intermediate, vector, or Higgs)
and fermions (leptons and quarks) cannot all be fitted into a
single supermultiplet at the present stage of development of
the theory. The number of fundamental particles must be
doubled by associating a superpartner with each known par-
ticle.

Experiment shows no trace of the Fermi-Bose degener-
acy, and this means that realistic models must contain a
SUSY-breaking mechanism. Supersymmetry is introduced
to achieve a cancellation of quadratic divergences, and is
broken in order to describe the observed particle spectrum.
This should not be too worrying because the symmetry-
breaking idea has turned out to be very fruitful in particle
physics, the last example being the discovery of the W and Z
bosons. However, the following point is perplexing: while
the previously-introduced symmetries predicted the exis-
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tence of one or two new particles, the discovery of which was
regarded as a triumph, SUSY models involve, at a stroke, as
many new particles as there are old particles that we already
know. Nevertheless, we shall try to provide some justifica-
tion for the study of SUSY models. First, as we have already
said, SUSY extends the group of space-time transformations
and is therefore much more radical than internal symme-
tries. Second, SUSY is mathematically beautiful (it is some-
times compared with the beauty of non-Abelian gauge theor-
ies, which have completely changed the physics of
elementary particles during the last decade). Third, the lo-
cally implemented SUSY (and since we have the principle
that all fundamental symmetries must be local, it is natural
to apply it to supersymmetry as well) is the only internally
consistent theory of the interaction between point particles
with spin 3/2 (gravitino) and is the most promising candi-
date for the final theory of gravity (other theories of gravity
lead to uncontrollable divergences in loop corrections).
Fourth, the ultraviolet behavior of global SUSY theories is
much "softer" than that of ordinary field theories. We have
already encountered one example of this: the absence of qua-
dratic divergences in the mass renormalization of scalar par-
ticles. Another is the nullification in all loops of the Gell-
Mann-Low ^-function in a large proportion of SUSY
theories.7 Fifth, we recall the unification program for all par-
ticles and interactions according to the Kaluza-Klein mech-
anism with which we began this introduction. These argu-
ments are sufficient to lead us to a systematic study of SUSY
models of elementary particles and their predictions.

C. SUSY breaking

A SUSY-breaking theory is essential for the description
of the real world. It is expected of any breaking scheme that
the basic ad vantage of supersymmetry, namely, cancellation
of quadratic divergences between boson and fermion loops,
must remain in force. This cancellation must operate for
masses ~ 100 GeV, so that in all the SUSY models that will
be described, new particles will have masses characterized
by this scale. Some new particles occasionally turn out to be
much lighter, and have masses of the order of a few GeV.

Existing models employ three ways of supersymmetry
breaking: explicit soft breaking, spontaneous breaking of
global SUSY, and spontaneous breaking of local SUSY (su-
pergravity). In the first of these, the globally supersymme-
tric Lagrangian is augmented with terms that explicitly
break supersymmetry but do not lead to quadratic diver-
gences. In the second method, the Lagrangian has global
supersymmetry but the ground state is not supersymmetric,
and bosons and fermions belonging to the same supermulti-
plets have different masses. The third method is based on the
locally supersymmetric Lagrangian that includes both su-
permultiplets of matter and a supermultiplet of mutually
compensating fields (graviton with spin 2 and gravitino with
spin 3/2). The ground state is not supersymmetric and the
effective low-energy (</T/P ) renormalizable Lagrangian in-
cludes terms that produce soft supersymmetry breaking. A
detailed discussion of models using these methods will be
given below but, for the moment, we note that the first re-

quires a very artificial choice of parameters in the Lagran-
gian, the second involves light scalar particles, not observed
experimentally, and the third method enables us to construct
models that satisfy all the phenomenological requirements.
It is precisely models based on SUSY breaking by supergra-
vity (SUGRA) that are the most popular.

D. New particles

We shall now list the new particles introduced in SUSY
models, the experimental limits on their masses, and certain
possible searches for them. The superpartners of known par-
ticles have the same quantum numbers with respect to inter-
nal S U ( 3 ) X S U ( 2 ) L X U ( 1 ) symmetries and differ from
them only in their spins. As yet, there is no established ter-
minology. We shall identify them by adding the ending
"ino" and indicate them by the same letter as ordinary parti-
cles but with an added tilda. Quarkino is occasionally re-
ferred to as a squark, and leptino and higgsino as a slepton
and shiggs, respectively.

We begin with quarks. The left-handed quark qL and
the complex scalar quarkino qL are members of the same
supermultiplet (qL, qL) . This is referred to as a chiral super-
multiplet. The field qL describes two degrees of freedom: a
left-handed quark and an associated right-handed
quark: (qL) = (q)R. Two degrees of freedom also corre-
spond to the complex field qL (the superscript L is indicated
on the scalar field for convenience). The field qL is a member
of a weak isodoublet and has a triplet index with respect to
the color group and the same electrical charge as the spinor-
ial quark. A further chiral multiple! consists of the right-
handed quark qR and the right-handed quarkino qR: (qR,
q R ) . The chiral multiple! is indicated by an upper case letter,
for example, UR = (UR, UR ), QL = [ (UL, UL ), (dL, dL) ].

Chiral multiplets containing leptons have an analogous
appearance: ER = (eR, eR), LLE=[(VL, V L ) , ( e L ,e L ) ] .
Scalar leptons are collectively referred to as leptinos.

Gauge vector bosons are members of vector supermulti-
plets, for example, (y, y). The photino 7 is a Majorana
(real) spinor and has two degrees of freedom (yL and^R) in
the same way as the massless photon. Analogous vector su-
permultiplets form the octet of gluons g° and an octet of
Majorana gluinos g" (ga, g£ ), and the intermediate weak-
interaction bosons (W* , W± ), (Z, Z), where W± is the
W-bosino and Z the Z-bosino. We shall use the designation
"gaugino" for the superpartners of gauge bosons. Every-
thing that we have said above in relation to gluons and
gluinos is absolutely correct but, in relation to W ± ,Z, and y,
we have oversimplified the situation to some degree. The
point is that the Lagrangian contains as nucleating fields
three vector supermultiplets of the SU(2) group (W,, W,)
and the gauge hypercharge multiple! (B, B). These multi-
plets form an irreducible representation of the massless su-
peralgebra. The Higgs effect then takes place, and the field
must be classified in accordance with the representations of
massive superalgebra, which are formed by merging vector
supermultiplets with chiral Higgs supermultiplets. We now
proceed to the description of the latter.

Scalar Higgs bosons and spinorial higgsinos form chiral
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multiplets. In the Weinberg-Salam model with a minimal
Higgs sector, there is one weak Higgs isodoublet, namely,
(H°, H~). The corresponding chiral isodoublet is [(H°,
H°), ( H ~ , H ~ ) ] . A single chiral Higgs doublet is insuffi-
cient for a generalization of the SU (3) X SU (2) X U (1) the-
ory. This is most simply reflected in the way the charged W-
bosinos obtain their mass. In the Higgs effect, a massive
charged field W^ (six degrees of freedom) is obtained from
two massless vector particles W,M and W2/J (four degrees of
freedom), and this occurs at the expense of one complex
Higgs field. Two Majorana particles W, and W2 (four de-
grees of freedom) form two massive Dirac particles
(Wj+ and WjJ) (eight degrees of freedom), for which they
must merge with two charged higgsinos. Thus, the minimum
number of Higgs multiplets is two: H and H' = [(H+/,
H+'), (H0/, H0') ] (the charges of the H' are determined by
the requirement of the absence of triangular anomaly in the
hypercharge Y). The remaining charged scalar particle
closes the representation of the massive superalgebra:
(W + , W,+ , W + .JT-1-). Eight boson degrees of freedom
correspond to the eight fermion degrees of freedom. In the
limit of exact SUSY, the masses of all these particles are
equal. Neutral particles form three supermultiplets in the
limit of exact SUSY: the massless vector supermultiplet (y,
y), the massive vector supermultiplet (Z, Z, H) (H is one
neutral scalar field), and the chiral supermultiplet (<%*, <%*).

We have enumerated all the particles forming part of
the SUSY generalization of the standard SU(3)
X SU(2) X U( 1) model. As noted above, the number of par-
ticles has been doubled, and there are new physical Higgs
scalars as compared with the minimal set in the Weinberg-
Salam model. We now proceed to the experimental limits on
the masses of the new particles.

Charged scalar leptons must be created in pairs in e+e~
annihilation, with subsequent decay into leptons and pho-
tinos (Fig. 1). Experimentally, this event looks like an e~*~e~
annihilation into a pair of charged leptons (e+e~or/i+yu~)
with uncompensated total momentum. The absence of such
events leads to the lower bound for the leptino mass. For
example, analysis of the experimental data obtained on the
PETRA rings has yielded8 the following lower bound:
M-, > 17.8 GeV (assuming zero photino mass). The analo-
gous creation and subsequent decay of the quarkino leads to
the appearance of hadron jets with uncompensated pL,
which has produced the lower bound M^ > 20 GeV for the
quarkino mass.

The question is: can these limitations on the leptino and
quarkino masses be improved without raising the energy of
the e+e~ beams? It turns out9" that the answer is that this is
indeed possible. Figure 2 illustrates the creation of a single

.
>

FIG. 1. Creation and subsequent decay of the leptino.
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FIG. 2. Single creation of the electnno.

electrino. Such events were looked for on the PEP accelera-
tor at a total beam energy of ^/Ve- = 29 GeV. Assuming
that the photino rest mass was zero, it was found that9b

Mi > 22.4 GeV. The imminent commissioning of the SLC
accelerator at Stanford in the United States is expected to
result in the discovery of superpartners of ordinary particles
in e+e~ annihilation.

There are at present no experimental limitations on the
mass of the photino, which is not surprising because y is, in
many ways, similar to the neutrino: it has no electric charge
and a weak interaction (since it excites heavy intermediate
states). Thus, superparticles decaying into y have not as yet
been discovered, and experimental limits on its mass are still
awaited. There are only indirect limitations that follow from
cosmology and are analogous to the limitations on the neu-
trino mass. They are: m-7 < 100 eV or my greater10 than a
few GeV. If the mass of the photino were to lie in the forbid-
den window, there would be too many photinos after the Big
Bang, which would have an inadmissible effect on the dy-
namics of the expansion of the Universe (it would be too
young). As far as theoretical predictions are concerned,
models can be divided into two classes, namely, those with
light photinos with masses of a few GeV, and those with
heavy photinos with masses of about 100 GeV.

Gluinos interact strongly and should therefore be creat-
ed at a high rate in hadron-hadron collisions. Thus, in pp-
collisions, the principal source of gluinos is the gluon-gluon
annihilation (Fig. 3) where, because of color enhancement,
gluinos should be created ten times as frequently as quarks of
the same mass. Figure 4 shows the cross section for the pro-
duction of gluinos in pp-collisions. If the photino is lighter
than the gluino, the decay of the gluino (or, more precisely,
of the new hadrons containing the gluino) should produce a
quark-antiquark pair and a photino (Fig. 5). The lighter
hadrons containing the gluinos are the fermions (gg) and
(gqq). If we neglect the photino mass, we find that the life-
time of the lightest gluinoball is

Photinos formed as a result of the decay of the gluino pro-
duce an excess of neutral currents in beam-dump experi-
ments. These experiments show that11 mg>2-3 GeV.
Further progress in obtaining the limitations on mg (and,
possibly, the discovery of the gluino) may come as a result of
the analysis of jet creation in the CERN pp-collider, or in
other new-generation hadron machines. Another possible
source of the gluino is the decay of the 3P, state of (bb)
quarkonium into the gg pair and a gluon.12 The theoretical
predictions for m8 are also very uncertain and range from a
few (10?) GeV to 100 GeV.
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FIG. 3. Creation of the gluino in pp-collisions.

We now turn to the W-bosino. Weinberg13 has noted
that, under some very wide assumptions with regard to the
SUSY-breaking mechanism, one charged Dirac particle
turns out to be lighter than the W boson. If, in addition, the y
contributes a few GeV, then W * —»• W ± y decay becomes
allowed. Weinberg has found13 that r(W-»-WJO/
T(W—»ev) =0.6. Since about 100 decays of the form
W—>• ev have been seen in the CERN collider, the discovery
of the W—>• W)/ decay seems possible. Unfortunately, the sig-
nature of this decay is much poorer than that of W—»• ev
because W decays into evy and the electrons are found to be
relatively soft. If the phase space is available, the relative
decay probabilities T( W ± -*W± Z°)/r(W± -^e* v) and
p (Z0^-W+W ~)/r (Z°^ e+e ~) turn out to be of the order
of unity.l4 The only question is whether the Z-bosino and the
W-bosino are light enough.

E. Decay of the proton and the EDM of the neutron

Apart from a direct experimental confirmation of low-
energy SUSY, i.e., the discovery of one (or, better still, sev-
eral) of the above particles, indirect evidence for it is also
possible. We shall consider two sources of such evidence,
namely, the decay of the proton and the electric dipole mo-
ment (EDM) of the neutron. Standard grand unification
schemes are dominated by the proton decay mode p—*e+w0.
This type of decay has not been seen experimenally at a level
corresponding to TP < 1032 y, which is an argument against
the simple grand unification scheme which predicts that
rp-^7r° = 1028± 2. In supersymmetric grand unification
models (SUSY GUT's), the predicted proton decay is rather

FIG. 5. g—> ppy decay.

different. The unification mass is greater because of the pres-
ence of a large number of new light particles (MOUM ~ 1014

GeV, AfSUM~1016 GeV), which leads to the lifetime
Tp-~e+-n» ~ 1034 y. i-e-> a figure that lies outside the limits of
experimental possibilities. At the same time, a new proton
decay mechanism15'16 appears and is due to 5-dimensional
operators. This decay occurs as a result of single-loop graphs
in which the higgsino propagates. The decay of the proton
through 5-dimensional operators was investigated in Refs.
17-20. It was found that the dominant mode was p—» K+v,
and the corresponding lifetime could be ~ 1030 y for a rea-
sonable choice of the parameters of the theory. This mode is
difficult to detect experimentally and it is easier to look for
p—>• K°fi+ decays. The 5-dimensional operators also lead to
the decay to KV+, but

T(p-» KV + )/r(p-+ K+v) ~ ID"3,

i.e., the discovery of the p—»• K°/x+ decay and the absence of
the p—»• K+v decay, which is more likely by a factor of about
1000, would signify that the operators with d = 5 bear no
relation at all to this decay. In the standard model, there is a
source for the p—»• K°/z + decay, namely, a tree graph involv-
ing the exchange of the triplet of colored Higgs bosons. If, for
some reason, the triplet Higgses were to turn out to be light
(AfH3~10n GeV), they should induce the decay of the pro-
ton into K°fi+, K+vM in a time of ~ 1030 y. The difference as
compared with decays due to the d = 5 operator is that, in
the nonsupersymmetric scenario, we have

a* , GeV
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FIG. 4. Cross section for gluino production in pp-collisions as a
function of their mass for different proton energies. 1—SPS, V7
= 28 GeV; 2—Tevatron, 4s = 45 GeV; 3—SPS-collider, Js
= 540 GeV; 4—Tevatron, collider, Vs = 2000 GeV. The qq-

annihilation must be taken into account in the case of the pp-
collider, so that curves 3 and 4 must be regarded as the lower
bounds for the cross section.
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In the standard SU(3) XSU(2)xU( l ) model, there
are two sources of the neutron EDM, namely, the CP-odd
phase in the Kobayashi-Maskawa matrix and the #-term.
We shall assume that the effect of the 0-term is annulled by
the presence of an axion, or for some other reason. The Ko-
bayashi-Maskawa phase leads to21 dn ~ 10~32 e-cm, whereas
the modern experimental limit is22 dn <6x 10~25 e-cm. In
models with low-energy symmetry, there are new sources of
the CP-odd phase that lead to EDM values at the level of the
experimental limit.23"26 Of course, the experimental confir-
mation of a nonzero EDM for the neutron would not be an
unambiguous confirmation of SUSY: it can always be said
that 6 ~ 10 ~ 9 (for which da ~ 10 ~25 e-cm).27 However, such
a low value of 0 is not natural, and since 8~ 1 is natural but
does not occur, there must be some ̂ -screening mechanism.

Our plan of presentation from now on is as follows. Sec-
tion 2 gives general information about supersymmetry. An
attempt has been made to make this review accessible to the
reader who has not studied supersymmetry previously. The
same purpose is served by the Appendix, to which all techni-
cal details have been relegated (this Appendix should be
studied before reading the main part of this paper, contained
in Sections 3-5). Section 3 discusses the mechanisms re-
sponsible for global SUSY breaking and models based upon
them. The conclusion that follows from this section is mostly
negative: it has not been possible to construct a phenomeno-
logically acceptable model. Nevertheless, this material is
presented not for historical reasons but because (a) sponta-
neous global SUSY breaking is of fundamental interest and
deserves special examination and (b) in the only reasonable
models with spontaneous breaking, based on geometric hier-
archy, one can see the necessity for taking into account su-
pergravity effects (SUGRA). On the other hand, when we
present the SUGRA-based models in Section 4, we shall see
how to solve problems that arise in models with spontaneous
or explicit breaking. Finally, Section 5 discusses grand unifi-
cation and proton decay in SUSY models. The SUSY break-
ing mechanism due to SUGRA, which is presented in Sec-
tion 4, can be generalized readily to unified models, but a
"natural" unified theory, whose Lagrangian does not con-
tain the two scales Mavr and M w, is still to appear.

There are two lines of research discussed intensively in
the literature that touch upon the theme of this review which
we shall mention but will not discuss in detail. These are,
first, the attempts to construct a realistic SU(3)
XSU(2)XU(1) model starting with N= 1 supergravity
and using spontaneous compactification from spaces of
higher dimensionality (cf. the review of Ref. 28) and, sec-
ond, the use of supersymmetry in constructing light compos-
ite quarks and leptons.29

We conclude this introduction by listing the authors of
reviews that will be helpful in studying supersymmetry: V. I.
Ogievetskii and L. Mezincescu; P. Fayet and S. Ferrara; and
A. Salam and J. Strathdee.30 These reviews are concerned
with global supersymmetry. Supergravity is reviewed by Pe-
ter van Nieuwenhuizen31 (see also the popular paper by D.
Friedman and van Nieuwenhuizen32). Finally, there is a
number of books that can be read by beginners.33

2./V= 1 SUPERSYMMETRY

A. Uniqueness of SUSY; algebra

The symmetry of different models of elementary-parti-
cle interaction always takes the form of a direct product of a
group of internal symmetries and the Poincare group. A the-
ory with a simple symmetry group, in which internal sym-
metry is "built into" space groups, would be more attractive.
The geometry of space-time would then dictate the dynam-
ics, imposing stringent restrictions on the form of the theory.
Attempts to construct theories of this type have led to the
proof of the so-called no-go theorems,34 which state that, in
theories involving interactions in 4-dimensional space, the
Poincare group can be extended only in the form of the direct
product with the group of internal symmetries. The point is
that the Poincare group guarantees the conservation of the
total momentum and the angular momentum in the interac-
tion process. Its extension by tensorial generators would re-
quire the conservation of tensorial quantities that are differ-
ent from the sum of angular momenta and momenta. The
corresponding conservation laws can be satisfied only by re-
quiring the conservation of the momenta of individual parti-
cles in the scattering process, and this means the absence of
scattering, i.e., the absence of interaction in the system. The
only exception from the no-go theorems is the extension of
the Poincare group by generators with Lorentz spin 1/2. If,
at the same time, the (anti) commutator of these generators
is proportional to the 4-momentum, the realization of this
symmetry does not require additional conserved tensorial
quantities, and the theory can be self-consistent and can in-
clude interaction terms. This type of construction is called
N =\ supersymmetry.3 If there are N spinorial generators,
we have extended supersymmetry.

The algebra of extended supersymmetry is specified by
commutators of the generators P^ , M^v and Q'a ( Q 'a are the
Majorana spinors and a = 1, . . . , 4, / = 1, . . . , N). The
commutators of P with P, M with M, and P with M are the
same as in the ordinary Poincare group, so that we repro-
duce only the commutators that include the spinorial
charges Q:

where affv = (yffyv — YvY^
that the spin Q'aisl/2 and

/2. This commutator shows

(2.2)

which means that Q 'a is constant in space and time. More-
over,

(2'3)

where Q'a = (Q'Yo)a- The appearance of the anticommu-
tator in (2.3) is due to the fact that the Q 'a are spinors.

In mathematics, the above construction is called a Lie
algebra with Z2 grading or a Lie superalgebra. The math-
ematics of superalgebras is considered in Berezin's mono-
graph.35 For N> 1, the right-hand side of (2.3) may contain
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scalar operators that are antisymmetric in /,/ These are the
so-called central charges.36

B. Representations of superalgebras

To construct supersymmetric models, we must know
the irreducible representations of superalgebras. We shall
systematically examine the N= I case and then give two
examples of representations of extended superalgebras. The
representations of superalgebras are discussed in greater de-
tail in the review by Fayet and Ferarra.30

We begin by considering a massive superparticle. Let us
take a coordinate frame in which it is at rest: P^ = (M, 0).
The anticommutator (2.3) is written for the Majorana 4-
component real spinor Q. We now transform to the two-
component complex Weyl spinors:

(2.4)

With suitable normalization, the commutation rela-
tions for these quantities have the form

CC 3 P Ctp

The algebra defined by (2.5) is the same as the algebra of
creation and annihilation operators in quantum-field the-
ory, and the irreducible representations are constructed in
the usual way. The "vacuum" is taken to be the state of one
particle at rest: |ft> = \J, J3, M }. We then have

The irreducible representation has the form

|/, /„ «„ B,, M> = <?r<?Sa|Q>. (2.7)

Possible values of (»„ n2) are: (0,0), (1,0), (0, l ) , a n d ( l ,
1 ) . This representation has the dimensionality of 4(27 + 1 ) .
Its decomposition over states with definite spin has the form

(j-~, M) x 2 ( J , M)x (J + -Y, M ] . (2.8)

As expected, the number of boson and fermion degrees of
freedom is the same.

Consider two examples. The vacuum state has
/ = O.The superparticle consists of the scalar complex parti-
cle and a particle with spin 1/2. The next possible case is
/= 1/2. The superparticle consists of two particles of spin
1/2 (one vector and one scalar particle).

We now turn to massless particles. In the coordinate
frame P^ = (E, 0, — E, 0), we arrive at the following alge-
bra:

—— — — f f+ « •.

(<?2i Q-}={Qz, <?•} = {<?!, Q~} = o. (2-y)
If we take as the "vacuum" the state of the particle with

particular helicity |ft) = \J, A }, we obtain from it a single
state with nonzero norm: Q^fl). The states Q2\fl) and
Q2Q\\&} have the norm 0. In CPT-symmetric theory, the
irreducible representation of the superalgebra for the mass-

In realistic models, there are massless gauge bosons
which form a (massless) supermultiplet with a spin 1/2 par-
ticle (gaugino). The vector boson acquires a mass as a result
of the Higgs-Kibble eifect, and should transform in accor-
dance with the representation of the massive algebra. This is
achieved by combining the massless vector multiple! with
the chiral Higgs multiple! (containing both the complex sca-
lar particle and the spinorial particle). The supermultiplet
contains one vector, one Dirac particle, and one real scalar
particle. In the limit of unbroken supersymmetry, all these
particles have the same mass.

Let us now consider examples of representations of ex-
tended supersymmetries. The N = 4 Yang-Mills theory
(maximum spin 1) is widely discussed in the literature. We
start with one vector meson. Generalizing (2.9) with the aid
of (2.3) in the case of extended supersymmetry, we find that
the multiplicity of states with helicity S is equal to the num-
ber of combinations of ./V elements 2(J — S) at a time:

/2 ( / -S ) \
\ N r

less particle contains the four states
2)).

+ A ) and + (A + I/

Thus, in this theory, there is one particle with spin 1, four
particles with spin 1/2, and six real scalar particles. We note
that we shall obtain a CPT self-adjoint multiplet. Each parti-
cle is in the associated representation of the gauge group,
which in fact determines the dynamics of the model. Apart
from the N = 4 Yang-Mills theory, the self-adjoint multiplet
is also obtained in the N = 8 theory with maximum spin 2.
The multiplicity of states in the ./V = 8 theory is: 1 particle
with spin 2, 8 with spin 3/2, 28 vector particles, 56 spinorial
particles, and 70 real scalars. This theory thus actually
claims to be a unified theory of all particles and interactions,
including gravity. Theories with N>% have not been exam-
ined because a self-consistent description of interacting
point masses with spin 5/2 or above does not exist.

In models based on N = 1 SUSY, examined in Sections
3-5, we use mostly two types of representation, namely, the
chiral multiplet that includes the spin 1/2 Weyl particle and
a complex scalar, and a vector multiplet consisting of a vec-
tor particle and a spin 1/2 Majorana particle. In the models
discussed in Section 4, based on SUSY breaking by supergra-
vity, we use the further gravity supermultiplet containing a
spin 2 graviton and a spin 3/2 gravitino.

C. Special role of N = 1 theory

There are experimental indications that, if low-energy
(~ 100 GeV) physics is described by a supersymmetric the-
ory, it must be based on N = 1 supersymmetry.37 Let us sup-
pose that 7V>2. In that case, we have a supermultiplet con-
taining left-handed quarks (or leptons) and right-handed
quarks (or leptons) or vector particles. All the members of
the supermultiplet have the same quantum numbers with
respect to internal SU(3) XSU(2) XU( 1) symmetries and,
as we know, left-handed particles are doublets in SU(2),
right-handed particles are singlets, and vector particles are
either triplets or singlets, so that we must confine our atten-
tion to TV = 1 SUSY. The question is whether the following
scenario is possible: there is extended supersymmetry at high
energies, which breaks down at a certain intermediate mass
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scale (i (Mw <u<A/P ) to TV = 1 SUSY. It turns out that the
answer to this question is "no," and this follows37 from the
anticommutator (2.3). Let us multiply the right- and left-
hand sides of (2.3) by y0, take the trace, and consider ele-
ments diagonal in i,j\

P0=SQ» = QI=,,. . (2.10)

If we take the vacuum average, we find that, if a particu-
lar supersymmetry is broken (0|2?|0) ̂ 0, all other super-
symmetries will also be broken. When gravity is taken into
account, this ceases to be valid and the following (and very
attractive) variant becomes possible: extended (say, N= 8)
supergravity breaks down to N = 1 at the Planck scale, and
N= 1 SUGRA breaks down at the intermediate scale

, inducing low-energy softly extended N = 1 glo-
bal SUSY, which does not allow the ~ 100 GeV scale to be
"pulled-up" as a result of radiative corrections.

D. Cancellation of quadratic divergences in SUSY QED

We have already frequently mentioned that the basic
reason for turning to SUSY models is that they produce a
cancellation of quadratic divergences in radiative correc-
tions to the masses of scalar particles. Let us consider this
cancellation in the simple example of supersymmetric Gol'-
fand-Likhtman electrodynamics (which, historically, was
the first SUSY theory considered in the literature).3

Single-loop electrodynamic corrections to the mass of a
scalar particle are shown in Fig. 6a and b; they have a qua-
dratic divergence. The question is: what happens in the su-
persymmetric generalization of the theory? The vector mul-
tiplet then contains both the spin 1/2 photon and the
photino: (y, y) . The superpartner of the complex scalar par-
ticle H is the spin 1/2 higgsino H. Together, they form the
chiral multiple! (H, H). The SUSY QED Lagrangian isu

X =-J- J d*8 [HWH\ + {4 J d26+ [WaW«] + c.c. } .

(2.11)

(This theory is not, strictly speaking, self-consistent: it con-
tains a triangular Adler-Bell-Jackiw anomaly. The anomaly
can be obviated by introducing a further chiral multiplet of
opposite charge, but thic is not necessary in the present con-

H H H

a -1

H H

b 4

H
/•"N

I >

__A-i___

H H

d ^

FIG. 6. Diagrams describing the renormalization of the mass of a scalar
particle in SUSY QED. The coefficients of the term (g 2/l6n2)\2H*H,
obtained when the diagrams are evaluated, are shown under each dia-
gram.

text.) The diagrams shown in Fig. 6 c and d appear in addi-
tion. We now reproduce the vertices that are contained in
(2.11) and are necessary for the evaluation of these dia-
grams:

Just as the photon transforms H into H (and H into H) with
a gauge constant g, so, by analogy, a photino with the same
constant transforms H into H. The Yukawa interaction with
a gauge coupling constant appears in the theory.

—i-£2(#*ff)2. (2.13)

This interaction appears when we solve the Lagrange equa-
tion of motion for the auxiliary field of the vector multiplet
D:

±D* + gH*DH - gH*H,

(2.14)

The universal four-boson interaction with coupling constant
g2 appears in the theory.

The quadratic divergence cancels out when the graphs
of Fig. 6 are summed.

3. MODELS BASED ON SOFT AND SPONTANEOUS SUSY
BREAKING

A. Necessity for Higgs multiplets

The particles that appear in SU(3)XSU(2)XU(1)-
SUSY models were listed in the Introduction. The SU(2)
composition of the first family is

, E&. (3.1)

The upper-case letters represent chiral multiplets. Instead of
right-handed particles, we use the complex conjugate multi-
plets because it is convenient to use multiplets of a particular
chirality (see Appendix) when we write down the SUSY
Lagrangians.

At first sign, the most economical approach would be to
make the scalar components of the chiral multiplets of
quarks or leptons play the role of Higgs bosons. Actually, the
SU(3)XSU(2)XU(1) quantum numbers of the doublet
( v, e)L are the same as the quantum numbers of the Higgs
doublet in the Weinberg-Salam model. The arguments
against the Higgs interpretation of the doublet (v, e)L are as
follows. The vacuum average <v) is not sufficient to give a
mass to the up and down quarks in a supersymmetric man-
ner. We recall that, in the Weinberg-Salam model, it has
been possible to use only one Higgs doublet by exploiting the
C-conjugate doublet:

~^ (ud)£dRe (*!)*, (3.2)

where

The vacuum average (v) in the supersymmetric model
can be used to generate the masses of the down quarks:
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(3.3)

However, the rule for writing down the supersymmetric
Lagrangians (F component of the product of chiral super-
fields of a given chirality) forbids the use of the C-conjugate
doublet Lf =LJ[. The presence in the Lagrangian of terms
such as (3.3) implies a number of possible pitfalls.16 For
example, if we admit the further term

A£ = /[tfR0f,0f,]F, (3.4)

the interactions (3.3)-(3.4) will lead to proton decay due to
the operators

* =*. ^Yo-^

^-e]. (3-5)

The masses of the superpartners of ordinary particles (in-
cluding d) are ~ 100 GeV (this is necessary for the cancella-
tion of the quadratic divergences at momenta greater than
1/^jGp ), theconstant/is/~mq/(v), and the proton decay
turns out to be too rapid.

The foregoing discussion shows the necessity for special
Higgs supermultiplets. Supersymmetry then serves only as a
moral justification for the introduction of scalar particles.
At the present level of development of the theory, it is not
possible to consider the Higgs scalars as the superpartners of
known particles.

The minimum set of Higgs particles consists of two
chiral isodoublets

H» (.3.6)

where, for example, H?. = (H°, H£), H£ is the Weyl fer-
mion, and H° is the complex scalar field. The vacuum aver-
ages (H°) and (H'°) generate the masses of the W and Z
bosons, the quarks, and leptons. Models with 4-doublets of
higgses are occasionally considered. The chiral Higgs doub-
lets are introduced in pairs with opposite hypercharges in
order to cancel triangular Adler-Bell-Jackiw anomalies in
the U( 1) hypercharge group.

The Lagrangian in the SU(3)xSU(2)xU( l ) SUSY
model contains kinetic terms for the vector (g, W, and B)
supermultiplets and chiral supermultiplets of matter [ex-
tended in a superinvariant manner to ensure SU(3)
X S U ( 2 ) x U ( l ) in variance]. Moreover, there are super-
generalizations of the Yukawa couplings which generate the
quark and lepton masses. For the first generation, they are

•c. (3.7)\" /
It is also necessary to write down the supersymmetric inter-
action between the Higgs fields that ensures nonzero values
of(H°) and (H'") at the minimum of the scalar-field poten-
tial. We shall not pause to consider this problem (it can be
solved) but, instead, turn to the examination of SUSY break-
ing. The appearance of the terms (3.3) and (3.4) in the La-
grangian can be avoided by demanding invariance under

sign reversal in front of all the quark and lepton superfields.
Unfortunately, this discrete symmetry must be elevated into
a fundamental principle when the SUSY generalization of
the SU (3) X SU (2) X U (1) theory is constructed.

B. Operators producing soft SUSY breaking

The model described at the end of the last section has
one important deficiency: it suffers from the Bose-Fermi de-
generacy of the spectrum, which is in clear contradiction
with experimental data. We thus arrive at the following
question which is the most crucial for all SUSY models: how
can supersymmetry be broken? The simplest way is explicit-
ly to introduce further terms into the Lagrangian, which
produce heavier superpartners of ordinary particles. The
authors of Refs. 38 and 39 chose this particular path. It is
then important to check that the terms introduced into the
Lagrangian do not spoil the cancellation of quadratic diver-
gences (this type of SUSY breaking is referred to as "soft").
Terms whose explicit introduction into the SUSY Lagran-
gian does not result in quadratic divergences are listed in
Ref. 40.

According to the results reported in Ref. 40, the intro-
duction of operators of dimensionality 2 (scalar-particle
mass terms) into the SUSY Lagrangian is soft. Caution has
to be exercised with operators of dimensionality 3: the mass
terms corresponding to spinorial particles from vector mul-
tiplets are soft, whereas the mass terms corresponding to
spinorial particles from chiral multiplets generate quadratic
divergences. Let us decompose the scalar field from the
chiral multiple! into real and imaginary parts: Z = A + IB.
The operator Z 3 +Z* 3 is then also soft, i.e., the term
W (Z,) + W * ( Z f ) , where Wis the superpotential, can be
added to the Lagrangian. Let us illustrate the foregoing by
considering the example of a nonsupersymmetric addition to
the mass of a spinorial particle from the chiral multiple!.
This operator is hard, which can be seen in the appearance of
the quadratic divergence in the sum of graphs of Fig. 7. In
the supersymmetric theory, the masses of the virtual boson
and fermion are equal to M. The three-boson vertex of Fig.
7b is proportional to the same mass M. The quadratic diver-
gences in the sum of graphs of Figs. 7a and b cancel out. The
introduction of the nonsupersymmetric addition Aw to the
mass of the fermion prevents the cancellation of the quadrat-
ic divergence. By inverting the foregoing, we can demon-
strate that the operator Z *Z 2, which generates the three-
boson vertex of Fig. 7b, is hard.

C. Arguments against models with explicit breaking

There are three arguments against models with explicit
breaking. First, there is the esthetic argument: explicitly
nonsymmetric terms in the SUSY Lagrangian are repug-

FIG. 7. Diagrams demonstrating the hardness of the nonsupersymmetric
operator Am^tA.
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FIG. 8. Graphs for the K° — K° transition in the standard theory (a) and
additional graphs that appear in SUSY models (b).

nant. Second, such models have low predictive power. The
masses of all the new particles introduced in SUSY models
with explicit breaking (quarkino, leptino, gaugino) are free
parameters. The third argument relates to neutral currents
with a change in strangeness.41 In the standard theory, the
K° — K0 transition, which determines the mass difference
between the KL and Ks mesons, is described by the graph of
Fig.Sa. As a result of GIM cancellation, the amplitude for
the K° — K° transition is of the order of (m2 — ml )/M%,
(the contribution of the heavy f-quark is suppressed by the
small Kobayashi-Maskawa angles and is of the same order as
for the c-quark). The additional diagram of Fig. 8b appears
in the SUSY theory. To achieve agreement with experiment,
we must have a SUSY GIM cancellation, i.e.,
ml - ml sm2. Since m?, ml > (20 GeV)2, such a small dif-
ference between the scalar quark masses, introduced into the
Lagrangian "by hand," looks very unnatural. On the other
hand, it is natural to introduce terms such as WRC R , which
are off-diagonal in flavor. The quarkino mass terms are then
diagonalized by matrices that differ from the matrices that
diagonalize the quark mass terms, and off-diagonal neutral
currents with gluino emission are found to appear. In the
diagram of Fig. 8b, gluinos can propagate along the inner
fermion lines, and down quarkinos along the boson lines.
The strong coupling constants gs appear at the vertices, and
this leads to still more stringent conditions on the degener-
acy of quarkinos belonging to different generations.

We thus arrive at the following requirement: the mech-
anism responsible for the generation of quarkino masses in a
realistic SUSY model must be "flavor-blind," i.e., it must
produce equal quarkino masses for equal quantum numbers
that differ only by the flavor.

D. Spontaneous SUSY breaking2'

Spontaneous SUSY breaking can be analyzed with the
aid of the scheme that is well known in the case of the sponta-
neous breaking of internal symmetries. If the vacuum of the
theory is supersymmetric, then Q |0) =0 and SUSY is un-
broken. If, on the other hand, Q |0> ̂ 0, SUSY is broken.
Since H = Q2 [this is a key equation in the theory of sponta-
neous SUSY breaking and is obtained by multiplying both
parts of the anticommutator (2.3) by y0 and evaluating the
trace], the order parameter of the globally supersymmetric
system is the total energy. If the ground-state energy is zero,
SUSY is unbroken and, when it is greater than zero,
(H = Q 2>0), SUSY is broken.

The scalar-particle potential in a system of chiral multi-
plets interacting with one another and with the vector multi-
plets in a gauge manner has the form
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i i

where, in the case of U( l ) symmetry, we must replace
tr D ](A K ) with ( l/2)/> J,(1) (A K ). There are two mecha-
nisms for spontaneous SUSY breaking: ( F j ( A K ) ) ^ Q
(O'Raifeartaigh-Fayet mechanism) and Dj(AK)^0 (Ilio-
poulos-Fayet mechanism ) . SUSY breaking due to a nonzero
Z)-term requires the presence in the theory of gauge U( 1 )
symmetry. Let us consider two examples illustrating sponta-
neous SUSY breaking.

(1) SUSY breaking by the Illopoulos-Fayet U(1 ) D-term

Consider the simple example of the supersymmetric
GoFfand-Likhtman electrodynamics. The composition of
the field is: V=(y, y, D) — vector multiple!, 5L=(5', ̂ s,
Fs )— chiral multiple! of charge Q = + 1, TL

= (T,iftT, FT)— chiral multiple! of charge Q= - 1. The
two multiplets with opposite charges are necessary for the
cancellation of the U( 1 ) anomaly. The supersymmetric La-
grangian is

.c.

(3.9)
where g is a parameter with the dimensions of GeV2, and the
term £[ V]D is added to generate supersymmetry breaking.
Let us rewrite the Lagrangian (3.9) in terms of the compo-
nents:

c.c. (3.10)

Solving the algebraic Lagrangian equations for the auxiliary
fields D, Fs, and FT, we obtain the following expression for
the potential energy of the scalar fields:

V(S, T) = ±D*(S, T)+\FB(S, T)\*+\FT(S, T)\*.

(3.11)

According to the foregoing, the case V = 0 corresponds to
unbroken supersymmetry and F>0 to broken supersym-
metry. For supersymmetry breaking, the set of equations

D(S, T) = 0,
(3.12)

must be incompatible. Substituting in ( 3. 1 1 ) the expressions
for the auxiliary fields in terms of physical fields, we obtain

(3.13)

When £ jt 0 and m ̂  0, the set of equations given by (3.12) is
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incompatible, i.e., supersymmetry is broken. Let us examine
the spectrum of the model. Let gg<m2, in which case,
(S) = (T) = 0 and the gaugeU(l) symmetry is not broken:
Mr = 0, (Fs } = (FT ) = 0, (D ) = £. Spontaneous breaking
of Bose symmetry can be produced with the aid of the mass-
less spin zero Goldstone particle and, similarly, in the SUSY
case, there is the spin 1/2 massless goldstino. In the model
we are considering, the photino y plays the role of the gold-
stino, M~y = 0. The fields ̂ SL and \!>TL form the Dirac spinor
X = i//s^ + I//TL, Mx = m. The two complex scalar particles
S and T have the following masses:

m2
s = m2 + gg, m2

T=m2- gg.

Since S and T have charges of different sign (this is the neces-
sary condition for the cancellation of anomalies), their
masses diverge in opposite directions from the mass of the
spinor field x-

Let us now consider the case where gg>m2. We then
- In this case, both su-have <5 > = 0, < T ) =

persymmetry and gauge U( l ) symmetry are broken.
{ FT) = 0, (Fs > = - «VOj|-»»W. (D ) = m2g. The
spectrum contains the massless goldstino

The combination of y and ̂ s that is orthogonal to the gold-
stino forms together with I(IT the Dirac spinor x of mass

The mass of the vector meson is— m
MA = \J2gg — 2m2 . The complex scalar field 5 has the mass

Ms = >/2w , and the mass of the physically real field T is
MT = - 2m2 .

Let w = 0. Supersymmetry is then unbroken and U( 1 )
symmetry is spontaneously broken. The two massless super-
multiplets (chiral T and vector V) form one massive super-
multiplet: (A^ ,x, T). The masses of all the supermultiplet
members are equal to i

(2) SUSY breaking by the F-term

Consider the set of interacting chiral fields without
gauge interactions. The scalar field potential is then the sum
of the squares of the 51 terms, and the energetically most
convenient supersymmetric vacuum state is present if the set
of n algebraic equations with n unknowns, Ft (AK) =0, has
a solution. The only way to produce SUSY breaking is to
obtain a degenerate set of equations. The minimum condi-
tion for this is that at least one combination of the vacuum
average of the scalar fields remains undetermined at the tree
level. The minimum number of chiral multiplets necessary
to achieve spontaneous breaking is three. ^

Consider the set of chiral fields A , B and X, described by
the following superpotential:

W(A, B, X) =

The equations

(3.15)

From (3.15), we obtain the potential energy of the scalar
fields:

V (A, B, X) = A/M2 + X2 (A2 - (i2)2 + (MB + 2KXA)*.
(3.17)

LetM2 > 2A V- Wethenhave (A ) = 0, (B ) = 0,and (X) is
undetermined in the tree approximation. FA = FB = 0,
(Fx > = — A//2 and ̂  is the goldstino. In the tree approxi-
mation, the model contains the massless scalar field X. If
M2 < 2A V, then (A > = VM" - (M V2A 2 ) . The vacuum
averages of the fields B and X are separately undetermined
and only their ratio is determined:

(B) 2A, , .,

FB = — MA = 0, Fx = - K (A2 - n2) = 0 (3.16)

are incompatible: supersymmetry is spontaneously broken.

( /?Y> = J^l, <FA> = 0. (3.18)

The mass of the field 2A.(A)B — MX is zero in the tree ap-
proximation. The wave function of the goldstino has the
form

Thus, when supersymmetry is broken by the O'Raifear-
taigh mechanism, the spectrum contains both the massless
fermion (goldstino) and the scalar field—the superpartner
of the goldstino—which is massless in the tree approxima-
tion.31 Its vacuum average is also undetermined by the poten-
tial. Radiative corrections determine the vacuum average of
this field and its mass.

E. Attempts to construct models with spontaneous SUSY
breaking at the scale of 100 GeV

Let us now construct a model based on spontaneous
SUSY breaking. We shall suppose that, in the ground state,
the F-term of one chiral field (we shall denote it by the letter
A) is different from zero. We shall consider which nonsuper-
symmetric additions to the spectrum will produce (FA > ^0.
Suppose that the superpotential contains the term
A W = A B2. The field B will then contain the nonsupersym-
metric mass terms b.3? = {FA)[(Re B)2 — (Im B)2].
Thus, the complex scalar field B splits into two real compo-
nents. The mass of one of them is greater than the supersym-
metric value, and the mass of the other is smaller by the same
amount. The mass of the spinorial field tf>B remains unal-
tered and is equal to the supersymmetric value. It is clear
that this mechanism is unsuitable for a realistic model. Actu-
ally, if an attempt is made to make the electrino e heavier by
introducing a nonzero F-term of some auxiliary field, a sca-
lar charged particle with a negative squared mass is found to
appear, i.e., the condensate of this field destroys electric
charge. Thus, spontaneous SUSY breaking by the O'Rai-
feartaigh-Fayet mechanism does not provide us with a way
of constructing a realistic model.

Another SUSY-breaking mechanism at our disposal is
the Iliopoulos-Fayet mechanism. This requires local U ( l )
symmetry in the theory. The standard model does have this
symmetry—it is the U ( l ) group of hypercharge. We shall
show that it cannot be used to construct a realistic model.
The vacuum charge(Dy)^0 leads to nonsupersymmetric
mass terms: AJ^ = 2.tgAA f A , (D ), wheregA is the hyper-
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charge of the fields A,. The fields «£ and d | have different
hypercharge signs, i.e., M2.^ < -2 (20GeV)2 is obtained
simultaneously with A/?. > (20GeV)2, the field tig falls
out into the condensate, and the electric charge and color are
destroyed. The conclusion that, in the standard SU(3)
X SU (2) X U (1) model, spontaneous SUSY breaking neces-
sarily leads to the existence of scalar particles that are lighter
than the spinorial superpartners, is referred to in the litera-
ture as the Fayet-Dimopoulos-Georgi theorem.42'39

To avoid the appearance of light scalars, Fayet has ex-
tended the standard model and introduced the additional
U( 1) group42 in which all quark and lepton superfields have
positive charges. In a series of papers, Fayet investigated the
phenomenology of the low-energy SU(3)XSU(2)
X U( 1) X U' (1) symmetry and, in particular, the properties
of the additional neutral vector boson and neutral currents
transported by it. Weinberg16 tried to remove the triangular
anomalies from the Fayet model. In standard SU-
(3)XSU(2)XU(1) theory, the quark and lepton contribu-
tions to the triangular anomalies are found to cancel out.
The absence of anomalies is necessary for the renormaliza-
tion of the theory. This is the theoretical justification of
quark-lepton symmetry observed experimentally. It is there-
fore natural to demand the cancellation of anomalies in the
SU( 3) X SU(2) X U( 1) X U' (1) scheme, as well. The intro-
duction of the extra U' (1) symmetry leads to a large number
of new anomalous amplitudes. To achieve their cancellation,
Weinberg was forced to introduce a large number of new
particles into the model. Subsequent studies have shown
that, although the triangular anomalies are not present in the
Weinberg variant of the SU(3)XSU(2)xU(l)
X U' (1) model, the model does contain the supersymmetric
(and, therefore, energetically most convenient) vacuum, in
which the vacuum averages of the electrically charged fields
are nonzero (see the note in Ref. 16).

All this gives rise to pessimism about the possibility of a
realistic model based on spontaneous SUSY breaking. The
source of the trouble is the direct (at the tree level) interac-
tion between superfields, whose auxiliary components deve-
lop vacuum averages (thus, breaking SUSY) with quark and
lepton superfields. A fruitful approach is that in which the
quark and lepton superfields "recognize" SUSY breaking by
radiative corrections.43"48 The scalar superpartners are then
automatically heavier than the spinors.

F. Models with geometric hierarchy

These are models in which SUSY breaking occurs in
two stages. The first stage involves the introduction of a
world of heavy particles, characterized by mass M, in which
spontaneous SUSY breaking occurs at the scale p<M. The
superfield containing the goldstino does not then interact at
the tree level with the supermultiplets containing quarks,
leptons, Higgs bosons, and vector fields that gauge the
SU(3)XSU(2)XU(1) group. SUSY breaking penetrates
the light-particle sector during the second stage, and is due
to loop diagrams in which heavy particles of mass M propa-
gate. The SUSY-breaking scale in the light-particle sector is
therefore mx/^2/M, which explains the phrase "geometric

FIG. 9. SUSY breaking in the light-particle sector in models with geomet-
ric hierarchy.

hierarchy"; the scale of SUSY breaking is the geometric
average of the large and small scales.
^ As an example, consider the diagram of Fig. 9, in which
X and B are the chiral superfields. SUSY is broken:
(Fx) 7^0. At the tree level, the field^ containing the gold-
stino interacts with the heavy field B, which, in turn, has a
common gauge interaction with the quark (lepton, Higgs)
superfields. According to the well-known theorem enunciat-
ed in Ref. 49, F-terms due to loop graphs do not arise in
perturbation theory. The diagram of Fig. 9 generates the
following operator:

O = [X*Xq*q]D = (3.20)

and the quarkino acquires the SUSY-breaking addition to
the mass Mf^ = /j,2/M. This is a universal addition: quar-
kinos belonging to different families with the same quantum
numbers become heavier to the same extent, i.e., the super-
GIM cancellation appears naturally. Diagrams analogous to
Fig. 9 give mass to the leptino and Higgs bosons. Since the
mass terms of Higgs bosons determine the scale at which
electroweak SU (2) X U (1) symmetry is broken, the low-en-
ergy scale m in models with geometric hierarchy turns out to
be of the order of the mass M w of the intermediate bosons.
The mass scale of the heavy particles is naturally taken to be
the grand unification scale MOUM. In the grand unification
SUSY models, AfGUM~1016 GeV (see Section 5). The
SUSY breaking scale is then

H = 1/MWMGUM « 109GeV. (3.21)
In particular models,45"47 the quantity jj, depends on

dimensional parameters as well as the gauge and Yukawa
coupling constants, which leads to the somewhat greater val-
ue/* = 1010 - 1012 GeV.

The key point for the ensuing discussion is that, when
the SUSY-breaking parameter is so high, we cannot neglect
supergravity effects. The SUSY-breaking SUGRA correc-
tions are characterized in the low-energy sector by the scale
H2/M? = 10 — 105 GeV (where MP is the Planck mass,
MP = 1019 GeV), i.e., they are 100% important for models
considered in this section. Here, we encounter an exceeding-
ly promising situation: for the first time in physics, gravity
effects are playing an important role in elementary-particle
physics at the low energy scale of 100 GeV.

To summarize, we note that, first, the only phenomeno-
logically acceptable N = 1 SUSY model requires SUSY
breaking at the intermediate mass scale fi = *JMWM. By
identifying M with the grand unification scale M OUM, we
arrive at a model in which gravity corrections are 100% im-
portant.
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4. SUSY BREAKING WITH ALLOWANCE FOR
SUPERGRAVITY

A. (N= 1)-matter + supergravity

In this section, we shall investigate the system
"(N= 1)-supergravity + matter." We shall examine why
local supersymmetry leads to supergravity and, what is the
origin of the spin 3/2 field. The Poincare supergroup has as
its generators the shift Pa, rotation Mab, and supertransfor-
mations Qa. The local realization of Pa and Mab leads to
GTR with Pa gauging graviton e°, as the physical field (be-
cause of the presence of spinorial fields, we have to use the
tetrad representation of gravity); the Mab gauging connec-
tedness of <a°fc is expressed through the e° tetrad and its deri-
vative. The localization of the ea —»ea (x) supertransforma-
tion parameter requires the introduction of the gauge field
with the transformation law <5^/£ ~dfl ea ( x ) , i.e., the spin of
the tft is 3/2.

The physical degrees of freedom of the gravity multiplet
consists of the massless graviton e° with spin 2 (two degrees
of freedom on the mass surface) and the gravitino ift^ with
spin 3/2 (again, two degrees of freedom on the mass sur-
face). Outside the mass surface, the graviton has six degrees
of freedom (10 parameters of the symmetric 4x4 tensor
after the subtraction of the four degrees of freedom corre-
sponding to the shift of the coordinate frame gauged by the
graviton) and the gravitino has 12 degrees of freedom (16
components of the Rarita-Schwinger field after subtraction
of four supertransformations performed by the Majorana
spinor—the supersymmetry generator Q—which gauges the
gravitino). Hence, auxiliary fields are essential for the super-
symmetric description outside the mass surface and the lin-
ear realization of supersymmetry, by analogy with the case
of chiral and vector multiplets. Different sets of auxiliary
fields are available for (N = 1)-supergravity. The simplest
set consists of two scalar fields and one vector field (six addi-
tional boson degrees of freedom), and this corresponds to
the so-called "minimal SUGRA."

We shall now renormalize the Lagrangian of the system
(N = 1)-supergravity + matter. Divergences in the loop
diagrams lead to uncontrollable infinities. Extended super-
symmetries with A^> 1 offer some hope for a finite theory. In
such theories, matter is confined to a single multiplet with a
graviton and a gravitino, and this improves the ultraviolet
behavior. In particular, the N = 2 theory unifies gravity and
electromagnetism, and //-scattering in this theory turns out
to be finite in one loop while, without the gravitino, the sum
of one-loop diagrams diverges.33 The (N = 8)-SUGRA is
the most promising in this connection. The much simpler
system (N = 1)-SUGRA + matter will be examined below.
It may be considered that it is realized as a result of the
spontaneous (N = 8),oc—»• (N = l)loc breaking at energies
~MP. The responsibility for the divergences for E > M P is
then taken up by the N = 8 theory, and the Lagrangian of the
N = 1 theory must be looked upon as the effective low-ener-
gy Lagrangian valid for E < M P. As already noted, the effec-
tive Lagrangian will be renormalized, which will enable us to
introduce nonpolynomial functions of superfields into it. We

can then readily obtain a theory with spontaneous SUSY
breaking: one chiral multiplet of matter will suffice for this.
Moreover, since energy ceases to play the role of the order
parameter when gravity is taken into account, spontaneous
SUSY breaking in the (N = 1)-SUGRA + matter system is
an example of the general situation. This involves the so-
called "superhiggs" effect:50 the gravitino absorbs the mass-
less goldstino and a massive spin 3/2 particle is formed (by
analogy with the usual Higgs effect, the gauge vector field
absorbs the scalar Goldstone particle and becomes massive).

B. Supersymmetric Higgs effect

The supersymmetric Higgs effect can be considered in a
very general way without specifying the type of interaction
between the supermultiplets of matter.51 Suppose that spon-
taneous global SUSY breaking occurs in the sector of materi-
al fields, giving rise to the appearance of the cosmologic term

^matter = \ d4Z "I/— ^ ( — 7l/|B). (4.1)

The supergravity Lagrangian consisting of the Hilbert ac-
tion for the graviton and the Rarita-Schwinger action for the
gravitino may also contain the "supercosmologic" term. An
addition of the form (4.1) will clearly violate supersym-
metry since V — g transforms under the supertransforma-
tion through eif>. It turns out that the superinvariant cosmo-
logic term has the form52

\<f „ . — I <\^T~\f a ( 3^2 — in , ih n ih \ f 4. ? 1^ot SA— I u ^ V 6 1 Ta 3/21 H°^VTV I > \^'L-}

where k = tf&w/M P. The presence of the "gravitino mass"
in (4.2) does not actually signify that this particle is massive.
The point is that the equations for the metric that include the
cosmologic term from (4.2) lead to anti-de-Sitter space-
time, in which the problem of the particle mass is not solved
as simply as in the flat Minkowski space-time. However, we
need not consider the anti-de-Sitter world because phenom-
enologically we accept only the Minkowski world which cor-
responds to zero cosmologic constant. The cosmologic con-
stant cancels out in the sum of the matter (4.1) and gravity
(4.2) Lagrangians provided

8n
MP

(4.3)

The gravitino obtained in this way in flat space can have
mass equal to w3/2-

The locally supersymmetric Lagrangian of interacting
chiral superfields, including gauge interactions with vector
superfields, was first obtained in Ref. 53. Let us introduce
the notation 5, == (z,•., %i, Ft) for chiral superfields. The inter-
action between the fields st is then determined by a single
arbitrary real function <j(z,, zf), called the Kahler poten-
tial. The potential energy of the scalar fields has the form
(here and below, we substitute VSvr/A/p = 1)

F(z i) = eG[Gi(G])-'G^-3], (4.4)
where

zi dz*. •
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The kinetic energy of the field z, is given by
(4.5)

The Lagrangian thus acquires a "mass term" for the gravi-
tino:

•„.*.. <4-6>

If the minimum of the potential (4.4) is reached forz0, such
that V(z0i) = 0, the supersymmetric Higgs effect takes
place and the gravitino acquires the mass m3/2 = e°

(ZaiV2.
The goldstino field, absorbed by the gravitino, has the form

TJ = <eC/2Gj> Xi- (4.7)

To establish a relationship with the previously-investi-
gated global SUSY, we write G in the form

(4.8)

(4.9)

(4.10)

G ( z t , zt) = d ( z i , *f) +In tf(zf);

Substituting this in (4.4) and (4.5), we obtain

- 3

where
df

dzj dz*. '

(4.11)

To transform to the flat case, we bring back in (4.10) the
dimensional factor M =M P

dzt

In the limit as M-* oo , we obtain

These expressions for rand Fare obtained from the follow-
ing expression for the action, written in terms of the super-
fields:

S = d4x d29 d29 d (s^ s~() + d4z d26/ fo) + c.c. ,

(4.14)

where S is the most general action for the set of chiral super-
fields in flat space. It is the starting point for the generaliza-
tion to the case of local symmetry. The dependence on the
two functions d and/can be reduced to a single function G
because of the presence in (4.8) of invariance under the
transformation

" *" & l & (Zi) \ & \Zi)i f A 1«\(t.iy)

In the global case (4.14), this invariant reduces to the trans-
formation

d(sh s*) ->- d + g ( s t ) + g*(Sj), (4.16)

under which the action (4.14) remains unaltered. Using
(4.16), we rewrite (4.14) in the form

= f
"

d*a:d29/(si)-f c.c. (4.17)

The first term in this can be interpreted geometrically. The
scalar components of the fields s, form the complex N-di-
mensional (in the number of chiral fields N) Kahler mani-
fold (or 2Ar-dimensional Riemann manifold). The quantity
Fis the Kahler potential of the manifold; d 2 V/dzt ,dzf de-
fines the metric on it. The metric is invariant under the
Kahler transformation (4.16) (with d replaced with V).
The inclusion of gravity in the nonlinear supersymmetric
models described by the Lagrangian (4.7) is discussed from
the point of view of the Kahler geometry in Refs. 54—56.

The analogy between the Kahler transformation (4. 16)
and the gauge U( l ) transformation of the vector multiple!
V—* V + A + A explains why, by analogy with the field V,
the Lagrangian of the gauge noninvariant supermatter has
the factor d as an exponent in (4.10). The expression given
by (4. 10) is obtained by solving the equations for the auxil-
iary fields. The negative contribution to the potential of the
scalar fields, which is specific to supergravity, is due to the
auxiliary fields of the gravity supermultiplet.

When the interaction with the vector superfields is tak-
en into account, there is a change in the argument of the
function d in (4.14): d(st, s,el*y). It is also necessary to
demand the invariance of d and /under gauge transforma-
tions. The supersymmetric Yang-Mills field in flat space is
generalized as follows when the requirement of renormaliza-
tion is removed:

- j d2a;d2eq>P(s,) (4.18)

where a, P are group symbols and qpae (st ) is an arbitrary
function of chiral superfields. Higher powers of Wa in the
action (4.18) also do not lead to higher-order derivatives in
the Lagrangian but, for simplicity, we confine our attention
to the action ( 4. 1 8 ) . The auxiliary fields of vector multiplets
induce the following addition to the scalar-field potential
(4.4):

AFgauge (*,)=(y*2«P5Hfil(ra)J*/] [Gm(T*)n
mzn]. (4.19)

The "minimal coupling" between the set of chiral and
vector fields with (N = 1 ) -supergravity is the coupling that
does not affect the canonical form of the kinetic terms of
matter and Yang-Mills fields:

Z*)mln = <Pa|3 (4.20)

In the case of minimal coupling, of the three arbitrary func-
tions, d,f, q> only/remains, and this simplifies very consider-
ably the analysis of models. Most of the models considered in
the literature (and in this section) are therefore based on the
minimal coupling to supergravity (not to be confused with
"minimal supergravity" which has a minimum number of
auxiliary fields in the gravity multiple!).

The scalar-field potential for minimal coupling has the
following form:

F = ( '-3 I / I 2

(4.21)
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and the gravitino mass is

~~ «(|Z;I!)/2M2 {/} A 4 T ) ^
M-3/2 — c ' .,2 * \^'^^)

Consider the simplest example, namely, the coupling
between one chiral field and SUGRA. We take the superpo-
tential/(z) in the form57

/ (z) = M2 (z + P). (4.23)

From (4.21), we then obtain Fmin = 0 when /?
= (2 - V3)A/, zmin =

tino is given by

m-a/2 = Me

— 1)A/. The mass of the gravi-

(4.24)

It is clear from this example that a fine adjustment of the
parameters of the superpotential (/?) is necessary if we are to
obtain the zero cosmologic term.

Without writing out the general form of the Lagrangian
for the spinorial fields of matter, we note that the supertrace
Afj[I.j(2J+l)( — ) 2 J M j ] is proportional to the gravi-
tino mass53 ml/2 . To construct phenomenologic models, we
must therefore have m\/2 ~ (M w )2 because greater values
of ml/2 will not ensure a SUSY solution of the hierarchy
problem (low cutoff of quadratic divergences in the masses
of Higgs particles), while lower values are experimentally
forbidden (by the experimental absence of superpartners of
ordinary particles). The scalar-particle potential (4.21)
contains a natural scale, namely, the Planck mass, which
leads to m3/2~MP [see, for example, (4.24)]. The small
scale M w can be introduced into the scalar-particle potential
through the superpotential /(z). Taking

/ (z) = A/wq> (z), (4-25)

we obtain from (4.21) and (4.22)

A/fo ~ MWMP, m3/2 ~ Afw. (4-26)

Thus, the realistic models that we shall now consider suffer
from two "inherent" defects: the parameters must be finely
adjusted to annul the cosmologic term, and a small scale
must be artificially introduced into the superpotential. It
may be that the transition to extended SUSY theories will
help us in a natural manner to avoid these maladies. A possi-
ble "therapy" within the framework of N = 1 theories will
be considered at the end of this Section.

C. Low-energy Lagrangian

In addition to quark, lepton, and Higgs superfields (de-
noted by y, ), we introduce the hidden sector,58'59 i.e., the
chiral superfields z, . The super- Higgs effect will occur in the
hidden sector. We shall take the superpotential in the
form58-59

/ (yt, z,-) = g (yt) + h (zt). (4.27)

In the case of global SUSY, the superpotential (4.27) leads
to two noninteracting sectors of the theory. Gravity effects
will mix these sectors.

For simplicity, we confine our attention to one gauge
interaction singlet of the chiral superfield z in the hidden
sector. Substituting (4.27) in (4.21), and proceeding to the

limit as M-* oo, we obtain the following scalar-particle po-
tential:

V (yt, z) = V (z) + V ( y i ) ,
|z|a \ / I dh , z*h 2
M* I \ \ dz ~*~ TV/2 '-3

(4.28a)

, (4.28b)

(4-28c)

If we take h in the form of (4.25), we find that (z) ~AfP,
(h ) ~M wAf \ at the minimum of (4.28b). The parameters
in h must be chosen so that V(z) is zero at the minimum (this
cancels the cosmologic term A~M^,Mp). When V(y,)
(4.28c) is minimized, z and h (z) must be replaced with their
vacuum values. The effective potential of the low-energy sec-
tor is found to be

(4-29)

where
zmln
M

In deriving (4.29), we used the replacement
g( y, )-»• exp( - <z)V2Af2) xg( yt); Da represents the D-
term of the vector multiple! Va, i.e., Da =gyf T ayf. Having
begun with a set of fields >>, and z that interact because of
supergravity, we have arrived at the potential (4.29) in
which the hidden sector appears in only two parameters,
namely, the gravitino mass m3/2, which fixes the scale of the
theory, and the number A ~ 1. The spinorial fields if>y. inter-
act as in global SUSY theory with superpotential g( y,). We
thus arrive at a global SUSY theory that is explicitly broken
in the sector of interacting scalar fields. The SUSY-breaking
operators are soft and so do not lead to quadratic diver-
gences (see Section 3).

The superpotential of the low-energy sector g( yt) con-
tains two types of term: first, there is the interaction between
quark and lepton chiral multiplets with the Higgs multiplets,
which gives mass to quarks and leptons and, second, there is
the selfinteraction of the Higgs multiplets. In the simplest
case of two Higgs multiplets, we obtain

g = h^HiQ^ + h^H^Q^D^ + hiHiLrfk + jvff £.VL.

(4.30)

The conformally invariant form ofg with// = 0 is esthe-
tically the more attactive. The mass scale of the fields yt is
then wholly determined by SUGRA effects.

D. The masses of the quarkino, leptino, and gaugino

The quarkino and the leptino receive a universal mass
contribution equal to the gravitino mass m3/2 [see (4.29) ].
The problem of heavier scalar partners of quarks and lep-
tons, which prevents the construction of a realistic model
based on spontaneous SUSY breaking (see Section 3), is
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thus solved at a stroke. If the vacuum averages of the Higgs
doublets H and H' are not equal, the term proportional to
D2(y,) will also contribute to the quarkino and leptino
masses. This contribution depends on the particle charges
with respect to the gauge U( 1) group, but is independent of
the generation number. (We shall assume below that
(H°) = (H'°).) Finally, the terms m3/2y,3g/dy, and
(A — 3)m3/2( g + g*) lead to contributions to the mass ma-
trix that are proportional to the masses of the corresponding
quarks and leptons and mix right-handed and left-handed
quarkinos and leptinos. The quarkino (leptino) eigenvalues
of the mass matrices are

m~~=m3/2-f amq(j), (4.31)

where a is a number of the order of unity. It follows from
(4.31) that the quarkino and leptino masses in the first two
generations are practically degenerate.

We begin our analysis of gaugino masses with the sim-
plest case of the gluino. In the case of minimal coupling
between vector multiplets and supergravity [see (4.20) ],the
gluino is massless in the tree approximation. At the one-loop
level, the graphs of Fig. 10 ensure that the gluino assumes the
mass

3/2
m;<r

Substituting m3/2 = 100 GeV, as = 0.1 and mq = 30 GeV,
we obtain m^ ~300 MeV. In grand unification theories, the
transmission of heavy particles must be taken into account in
the loop of Fig. 10. The gluino mass is then given by
mg ~c(as/ir)m3/2, where the factor m3/2 appears because
of the transformation of the "right-handed" scalar particle
into a "left-handed" particle, which clearly violates SUSY
(c is the Casimir operator). On the SU(5) 24-plet of
Higgses, c = 5 and mg ~ 1 5 GeV. The SU(2) and U( 1 ) gau-
ginos receive an analogous diagonal mass with as (a3) re-
placed with a2 and at, respectively.

In the case of nonminimal coupling to SUGRA.the gau-
ginos acquire diagonal mass in the tree approximation. Tak-
ing <pa0 (Sj ) in ( 4. 1 8 ) in the form <5a/3z, we obtain the univer-
sal diagonal mass of the gauginos:

ft) • < 4' 32 >

Thus, in the case of nonminimal coupling, the gauginos ac-
quire a large universal diagonal mass ~/w3/2. When the
SU (2)XU(1) gaugino masses are examined, one has to deal
with mass matrices. We begin with the charged bosinos W * .
The most general interaction between the four Weyl fields

c is

ww HH'
c.c.

(4.33)

FIG. 10. Emergence of the gluino mass at the one-loop level.
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FIG. 11. Emergence of the supersymmetric off-diagonal mass of the W-
bosino as a result of the Higgs effect.

The first two terms which mix W and H arise when the
vacuum averages appear in the scalar Higgs fields (Fig. 11);
^ =g(H'°),ft2 =g</O.ThethirdtermisSUSY-breaking.
Its origin and magnitude in SUGRA-based models have just
been discussed. Finally, the fourth term is due to the term
AT.H. HH' in the superpotentialg( y,).

If^the superpotential does not contain the term
A/HQ. HH', the H l+H £~ transition will occur as a result of
the radiative corrections (Fig. 12a). The transition matrix
element is then of the order of

1
16n»

(4.34)

where, for the purposes of numerical estimates, we have sub-
stituted (H°) = (H'°), mt = 30 GeV, m3/2 = m-t = 100
GeV.

Let us rewrite (4.33) as the matrix

M
HH

0

0 J
and find its eigenvalue. From the four nucleating fields (two
Weyl H^+ andH^ and two Majorana Wl and W2), we
form the two Dirac particles w]|2 :

(4.35)

The mass of the W-boson is M%, = (X +/u2)/2. As first
noted by Weinberg,13 one of these new particles is lighter
than the W-boson in a wide range of models. In fact, if MRR
and/or M ww <// 1>2 , theory predicts the existence of a Dirac
particle of mass lower than that of the W. The decay
W ± — *• w ± -\-y can then occur with appreciable probability
(see Introduction).

FIG. 12. Emergence of the higgsino masses due to radiative corrections
(the greatest contribution is due to third-generation quarks).
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The quadratic part of the interaction of the neutral W3

and B bosinos and the H°- and H'°-higgsinos has the form

(4.36)

wherei7/vfe= (H °) , 7?7v^= (H '°> . In the general case, there
are four massive neutral Majorana fermions. If the diagonal
masses of the gauginos are small (minimal coupling to
SUGRA), M gg, Afww <S't1< g^'t we obtain a light photino
Y = (g1 W3 =j>'2 • If the superpotential does not
contain the term Af „„•//// ', the spectrum contains the light
higgsino* = (rj'H°L - rjH J2 + rj'2 . The mass of this
light higgsino is determined by the graphs of Fig. 12b. An
estimate analogous to (4.34) yields M^~2 MeV. The light
higgsino is the superpartner of^the axion, which appears in
the absence of the term M^^.HH' in the superpotential. If
the light higgsino is the lightest superparticle,then it is stable
and is the final product of the decay of SUSY particles. The
creation of gauginos in W * and Z boson decays, which is
important from the practical point of view, is discussed in
detail in a recent paper by Fayet.60

E. SU(2)xU(1) symmetry breaking

The Higgs bosons form part of the composition of chiral
multiplets and, by analogy with the quarkinos and leptinos,
acquire a universal positive squared mass equal to m\n.
However, a negative squared mass of Higgs bosons is neces-
sary for SU(2) XU(1) breaking. The question can be for-
mulated in a general form: how do the Higgs chiral multi-
plets differ from quark and lepton multiplets, and what leads
to different signs of the squared masses of the bottom compo-
nents of chiral multiplets?

The simplest way of producing SU ( 2 ) X U ( 1 ) breaking
is to extend the Higgs sector by introducing the singlet chiral
field Y. Let us take the conformally invariant superpotential

KYH'H (4.37)

and, for simplicity, substitute A = 3 in (4.29) [there is a
wide class of models which lead to the scalar-particle poten-
tial (4.29) with A = 3].61 For the scalar-particle potential,
we then obtain

V(Y, H', H)=

(4.38)

V( Y, H', H) can have a minimum corresponding to broken
SU(2) XU(1) symmetry:

Y = -m/A.
The introduction of the singlet field Y is acceptable

within the framework of the SU(3)xSU(2)XU( l )
model, but this cannot be done in the unified SUSY theory.
This field has been given a special name: "the sliding sing-
let."47-62 It leads to the low-energy scale M w being pulled in
the upward direction. The graph of Fig. 13 appears in SU (5)

FIG. 13. Generation of a large transition mass between the doublets H2

and Hi due to the singlet Y.

theory. The cross represents the supersymmetry-breaking
mass insert m3/2MH5H , , where M is the mass of the colored
triplets H3, H 3 , M~M OUT . The diagram of Fig. 12 leads to
an inadmissibly large mass insert m3/2MOUTH2H 2, i.e.,
M w ~^m3/2MGU-f . Since it follows from the experimental
absence of charged quarkinos and leptinos that m3/2 > 20
GeV, the singlet field Y cannot be used without
SU(2)xU( l ) breaking. Extension of the Higgs sector by
nonsinglet fields violates the relation M^ = Af | cos2 9 w

which has been confirmed experimentally with good preci-
sion. Can SU(2)XU(1) symmetry-breaking be achieved
without extending the Higgs sector? An answer to this ques-
tion will be given in the next section.

F. SU(2)xU(1) symmetry breaking by radiative corrections

In the most general form, the potential of two Higgs
doublets is

V ( H , H') = -?-\H\* -t-O-l

(4.39)

where^the cross interaction m\H'H arises when the term
MH 'His present in the superpotential. The requirement that
the potential must have a lower bound along the line

wj + mj —2mJ>0. (4.40)

The condition that// = H' = 0 is a saddle point [this is nec-
essary for the presence of a minimum with broken
SU(2)XU(1) symmetry] is

\ < m\. (4.41)

When m, = m2, inequalities (4.40) and (4.41) are incom-
patible: if the coupling between //and H' is small, the poten-
tial has a single SU(2) XU(1) symmetric minimum with
(H) = (H') = 0 and, as soon as m3 is large enough for the
minimum (H) = (H') = 0 to transform into a saddle, the
absolute minimum of the potential departs to infinity and
the stability of the scale Mw (for which (N = 1)-SUSY is
introduced) is absent even in the tree approximation. The
root of this evil must be sought in the symmetry of the prob-
lem under the replacement of H with H'. As was first noted
in Ref. 63, the equation mt = m2 is violated when radiative
corrections are taken into account. The point is that H and
H' have different interactions with quarks: the doublet H'
gives mass to the up quarks and H to the down quarks, so
that the quark loops produce a different renormalization of
the masses mt and m2.
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FIG. 14. Renormalization of the mass of the Higgs boson H'.

The largest contribution to the renormalization is pro-
vided by loops with heavy quarks. Let us therefore confine
our attention to the t-quark. The renormalization of M \ is
determined by the graphs of Fig. 14. The individual graphs
contain quadratically divergent contributions to m\ but,
since SUSY is softly broken, only the logarithmic divergence
remains in the sum of the diagrams of Fig. 14. Let us examine
the origin of the individual diagrams in Figs. 14. In the
SUSY part of the theory, the diagrams of Figs. 14 a-c are due
to the term h^H'^Q^t^ in the superpotential g( yt), while
the diagram of Fig. 14d is due to the term

(A- +ma/2 VI+A-

in the scalar-particle potential (4.29). Finally, the diagram
of Fig. 14e is due to the gauge interaction of the Higgs chiral
multiplets. If we evaluate the diagrams of Fig. 14, we obtain
the following equation for the renormalization group:

(4.42a)

where Q is the running momentum, M2 represents M^, and
the factor 3 in front of the parentheses is due to the sum over
the four colors of quarks in the loop. Before (4.42a) can be
solved, it must be augmented by the renormalization-group
equations for the parameters on the right-hand side and by
the boundary conditions. Let us consider the boundary con-
ditions first. The derivation of the potential (4.29) shows
that the parameters of this equation are normalized for vir-
tualities ~Mf, so that the boundary condition for (4.42a) is
«ZH, (22 = Af|) = m\n (when the term MWH ispresentin
the superpotential, it is replaced with m2^, = m\/2 + M2).
The first term on the right-hand side of (4.42a) facilitates
the reduction in m^, with decreasing virtuality, and the sec-
ond increases m2^.. The renormalization-group equations for
OT;R and WQL are obtained from diagrams analogous to those
shown in Fig. 14 and identical with (4.42a) except for two
replacements: the diagram of Fig. 14e is replaced with the
analogous diagram in which the gluino is in the intermediate
state and the factor in front of the parentheses in (4.42a) is
replaced with 2 for tR [summation in the loop over the two
isospins states of SU(2)L ] and with 1 for QL (all the group
indices leave the loop in the outward direction):

QL n-t 2

~

tR QL

(4.42b)

(4.42c)

A numerical analysis of the complete set of renormal-
ization-group equations is given in Refs. 64-66. Here, we
shall confine our attention to a qualitative analysis. We begin
with the case of small M2, M3 (minimal coupling between
vector multiplets and gravity). The right-hand sides of
(4.42a)-(4.42c) are positive, so that, as Q decreases from
AfP to m3/2 (the region of logarithmic loops in Fig. 14, for
which (4.42) are valid), the squares of the Higgs and quar-
kino masses decrease. Because of the presence of the coeffi-
cient 3, the most rapidly decreasing is the m^,, so that m^,
may become negative while m2

R and m|L remain positive.
Thus, SU(3) remains unbroken in SU(3) XSU(2) XU(1)
theory and SU (2) X U (1) is broken because 3 > 2 and 3 > 1.
An increase in M2, M3 leads to a slower fall in m2 with Q2.
When M2, M3~m3/2 (nonminimal coupling with gravity),
the main effect is the slowing down of the fall in m2^, m^L

and, since their values appear in the parentheses of (4.42a),
large M, stimulate a more rapid reduction in m^,. When
mj 4m\, m\ and the t-quark mass is mt > 60 GeV, the in-
equalities given by (4.40)-(4.41) aresatisifedfor Q2~m\/2

and SU(2)XU(1) symmetry is broken for nonzero vacuum
averages <#">>, (H°), <#'°>»<#°>. Whenm3/2~100GeV
and A~l, it is possible to obtain the vacuum averages of
Higgs fields that are necessary64 for the generation of
Mw ~ 85 GeV. The question is: what will happen if experi-
ment shows that the t-quark is light, say, mt = 30 GeV? The
most straightforward escape from this dilemma is to intro-
duce the fourth generation of matter with sufficiently heavy
quarks. Another path was proposed in Ref. 66, where it was
noted that, if ml (M2

p) is somewhat less than m\ (M2
f), the

inequalities (4.40)-(4.41) will be satisfied for quite minor
evolution of m\. The t-quark can then be light, and the only
limitation on its mass follows from the absence of the cre-
ation of new hadrons in e+e~ annihilation, i.e., mt >20
GeV.

An interesting variant of SU(2)XU(1) symmetry-
breaking by radiative corrections was examined in Ref. 65,
where a model with superpotential g( yt) not containing the
term A/H.H was considered. The superpotential g( y,,) does
not contain parameters with the dimensions of mass, and the
mass scale in the low-energy sector is wholly determined by
the gravitino mass m3/2, which makes the model particularly
attractive. In the potential (4.39), ml = 0, which is inad-
missible at first sight since, even if m\ changes sign in the
course of evolution, (H1) ^0, (H ) = 0 at the minimum of
the potential (4.39), and the down quarks and charged lep-
tons are massless. As noted in Ref. 65, if the sum
"»i ( Q o ) + ml(Qo) vanishes for some Ql, the potential
(4.39) will be unbounded from below along the line

> | as Q2 is reduced further. Formally, the
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minimum is reached for | (H °) | = | (H<0) | = oo and, in rea-
lity, | (H °> | = | (H '°> | ̂  Q0. The model demands a heavy t-
quark with mt >65 GeV and a heavy gaugino (nonminimal
coupling to gravity) for sufficient evolution of ml.

G. Renormalization of gaugino and light quarkino masses

When the quarkino and leptino masses were discussed,
it was noted that, in the tree approximation, the scalar part-
ners of fermions in the first two generations are practically
degenerate. We must now consider how this conclusion is
affected when radiative corrections are taken into account.
The renormalization of the quarkino mass by the strong in-
teraction is the most important. From (4.42b) and (4.42c),
we find that

/)|H= L^LM* (4.43a)
" d(> 3 n 3'

This equation must be augmented with the equation describ-
ing the renormalization of the coupling constant a3:

Q^i.= -^3.ai. (4-43b)
In the Yang-Mills theory, the Gell-Mann-Low coefficient b3

is equal to (11/3) (cv) - (4/3)#f/2, where cv =N for
SU(JV) and Nf is the number of quark flavors. In the SUSY
theory, the Majorana fields are added to the vector fields,
and (ll/3)cv is replaced with (11/3 )cv - (2/3)cv = 3cv.
The contribution of quark multiplets is altered by the pres-
ence of the quarkinos, and (4/3)(l/2)Ar

f becomes [(4/
3) + (2/3)]JVf/2 = N{. Combining all these together, we
find that b3 = 3cv — N f . For SU(3) and six quark flavors,
we have b3 = 3. Finally, we need the evolution equation for
M3:

Solution of (4.43) yields
M3 ((?') = q, «?')

(4.44)

The parameters of the effective Lagrangian are normalized
to Q2=Mp, and for (j2 we take the low-energy point
H2 = (100 GeV)2. If we choose or3(/z2) = 0.1, we find from
(4.43b) that a3(Mj.) =0.035, i.e., the "experimental"
gluino is heavier by a factor of 3 as compared with the nor-
malization point. As regards the quarkino, we have two pos-
sibilities: (a) the light gluino M3<m3/2 (minimal coupling
to gravity) leads to slight renormalization of m^, and the
quarkinos and leptinos in the first two generations are prac-
tically degenerate and (b) the heavy gluino
M3(M

2) = m3/2 (nonminimal coupling to gravity) leads to
/Tig (100 GeV) ~2.5w3/2, and the quarkino is much heavier
than the leptino.

H. Off-diagonal neutral currents

A new and potentially significant source of off-diagonal
neutral currents appears in SUSY models, namely, gluino
exchange.67"69 Let us introduce the matrices J/L(R) and
D MR) that diagonalize the mass matrices of the up and down

(left and right) quarks, respectively, and the matrices
(7L(R), DL(R) that diagonalize the quarkino mass matrices.
We shall confine our attention to left-handed particles since
they lead to large off-diagonal neutral currents. The cou-
pling between the gluino and the down particles is

g3^Z)LdLd*DL, (4.45)

where g3 is the SU(3) coupling constant and d^ is the col-
umn of left-handed down quarks and d £ is a row of left-
handed down quarkinos. In the models considered in this
section, the quarkino mass matrix consists of three parts: the
flavor-independent diagonal contribution m2

/2, the super-
symmetric contribution d^M^Mdd^, and the SUSY
breaking contribution Am3/2dLMAd{£, where Md is the
mass matrix of the down quarks. It is clear that the rotation
of the field d L by the matrix D L (and the rotation of d R by
the matrix D R ) takes out transitions in the mass matrix that
are off-diagonal in the flavor and, at the same time, it diagon-
alizes the interaction (4.45) because Z>L is unitary. Gluino
exchange does not lead to off-diagonal currents in the tree
approximation. The situation changes when radiative cor-
rections are taken into account. Diagrams analogous to
those shown in Fig. 14 lead to a correction to the mass matrix
of down quarkinos that is proportional to the mass matrix of
the up quarkinos Mu

+Afu (the inverse effect is numerically
less important). If we suppose that this correction exceeds
the Yukawa tree contribution to the mass of the down quar-
kinos, the mass matrix is diagonalized by the matrix that
diagonalizes the masses of the up quarks. The emission of the
gluino during the transition of down quarks to up quarkinos
is described by the matrix C/^DL, equal to the Kobayashi-
Maskawa matrix. The evaluation of the graphs of Fig. 15 and
their comparison with the experimental mass difference
between the K L- and K s -mesons has led to the following
lower bound for the gluino mass:67 m-t > 37 GeV. This num-
ber was obtained on the assumption that m-% s mq. However,
light gluinos are not excluded by AwLS if the quarkinos are
heavy enough.

I. Neutron EDM

In the standard SU(3)XSU(2)XU(1) model, there
are two sources for the neutron dipole moment that violates
CP-invariance, namely, the 0-term and the CP-odd phase of
the Kobayashi-Maskawa matrix. We shall assume that 6 is
negligible. The phase 8 leads to da ~ 10~32 e-cm,21 whereas
the modern experimental limit is dn < 6 X 10~25 e-cm.22 The
predictions of SUSY models are exceedingly interesting in
this situation. The point is that additional sources of CP-odd
phase, which contributes to dn, appear in these models.23"26

J. d,_SVh d

d.,8,

FIG. 15. Contribution of gluino exchanges to the mass difference between
the KL - and Ks -mesons.
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di 3 da

FIG. 16. Appearance of the neutron dipole moment in SUSY theories.

The maximum contribution to dn is given by the diagram
with gluino exchange (Fig. 16):

10'22 e-ctn, (4.46)

where, in the numerical estimate, we have substituted
a3 = 0.1, md = 10 MeV, mg = M-A = 100 GeV. Assuming
that Im A~ 1, we find that dn is greater by two or three
orders of magnitude than the experimental upper bound.
The question is: how can we suppress the theoretical predic-
tion (4.46)? The first thing we can think of is to reduce the
gluino mass m^. In the limit of the massless gluino, the CP-
odd phase may be "deflected" from zero. A strictly massless
gluino would be in conflict with the observed spectrum of
pseudoscalar mesons7 but the light gluino with a mass of
about 5 GeV is, at present, experimentally allowed. It is pos-
sible that the low experimental value of dn is indirect evi-
dence for minimal SUGRA, which predicts a relatively light
gluino. Methods of reducing d *USY that use different mecha-
nisms for the suppression of the CP-odd phase are discussed
in Ref. 26.

J. Toward a "natural" theory

The models considered in this section have two flaws:
first, the superpotential parameters are artificially chosen so
that the cosmologic term at the minimum of the scalar parti-
cle potential is zero and, second, in addition to the natural
mass scale equal to the Planck mass M P, another scale M w

(lower by 17 orders of magnitude) is introduced into the
theory "by hand." In this section, we shall consider recent
attempts to construct a scheme that is free from these de-
fects.

Cremmer71 has noted an interesting property of theor-
ies with the Kahler potential of the chiral field Z of the form

Gt(Z, Z*) = —4- (4.47)

where/ (z) is an arbitrary function. The potential of the field
Z determined from (4.4) is identically zero, i.e., (z) is unde-
termined in the tree approximation. On the other hand, the
gravitino mass is found to be

/-i/O 1

(Z*)]3/2 (4.48)

We thus have a theory with a cosmologic term that is identi-
cally zero, while the SUGRA-breaking scale is undeter-
mined. It is interesting that, in extended (N = 4)-SUGRA,
the scalar sector is described72 by a potential analogous to
(4.47). If we use the field Z with the Kahler potential (4.47)
as the hidden sector, the first of the defects listed at the be-
ginning of this section will be removed.

An attempt to generate dynamically the scale M w in

the theory with the hidden sector (4.47) and to construct a
natural theory was undertaken in Refs. 73 and 74. The
Kahler potential was taken in the form

G ( y t , Z) --- -

(4.49)

where j>, was the observed sector, which has led to a poten-
tial for the scalar field y, of the form given by (4.29), with
m3/2 left undetermined. The quantity m3/2 is determined
when radiative corrections to the potential (4.29) are taken
into account, and turns out to be of the order of

m,/2~«p(-.l.)j|fF, (4-50)

where h, is the Yukawa coupling constant between t-quarks
and the Higgs field. It appears in (4.50) because heavy-
quark loops play a dominant role in the radiative corrections
that determine the minimum of the scalar-particle potential
in this case.

5. SUSY GUTs AND PROTON DECAY

A. The hierarchy problem

One of the factors that have stimulated the intensive
development of theories with low-energy SUSY in recent
years has been the hope that the hierarchy problem might be
solved in grand unification theories. Two scales arise in the
theory, namely, the grand unification scale MGUM ~ 1015

GeV and the electro weak unification scale Jl/w ~ 100 GeV,
when nonzero vacuum averages appear in Higgs fields. The
hierarchy problem then has two aspects: (a) unnatural tree
Lagrangian containing mass parameters differing by 13 or-
ders of magnitude and (b) the mixing of these parameters
when radiative corrections are taken into account.5 Let H
denote the Higgs doublet ensuring the breaking of
SU(2)XU(1) in variance, and 2 the SU(5)-violating 24-
plet. The SU(5)-GUT tree potential is chosen so that
(H) ~ 100 GeV and <2> ~ 1015 GeV. The loop graphs of Fig.
17 lead to the appearance of the term
(c, g 4 + c2 g

 6 + c3 g * + . . . ) In A2H 22 2 in the effective
potential. To avoid "pulling up" {H ) onto the scale of 1015

GeV, we must introduce a counterterm into the Lagrangian
that exactly cancels the radiative correction. The loop
graphs of Fig. 17 are exactly cancelled in SUSY-SU(S) by
analogous graphs with spinorial partners of gauge and Higgs
particles in an intermediate state.75 This is the essence of the
SUSY scenario for the solution of the technical aspect (b) of
the GUT hierarchy problem.

The vanishing of scale mixing in SUSY GUT models
can be illustrated by the following formula, which describes

r H

ox "xsx
FIG. 17. Graphs leading to the mixing of GUT scales due to radiative
corrections. Wavy lines represent gauge bosons.
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the effective potential of light scalars in the single-loop ap-
proximation:

cff =

X
d4P r d4P \
/ 2 _ g 2 £ 2 J />2_ jv/a_ Am2_gi^s ) •

The first term in parentheses corresponds to the nonsu-
persymmetric theory. It generates the quadratically diver-
gent contribution to the mass of the field H and, at the same
time, leads to the mixing of the fields H and 2. The second
term is due to the fermion loop. Taking into account SUSY
breaking in the masses of the virtual particles ~ Am2, we see
that the quadratic divergence and the mixing of H and 2 has
gone, and the remaining contribution to the effective poten-
tial is ~g 2H 2Am2 In A2.

Let us describe SUSY SU(5)-GUT in greater detail.39

The chiral doublets eH' and H are members of the antiquin-
tuplet H; and the quintuplet H5, respectively. The model
contains the chiral 24-plet 2. The most general superpoten-
tial corresponding to the renormalized theory is

W = tr t3 + -¥r&+X2H'iH + M'H'H, (5.1)

where 2=2flf0, ta are the SU(5) generators, and Sp tatb

= 2sa»-
From ( 5. 1 ), we find that the scalar-field potential is

F= 2 tr [X, ( I2- -f tr 22) + MI + 2X2 (H'tff) t]2

+ \(kzi.^M')H\2+ \H'Ck2t+M')\* + D- terms.

(5.2)
The V = 0 minimum of ( 5.2 ) lies at zero vacuum values

of the fields H and H ' and the following configurations of the
field 2:

2 \ /I

9

-3
/TS M3 = '5r

1
1
1

— 4

which correspond to the residual SU(5), SU(3)
XSU(2)XU(1) and SU(4)XU(1) symmetries. For ob-
vious reasons, we shall work in the neighborhood of the sec-
ond minimum. Taking M' from the condition

_3_^-X2 + M' = n', n'~100GeV,

we find that the potential of the Higgs doublets is

V (H, H') = \i'z{\H\z + \H'\z)+-^-(\H\2— |/7'|2)2

,wu (5-3)

where o- are the Pauli matrices. [The quaternary term
Al(H'tH)2 in the potential (5.3) cancels out when the
Born graph with exchange of the scalar 2 is taken into ac-
count.] The potential (5.3) does not contain parameters
~ 1015 GeV because of the "fine adjustment" of M. Because
the theory is supersymmetric, this adjustment need only be
introduced once, since radiative corrections do not destroy
it.

The question now is: how is the foregoing discussion

modified as we pass from SUGRA to SU(5)-GUT? Substi-
tuting (5.1) in (4.29), we find that the scalar-particle poten-
tial is given by

F = 2tr [xl(22--|-tr22) + Mi: + 2w3/22:

+ (A-3)m3/2 t r l - i : 3 +

+ M'H'ff+c.c. ] + £>- terms. (5.2')

The position of the minimum corresponding to SU(5)
-> SU(3) XSU(2) xU( 1) breaking is shifted:

The value of the potential at the minimum (cosmologic con-
stant) is now different from zero. A corresponding constant
must be added to the superpotential (5.1 ) to annul the cos-
mologic constant. Finally, we reproduce the formula de-
scribing the interaction between the Higgs doublets at ener-
gies below the unification energy. Taking M' from the
condition U22 + M ' ) ~3 = p', p' ~ 100 GeV, we obtain:

V(H, H')

(H+H + H'+H')

+ [(A - 1) m3/2n' + 3 (A - 3) -^-m3
2

/2] [(H'eff) + c.c.

(5.3')

We thus see that the unification scale A/QUM does not
penetrate the low-energy sector. This conclusion was proved
in Ref. 76 without referring to any particular model.

B. Evaluation of MauH and sin2 Ow

In this section, we shall determine why, in SUSY uni-
fied models, the unification mass M GUM (which determines
the proton lifetime) and sin2 0W (whose successful evalua-
tion is the most striking result of GUT) are equal. The mass
^GUM is equal to the virtually at which the running SU ( 3 ) ,
SU(2), and U ( l ) coupling constants a3(Q

2),a2(Q
2), and

ai(Q2) become equal. The evolution of the coupling con-
stants between M w and M GUM is determined by the light
particles. A large number of new particles with masses M w

is introduced into the model, and this is responsible for the
change in A/GUM as compared with the predictions of stan-
dard unification models. The gauge coupling constants of
SU(AO are given by the following celebrated formula:
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TABLE I.

SU (5)
(1 doublet of Higgses)

22 4 1

— n 4- i

SL'SYSU (5)
(2 doublets of Higgses)

-6 + 2«<J) + l

function 6^ to the SUSY theory is described at the end of the
last section. The table lists the values of b3, b2, and bl for
standard SU(5) with one light Higgs doublet and SUSY-
SU(5) with two light Higgs doublets (n* is the number of
generations of matter).

The main reasons for the change of the unification point
^OUM in SUSY theories is the reduction in b3 due to the
presence of the gluino octet which leads to a slowing down of
the evolution of a3 (Q2) and an increase in M QUM. From the
two equations for equal constants a „ a2, and a3 at the unifi-
cation point, we find that

6n r 1 8 "1i fc
3 (».-

3a3 (MW)J •
;, (MW)sin* 8W (M

(5.5)

where a is the electromagnetic coupling constant. In nu-
merical estimates, we puta(Afw) = l/128,a3(Afw) =0.1.
From (5.5), we then have

(5.6)
= 1.6 • 10'* GeV, M%fil = 5,3 • 10'5 GeV,

r = 0?219, sin2 9^^ = 0,236.

We recall that the experimental result is sin2

0W = 0.226 ± 0.015. The coupling constants at the unifica-
tion point are

11 = 0,024, (-£-) =0,040. (5.7)4n ' \ 4n /SUSY

The numerical estimates in (5.6) illustrate how a radi-
cal change in the low-energy composition of the theory can
appreciably increase the proton lifetime (rp ~/QUM ) with-
out essentially changing the successful prediction for sin2

2. C. Proton decay

In the standard SU (5) model, the proton decays mostly
according to the p-*e+ir° scheme with the lifetime77

rp ~ 1028 * 2 y, so that the contemporary experimental lower
bound Tp_ Cv > 1032 y overlaps the standard model. In SUSY
generalizations, the unification mass is greater, as was
shown in the last section. The proton lifetime is then

.SUSY stand

From the experimental point of view, this prediction cannot
be regarded as satisfactory because the cosmic neutrino
background will, in all probability, prevent the successful
measurement of the decay of the proton with a lifetime in

X.Y

FIG. 18. Proton decay due to the exchange of superheavy vector bosons.

excess of 1033 y. So far, we have been concerned with decay
due to propagators of dimension 6 (d = 6), generated by the
graph of Fig. 18:

1 ' - - " r f ) . (5.8)

On the other hand, it was first noted in Refs. 15 and 16 that
operators with d = 5 appear in SUSY models and lead to
proton decay (Fig. 19):

,e). (5.9)

The proton decay amplitude due to d = 5 operators (5.9) is
enhanced by the factor A/QUM /M^ s 1014 as compared with
(5.8), and therefore requires careful examination.

SUSY is not broken at energies ~MGUM SUSY, and the
d = 5 operators can be written in the supersymmetric form.
There are two d = 5 operators that violate baryon charge
conservation:

Ot^z^AQiQlQiL^, 0R = [u*RVR
6Z>*R

c£*R]FEabc, (5.10)

where we have explicitly indicated the antisymmetry in col-
or. The scalar quarks and/or leptons present in (5.9)-
(5.10) should be "converted" into spinorial quantities in
order to produce the 4-fermion amplitude describing proton
decay. This is accompanied by the appearance of single-loop
graphs. The "conversion" of the quarkino and leptino into
spinorial particles is performed by the gaugino. The anti-
symmetry in color requires the presence in O f of different
chiral superfields of up quarks, say, UR and CR and, since the
interaction between the gaugino and the superfields of right-
handed particles does not affect the flavor, the c-quark will
leave the loop in the outward direction and a 4-fermion oper-
ator that does not annihilate the proton is obtained. Thus,
the operator O f does not lead to proton decay.17 Analysis of
the proton decay due to the operator O ̂  must begin with
graphs involving gluino exchange because the gluino inter-
acts most strongly with the quark. The three diagrams of
Fig. 20 must be evaluated (the operator O \ with the charged
lepton does not lead to the decay for the same reason as O *).
Because the quarkino masses are very similar, the result of
the evaluation of the diagrams of Fig. 20 will be written in
the form
M ,[(«?'

<«LTYO«L)],
(5.11)

.*
"•v^
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FIG. 20. Proton decay due to gluino exchange. Sum of diagrams is zero.

where AT includes the coupling constants and the result of the
integration over the loop. It is then readily verified with the
aid of the Fierz identities that the bracket in (5. 1 1 ) is equal
to zero. Gluino exchange does not lead to proton decay.19'20

It will now be necessary to examine the black circle in
Figs. 19 and 20. Baryon charge conservation is violated dur-
ing the exchange of the gauge X and Y bosons (bosinos) or
higgses (higgsinos). In the operator O \ (5.10), the quark
fields are part of the SU(5) decuplet, and the lepton fields
are part of the antiquintuplet. Hence, it is clear that this
operator can arise only during higgsino exchange because
the gaugino interacts with matter as a result of the (super)
extension of the derivative in the kinetic energy, which
would lead to an even number of quintuplets and decuplets
inOlr.

The following superpotential terms lead to the operator

(5.12)

where the symbols /, . . . refer to SU ( 5 ) . The first two terms
give mass to the fermions, and are present in any variant of
SUSY SU ( 5 ) . The last term gives mass to the colored Higgs
triplet H3, M ~ MQVM , and is also present in simpler models.
Figure 2 1 shows how the interacton (5.12) leads to the oper-
ator O 5 . The heavy colored higgsino propagates along the
inner fermion line. Since loops analogous to those of Fig. 20
converge for q2~M\<,M QUM, the fermion propagator in
Fig. 21 can be replaced with the factor 1/Af OUM . The Higgs
vertices in Fig. 21 are proportional to the quark masses (up
rau and down ms ), so that it is advantageous to let through
heavy particles in the intermediate state. The effective 4-
fermion Lagrangian for the proton decay, corresponding to
the graphs of Fig. 22, was evaluated in Ref. 19 (third-genera-
tion particles were taken into account in the intermediate
state; according to recent results, the angles 62 and 03 are
small and 0.015 <*.,< 0.09, s3<0.04 (Ref. 78), so that we
reproduce the formula for second-generation particles in the
intermediate state). For the two limiting cases (a)
M 4w<^q2 and (b) Af ww>Af q2, it was shown in Ref. 19
that

FIG. 22. Graphs describing the p— » K+v decay.

+2](d£VL) (.i

^ln^(b)],
ww

"S.

(5.13)

q. i

where

and the factor^ represents the anomalous dimensionality of
the d = 5 operator: A = 1/3 (Ref. 18). The matrix element
(p\J2fw \k ) was evaluated with the aid of the QCD sum
rules.79 Using the results reported in Ref. 19, we find that the
proton lifetime is

WW q, I

(b)]2 y.

(5.14)

Using the experimental lower bound irp_K*v > 3X 1030 y
and substituting Afq 7 = 100 GeV, we obtain A/^w < 1 GeV
or M ww > 103 TeV. In low-energy SUSY models, the value
•A^ww > 103 TeV must be acknowledged as inadmissible, and
we have the upper bound

(5.15)

FIG. 21. The origin of the operator O',.

In minimal SUGRA, the gaugino masses are actually small.
From (5.15), we find that the gluino mass is m^ = (a3/
a2 ) M ww < 3 GeV, which is in the region of the experimental
lower bound.11 How are we to understand the limit set by
(5.15)? If Mtf = 200 GeV then, instead of (5.15), we ob-
tain Af ww < 4 GeV. Another approach is to consider heavier
triplet higgses. Let us suppose that, for AfHj = 1018 GeV, the
mass M ww can be ~ 100 GeV, i.e., models with nonminimal
inclusion of vector multiplets in SUGRA20 are admissible.

Since the discovery of the d = 5 operators, searches
have been in progress for ways of eliminating them from the
theory. 16 All the variants proposed so far can be said to be
extremely unappealing.

6. CONCLUSIONS

We have reviewed low-energy (A^= l)-supersym-
metry — a branch of elementary-particle physics — using the
mathematically elegant SUSY theories to cancel quadratic
divergences in the Glashow-Weinberg-Salam electroweak
model, and to solve the problem of hierarchies in grand uni-
fication theories. The basic physical predictions of SUSY
models are: each known fundamental particle (quark, lep-
ton, Y, W ± , Z, gluon, Higgs boson) has a spin partner (su-
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perpartner) ofmassAfs ~0.1-1 TeV (the mass scale is deter-
mined by the requirement that quadratic divergences must
cancel at high energies; some superparticles may turn out to
be relatively light, with masses ~1-10 GeV). The super-
partner mass difference arises because of supersymmetry
breaking. Various ways of SUSY breaking have been exam-
ined. The most popular models used at present are those
based on SUSY breaking by supergravity effects.58'59'64"66 It
is important to emphasize that, whatever the model, the low-
energy SU(3)XSU(2)XU(1) symmetric Lagrangian has
an exceedingly simple form: it consists of supersymmetrized
kinetic terms and Yukawa interactions with the Higgs bo-
sons, plus mass terms corresponding to the leptino, quar-
kino, higgsino, and gaugino, plus certain cubic interactions
of scalar particles.

The SUSY generalization of unified theories leads to a
change in the predicted lifetime and decay mode of the pro-
ton. We note that, in several models, the dominant process
involves the emission of the K meson:17"20 p—> K'v.

How can the models described above be developed
further? The most hopeful expectations relate to the experi-
mental discovery of superparticles. So far, these discoveries
have not been made, and we must therefore conclude with
possible theoretical developments. The obvious way forward
is to proceed to SUSY theories with N> 1. Models with low-
energy N = 2 SUSY have already been investigated.80 As
noted in Section 2, such theories have left-right symmetry.
The number of quarks and leptons is doubled in Ref. 80. The
undesirable SU(2)W right-handed doublets and left-handed
singlets (mirror fermions) are given a large mass. It is possi-
ble that the main result of Ref. 80 is the demonstration of the
fact that a direct transition toN>l leads to excessively com-
plicated models.

Another development involves dynamic supersym-
metry breaking (DSB). In 1981, Witten proposed a scenario
for the solution of the hierarchy problem in grand unifica-
tion theories.37 Suppose that, in the tree approximation, the
theory has fields of mass MOVT and massless fields. If the
theory is supersymmetric, loop corrections to massless sca-
lar fields do not produce an increase in mass, which is all to
the good because the necessary hierarchy is of the order of
(MGur/Mw )2 = 1028 and not 1/g2-100. Mass-generation
can occur outside the framework of perturbation theory.
This phenomenon was referred to by Witten as dynamic su-
persymmetry breaking. The natural mass scale due to, say,
instanton effects, is M2

avTe~^g\ The exponential can en-
sure the necessary hierarchy of 28 orders of magnitude. Wit-
ten has reported37 a number of examples of DSB, including a
supersymmetric quantum mechanics. However, he has not
succeeded in constructing a field theory in 4-dimensional
space with DSB. Searches for such theories have continued
for three years and have recently culminated in success.81'82

It has been found that DSB occurs in the supersymmetric
Yang-Mills theory with matter in the chiral representation
of the gauge group.4' The construction of a realistic theory
based on DSB is a matter for the future. The following sur-
prising coincidence is immediately apparent: chiral filling is
necessary both for DSB and the natural confinement of

massless (on the scale of unified theories) quarks and lep-
tons.

I am grateful to L. B. Okun', at whose suggestion this
review was written, to colleagues and friends for discussions
that have elucidated many of the problems presented above,
to A. N. Rozanov and V. D. Khovansktt for help with the
calculations used in constructing Fig. 4, and to V. L.
Eletskil, who checked the formulas given in the Appendix.

APPENDIX

How to write down supersymmetric Lagrangians

In this review, we use the real /-matrices
0 —0 — cs

o
1 °

0

*-(-! -o)'Hi-*2)
i\ /O 1\
o ) ' ° '= ( i o) '

O — i\

The definition of the Majorana spinor is i/>+ = i/>T,

The following equations are available for the two Ma-
jorana spinors a, and a2:

airoa = asra1, r= —

YA = YA for 1. Vs.

Y A = — Y A for Yn'

(A.2)

Fierz identities. Consider the 16 matrices O, = {1, iys,
ir» Ys, '>% . "V >, where o^v = (y^ yv - yvy^ )/2. For any
matrices M, N and spinors A, x, $, and q>, we then have the
following identity:

16

The following useful equations can be obtained from
the Fierz identity:

(U) *,„ = ( ( A.4)

= -(U) (7,X)a,

Boson fields commute with one another, <&i'b2 = ^2^i>
while fermion fields anticommute: ^j^2 = — ̂ 2^i> so that it
is difficult to understand how fermion-boson symmetry can
obtain. Introducing the Grassman (anticommuting) varia-
bles Q, we can rewrite the fermion anticommutator in the
form of the commutator 6li/>l62il>2 — 6-$T.6\il>\ = 0, and con-
struct a symmetric theory.

The supersymmetry algebra is most simply realized in
the superspace containing four boson variables x^ and the
Majorana (rea!4-component) spinor 0. The supersymmetry
transformation operates in this space as follows:

e-> e + e,

where E is the constant Majorana spinor: E = £T y0. The com-
mutator of the two supertransformations shifts JCM by the
constant vector a,, =e\Y^£2 in accordance with (2.3). In
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addition to the Majorana spinor 9, we shall need the Weyl
spinor 9 ± :

1 4- iV« / A f , \a _2_5E__L£_ fi A ft* (A.O)

We now introduce the complex coordinate ZM :
I _

4

Under the supertransformation we obtain

(A.7)

(A.8)

The simplest supermultiplet forms the chiral superfield
S(z, 9+). Let us expand it into a Taylor series in 9+ and use
the fact that, since 9 anticommutes, the product of three or
more spinors 6+ must be zero:

) + _J_ (elvnejFw, (A.9)

where A and F are complex fields, and ^ is a Majorana
spinor. The product and sum of the chiral fields is again a
chiral field. Using (A.8), we can define the transformation
law for the components/4, ̂ , and F under the supertransfor-
mation:

*(*)->

i|)+ (z) - ip+ (2) —

>+ (z),

i'Ys (A.10)

From this, it follows that the F-component of the chiral su-
perfield will change under the supertransformation by the
total derivative. Consequently, it can be used as the density
of the supersymmetric Lagrangian:

Zv = -^-M[S*]F + ~[S*\?+ c.C. , (A.11)

where [ . . . ]F represents the F-component of the corre-
sponding superfield, and powers of 5 in excess of three lead
to a renormalized theory. / d 26+ is sometimes used instead
Of [ . . . ] , :

[...]*• = Jd«8«.. (A. 12)

The validity of (A. 12) follows from the rules for integration
with respect to the Grassman variables:

j d e = -^ , J e d e = i, J i a e = o. (A.13)

We have used the concept of the superpotential, which
is a function of the scalar components z, of chiral superfields
z,: w==w(zt). The Lagrangian in global supersymmetric
theory has the form

%v= f d26+u.-(zj)+C.C. s [if (z";)lF. (A. 14)

For (A. 11),

Let us write out the terms in (A. l l ) in terms of the
components:

<) M — f \ 1 *\
— M[S2]F+C.C. =

(A. 16)

It follows from (A. 16) that Re A interacts as a scalar field
and Im A as a pseudoscalar field. ( A. 1 1 ) does not contain
terms with derivatives. To introduce the kinetic terms in a
supersymmetric manner, we must become familiar with the
vector supermultiplet

- (69) F ( x )

(A.17)

- .eY v Y 58Fv . (x)

V* = V.

V(x, 6) contains the two Majorana spinors if> and^ (eight
fermion degrees of freedom outside the mass shell), four real
scalars A, F, G, and D, and the vector field Vv (eight boson
degrees of freedom outside the mass shell). The product and
sum of two vector superfields V\ and K2 give the vector su-
perfield F3.

5) The last component of V(x, 9) will change by
the total derivative under the supertransformation, so that
/ [ . . . ]Dd4x is a superinvariant.

Let us expand (A.9) into a series in terms of 9:

*) + 6>+ (*) + 4-(~ee+> F (x)

(A.18).

From (A.17) and (A.18), we have

A word now about dimensions: A is a scalar field,
M] = GeV, i{> is a spinor field, |>] = GeV3/2,F is an auxil-
iary field, [F]=GeV2. It follows from (A.9) that
[<9]=GeV-1/2.

The Lagrangian in the Wess-Zumino model (simplest
supersymmetric model) has the following form:

^w_z=-l-[S*S]0 + ̂ [^]FT — [S3]F-!-c.c. (A.20)

Under the supertransformation, J? changes by the total der-
ivative, and this once again demonstrates that supersym-
metry is a spatial (and not internal) symmetry.

In terms of components:

•Sf.W-Z= I MI 2 + -

/ i_ — ^ T n ' v ^ i b f A 2 M

The model contains two physical fields: namely, the complex
scalar A and the Majorana spinor ^. The field F is not dy-
namic and J£ does not contain terms with derivatives of F.
The Lagrange equations for the field F are the algebraic
equations:
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F=— — MA*. (A.22)

Substituting this in (A.21), we obtain the expression for
-SC-W - z m terms of physical fields. The potential energy of
the field A is

V(A)= \F(A)\*. (A.23)

In addition to chiral superfields, we have used vector super-
fields that are necessary for the description of gauge fields.
We begin with Abelian U( 1) symmetry. The chiral super-
field <t> transforms with the aid of the chiral superfield A:

<p _* e-
{Ao. (A.24)

The kinetic energy is not an invariant:
(A.25)

To recover U( 1 ) symmetry, we introduce the vector super-
field V, and the expression for the kinetic energy assumes the
new form

(A.26)

(A.27)

Let us now determine the effect of the U( 1) transformation
(A.27) on the components of the vector supermultiplet
V(C, x, M, N, Vv, A, D). Using (A.17) and (A.18), we
obtain

- (By.fi) Iff+ i(F-F*)\

(A.28)

The components A, 1/1, and F of the multiple! of the gauge
transformation can be selected so that the lowest compo-
nents of the vector superfield C, %, M, and A^ are annulled.
This leaves the ordinary gauge transformation
K^-» V^iO^A-d^A *). This gauge of the superfield Fis
called the Wess-Zumino gauge, in which the field V can be
written in the form

= < ~ 9
6 e ) V (98) (6). («)) + -

(A.29)

The convenience of the Wess-Zumino gauge is that the
expansion of exp(2gV) into a series stops with the second
term.

For the kinetic energy of the chiral superfield in the
Wess-Zumino gauge, we obtain

A\*

- ? (S - igV) .C.

+ gDA*A+\F[\ (A.30)

We shall now obtain the expression for the kinetic ener-

gy of the vector supermultiplet. The analog of the gauge in-
variant intensity tensor of the vector field /),„ is the chiral
multiple! of intensities Wa. To construct it, we introduce the
covariant derivative D:

(A.31)

(A.32)

D = —+_Lea, D - 1 ± '?» £>.
38 2 "̂  2 *

The following equations can readily be verified:
D.< (8+, 2) = />+C>_ (6_, 2*) = 0.

They can be used as definitions of chiral superfields. The
definition of Wa that is invariant under (A.27) is

W« = (D+D_)(D+)aV, (A.33)

where Wa is a chiral field and D_ W = 0. The evaluation of
Wa from (A.33) may be recommended as a useful exercise
in 6 and y gymnastics (it need only be remembered that the
spinors anticommute) . Using the Fierz identities, we obtain

)— L 0liVFuv (2)] e++-I_ aX (2)- _

(A.34)

The expression for the kinetic energy of the vector supermul-
tiplet is

(A.35)

The superin variant term £\V\D =£D can be added to the
Lagrangian. In the case of non-Abelian symmetry of the
fields, A, D, and V^ must be chosen in the associated repre-
sentation: y^ = y^t", A^=Aata, D=D"t". Equations
(A.30) and (A.35) then remain unaltered, and only the
trace of the matrices of the gauge group must be taken, for
example,

-

since trtatb = (\/2)8ab.

"See Appendix.
2IA remarkably clear presentation of problems relating to spontaneous

SUSY breaking has been given by Witten.37

"In the case of spontaneous SUSY breaking, one of the supermultiplets
containing the goldstino is always found to contain a physical field that is
massless in the tree approximation. When supersymmetry is due to the
F-term, this is a scalar field and, if it is due to the D-term, it is a vector
field (photon).

4)A chiral representation (in contrast to a vector representation) is one in
which a gauge-invariant mass cannot be written for the fermions of mat-
ter. For example, for SU( 5), 5,10 is a chiral set, and the quark set 3,3 is a
vector set for SU(3).

5)A useful exercise is to obtain the field F3 = Vt y2 in terms of the compo-
nents of V, and V2.
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