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Classical mathematical physics dealt only with perfectly smooth constructs; but today one works
with curves having no tangent at any point, surfaces having no area, and other important objects
once thought useful merely for tricky exam questions. Several aspects of these rough entities are
described, such as the fractional-dimension concept, intermediate asymptotics, and the differen-
tial calculus of functions lacking derivatives, based on the Holder index. Applications are possible
in many branches of physics, including fluid dynamics, general relativity, and cosmology.
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1. INTRODUCTION

"The line is inconceivable," said the Skeptic philos-
opher Sextus Empiricus, "for the Geometers state that 'the
line is length without breadth"; but we in our inquiry are
unable to perceive length without breadth either in sensibles
or in intelligibles; for whatever sensible length we perceive,
we perceive as including a certain breadth."1 So even in an-
tiquity—for our extract dates from the end of the second
century A.D.—people realized how limited the concept of
dimension is when restricted to whole numbers. Little by
little objects came to be envisaged that have more bulk than a
line but nonetheless resemble it: a line with some breadth.
Significantly, this feeling was long expressed in negative
form, critical of ideas regarding one- and two-dimensional
objects; indeed that is what the quote from Sextus conveys.

The concept of line has played a key role in the develop-
ment of analytic geometry. One route here has been taken by
differential geometry, a discipline concerned not only with
lines and surfaces in our familiar environment of three-
dimensional space. For progress in differential geometry
soon gave rise to the idea of curved, non-Euclidean space,
even multidimensional space, as well as a curved entity com-
bining both space and time.

But perhaps a still larger contribution to the history of
natural science has come from the invention of analysis—
differential and integral calculus. Various formal, abstract
definitions of derivatives and integrals were put forward; yet
the very discovery of these principles was indissolubly linked
with the concepts of motion and curves—the derivative as a
rate of travel or a slope, the integral as a path length or an
area. It is important to emphasize, though, that even motion
and smooth curves were taken for granted. Newton and
Leibnitz could hardly have arrived at the idea of derivatives

by studying Brownian motion, tracing the velocities and tra-
jectories of the microscopic particles that are caught up in
thermal flight.

Thus Newton, Leibnitz, and one could add many other
names right up to Euler, accepted continuity and the exis-
tence of derivatives as self-evident. Their silence on the mat-
ter did not remain unnoticed by succeeding generations.
Textbooks abounded in such phrases as "the derivative, pro-
vided it exists." These notes of caution, like road signs warn-
ing the motorist of hazards, have a deep meaning. One can
argue about just when certain reservations and complica-
tions ought to be introduced into teaching practice (the suc-
cessful development of "nonstandard" analysis,2'3 based on
the concepts of infinitely large and small numbers, has
shown that the critics have sometimes gone too far, and that
the theory of limits can be handled in a spirit much closer to
Newton and Leibnitz than is usually done), but the existence
of unsmooth functions and the like is itself beyond any
doubt.

In fact, in the latter half of the past century mathemati-
cians of the school who criticized the foundations of analy-
sis, above all Karl Weierstrass and Giuseppe Peano, devised
functions that were continuous but nowhere had derivatives,
as well as curves that everywhere densely filled a square.
From the modern viewpoint the strange properties of these
objects reflect their having been thought of as one-dimen-
sional, whereas it would be more natural to regard them as
objects of higher—including fractional—dimension, or in
present nomenclature, fractals. But the preliminary steps in
the study of fractals were not taken by design; the applica-
tions to physics and otherwise had not been foreseen, and the
term "fractal" was coined by Benoit B. Mandelbrot4 only in
1975.
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Contemporaries of the critics often perceived their
complaints as destructive to mathematics. In 1893 Charles
Hermite wrote to Thomas Jan Stieltjes that he "turned away
in fear and horror from this lamentable plague of functions
with no derivatives."5'4 Critics belonging to the next genera-
tion of mathematicians focused just as intently on the most
fundamental aspects of their science: the concepts of set, nat-
ural number, proof, and so on. A resounding reaction to the
earlier attitude was the celebrated utterance of David Hil-
bert (he himself was a prominent critic, although the divid-
ing line between critics and noncritics is of course a very
arbitrary one), who "refused to be driven out of the paradise
which Georg Cantor had created" (see Hilbert's Weierstrass
lecture6).

Starting from a different point, it was not a mathemati-
cian but an eminent theoretical physicist, the late Paul A. M.
Dirac, who assimilated the nonclassical tenets in a positive,
constructive way. His idea of the <5-function made a deep
impression on mathematicians and physicists alike, com-
pelling them to rethink the criticisms and to extract from
them what might be of practical use. In speaking of how
Dirac's approach influenced the development of fractal the-
ory, we particularly have in mind the psychological effects,
the change in the scientific atmosphere. For these questions
are eternal riddles of science; they have to be examined anew
at every stage of scientific progress, and the shifting view-
points are of no less significance than would be the cultiva-
tion of some specific new problem.

By way of comparison, a similar change in attitude oc-
curred among twentieth-century mathematicians of critical
bent, when they found that the doctrines of the Scholastics
and the ancient logicians, long since cast aside by the march
of natural science, had unexpectedly become very relevant.
A twentieth-century author can take issue both with his own
contemporaries and with Aristotle1' (see Mikeladze's essay8

for some examples). Actually the turnings of the tide extend
over rather long intervals, with different views coexisting in
contention. Thus, in a sense the physical applications of frac-
tals began with the work of Albert Einstein and Marian Smo-
luchowski on Brownian motion at the start of our century.
By the same token the dread of singularities in general rela-
tivity theory, a panic that held sway until just recently, was
essentially an echo of the belief that undifferentiable objects
are inadmissible.

From the standpoint of modern science a function with
no derivative certainly is not just an abstract notion drawn
from an arsenal of cunning questions set in exams on math-
ematical analysis, but the trajectory of a Brownian particle.
So broken is the trajectory that it should be regarded as a
"thick" line, a fractal. As we shall see, the description of
fractals is itself very close to Weierstrass' example of a func-
tion nowhere differentiable. Weierstrass in effect was in
possession of the fractal concept without suspecting it!
Among the mathematician's tools at that time was analytic
apparatus capable of describing such uneven objects. Taking
the place of ordinary dimensions is the fractional dimension-
ality first introduced by Felix Hausdorff early in this cen-
tury,9 while the derivative is replaced by the so-called

Holder index or fractional derivative, a concept put forward
by any number of mathematicians. These ideas will be dis-
cussed below, as well as the physical problems to which they
pertain.

The fractional-dimension concept rests on analysis of
conventional integer dimensions. We all have a feeling for
what is meant by a line or circle being one-dimensional, a
plane or sphere being two-dimensional, a ball or space being
three-dimensional, and so on. Roughly speaking, we mean
that the position of a point on a line can be specified by one
coordinate; on a plane, by two; and in space, by three. That
quantity—the number of coordinates—cannot be a fraction.
To look for a way of introducing fractional dimensions, two
steps are necessary: we have to find some relationship that
characterizes dimensionality but does not rely on integers,
and we need to pin down the weak point in our naive ideas
about dimensions, eliminating it so that we can ascribe to
certain objects a fractional dimension.

The program just outlined can be put into practice as
follows. With one-dimensional objects we associate the con-
cept of length; with two-dimensional objects, area; and with
three-dimensional ones, volume. Characterizing these con-
cepts is a construct which by no accident similarly is called
dimensionality: [cm], [cm2], [cm3]. From other branches
of physics we know that these dimensions can also be frac-
tional; in cgs units, for example, electric charge has dimen-
sions of [g1/2 • cm3'2 • sec"1].

But in order to pull this fractional dimensionality along
into fractal theory we have to look at the concept of coordi-
nates somewhat more broadly. To any preassigned accuracy
we can specify a point inside a square not just by a pair of
coordinates but also by only one, provided we use a coordi-
nate line that fills the square more and more densely. In fact
a coordinate of that kind is by no means exotic. For instance,
a person's address in a city could in principle be specified by
giving the geographic coordinates of his residence; but we
use a different procedure, first naming the street and then the
building and apartment numbers (like a coordinate with in-
teger and fractional parts). Indeed one could actually num-
ber all the city's dwellings in a single sequence (the Tokyo
address system comes closest)—(transl. note: or the Ameri-
can nine-digit ZIP code). Now it no longer seems oversubtle
to ask what the dimensions of a city are. If we think of it as an
ensemble of streets, the city would be one-dimensional; as an
area on the earth's surface, two-dimensional; if we allow for
the heights of apartment houses, three-dimensional; and
might there not be intermediate dimensions as well? In other
words, how should we characterize a city: by the combined
lengths of its streets (summing the first powers of the indi-
vidual block lengths, from one intersection to the next), by
its area (summing the squared block lengths, if the street
grid is rectangular), or, for appropriate questions and types
of cities, by summing some other power of the block lengths,
say the three-halves power? We shall examine this approach
more fully at the end of the next section.

The problem with the concept of fractional—indeed
even integer—dimensions is that the route just outlined is
not the only possible one; other approaches can be formulat-
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ed as well, equally natural but leading to different results.
We will begin by taking an approach less familiar to physi-
cists but historically earlier—that of Hausdorff, who relied
essentially on ideas that had been expressed by Euclid. Un-
derlying the Hausdorff approach is the recognition that one-
and two-dimensional structures are in effect three-dimen-
sional portions of space, two or one of their characteristic
scales being very small.

Before we turn specifically to fractals, let us recall two
basic ideas on which that concept rests. When we speak of
the unsmooth, broken-line trajectory of a Brownian particle
or its infinitely high velocity, we naturally are idealizing the
situation. On very tiny scales the finite mass of a Brownian
particle and the finite intercollision time will manifest them-
selves, and the trajectory will become smooth. When we
speak of a fractal surface we should think of a rough surface
whose scale of irregularity gradually becomes smaller as the
projected area of the irregularities diminishes. The irregular-
ities should, however, still be much coarser than the intera-
tomic distance scale; otherwise the concept of a boundary for
the body would not apply at all. When we say that a lengthy
molecule fills up a region of space (the corresponding math-
ematical image is called a Peano curve), we mean that from
some filling factor onward we have to allow not only for the
molecule's extension along a line but also for its thickness,
and we can no longer describe the situation in terms of tan-
gled lines. That is how in its most general form the fractal
concept ties in with intermediate asymptotics10: although the
scale of roughness is small, it remains much larger than
something still smaller.

The second basic idea likewise is illustrated by the ex-
ample of a rough surface. Imagine that on the surface is a
whole hierarchy of mounds having a common base area but
differing in height, so that the higher mounds occur much
more rarely than the low ones. Clearly you can't describe a
roughness of this kind by any single number, as a fractional
dimension. Hence the fractal concept must build upon a pre-
mise which excludes such complications—upon the postu-
late that the corresponding power-spectrum expansions con-
tain random phases. To deal with other situations one either
has to treat singularities separately, as in <5-function theory,
or one must introduce a hierarchy of dimensions peculiar to
individual roughness systems (see Sec. 6).

On the whole the development of the fractal concept
represents a typical story of the mathematically "impossi-
ble" being surmounted. Mandelbrot's book in its successive
versions4 has played a decisive role in the emergence of these
ideas. In our country the first survey of fractals was pub-
lished as a chapter in Barenblatt's book on similarity.11

2. FRACTALS AS THICK LINES

Suppose that we peer at a razor blade with a stronger
and stronger microscope. First, to the unaided eye, it will
look smooth. Then rough places and notches will appear;
these will enlarge, and later we will see the object's crystal-
line structure. Its boundary will no longer have any definite
meaning, and we will enter the quantum world. In order to
characterize the intermediate-asymptotics region, where the

FIG. 1. A fractal curve has a uniform structure over a wide range of scales.

body surface and the blade have become uneven although we
are still far away from interatomic scale, we now need to
introduce the concept of fractals (Fig. 1).

As mentioned in the Introduction, one of the first actual
mathematical examples of a fractal was devised by Weier-
strass12 to illustrate a function without a derivative. Geome-
trically, his function is a curvey =y(x) with a single-valued
projection on the x axis and specified by the series

oo

y ( x ) = 2 Ancos(Bnnx),
n=0

where 0<A<1, while the product AB is suitably large
(Weierstrass originally took ,4.5 > 1 + 3/2, but we shall un-
derstand AB > 1, a condition established by Hardy13). It will
be fitting for us at the outset to consider the more general
case of functions

y(x) = 2 a (kn) cos (knx + q>n),
n=0

(1)

where the a(kn )~k „ ", with the kn ~n —*• oo.
Although Weierstrass' example can readily be put into

the form (1), there are wide gaps in the summation and all
the phases <pn vanish. It is well understood (see, for instance,
Zygmund14) that the rate a at which the Fourier spectrum
falls off corresponds to the number of derivatives of the func-
tion y(x). In fact, on differentiating the series (1) term by
term we find

-MVW = (knx

For the original series to converge we must have an~k a,
with a > 0. Clearly the series for they'th derivative will con-
verge only if a >j.

It is important to emphasize that all the arguments to
follow rely on the random-phase approximation; in other
words, they apply to a representative function of the form
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y (x) = S a (kn) c.os (knx + <pn),

where the <pn constitute a sequence of independent random
numbers distributed uniformly between 0 and 2ir. For any
individual function the slowness in the decline of the spec-
trum will be related, and simply so, to the roughness at some
one point. The 5-function, for example, has a flat spectrum,
a(/t)=const; for the ̂ -function, a (k) ~ \/k, but these func-
tions are discontinuous only at the origin of coordinates.
Fractal curves, on the other hand, are so constructed that in
a statistical sense all their points are alike.

We would also point out that the kn have not been iden-
tified with the integers n themselves; we merely stipulate
that kn~n. What is important for our purposes is that not
only the phases but also the frequencies of the summed har-
monics are random in nature. Otherwise if a is small enough
(a < 1/2) the curvey(x) can develop randomly distributed
peaks going off to infinity. Suggestive of that possibility is
the fact that a series of the form y = 2(sin nx/na ) is un-
bounded near the points x = 0 and x = ITT; indeed in this
example

y i ( x ) da: =00,

and the series convergence tests fail to ensure continuity of
the summed series at just those points where sin(x/2) == 0.

From our vantage point today, Weierstrass' most sig-
nificant result was to verify that the function he had con-
structed did satisfy the criterion of being "in general posi-
tion." But the general-position argument itself was only
formulated later, after Cantor had developed the theory of
sets. This consideration strongly affected the mathemati-
cian's outlook: in the nineteenth century people spent years
in proving, say, that the number IT is transcendental, while
now we are usually satisfied to say that almost all numbers
are transcendental.

Thus according to the theory of trigonometric series, if
the exponent a is in the range 0 < a < 1 then the function
y(x} will be continuous but not differentiable. The curve
corresponding to it will be a fractal. If 1 < a < 2, the "trajec-
tory" y = y(x) will be smooth, but motion along it will take
place at fractal velocities. And if we want all the derivatives
to be nonfractal [y(x) = 1/(1 +x2) or e~**\, then the
spectrum a ( k ) should fall off faster than any power of k
(that is, ~e~k , e~kl ) .

We have been making negative, limiting statements: to
a function whose spectrum does not fall off fast enough, the
concepts of analysis are not fully applicable. By introducing
Holder indices we can give these assertions a positive charac-
ter, saying that the function y(x) does not have one deriva-
tive but a smaller number, a, of derivatives. If the fundamen-
tal formula of "smooth" analysis is written as

\y = [x Aa:,

we may write for our function (see Fig. 2)

where //, jUH denote respectively the ordinary and Holder
derivatives (properly speaking, left and right derivatives

FIG. 2. The structure of smooth and fractal curves in the neighborhood of
a point, a) A smooth curve has a tangent (dashed line); b) a fractal curve
has a curvilinear cone Ay~ A* " (dashed curve) serving as a tangent.

/"H_ > ^H^ wiM arise for Ajc < 0, Ax > 0). With this conven-
tion we can work withX-*) in much the same way as with a
smooth function.

There are two familiar examples of physical objects
having such a low smoothness. One is Norbert Wiener's pro-
cess, a mathematical abstraction of Brownian motion in
which the mass of the Brownian particle and the intercolli-
sion time both tend to zero. It is the displacement of the
Brownian particle during time t that is called the Wiener
process: x(t) = w, (here letter w stands for Wiener, rather
than for probability, the custom in many branches of phys-
ics). At any given time the particle will undergo an accelera-
tion analogous to a 6-function; its correlator will have a flat
spectrum. Hence the sum of numerous instantaneous im-
pulses will cause a displacement w, + d, — w, = wd, = dw,
~ (A?)1/2, and the Holder index will be 1/2 (the Brownian-
particle trajectory will have a half-derivative).

We cannot go into detail here about the mathematical
analysis applicable to Brownian-motion-type functions, but
we should like to mention a remarkable formula of Kiyosi
Ito15 for calculating the differential of the function F(w,),
where F is a smooth function. In this case dF, the increment
to a quantity of order dt, is expressed not by F'dw, but by
dF = F'dw, + 1/2F" (dw, )2. It is the second term in Ito's
formula which enables one not only to describe diffusion
from an analytic point of view in diffusion-equation lan-
guage (a la Langevin, Smoluchowski, and Wiener) but later
on to obtain formulas such as that of Kac and Feynman for
solving evolutionary equations by means of Wiener (or, in
quantum mechanics, Feynman) integrals. Further informa-
tion on this analytic technique and its applications to de-
scribe thermal conductivity and diffusion will be found in
the review literature.16'17

The other example is Kolmogorov turbulence. If we
discount the fact that at very short distances (or equivalent-
ly, for very large wave numbers) viscosity comes into play,
then the velocity field will experience variations of order
6v~ (<5r)1/3. Accordingly the velocity field of Kolmogorov
turbulence will be continuous, but it will have only a one-
third derivative. Of course we are dealing with a more com-
plicated entity here—a rough vector field.

Now let us see what the dimensions of the resultant
fractal curves are. HausdorfFs approach was to define frac-
tional dimensionality as follows. Around every point of our
set we construct a circle of radius E —> 0, and we add up the
area S(e) of all the circles combined (actually it suffices to
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construct a finite number of circles, of order 1/f). Some of
the circles will overlap and naturally in computing S(E) we
count the overlap areas only once. It is the rate at which S(£)
diminishes toward smaller £ that determines the dimension.
In fact, for a smooth curve the areaS(f) ~sL, whereL is the
curve length. If the curve degenerates to a point, then
S(E) ~£2; for a plane domain, S(E) ~E°. In the case of our
fractal we can estimate the area in the following way (Fig.
3). Let k = I/E denote the wave vector; then individual sine-
wave periods are contained within an f-circle, and if the
quantity a(kn )=c(l/£) falls off more slowly than E as
E —> 0, the band of circles will have a width not of order E but
of order a(\/e). If instead a( I/E) <E, the band of circles
will be able to track all the kinks in the curve, which will
therefore be a smooth rather than a fractal curve.

We now return to the fractal curve. Let its projection
have a length of order unity. The combined area of all the e-
circles willbeS(£) ~a( I/E) ~£a.lfO<a< 1, theareaS(£)
will diminish more slowly than for a smooth curve, and our
fractal will occupy a place intermediate between a line and a
plane region. Hausdorff proposed a definition whereby an
object Y such as this fractal would have a dimension

dimevt 7 = 2 — a.

The subscript, standing for "exterior," means that to evalu-
ate this quantity we have to go beyond the bounds of the
curve itself.

This example has a serious shortcoming: the x axis has
been singled out. But we can readily introduce a modifica-
tion to make the axes equivalent. To this end we regard the
curve Y as expressed parametrically:

x = S a (kn) cos (knt + q>ln),

y = 2 b (kn) cos (knt + q>2 n).

In order for the two directions to be equivalent, the coeffi-
cients a, b have to fall off by the same law:

k- 0 < a < 1.

If we estimate the area of an £-neighborhood of our curve in
two dimensions, we will again obtain E", as can easily be seen
(rather than what one might at first have expected, e2", be-

cause we now have to consider the departure of the rough-
ness from some average state). We still have dimext

7 = 2 — a.
However, the fractal dimension of our curve can be de-

fined in a different way by utilizing only concepts associated
with the curve itself, not with how the curve Y is situated in
the plane. We have alluded to this approach in the Introduc-
tion. Let us assign a parameter t along our curve. We subdi-
vide the t axis into segments of length E and compute the
length of Y, taking into account only those kinks for which t
changes by at least e. In this fashion we find that the seg-
ments will have a combined length of order a( !/£)(!/
e) ~E"~ ' , becoming infinite as £ decreases. Notice that the
only thing of importance to us in this argument is our mea-
surement of the distance along the curve on a definite scale of
t- variation, not the placement of the curve in the plane.

Let us try to interpret the divergence we have found in
the cumulative length as E diminishes. Suppose that we have
erred in evaluating the dimension of our object Y and that we
actually are not studying a curve after all, but are seeking to
parametrize a region with a single parameter. The parame-
trization will be very poor, of course: the coordinate line will
grow denser and denser, crossing itself as it fills up the re-
gion, and forming a sort of lattice there (Fig. 4). Successive
strips in the lattice will be separated by a distance of order e,
while the number of quadrangles will be ~ 1/f2 (each strip
corresponds to an individual rough spot on the curve) . If we
sum the lengths of the segments in this broken line we will
obtain a quantity ~E • l/e2— »• oo. Actually the region is
two-dimensional, so what we need is not its length but its
area; that is, we should sum not the lengths of the sides, but
the squared lengths.

If the dimension is fractional, however, we must add up
not the first or second powers but the /zth powers of the
lengths, for some value of /j,. In order to keep the resulting
sums finite, which will be true if we have chosen the dimen-
sion correctly (as in our example involving a region), we
should set // = I/a. The sum will then have dimension
[cm1Az ], the number I/a itself evidently representing the
dimension. Accordingly it is natural to adopt for the interior
dimension of a fractal Y the number

This expression also holds, of course, for curves in a space of
arbitrary number of dimensions.

FIG. 3. How the exterior dimension of a fractal is denned. The width of a
neighborhood of the fractal curve is determined not by the radius of the
small circle but by the size of the curve's kinks.

FIG. 4. How the interior dimension of a fractal is denned. The links in the
broken line that densely covers the plane region are short, but there are a
great many of them. Even so, the sum of the squared link lengths remains
finite.
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In a plane, a fractal-type curve can have an exterior
dimension ranging from 1 to 2 (the dimension of the space
containing the curve), and an interior dimension from 1 to
oo . The two will coincide only for the trivial case of a smooth
curve. When dealing with various physical problems one has
to use different definitions of fractal dimensionality. For ex-
ample, if we are interested in the problem of adsorption on a
thin fiber, we will need to know how many atoms can fit next
to the fiber, that is, its exterior dimension. If instead we want
to estimate the filament's weight, the significant dimension
will be the interior one.

To compute the exterior dimension of a fractal curve in
3 -space, we write

xi = 2 «; (&„) cos (knt + <fin), at (k) ~ k~«.

One can easily estimate the volume of an ^-neighborhood of
the curve: V(e) ~e2a . Then by analogy with the two-dimen-
sional case,

dimextv = 3 — 2a.

More generally, in H-space,

aimeitV = n — (n — 1) a.

We see, then that the exterior dimension of a fractal
curve lies between the dimension of a smooth object and the
dimension of the surrounding space, while the interior di-
mension can take any value between the smooth-object di-
mension and infinity.

3. FRACTALS AS THICK SURFACES

A rough surface can be assigned a fractal dimension in a
similar way. Suppose that our surface 4> is specified by the
parametric equations

«i ~ I k I-1-".

We are now working with a double Fourier series, and in
order for it to be summable the exponent a has to exceed 1 .
Consequently in the fractal interval of interest to us,
0 < a < 1 , the double series diverges in the conventional
sense, and we can sum it only by taking principal values —
that is, first the harmonics within a sphere of fixed radius,
and then along the radii.

Let us break down the (u,v) parameter domain into
triangles of diameter e. Although a subdivision into squares
would be more easily visualized, a pattern of triangles (a
triangulation ) is much simpler technically, because unlike a
quadrangle a triangle is a rigid figure, being determined sole-
ly by its side lengths.

We add up the areas of the triangles tesselating the sur-
face, again taking into account only harmonics no shorter
thane. The sum will be of order [a( 1/e) ( 1/e) ]2(l/£2), and
for a in the range 0 < a < 1 it will increase without bound as £
diminishes. To keep the sum finite we have to sum the ( I/
a ) -th powers of the areas; thus to obtain the correct power of
the unit of length we should take the dimension of the object
to be

2
1 ~~ a '

As for the exterior dimension of a fractal surface, it will have
the Hausdorff value

dimext4> = 3— a, 0 < a < l ,

since an ̂ neighborhood of the surface has a volume of order
a(\/E)(\/e).

The noncoincidence of the interior and exterior dimen-
sions of a fractal surface means that unlike the case for regu-
lar surfaces differentiable repeatedly, for a fractal surface the
relationship between the interior and exterior properties is
violated. In other words, we can compute, say, the curvature
of a regular surface in two ways, either from the Riemann
curvature tensor (as in general relativity) or from the curva-
tures of surface sections, and the results will coincide; but
generally speaking this will not be true for a fractal surface.
Surprisingly, for smooth but irregular surfaces—surfaces
that have a tangent plane but no higher derivatives—we ac-
tually encounter a fractal-like behavior, even though their
dimension is exactly 2. This interesting phenomenon, dis-
covered by the American mathematician John Nash, comes
about as follows.

First consider a regular surface whose area is ~S. If the
surface is closed, one would naturally expect a body in-
scribed in the surface to have a volume of order 53/2. The
precise coefficient will of course depend on the particular
form of the surface—on the distribution of its Gaussian cur-
vature, but the dimensional factors will always be the same.
What Nash found18 is that if the surface has a smoothness
between 1 and 2, so that an extrinsic curvature can no longer
be calculated from the standard formulas, then the area of
the surface will be quite unrelated to the enclosed volume:
within an arbitrarily small sphere one can inscribe a globe so
severely wrinkled (although in such a way as to preserve the
metric, that is, all distances between points along the sur-
face) that its area is as large as desired. It is presently be-
lieved19 that this phenomenon will dispapear when the
smoothness reaches a limit somewhere between 1.07 and 1.7.
After a fashion, the effect displayed by Nash surfaces is remi-
niscent of that forecast by the Czech novelist Jaroslav
Hasek, who has one of his heroes avow that "inside the ter-
restrial globe there's another globe, a good deal bigger than
the one outside."

The simplest concept of dimensionality, the one famil-
iar to all, is widely used in biology to interpret the relative
populations of different animals. Perhaps for some species it
might also be possible to discern certain properties inherent
in Nash-type boundaries. Fractal dimensions have in fact
been invoked to model the absorptivity of lungs.

4. FRACTALS AS SPACETIME FOAM

The interior dimension of a surface carries over without
significant change to the case of curved spaces in general
relativity theory (space being subdivided, of course, not into
triangles but into their four-dimensional analogs, sim-
plexes). If spacetime on microscales resembles a foam, as
Wheeler first suggested,21 the dimension perceived by a mac-
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roscopic observer could be very different from the micro-
scopic dimension. These questions, however, still have re-
ceived very little attention from mathematicians, although
certain assessments are now feasible.

In cosmology one often employs a "flat" spectrum of
primordial fluctuations, in which all harmonics of the per-
turbations in the density of a Friedmann model are equally
probable. Plainly, this flat spectrum can only be viewed as an
intermediate asymptotic. At one time such a spectrum was
regarded as a convenient, reasonable premise to cover a situ-
ation about which we lack more definite knowledge22; but it
has now become clear, in the context of inflationary cosmol-
ogy,23 that theory can indeed predict a model with critical
density (that is, comoving Euclidean space) and a flat den-
sity-perturbation spectrum.24 The curvature of the model
then will also have a flat spectrum, by analogy to the second
derivative of a Wiener process. It would therefore be natural
to suppose that some analogy exists between a Wiener pro-
cess and the metric itself. That would imply, as we have seen,
that in the intermediate-asymptotics region the dimension of
comoving space would not be 3, but rather more than 3.

At a later stage the fractal character of space will have
been lost, giving way to a cell-lattice structure25 that repre-
sents the structure in the distribution of matter, not of space.
To be sure, in light of Einstein's equations wherever the den-
sity becomes infinite in this structure, a singularity will also
occur in the metric. It will resemble the singularity at the
place where two non-coaxial cylinders cross each other.26

But the corresponding power spectrum of the metric will be
strongly phased—no longer a fractal spectrum.

In attempts to describe the development of small initial
fluctuations, their growth rate, and the rate of cosmological
expansion, an allowance for fractal dimensionaltiy seems
unlikely to alter the prevailing estimates, but may be useful
for resolving the dilemmas posed27 by the small amplitude of
the angular irregularities in the cosmic microwave back-
ground.

It is interesting to consider Nash surfaces in multidi-
mensional space as well. A multidimensional surface embed-
ded in a space of high enough dimension may exhibit Nash
properties, even being differentiable an arbitrary number of
times.28 For a four-dimensional surface, the dimension of
the space that would envelop such crumpled Nash surfaces is
estimated29 to lie somewhere between 11 and 29. In this re-
gard it is pertinent to recall an idea remote from fractal the-
ory: the multidimensional Kaluza-Klein generalizations of
field theory. Space has a higher dimension on microscales in
these models than it does on macroscales, because the extra
dimensions turn out to be periodic in coordinates whose pe-
riod is vanishingly small.

Another way to lower the dimension as one goes over to
macroscales has also been proposed.30 One can suppose that
a potential develops in multidimensional spacetime analo-
gous to the potential which keeps quarks within nucleons;
but instead of preventing the escape of quarks it would inhi-
bit the free existence of particles outside a four-dimensional
spacetime surface. It would seem that the presence of crum-
pled Nash surfaces in the enveloping space ought to render

this picture inadmissible, for the surrounding space would
have a dimension ranging from 11 to 29. The lower limit of
this dimension interval is in curious coincidence with the
dimension of enveloping space that is inferred from particle
theory.31

5. FRACTALS AS CONTOUR LINES

In physics the fractal concept was originally put for-
ward to cope with a single salient example: measuring the
length of the coast of Great Britain. A shoreline, one will
recall, can be defined as follows. In a plane, introduce a func-
tion h(x,y) to represent the elevation above sea level; then
the shoreline will comprise the solution of the equation
h(x,y)=Q.

It was found that the larger the scale the map was drawn
on, the longer the coast seemed to be. Thus a coastline turns
out to be a fractal, whose length ought to be measured by
introducing a quasilength with dimensions of centimeters to
some power. Even though this argument has long been re-
cognized by specialists it has not yet come into cartographic
practice. To illustrate, the administration of the National
Park of Lithuania reports the area, depth, and shore length
of all the lakes in the park, although the shorelines can hard-
ly have been rigorously measured, whereas the diameter of
the lakes (a perfectly definite quantity) is not quoted. For
practical purposes, of course, one can accept a shoreline if
one knows on what scale it was measured; but that is just the
information which tends to be omitted.

The fractal definition that we have given does not fully
correspond to this classical problem. When studying a coast
in detail one encounters along with the main shoreline a sys-
tem of reefs or islets; a network of fine contour lines will
demarcate bodies of water and islands that lie next to the
shore, as suggested in Fig. 5. By contrast, our parametrized
fractal structures can have crossing points (such as in two-
dimensional Brownian-type motion), whereas a contour

FIG. 5. The structure of the contour lines for a random function. Shaded
areas represent water-filled depressions. Dry land is studded with lakes;
the adjacent sea, with islets.
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line, with probability unity, will experience no such self-
crossings (for that to happen, a random function and its
gradient would both have to become zero, giving an indeter-
minate system of equations).

To define the fractal dimension of a contour line by a
random function we must again determine how many
Holder derivatives it has. That number, a, is specified by the
behavior of the spatial correlation function over short dis-
tances: for a smooth random field,

(<p (x) ep (x + r)) = 1 — Ar'1

as r —> 0, and for a fractal field,

((p(x)<p(x + /• )> = \-Ara.

The exponent a expresses the fractal dimension of the
boundary line.

6. FRACTALS AS DENSE POINT SETS

Up to this stage the fractal dimension has always been
fairly sizable. To obtain objects of small dimension, say I/
10, we have to consider classes of numerous (in the limit,
infinitely many) points which densely fill a fractal forma-
tion. We can evaluate the Hausdorff dimension of such a
fractal in the plane by surrounding each of its points with a
little circle of radius e, adding up the area of all the circles,
and establishing how that area depends on e. In mathematics
such fractals have long been known—an example is the Can-
tor set, a discontinuum (an everywhere unconnected set
with the power of the continuum); but these objects were
thought to be no more than a playground for clever math-
ematicians. Today we know that Cantor-type sets are more
than toys; they exemplify strange attractors,32 such as the
fractal set of zeros of a one-dimensional Wiener process
(which has dimension 1/2). It has lately been proposed,33'34

for instance, that fractals of this sort might serve to describe
the intermittency of turbulence.

Indeed, as we mentioned in Sec. 2, in Kolmogorov tur-
bulence the velocity is continuous but has only a one-third
derivative. The situation can be depicted graphically as fol-
lows. Along one axis let us plot the number a of derivatives
of the velocity, and along the other axis the Hausdorff di-
mension d of the set comprising the points at which the ve-
locity does not have a derivatives (Fig. 6). Then in the case
of Kolmogorov turbulence d will be given by a step function
of the type

d ( a )=30 (-!/, +a),

so that if (7 < 1/3 the differentiability property will exist al-
most everywhere, but if <r> 1/3, hardly anywhere. Such a
function d(cr) corresponds to a Guassian velocity field, de-
void of intermittency.

If structures are present in the turbulence and it is de-
cidedly non-Gaussian, we would expect d(a) to vary gradu-
ally from 3 to 0. In experimental practice it is more conven-
ient to determine some relationship for the dependence of
the higher moments of the velocity field on distance and
moment number.34 Such measurements have been per-
formed35 and they enable functions d(cr) to be constructed

FIG. 6. How the intermittency of turbulence can be described by frac-
tional dimensions. Dashed line, dimensionality of Kolmogorov turbu-
lence; solid curve, real turbulence.

for real turbulence (curve in Fig. 6). Thus far d(a) is none
too accurate but the curves definitely indicate departures
from a Gaussian state. The d(a) curve can be described ver-
bally by saying that the velocity field has about a 1/10 deri-
vative almost everywhere, but a 9/10 derivative hardly any-
where; in between the dimension of the point set undergoes a
smooth change.

To close our account of fractal structures, we would ask
the reader to keep in mind that in the wake of the nineteenth-
century era when fractal theory was born, the era of math-
ematical criticism (the twentieth century) has given us a
great many other strange creatures with which, unlike frac-
tals, we still don't quite know what to do. Monsters have
been identified such as extraordinary sets that are their own
elements, non-Aristotelian logics, intuitional mathematical
analysis. In time perhaps these too will find their place in
physics. To those who might wish to contemplate this sub-
ject we would commend the book by Fraenkel et a/.,36 one of
the few available monographs written in language compre-
hensible to the nonspecialist.

Think of the structure of space and of fields once quan-
tum zero-point vibrations have been introduced, but remem-
ber as well how particles are left unscattered by those struc-
tures.
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