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The up-to-date theoretical and experimental data on the fairly-high-velocity motion of a solitary
domain wall in a weak ferromagnet are reviewed. The experimental data pertain to orthorhombic
and uniaxial crystals of the orthoferrite and iron-borate types. The theoretical analysis demon-
strates the great generality of the nonlinear dynamics of walls in weak ferromagnets of different
symmetries. The necessary data on the magnetic structure and the magneto-optical properties of
weak ferromagnets are presented. The experimental techniques of investigating domain-wall
motion, including non-steady-state motion, are described. Mobility and limiting-wall-velocity
data are given, and a quantitative theoretical description of these experiments is presented. The
magnetoelastic anomalies observed experimentally in the case when the wall velocity is close to
the velocity of sound are described. A theory of this phenomenon is given which is based on the
notion of Cherenkov emission of sound by a moving wall. The results of the investigation of the
non-steady-state and nonlinear domain-wall motion that arises due to an instability of the wall
front are presented, and theoretical models are proposed for such motion.
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INTRODUCTION domains in such samples is largely due to the production of
optically transparent magnetic materials (see Ref. 10).

The physical properties of real magnetically ordered Modern experimental methods (first and foremost the mag-
substances are to a large extent determined by the existence neto-optical methods) allow a detailed investigation of the
of a domain structure.' The main ideas about domain struc- static and dynamic properties of individual DW's or of a
ture and the properties of domain walls (DW) were devel- solitary domain.
oped in the pioneering papers of Weiss,2 Bloch,3 Landau and The possibility that domains (especially cylindrical
Lifshitz,7 and Neel.5 The experimental proof of the existence magnetic domains or bubbles) could be used to fabricate
of domains, and the clarification of their role in the magneti- components for modern computers drew the attention of a
zation of ferromagnets were accomplished in the classic ex- large number of researchers to this problem, generating a
periments of Barkhausen,6 Bitter,7, Akulov and Dekhtyar,8 "bubble boom" (see Refs. 11 and 12). On the other hand, the
and Sixtus and Tonks.9 The detailed investigation of do- elegance of the relationships that were established in the
mains and DW was held up for a long time by the absence of course of the investigation aroused the interest in this field of
high-grade magnetically ordered crystals (referred to below physicists engaged in fundamental research. Moving DW
as magnetic materials) and the complexity of the domain and domains in the theoretical description are, in fact, non-
structure of bulk samples. The situation changed significant- linear solitary magnetization waves (magnetic solitons).
ly in the 1960's, after the production of perfect ferrodielec- The soliton concept is a new and extremely fruitful concept
trie single crystals, especially single crystals in the form of of modern theoretical and mathematical physics.13 It turned
thin films and platelets. The progress made in the study of out that domain and DW dynamics can be most adequately
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described on the basis of soliton theory.14 The large amount
of data accumulated in the experimental investigation of
DW dynamics is an important basis for the development of
soliton theory. The indicated facts make the investigation of
nonlinear DW dynamics timely both from the point of view
of application and for progress in the fundamental investiga-
tions of magnetic substances.

Thus far, domain dynamics has been most thoroughly
investigated for two classes of magnetically ordered crys-
tals": The ferrite-garnets and the rare-earth orthoferrites.
Notice that it is just these crystals that were the first-known
transparent magnetic materials.10 These two classes of mag-
netic substances differ essentially in both their macroscopic
and dynamic properties. The ferrite-garnets are typical un-
compensated ferrimagnets, and, from the macroscopic point
of view, behave like ferromagnets. The rare-earth orthofer-
rites are an example of the so-called weak ferromagnets
(WFM). These materials are similar to antiferromagnets,
i.e., the magnetic moments of the sublattices in them are
almost fully compensated. The spontaneous magnetic mo-
ment of a WFM (in partiuclar, of the orthoferrites) is ex-
tremely small, and is due only to a slight Dzyaloshinskii-
interaction-induced noncollinearity of the sublattice
magnetic moments15 (see also Refs. 16 and 17). As a result,
the energy associated with the demagnetizing fields in a
WFM is significantly (two-to-three orders of magnitude)
smaller than the characteristic energy of the other relativis-
tic interactions (e.g., the magnetic-anisotropy energy).
Analysis shows that this essentially distinguishes their static
and, especially, dynamic properties from the properties of
the ferrite-garnets, in which the corresponding quantities
are of the same order of magnitude, or differ by an order of
magnitude.

The nonlinear dynamics of magnetic materials is de-
scribed on the basis of the Landau-Lifshitz equation4 (see
also Refs. 16-18) for the sublattice magnetization vectors.
For the ferrite-garnets the effective-ferromagnet approxima-
tion, according to which the ferrite is described by an equa-
tion for the resultant magnetization,2' is a good one. These
equations have been solved for the fairly-high-velocity mo-
tion of a plane D W that is homogeneous in its own plane in
both the cases of a uniaxial20 and an orthorhombic ferromag-
net,21 the solution being customarily called the Walker solu-
tion. This solution is characterized by the fact that, accord-
ing to it, the velocity of the translational motion of a DW
cannot exceed a certain limiting value, called the Walker
limit.

But the results of experimental investigations of DW
motion in the ferrite-garnets disagree significantly with the
theory constructed on the basis of the Walker solution. In
particular, the value of the limiting velocity can be signifi-
cantly smaller than the Walker limit, the dependence of the
velocity of the forced motion of a wall on the driving force is
different, etc.12 This disagreement has been analyzed by a
number of authors (see Ref. 12). It turns out that it is due to
the fact that, in the ferrite-garnets, a DW is practically al-
ways not homogeneous in its own plane. Moreover, there
begins to occur during the motion of a DW with a velocity
significantly lower than the Walker limit a dynamic recon-

struction of the D W inhomogeneities that exerts the domi-
nant influence on the DW dynamics. It has not been estab-
lished that such a complicated DW-motion picture in the
ferrite-garnets is due to the effect of the long-range demagne-
tizing fields. The problem of allowing for these fields is an
extremely complicated one, since the one-dimensional non-
linear Landau-Lifshitz differential equation then becomes a
non-unidimensional integrodifferential equation. Notwith-
standing the number of advances made in the theoretical
description of certain aspects of DW dynamics,12 there is at
present no quantitative theory that allows us to describe ful-
ly DW motion in magnetic materials of the ferrite-garnet
type.3'

The situation is significantly different in the case of
WFM. The experimental investigations of the orthoferrites,
which were begun in the 1970's, have shown that the DW's
in the orthoferrites can move with very high velocities (for
greater details, see Sec. 2). For a long time these results also
could not be explained on the basis of the Walker solution. In
particular, it was noted that the limiting value of the velocity
is significantly greater (and not smaller, as in the case of the
ferrite-garnets) than the Walker limit. But this disagree-
ment was cleared up at the end of the 1970's, when it was
noted that the direct use of the Walker solution is incorrect,
since it ignores the sublattice structure of the WFM. After
this fact had been realized, and a theory based on a two-
sublattice model had been constructed, it was found that the
simple one-dimensional model (which ignores the inhomo-
geneities in the plane of the wall) explains very well the main
aspects of DW dynamics in the orthoferrites (see Sec. 3 be-
low).

This is due to an extremely propitious situation, about
which we have already spoken: the demagnetizing-field-re-
lated nonlocal interaction in a WFM is extremely weak, and
does not have a significant effect on the DW dynamics.

The measured external-field dependence of the velocity
exhibits anomalies at values of the velocity close to the val-
ues of the longitudinal and transverse sound velocities.
These anomalies can be explained as being a consequence of
Cherenkov emission of phonons (see Sec. 4).

Recently it was found that the DW motion can become
highly nonstationary at high velocities. These results are dis-
cussed in Sec. 5.

Recent investigations of DW motion in iron borate—an
easy-plane WFM—have demonstrated that the principal
laws governing DW dynamics in WFM's with different
types of magnetic anisotropy are basically similar, and are
well described by the existing theory.

Thus, at present the study of nonlinear DW dynamics in
the WFM's has advanced considerably further than the
study of the phenomenon in any other magnetic materials,
e.g., materials of the ferrite-garnet type. The existence of
precision measurement techniques allows us to investigate a
number of fine effects with a high degree of accuracy. On the
other hand, we have an adequate theoretical description of
these effects, which, as a rule, agrees quantitatively with ex-
periment. The above-outlined range of problems constitutes
an integral and extremely important section of the nonlinear
physics of magnetism, the development of which is essential
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to both fundamental and applied physics.
It is these facts that prompted the authors to write the

present review. We hope that the systematic exposition of
the results obtained in the investigation of nonlinear DW
dynamics in the WFM's will facilitate further development
of domain dynamics research as an important section of the
modern physics of magnetism.

1. MAGNETIC STRUCTURE AND MAGNETO-OPTICAL
PROPERTIES OF THE ORTHOFERRITES

a) The free energy and structure of domain walls

The rare-earth orthoferrites, with general formula
RFeO3 (where R is an ion of the rare-earth elements) and
crystal symmetry group D^, form a large class of weakly
magnetic antiferromagnets that is presently being intensive-
ly studied, and is the object of our review. Single crystals of
the orthoferrites are obtained by the methods of spontaneous
crystallization from a solution in the melt,22 hydrothermal
synthesis,33 and crucibleless zone refining with optical heat-
ing,24 the last methods giving the largest and optically the
most transparent crystals. Below we discuss those properties
of the orthoferrites which are necessary for the present re-
view. More comprehensive experimental and theoretical
data on them can be found in Ref. 25.

We shall describe an orthoferrite as a WFM with two
magnetic sublattices whose magnetizations are equal to Mj
and M2. It is convenient to introduce the normalized magne-
tization and antiferromagnetism vectors, m and 1 respective-
ly, defined as

Mj ^~j— Mg 1 •"*! "*2
1: 2Mn

( 1 . 1 )

On account of the constancy of the lengths of the sublat-
tice moments (Mj = M2 = M2,), the vectors m and 1 are
connected by the relation

ml = 0, (1.2)

Let us write the energy density of the WFM in the form
3

w = MI {-s- 6m2 -f- -JT 2 aih~d d \~wa"~^~u'v—2mh).

(1.3)

Here aik and S are respectively the inhomogeneous and ho-
mogeneous exchange constants (S~TN/fj,0M0anda~Sa2,
where TN is the Neel temperature and a is the lattice con-
stant) and h = H/M0, H being the external field. The forms
of the anisotropy energy u^0' and the Dzyaloshinskii inter-
action energy WD are determined by the symmetry of the
WFM. In a uniaxial WFM with an even principal axis

d [ml], (1.4)

where d is a vector oriented along the principal axis and the
quantity dM0/2 is equal to the Dzyaloshinskii field H D. We
can use this formula in the description of the orthoferrites if
we consider d to be oriented along the b axis.

In writing down (1.3) we took into account the fact
that, in sufficiently weak fields (i.e., that for

m2<!2s;l. Therefore, in (1.3) we have dropped the terms
with (Vm)2, and can ignore the dependence of w(

a
oy on the

components of m. In this case it is easy to express m in terms
of the components of 1. Minimizing (1.3) with allowance for
(1.2) and (1.4), we obtain

m= * {[dl]-f2(h — l(hl))}. (1.5)

With allowance for (1.5), the energy of the WFM ex-
pressed in terms of the unit vector 1 (I2 = 1) assumes the
form

(1 .6)

Here we have set aik = aSik, which holds for the ortho-
ferrites with a high degree of accuracy, and wa

= w(
a
m + (dl)2/2<5 is the effective anisotropy energy. It is

clear that the stucture of wa is the same as that of «;<0), and
that it is determined by the symmetry of the WFM. For an
orthoferrite

We shall assume that the x, y, z axes coincide wth the
crystal axes a,b,c.A.s experiment shows26 (see also Ref. 25),
at high temperatures the vectors 1 and m in all the orthofer-
rites are oriented along the a and c axes respectively. As the
temperature is lowered, there occurs in some of the orthofer-
rites a reorientation of 1 and m; this reorientation is described
by the dependence of the constants /3l and f}2 on the tem-
perature. The high-temperature phase 4>n is stable when
/?, (D > 0 and P2(T)> 0. If Pi (T) changes sign, then there
occurs a transition into the low-temperature weakly-ferro-
magnetic phase QL; in the process the vector 1 realigns itself
along the c axis, while the vector m realigns itself along the a
axis. Such a transition occurs in SmFeO3, TmFeO3, and oth-
er orthoferrites. If, on the other hand, /32 (T) changes sign,
then the orthoferrite goes over into the antiferromagnetic
state (1 is parallel to the b axis and m = 0). Such a transition
occurs in DyFeO3. The DW's in the reorientation region
have a number of special features.27-28

The above-described homogeneous states are twofold
degenerate: the state with 10, m0 and the one with — 10, — m0

correspond to the same energy. This leads to the occurrence
of 180-degree domain walls (DW). Let us consider the
structure of the DW in the 4>u phase.

It is convenient to go over to the angle variables for the
unit vector 1:

lx = cos 0, ly = sin 0 sin cp, lz = sin 0 cos q>. (1.8)

To the <&u phase corresponds l||a, i.e., the values 6 = 0,
IT. Analysis shows that two types of DW can exist in an or-
thorhombic WFM. To one of them (the ac-type wall) corre-
sponds the value cp = 0, i.e, an 1 rotation in the (x,y) plane.
To the other corresponds a wall of the type of an a£>-rotation
of 1 in the (x, y) plane (cp = -ir/2). The distribution of the
angle 6 in both DW is given by the equation

a-^p—Psin6cose = 0, (1.9)

where /? = /?, and /32 for the ac- and ab-type walls respec-
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tively and £ is the coordinate along the axis normal to the
DW surface.

The solution to this equation with the boundary condi-
tions 0( — oo) = TT and 6( + oo) = 0 describes both types
of DW, and has the form

tgA = exp(-^-), *to-J/-fk

To these DW correspond significantly different mag-
netic-moment (m) distributions.29 For the cc-type wall the
vector m, like the vector 1, rotates in the (a, c) plane with
almost a constant length. In the aft-type wall the vector m is
always oriented along the z axis, and varies only in magni-
tude.

The presence of two types of DW with the same m and 1
values at points far from a wall raises the question of stability
of the walls. The point is that it turns out in the analysis of a
DW as a topological soliton that, if to the wall correspond
different values of m at £—*• + oo and £—* — oo, then the wall
cannot, on the strength of topological arguments, be elimin-
ated.30 But topological considerations cannot exclude the
instability of one of the two possible walls with respect to
transformation into the other.41

The analysis carried out in Ref. 27 shows that only one
of the two DW, namely, the one to which corresponds the
smaller energy (the lower value of the constant/?,), is stable.
The second DW is absolutely unstable against weak pertur-
bations (this can be seen from, for example, the formula
(3.5) obtained below). Generally speaking, the constants /?,
and /32 depend on the temperature differently. Consequent-
ly, if the difference (/?j — 02) changes sign at some tempera-
ture, one type of DW in the magnetic material should go over
into a DW of the other type on going through this point.
Such a transformation has been found to occur in dyspro-
sium orthoferrite DyFeO3 at T= 150°K (Ref. 32), with
walls of the ab type occurring at temperatures below 150 °K
and those of the ac type, at temperatures above this point.
Notice that the moment reorientation in a DW is not the
same as ordinary spin flip, which occurs upon the reversal of
the sign of one of the constants /?,• (the smaller one), and not
their difference. In DyFeO3 the spin flip (the Morin point)
occurs, for example, at T = 40 °K, i.e., at a temperature sig-
nificantly lower than the temperature at which the transfor-
mation of the ac-type walls into aft-type ones occurs. In our
opinion, it is of interest to study the dynamic properties of
the DW in the vicinity of this transition.

The ac-type walls with different orientations can be di-
vided into the following classes: quasi-Bloch walls (the vec-
tor m rotates in the plane of the DW), quasi-Neel walls (the
vector m is perpendicular to the DW plane), and the so-
called head-to-head walls. To the last class corresponds a
nonzero jump in the magnetization, i.e., a head-to-head wall
is charged, and produces a demagnetizing field at points far
from itself. In an oft-type wall the vector m does not rotate,
and such a classification does not apply. Since the energy
associated with the demagnetizing fields in the orthoferrites
is small, the energies of these DW are close to each other, but
their dynamic properties differ somewhat. The difference
between these DW manifests itself especially strongly when

allowance is made for the magnetoelastic interactions (see
Sees. 2 and 3 below).

As we shall show in Sec. 3, this classification of the DW
and their structural characteristics holds true in the analysis
of the moving DW.

(1.10) b) Optical and magneto-optical properties

The progress that has been made in the study of the
domains in the orthoferrites is essentially connected with the
application of optical methods of detection of domain struc-
tures. This is particularly manifest in the investigation of
DW dynamics. The techniques of double-shot high-speed
photography, bubble collapse, and measurement of the time
of travel by a DW of a given distance between two light spots
are based on the use of the phenomenon of optical transpar-
ency and the Faraday effect. As we have already noted, the
weakly ferromagnetic orthoferrites, together with the fer-
rite-garnets, were the first-known optically transparent
magnetic materials.33'10 They are transparent in the infrared
region of the spectrum; in the 1.1-6/xm wavelength region
the absorption coefficient does not exceed a few tenths of a
cm~!. The orthoferrites, unlike the ferrite-garnets, possess a
sufficiently high transmittance in the visible region of the
spectrum as well. This is largely due to the fact that the iron
ions enter into the orthoferrite lattice in only one octahedral
coordination. The results of a calculation of the splitting of
the Fe3+-ion levels by the crystal field are given in Ref. 10.
Figure 1 shows the coefficients of absorption of light of the
visible and infrared regions of the spectrum in ErFeO3.

34

The region of high transparency of the orthoferrites lies in
the vicinity of the wave-lengths 0.63 ̂ m. The minimum ab-
sorption coefficient at this wavelength is about 150 cm"1.
The two broad absorption bands in the region extending
from 0.7 to 1 //m correspond to the 6Alg—^4T}g and
6A lg—**T2g transitions in the Er3+ ions. At wavelengths
greater than 8 ftm, we have a much more intense absorption,
which is brought about by the lattice vibrations lying in the
1300-1600 cm"1 spectral region. The transmission spectra
of the orthoferrites of Tb, Ho, Tm, Er, and Yb in the far
infrared region have been investigated by Smith et a/.35 Fig-
ure 2 shows the spectral dependence of the transmittance of

7 5 5 jB 4ft 0,9 0$

Of 0,8 1,0 1,2. 1,1* 1,5 1,8 2£ 6 8 W 1Z If~

FIG. 1. Coefficient of absorption of light in erbium orthoferrite in the
visible and infrared regions.34
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FIG. 2. Transmission spectrum of thulium orthoferrite in the far infrared
region.35

TmFeOj at 4.2°K. The absorption lines near 101.1 and
112.1 cm"1 occur in all the investigated orthoferrites, and
are due to the optical phonons. The remaining absorption
lines are due to electric dipole transitions between the princi-
pal-multiplet levels split by the crystal field.

As has been noted, the orthoferrites are orthorhombic
crystals (with space group D^*). They are optically biaxial,
and are highly birefringent. Orthogonal, elliptically polar-
ized waves are the normal types of electromagnetic waves
that propagate in a longitudinally magnetized birefringent
transparent crystal.18 When two such waves propagating in
a crystal with different velocities interfere as they come out
of the crystal, an elliptically polarized wave is produced. The
major axis of the ellipse is then inclined at an angle 6 to the
direction of the linear polarization of the wave incident on
the crystal. For an incident wave polarized along the crystal-
lographic axes perpendicular to the direction of the weak
ferromagnetism,

«—»») .tg26=- :Sin ( 1 . 1 1 )

here nx = ̂ e^, ny = ^£yy, y = iexy,A is the wavelength of
the light, and 1 is the plate thickness. The expression (1.11)
was derived under the assumption that

— e,. > I V (1.12)

which holds well for the orthoferrites. It follows from (1.11)
that 6 is an oscillating function of A, the amplitude of the
oscillations being, on account of ( 1.12), small. The expres-
sion (1.11) goes over, when nx =ny, into the standard for-
mula for the Faraday rotation angle36:

In Ref. 37 the expressions for the rotation angle 6 and
the ellipticity parameter are derived without the limitation
(1.12) with the use of the Jones matrix method.

Figure 3 shows the spectral dependences 0(A) at the
exits of YFeO3 samples of different thicknesses, cut perpen-
dicular to the [001 ] axis (the c axis).38

In the infrared region, where the birefringence disper-
sion is small, we can determine the quantity An = nx — ny

from the two neighboring A values at which 0(A) =0. The
An values obtained in this way for YFeO3 in the 1.1-1.8/zm
wavelength region ranged38 from 3XlO~ 2 to 4xlO~2,

which agree with the data obtained later with the use of com-
pensators.39 In the visible region of the spectrum the bire-
fringence dispersion in the orthoferrites is strong, and com-
pensators were used to determine AH. The results reported
indicate that the birefringence of the orthoferrites substan-
tially limits the angles of rotation of the polarization plane
when light propagates along the axis of weak ferromagne-
tism. For light of wavelength 0.63 fj.m, at which the trans-
mittance of the orthoferrites is fairly high, 0 does not exceed
1.5-2°. This leads to a low optical contrast between the ob-
served domain structures, the magnitudes of the off-diag-
onal elements of the eik tensor for all the orthoferrites inves-
tigated to date38"41 turn out to be unusually large, they are
several times greater than the analogous quantities for the
ferrite-garnets, and are not proportional to the small ferro-
magnetic moment. To explain the strong linear magnetoop-
tical effects in the orthoferrites, several mechanisms have
been proposed, the main idea of which consists in an attempt
to relate them to the antiferromagnetism vector.41-42

The unusually large magnitudes of the off-diagonal ele-
ments of the eik tensor for the orthoferrites stimulated the
investigation in these crystals of the Faraday effect in the
case of light propagating along the optic axis, where, accord-
ing to (1.11), the effect of the birefringence on the quantity 6
vanishes. Measurements of the principal refractive indices of
a number of orthoferrites39'43 have shown that the optic axes
of these crystals lie in the (100) plane, and that at wave-

FIG. 3. Spectral dependence of the angle of rotation of the major axis of
the polarization ellipse in YFeO3 platelets of different thicknesses, cut
perpendicular to the optic axis. The thicknesses are: a) 750 /urn, b) 515
fj.m, and c) 210/im.38
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FIG. 4. Angle between the optic axis and the [001] axis in the (100) plane
for: 1) YFeO3 and 2) DyFeO3.

44'45

lengths 0.63 and 1.15/zm they are inclined at angles 52 and
47° to the [001 ] axis.39'43"15 As a result, in these crystals the
small ferromagnetic moment possesses a nonzero compo-
nent along the direction of the optic axes. Figure 4 shows the
wavelength dependence of the angle £ between the optic axis
and the [001 ] axis for YFeO3 and DyFeO3 in the 0.62-1.8
//m wavelength region.44'45 The dispersion dependences of
the Faraday effect in the indicated orthoferrites are shown in
Fig. 5.44'45 At the wavelength 0.63 //m the specific rotations
of the polarization plane in them are respectively equal to
— 2900 deg/cm and — 3900 deg/cm. This ensures a very

high optical contrast between the domain structures in plate-
lets cut perpendicular to the optic axis. A stripe domain
structure occurs in a platelet cut in such a way that the small
ferromagnetic moment lies in a plane perpendicular or in-
clined to the sample plane. Kurtzig and Shockley46 have ob-
served stripe domain structures in YFeO3 and ErFeO3 plate-
lets cut in the above-indicated manner. But they did not
determine the direction of the optic axis, and the contrast
between the observed domain structures was, in accordance
with (1.11), low. Highly-contrasting strictly periodic stripe
domain structures have been observed in orthoferrite plate-
lets cut perpendicular to the optic axis.47'48 The DW in such
platelets are strictly straight and perpendicular to the [100]
axis lying in the platelet plane. They are walls of a type inter-
mediate between the Bloch and Neel types, since the magnet-

-«0, deg/cm

1000

3000

FIG. 5. Specific Faraday rotation in YFeO3 (1) and DyFeO3 (2).44-45
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FIG. 6. Stripe structure in a TmFeO3 platelet cut perpendicular to the
optic axis at T= 137 °K (12X ).47-48

ic moment in them rotates in the (010) plane. Below we shall
call them intermediate-type walls. Figure 6 shows a photo-
graph of the stripe structure in a TmFeO3 platelet at 137 °K.
The difference between the angles of rotation of the polariza-
tion plane for oppositely magnetized domains is close to 60°.
The intensities of the light beams that get transmitted
through neighboring domains differ by a factor of several
hundred. The stripe domain structure constitutes for light a
phase diffraction grating. A theory of light diffraction by
such gratings is constructed in Refs. 49 and 50. Figure 7
shows a photograph of the diffraction pattern for laser light
diffracted by the stripe domain structure in a TmFeO3 plate-
let.47-48 The experiment was performed in zero magnetic
field, and the sample temperature—100 °K—was chosen in
the vicinity of the reorientation region, where the domain
dimensions are small. The even diffraction orders are, in ac-
cordance with the theoretical results obtained in Refs. 49
and 50, absent in the absence of an external magnetic field.
The fact that the high diffraction orders are clearly visible
indicates a very high degree of periodicity of the stripe struc-
ture and a high degree of homogeneity of the orthoferrite
platelets.

2. EXPERIMENTAL STUDY OF DOMAIN-WALL DYNAMICS

a) Methods

The first method for the investigation of DW dynamics
in ferromagnets was developed by Sixtus and Tonks.9 The
essence of the method consists in the measurement of the
time of travel by a DW of a given distance along a long, thin
sample of the material under investigation.

Initially, this method was used to investigate the DW
velocity in Fe-Ni wires. It is precisely in Ref. 9 that the
concept of a DW as the boundary layer between two oppo-
sitely magnetized domains was first introduced.

The DW transit time was measured with the aid of a
ballistic galvanometer in the circuit of one of the lamps of a
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FIG. 7. Light diffraction by the stripe structure in
Tmu»n ".*»

single-shot multivibrator. The current through this lamp
started at the moment when the DW crossed the first coil
and stopped at the moment when the wall crossed the second
coil. It was found that the dependence v(H) is linear in the
region of velocities up to 250 m/sec. Tsang and his collabo-
rators51"53 used this method to investigate DW dynamics in
the orthoferrites. The orthoferrite sample had the shape of a
rod of 2 X 2-mm square cross section and length 50 mm.
There was produced at one end of the rod with the aid of a
local coil a domain magnetized in the direction opposite to
the direction of magnetization of the remaining part of the
rod, and separated from this part by a single D W (Fig. 8). At
zero time a current pulse was fed to the coil inside which the
sample under investigation had been mounted. This dis-
turbed the equilibrium of the domains, and the DW was set
in motion along the rod. On crossing the boundaries of two
minature coils.the DW generated in the coils voltage pulses
that could be recorded on the screen of an oscillograph. By
dividing the distance between the coils by the timelag
between the two pulses, the sought velocity value could easi-
ly be found. It should be emphasized that many modern
methods of investigating DW dynamics are modifications of
the Sixtus-Tonks technique.

For the determination of the DW velocity Bobek54 pro-
posed a bubble collapse method (see also Refs. 11, 12, and
55). In this method the length of the magnetic-field pulse
during which the radius of a bubble decreases to its critical
value—the collapse radius, or the value at which the bubble
loses its radial stability and disappears—is measured. The
bubble radius before the application of the pulsed magnetic
field and the collapse radius in the static regime are mea-
sured with the aid of the Faraday effect in a polarizing mi-
croscope. The collapse radius in the dynamical regime is dif-
ficult to determine, and, to find it, we have to use theoretical
computations,56 or more modern experimental techniques.
Thus, Humphrey's high-speed photography method57 has
shown that the bubble diameter just before the disappear-

Bias field coil
Temperature
control
chamber

/

Sample

/ Pickup coils
Nucleating magnet

Oscillo-
scope

fier

FIG. 8. Diagrammatic representation of the Sixtus-Tonks procedure for
measuring the domain-wall velocities in orthoferrites.53
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ance in the dynamical regime is significantly smaller than
the corresponding diameter in the static regime. The belief is
expressed in Ref. 58, which reports the investigation of DW
dynamics in yttrium orthoferrite by the bubble collapse
method, that the collapse radius in the dynamical regime is
two times smaller than the radius in the static regime. In Ref.
59 this difference is taken, in accordance with Ref. 56, to be
smaller. Furthermore, bubbles in orthoferrite platelets have
an elliptical shape, which arises as a result of the presence of
anisotropy in the basal plane. Therefore, in Refs. 58 and 59
the mean of the semiaxes of the ellipse is taken as the initial
bubble radius. For the above-noted reasons, the accuracy of
the bubble collapse technique, as applied to the orthoferrites,
is not too high.

Significantly more accurate for the investigation of DW
dynamics in the orthoferrites were the magneto-optical
methods of measuring the time required by a DW to cover a
given distance. This procedure, with the use of the Kerr ef-
fect, was first applied to metallic ferromagnetic films.60 In
the experiments reported in Refs. 61-64, a magneto-optical
method of measuring the time required by the wall to cover a
given distance was used to investigate DW dynamics in the
orthoferrites. It is a magneto-optical analog of the Sixtus-
Tonks method, and can be applied to any transparent mag-
netic material in which the rotation of the polarization plane
is considerable. The schematic outline of the method is ex-
plained in Fig. 9. A ray from a He-Ne cw laser was split with
the aid of a birefringent CaCO3 platelet into two rays polar-
ized in mutually perpendicular planes. Both rays were fo-
cused on the surface of an orthoferrite platelet cut perpen-
dicular to either the optic axis,61"63 or the [001] axis.64 A
two-domain structure with a single DW was obtained in the
platelet under investigation with the aid of a gradient mag-
netic field perpendicular to the sample surface. For orthofer-
rite platelets cut perpendicular to the optic axis, and possess-
ing an initial stripe domain structure (see Fig. 6), a solitary
intermediate-type DW oriented perpendicularly to the axis
and surface of the plate was obtained in a magnetic field with
a gradient of 300 Oe/cm (Fig. 10). In plates cut perpendicu-

YFeO.

Laser

FIG. 9. Experimental arrangement for the measurement of the domain-
wall velocities in orthoferrites by means of the magneto-optical method of
measuring the transit time over a given distance.61b P) Polarizer, A) Ana-
lyzer, L, andZ,2) lenses.
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Opt. axis

FIG. 10. a) Stripe structure4 and b) scheme for obtaining a solitary do-
main wall in an orthoferrite platelet cut perpendicular to the optical ax-
is.61"

lar to the [001 ] axis, it was possible to obtain with the aid of
a magnetic field with a gradient of (1-2) X 103 Oe/cm a two-
domain configuration with a single Bloch or Neel wall.82

The observed DW width was of the order of 62 1/zm, which is
significantly greater than its computed value. Perhaps this is
due to the inclination of the DW to the sample surface and to
diffraction effects. The two pulses corresponding to the in-
stants when the moving DW passed through two light spots
were recorded with the aid of a photomultiplier on the screen
of a stroboscopic oscillograph or on the tape of a recorder.
Knowledge of the distance between the light spots on the
sample and the determination of the time lag between the
two indicated pulses made it possible to find the velocity of
the stationary DW motion. Rectangular orthoferrite plate-
lets with thickness about lQQjj,m and transverse dimensions
3x3 mm2 were used. Coils of diameter 0.5-2 mm that pro-
duced pulsed magnetic fields of intensity up to 5 kOe were
glued to the highly chemically polished facets of the platelet
at points far from its edges (either directly, or through a thin
glass). This made it possible to substantially increase the
region of operating magnetic fields for the investigation of
DW dynamics in comparison with the fields used in the Six-
tus-Tonks method.53 In the latter method the region of in-
vestigations was limited to pulsed fields of intensity ~ 160
Oe, since new domains began to appear at the edges of the
orthoferrite bar in stronger fields, and this led to an ambigu-
ity in the determination of the DW velocity.

Much more universal is the high-speed photography
method, which is also based on the Faraday effect, and is
suitable for transparent magnetic materials. This method al-
lows us to record the dynamic domain structure on a photo-
graphic film or on the magnetic tape of a video recorder. The
single exposure of the ferromagnetic sample with domain
structure is accomplished with short light pulses from differ-
ent types of lasers: a neodymium-containing-yttrium-alumi-
num-garnet laser,65 dye lasers pumped by a pulsed nitrogen
laser,66 as well as mode-locked gaseous lasers.67 For the in-
vestigation of DW in ferromagnets, light pulses of duration

about 10 nsec were usually employed. This duration was
quite adequate for the investigation of DW and bubble dy-
namics in ferrite-garnet films, in which the DW and bubble
velocities do not exceed a few score, or, in specific cases, a
few hundred meters per second. If the DW motion is station-
ary, then we can, by varying the time lag between the com-
mencement of the magnetic-field pulse and the light pulse,
obtain a sequence of photographs of the dynamic domain
structure, and determine the DW velocity from it. Since the
Faraday effect in ferrite-garnet films is not strong, we must
use an image intensifier to increase the contrast of the dy-
namic domain structure.67"69 In a number of cases the dy-
namics of the D W of bubbles in ferrite-garnet films was in-
vestigated by the time scanning the bubble image.69'70

If the light was insufficient for an image of the dynamic
domain structure to be obtained in a single exposure, then
the stroboscopic technique was used in the case of stationary
DW motion. This technique has, in particular, been used to
determine the DW mobility in the orthoferrites,71 and to
determine the DW velocity in orthoferrite platelets cut per-
pendicular to the [001 ] axis.72 In this investigation, a single
photograph of the dynamic domain structure required an
exposure ranging from several score minutes to hours. This
long exposure was necessary for two reasons. First, the pow-
er of the semiconductor laser used was low; secondly, the
influence, described in Sec. Ic, of the crystal birefringence on
the Faraday effect is strong, with the result that the angle of
rotation of the major axis of he resulting ellipse at the exit
from a platelet of the indicated orientation does not exceed
1-2°. The above-described procedure for measuring the
DW's transit time between two fixed light spots is also a
stroboscopic procedure.

Shorter light pulses are required for the high-speed pho-
tography of the DW dynamics in the orthoferrites, in which
the DW velocity is significantly higher than in the ferrite-
garnets. So far such investigations have been carried out
with the use of light pulses of duration 10 nsec,73 6 nsec,74'75

and 1 nsec.76'77

In these experiments DW dynamics was investigated in
yttrium orthoferrite platelets cut perpendicular to the optic
axis, where the Faraday effect is proportional to the thick-
ness, and is equal to 2900 deg/cm at a wavelength of 0.63
fim. This ensures a very high optical contrast of the dynamic
domain structure, and makes it possible to obtain a photo-
graph of this structure in a single exposure of the sample
under investigation. In the experiments reported in Refs. 76
and 77, 1-nsec light pulses from an oxazine-dye laser
pumped by a nitrogen laser with transverse discharge78 were
used. The red dye-laser light beam was split into two with the
aid of mirrors (Fig. II).77 With the aid of additional mirrors
there was introduced into the second beam a controlled de-
lay, the length of which could be varied from 3 to 30 nsec by
varying the distance between the additional mirrors. Each
light beam passed through a separate polarizer, and was then
focused on the sample under study. By properly choosing the
polarization directions in the two beams, it was possible to
ensure opposite contrasts for the dynamic domain structures
obtained with the aid of each of the two beams. This in turn
made it possible to get two dynamic domain structures on
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FIG. 11. Diagram of experimental arrangement for dou-
ble-shot high-speed photography of domain wall dynam-
ics. 1) laser; 2), 4), and 11) lenses; 3) cell with dye; 5)-8)
mirrors; 9), 10), and 14) polarizers; 12) orthoferrite
platelet; 13) microscope; 15) camera; 16) assembly of
pulse generators.77

the same photograph with a single dye-laser light pulse in the
course of one passage of the DW through the sample. The
sample region traversed by the DW during the time lag
between the two light pulses could be recorded in the form of
a very high-contrast dark or bright stripe directly on a pho-
tographic plate of high sensitivity without the use of an im-
age intensifier. Figure 12 shows an example of the photo-
graphs obtained in this manner of the two positions of the
dynamic domain structure in yttrium orthoferrite.

A typical v(H) curve, obtained over a broad range of
magnetic fields by the above-indicated methods, is shown in
Fig. 13. The following characteristics are noteworthy: the
presence of a linear section v = jj,H in the region of weak
fields, sharp anomalies of the type of "small shelves" at se-
lected values of the velocity, and "saturation" of the velocity
in strong fields. Let us discuss these characteristics in turn.

b) DW Mobility

On the linear segmentof the v (H) curve a characteristic
of the dynamical properties of the DW is the mobility (j,,
defined by the formula

H-»0

Virtually all the above-described methods are used to inves-
tigate the DW mobility in the orthoferrites. In Rossol's ex-
periments reported in Refs. 7 1 and 79 the stroboscopic tech-

nique based on the utilization of the Faraday effect was used
to investigate the DW mobility in the orthoferrites. The fre-
quency dependence of the amplitude of the DW displace-
ment from the equilibrium position under the action of a
field with frequency as high as 107 Hz was determined ex-
perimentally. It was shown that this dependence has a relax-
ational character, i.e., that in the range of frequencies used
the DW inertia is insignificant. The DW mobilities in the
orthoferrites YFeO3, TmFeO3, EuFeO3, LuFeO3, HoFeO3,
and ErFeO3 were determined over a broad range of tempera-
tures from the relaxation frequencies. It is shown in Ref. 79
that the DW mobility in YFeO3 is strongly temperature de-
pendent, and varies from 6x 103 cm/sec-Oe at 300 °K to
5X 104 cm/sec-Oe at 77 °K (Fig. 14). We must draw atten-
tion to the record-high DW mobility in YFeO3 at 77 °K. The
DW mobility in the orthoferrites has not been directly inves-
tigated at lower temperatures. Indirect data on it can be ob-
tained from nuclear magnetic resonance data.80

We note the following important circumstance. The
above-indicated results were obtained in a YFeO3 sample
that was prepared with particular care, so as to reduce to a
minimum the effect of the surface roughness and the impuri-
ties in the crystal on the DW mobility. The final mechanical
polishing of the sample was combined with chemical polish-
ing. The coercive force in the sample obtained in this man-
ner, called in RossoPs paper sampled, was equal to 0.1 Oe.
In another sample (sample B), obtained by the same meth-

FIG. 12. Photograph of two dynamic domain structures in YFeO3, taken
during one passage of the domain wall through the sample. The darkened
band is the portion of the sample traversed by the domain wall during the
time interval between two light pulses.

0,2.

FIG. 13. Typical magnetic-field dependence of the ratio of the domain-
wall velocity to the limiting velocity. 1)—3) the most characteristic parts
of the v(H)/c curve: 1) linear-dynamics region; 2) region of the magne-
toelastic anomalies; 3) velocity saturation region. The continuous curve
depicts the theoretical dependence.
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FIG. 14. Domain-wall mobility in YFeO3 as a function of the tempera-
ture.79

od, the mobility increased as the temperature was lowered to
110 °K, and then began to decrease slowly. In a sample, C,
that was subjected to a rougher mechanical polishing fol-
lowed by annealing the mobility began to fall sharply at as
high a temperature as 140 °K. Thus, the value of the DW
mobility and, especially, its temperature dependence are es-
sentially determined by the quality of the sample. The causes
of the decrease of the mobility in samples B and C are not
entirely clear. Most probably, this is due to the presence in
the orthoferrite lattice of Fe4+, Fe2+, and rare-earth ions, or
to crystal defects. The higher-quality sample A should be
expected to exhibit DW-relaxation characteristics governed
by internal processes (interaction with the thermal quasi-
particles), whereas in the samples B and C the interaction
with the defects and impurities was the dominant process.

Huang,81 apparently, was the first to point out that the
DW mobility in the sample A of YFeO3 used in Rossol's
experiment79 varied with temperature like 1 / T 2, and was the
first to relate this fact to a four-magnon relaxation process.
In his analysis he considered the orthoferrite to be a ferro-
magnet, ignoring its sublattice structure. The good agree-
ment obtained in Ref. 81 between the experimental and cal-
culated DW mobilities in YFeO3 for the sample A used in
Rossol's experiment is accidental. We present the current
theoretical ideas about DW mobility in the orthoferrites be-
low (see Sec. 3c).

The DW-mobility anisotropy in yttrium orthoferrite
has been investigated by Shumate,82 as well as by Tsang, R.
L. White, and R. M. White.51-53 For this purpose, the last
authors used the Sixtus-Tonks method. Figure 15, which
was taken from Ref. 53, shows the magnetic-field depen-
dences of the velocities of the Bloch, Neel, and head-to-head
DW at room temperature. In Ref. 52 the Bloch- and Neel-
DW mobilities in the temperature range from 250 to 600 °K
are determined from the initial sections of the v(H) curves.
These data supplement and agree with Rossol's earlier
data.79 At room temperature /ZB = 6.16X 103 cm/sec-Oe
and jUN =5.8Xl03 cm/sec-Oe. They are slightly higher
than the values obtained by Shumate,82 but the ratio fiB/
fiN = 1.06 is the same and agrees with the theoretical calcu-

lations based on a phenomenological consideration of the
relaxation (Rosencwaig,83 Gyorgy and Hagedorn84).

c) Magnetoelastic anomalies

As the magnetic field intensity is increased, the DW
dynamics in the orthoferrites becomes essentially nonlinear.
It can be seen from Fig. 15 that there are quite broad regions
of constancy of the DW velocity (small shelves) on the lin-
ear v (H) curves for all the D W's in YFeO3 that were investi-
gated in the experiments reported in Ref. 53. In the case of
the Neel DW such a shelf occurs at a velocity of 4 km/sec.
On the v(H) curve for the Bloch DW the anomalies can be
seen clearly at velocities of 4 and 8 km/sec. As H increases
further, the Bloch- and Neel-D W velocities rise to 13 km/sec
without any visible saturation.

Similar nonlinearities on the v (H) curves for the DW in
the orthoferrites have been observed also by the bubble-col-
lapse method,59 by the method of measuring the transit time
of a DW over a given distance,61 and by the methods of sin-
gle-shot74 and double-shot76'77 high-speed photography.
Figure 16 shows the magnetic-field dependence, obtained by
the bubble-collapse method,59 of the DW velocity in a
YFeO3 platelet cut perpendicular to the [001 ] axis. The bias
fields Hb were equal to 22.3 and 23.7 Oe. The v(H) curve
exhibits a very weak anomaly at a velocity of 4.8 km/sec,
according to Ref. 59, and more distinct ones at velocites of 7
and 14 km/sec. No DW-velocity saturation was observed in
magnetic fields of intensity up to 370 Oe, and the maximum
DW velocity was 25 km/sec. Attempts to relate the v(H)
anomalies in yttrium orthoferrite at the velocities 4 and 7
km/sec with the Walker velocity limit by taking account of
the orthorhombic magnetic anisotropy of the crystal turned
out to be unsound.85 It is shown in Refs. 51 and 52 that the
above-indicated DW-velocity values correspond to the lon-
gitudinal- and transverse-sound velocities in yttirum ortho-
ferrite. It should be emphasized that the weakly ferromagne-
tic ortho-ferrites became the first magnetically ordered
materials in which the DW velocity reached and exceeded
the velocity of sound.

Tsang and White's interpretations51 of the v(H) singu-

0,ff
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0,tt 0,8 1,2 1,6
H/139, Oe
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H/139, Oe

FIG. 15. Curves of velocity as a function of magnetic field obtained for
different types of domain wall in YFeO3 by the Sixtus-Tonks method.53
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FIG. 16. Curve of YFeO3 domain wall velocity as a function of magnetic
field obtained by the bubble-collapse method.59

larities at the velocities 4.3 and 7 km/sec in YFeO3 are cor-
roborated by the experimental data obtained for TmFeO3 in
the investigations reported in Refs. 61 and 64. These investi-
gations, in which the dynamics of intermediate type DW was
studied, revealed similar v(H) anomalies at v = 3.3 and 6.2
km/sec, which are close to the velocities of transverse and
longitudinal sound in this orthoferrite.86 In YFeO3 samples
of thicknesses ranging from 100 fj,m to 2 mm the indicated
regions have widths of several tens of oersteds for all the
types of DW investigated. Significantly broader regions of
constancy of the velocity are observed in thinner samples.76

For Bloch DW in a YFeO3 sample of thickness 25 fj,m, cut
perpendicular to the [001] axis, the region AH, is scarcely
noticeable, while AH, is equal to 500 Oe. For the Neel DW,
AH, = 250 Oe, i.e, AH,~AH, (see Fig. 22 below). As we
shall show below in Sec. 4, these anomalies are due to the
Cherenkov emission of phonons during the motion of the
DW. This emission is most intense when the DW velocity is
close to s, or s,, where slt are the longitudinal: and trans-
verse-sound velocities. The theory gives estimates for the
widths of the intervals AH, and A//,. In particular, it can be
shown that, for the Bloch DW, AH,<£AH,. This is con-
firmed by the above-described experiment.76 Let us note
that, on the whole, there is good qualitative agreement
between the experimental and theoretical data on the mag-
netoelastic anomalies in the orthoferrites. Additional inves-
tigations are required for comparison to be possible. In parti-
cular, the expressions contain the sound attentuation
constant 77, which has been experimentally determined only
for ErFeO3.

87 This makes a quantitative comparison of the
theory with experiment difficult.

d) Limiting velocity

The method of measuring the transit time of a DW over
a given distance between two light spots turned out to be a
significantly more accurate method for the investigation of

the DW velocity in WFM than the bubble-collapse and Six-
tus-Tonks methods. References 61-64 report investigations
of the velocity of intermediate-type DW in orthoferrite pla-
telets cut perpendicular to the optic axis. Figure 17, which
was taken from Ref. 62, shows the magnetic-field depen-
dence of the DW velocity in YFeO3 at 300 °K. In magnetic
fields of from 20 to 300 Oe the v(H) curve is in accord with
the results obtained in earlier investigations, and shown in
Figs. 15 and 16. But a comparison of these figures with Fig.
17 reveals an appreciable difference. The DW velocity at-
tains a value of 20 km/sec in a magnetic field of intensity 600
Oe, and subsequently remains constant as the magnetic field
intensity is raised to 1000 Oe. The indicated velocity has the
meaning of a limiting DW velocity in the orthoferrite. Thus,
the technique employed in the investigations reported in
Refs. 61 and 62 made it possible for the first time to find the
limiting DW velocity in an orthoferrite experimentally.

It is shown in Refs. 62 and 88 on the basis of an analysis
of the asymptotic behavior of the magnetization in the DW
that the limiting DW velocity in the orthoferrite coincides
with c, the phase velocity of the spin waves on the linear
section of the spectrum. This velocity, in the leading approx-
imation, depends only on the exchange constants of the
ortho-ferrite. In terms of the constants a and /? introduced
above [see the formula (1.6) ], the velocity c is given by the
formula

c = -2-gA/0'|/"a6. (2.2)

It is convenient to rewrite it in terms of the gap co^ in the
lower-magnon-branch spectrum and the DW thickness x0:
c = ea1x0( Ref. 62). For an order-of-magnitude estimate of c,
we can use the formula c~akTN/fi.

To the linear section of the spectrum corresponds a
broad range of wave-vector values: x0~^<£k<%a~1 (see Fig.
18, which was taken from Ref. 53b, and Sec. 3).

The value of c determined from the known magnon
spectrum (see Fig. 18), as well as the value computed from
the formula (2.2), is in good agreement with the experimen-
tal value for the limiting DW velocity. Indeed, setting

/'
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FIG. 17. Magnetic field dependence of the velocity of the intermediate
type domain wall in YFeO3, obtained by the method involving the mea-
surement of the DW transit time over a given distance between two light
spots.62
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FIG. 18. Magnon spectrum in YFeO3, computed from the known values
of the exchange integrals within the boundaries of the Brillouin zone.53b

g=1.76xl07 (Oe-sec)-1, HE = 8M^2 = 6.4X106 Oe,
and A = aMg/2 - 4.4 X 10~7 Oe/cm, we obtain for c the
value 2x 106 cm/sec, which is in good agreement with ex-
periment.

Let us note two important circumstances. First, the
spin-wave velocity in the orthoferrites depends quite weakly
on the direction of propagation (see Fig. 18). Experimental
analysis64'75 has demonstrated that the limiting DW-veloc-
ity values are quite truly isotropic: the Bloch- and Neel-DW
velocities have virtually the same values in YFeO3. Second-
ly, the expression for the limiting DW velocity contains only
the exchange constants a and S, and does not (in contrast to
the expression for the Walker limiting DW velocity in ferro-
magnets) contain the anisotropy constants. The values of
the exchange constants for the various orthoferrites are
close; consequently, the values of the limiting velocities
should also be close. Furthermore, the exchange constants of
the orthoferrites vary slowly as the temperature is lowered
from room temperature to liquid-nitrogen temperatures.
The limiting velocity of the intermediate-type DW has the
same value in TmFeO3 at °K as in YFeO3 at room and liquid-
nitrogen temperatures.

All these facts, added to the equality of the numerical
values of the magnon phase velocity and the limiting DW
velocity, confirm the correctness of the theoretical concept
of a limiting DW velocity in the WFM.

A rigorous theoretical demonstration of the existence of
a limiting DW velocity in the orthoferrites and a theory of
forced DW motion are given in Refs. 89-91, and are de-
scribed in Sec. 3 of the present review.

e) DW dynamics in iron borate

Nonlinear D W dynamics was for a long time investigat-
ed mainly in orthoferrites. It is of interest to study the dyna-
mical properties of DW in other weak ferromagnets differing
in magnetic structure, symmetry, or the type of magnetic
anisotropy from the orthoferrites.

A promising object for such investigations is iron borate
FeBO3 an easy-plane weak ferromagnet with space symme-
try group D3d. The existing techniques allow us to obtain
high-grade FeBO3 single crystals that are transparent in the
optical region, and to produce and investigate solitary DW's

in these crystals.
Kim and Khvan92 have investigated DW dynamics in

FeBO3 by the method of forced nonlinear oscillations. The
v(H) curve they obtained in these investigations exhibits
anomalies at velocities of 0.5 and 3.6 km/sec, with subse-
quent growth of the velocity. Anomalies at the sound veloc-
ities and a limiting velocity were not observed.

Recently, DW dynamics in FeBO3 single crystals was
investigated by the stroboscopic technique.93 Figure 19
shows the v (H) curve at 290 °K. As can be seen from the
figure, the DW mobility is equal to 5xl04 cm/sec-Oe,
which is significantly higher than the mobility at the same
temperature in YFeO3. Also clearly visible on this same fig-
ure are regions of constancy of the DW velocity at 4.6, 7.0,
and 10.5 km/sec, which correspond to the two transverse-
and longitudinal-sound velocities.94 The widths of the
shelves are small (of the order of 3 Oe), and, perhaps, this is
why they were not observed in the experiment reported in
Ref. 93. A limiting DW velocity, equal to 14.2 km/sec, has,
for the first time, been observed in FeBO3. The value of the
limiting DW velocity corresponds to the velocity of the spin
waves on the linear section of their dispersion law.94

According to theory,88-3' the limiting DW velocity in all
antiferromagnets and weak ferromagnets with an even prin-
cipal axis5' is equal to the value of c.

According to experiment,93 the principal properties of
moving DW are the same for essentially different WFM: the
rhombic orthoferrites with strong anisotropy in the basal
plane and the easy-plane FeBO3. This is consistent with cur-
rent theory, and allows us to conclude that the laws of non-
linear DW dynamics are the same in all the WFM.

It must be noted that the limiting velocities in the WFM
(20 km/sec in the orthoferrites and 14.2 km/sec in iron bo-
rate) are the maximum DW velocities that have been at-
tained to date in magnetically ordered materials. Limiting
velocities of this order of magnitude should be realized in
other WFM with a high Neel temperature. The very good
agreement between the experimental value for the limiting
DW velocity and the theoretical result indicates the adequa-
cy of the proposed mathematical description of the DW dy-
namics in the WFM.88~91 The reason for this adequacy lies in
the stability of the dynamic DW structure in the WFM right
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FIG. 19. Magnetic field dependence of the velocity of a 180° domain wall
in FeBO,.93
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up to the limiting velocities.
In the case of the ferrite-garnets, to account for the satu-

ration velocities, which are of the order of a few score meters
per second, we must use an empirical relation.12 The devi-
ation of the limiting DW velocites in epitaxial ferrite-garnet
films from the Walker limiting velocity is caused, as we have
already noted, by a substantial complication of the structure
of the moving DW. Physically, this is due to the fact that a
substantial reconstruction of the DW structure occurs in fer-
romagnets in fields of the order of the anisotropy field HA ,
which, in these materials is comparable to the demagnetiz-
ing field. The situation is different in the WFM: the rotation
of the magnetization vector occurs in magnetic fields of the
order of^]HEHA )

16-17-25 i.e., in fields significantly stronger
than the magnetostatic fields. This fact, together with the
high DW mobilities in the WFM, greatly broadens the range
of pulsed magnetic fields in which experimental investiga-
tions of nonlinear DW dynamics can be carried out.

3. THEORY OF DOMAIN WALL MOTION IN WEAK
FERROMAGNETS

Let us consider the dynamics of the magnetization of a
WFM in the two-sublattice model. The dynamics of a mag-
netic material is described on the basis of the system of Lan-
dau-Lifshitz equations4 for M, and M2. As shown in the
papers of Ref. 31, this system can, under the natural assump-
tion that m | < 1 1 1 , be reduced to a single equation for the unit
(normalized) antiferromagnetism vector 1.

a) Effective equations

The dynamical equation for the vector 1 allows a unified
description of both spin waves in AFM and the essentially
nonlinear processes, in particular, the DW motion. Let us
note that the equation for the vector 1 has been analyzed in
detail in connection with the general problem of the low-
frequency dynamics of the multisublattice AFM with a non-
coplanar orientation of the magnetic moments.95

In the absence of an external magnetic field the equa-
tion of motion for the vector 1 has the form31'95

(3.1)[l, (c2Al— |̂

where XL = 4/8 is the transverse — with respect to the eqi i-
librium orientation of the vector 1 — component of the mag-
netic susceptibility, w3 is the effective magnetic-anisotropy
energy, and c is given by the formula (2.2) .

The large factor \/x\. in front of the anisotropy energy
in the formula (3.1) describes the exchange enhancement of
the magnetic anisotropy of the AFM or WFM.

The magnetization of the WFM is given by the formula

(3.2)

The first two terms in this formula occur in the static
case as well [see formula ( 1.5) ] . The last term is due to the
appearance of additional noncollinearity of the sublattice
magnetizations, which arises as a result of their precession.
This term makes the magnetization dynamics in a ferromag-
net essentially different from the magnetization dynamics in
a WFM.

Let us note that the equation of motion (3.1) with h / 0
is "Lorentz-invariant" in the sense that the time and space
derivatives enter into it in the form of the combination c2 A,
d 2/dt2. This enables us to obtain the solution corresponding
to a uniformly moving DW from the known solution for the
stationary DW through a simple Lorentz transformation.

A number of effects of DW dynamics are determined by
the interaction of the DW with the elementary excitations of
the magnetic material, first and foremost with the spin waves
(the magnons). It is not difficult to verify that Eq. (3.1)
describes two spin-wave branches. To do this, we must con-
sider that ground state in which the vector 1 is oriented along
the a axis. As follows from the linearized equation (3.1), to
small oscillations of 1 about this state correspond waves po-
larized along the b and c axes, and obeying the dispersion
Iaw16.17,96

wI
2(A:) = coI

2 + c2A2, co|(Jt)=(o2
2 + e2A:2, (3.3)

where k is the wave vector, and the quantities

(o^ — ^MoKfiFi, ^^~gM0YW2 (3-4>

have the meaning of magnon activation. Physically, the
quantity c has, as can easily be seen from (3.3), the meaning
of the phase velocity of the spin waves on the linear section of
the spectrum. It is also easy to verify that c is equal to the
minimum phase velocity of the waves with the dispersion
law (3.3).

The formulas (3.3), like the Eq. (3.1), were derived in
the long-wave approximation, and are valid only when/l>a,
where A is the characteristic inhomogeneity dimension.
Since -Ja/P = x0$>a, the spectrum (3.3) can be used in the
broad wave-vector range &< I/a. For &> l/x0,a>l2 = ck

The band character of the magnon spectrum begins to
manifest itself when k~ I/a, and the long-wave approxima-
tion cannot be used in this region (see Fig. 18 in Chap. 2).

The activation frequencies cal and a>2 have been mea-
sured for a number of antiferromagnets and WFM with the
use of antiferromagnetic resonance98 and with the aid of
light scattering.99 For the orthoferrites co^ and a>2 are usually
close to 11-13 cm"1 and 15-20 cm"1, respectively (let us
recall that 1 cm"1 corresponds to 30 GHz).

There arise in the presence of DW in WFM two addi-
tional magnon branches localized near the DW [surface
magnons (SM) ]. The SM dispersion law can be written in
the form53"

(3.5)

where kx is the wave vector in the plane of the DW. The
surface magnons with the nonactivation dispersion law
&>, (ki) describe the flexural vibrations of the DW. In writ-
ing down (3.5), it is assumed that/92 >P\, i-e., that rotation
in the a-c plane is energetically advantageous at the wall. To
the a>2(kL) wave corresponds the mutual oscillation of the
M! and M2 in the bias DW without the DW as a whole.
Kraftmakher et a/.101 have observed microwave-field ab-
sorption due to the excitation of this magnon branch in orth-
oferrite samples with a domain structure. In moving DW the
surface-magnon energies are, on account of the Lorentz-in-
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variance, given by the formula

/I—W2/C2
(3.6)

b) Structure of moving DW

In Sec. 1 we described the structure of static DW of
different types (ac- and aft-walls, Bloch walls, Neel walls,
etc.). To obtain the formulas that describe moving D W, it is
sufficient to use the Lorentz transformation. The angle (6)
and magnetization (m) distributions in the DW can be
found with the aid of the formulas (1.10) and (3.2). As a
result, for a wall of the ac-type we obtain

, f|, l-vt , n , 1
* Y I'll 5 I'll \J * t- ==L i -, ~ -. T-T- f

01 \^) I A S V l f / ^ ' Q l \")\ ^^ fj •.

_ d/S 2»lt>RM«x», (v\ ( • '
THV— :—ryr —-; 7—rr . Ttl,, — -

ch[(i-t>0/*oiO>)] '
-vt

where

In the course of the motion, the magnetization in this
plane, in contrast to the stationary case, leaves the plane of
the DW, i.e., my a (v/c) ^0. This property is also possessed
by DW in a ferromagnet, the dynamics of which is governed
by the Landau-Lifshitz equation.12'14

In an aft-type DW the magnetization is, as in the v = 0
case, always parallel to the c axis:

lx = th l-vt

d t, l — vt
m,=-r th ——rvz 0 a;02 (v)

where

(3.8)

The energy of both types of DW depends on their veloc-
ity v or momentum p in a relativistic manner89-90:

0(0) or a =

where a, (0) = 2M^af), = 2aM^/x0i is the energy of the
stationary DW per unit area of wall.29

It follows from the formulas obtained above that a DW
in a WFM cannot move with velocity greater than c. Thus,
the phase velocity of the spin waves on the linear section of
the spectrum determines the limiting DW velocity (this re-
sult is obtained in Refs. 62 and 88). As the wall velocity
approaches the limiting value, the wall thickness decreases
like88 Vl — (y2/c2). It is important to note that this result
does not depend on the character of the anisotropy of the
WFM.

This Lorentz contraction of the DW thickness raises
the question of the applicability of the formulas (3.7) and
(3.8) in the description of DW as v—>c. Let us recall that, in
the macroscopic description, the DW thickness should be
much greater than the lattice constant, i.e.,

*„<*)>«, o r l _ - » U J — . . (3.9)

Thus, the long-wave approximation formulas adequately de-
scribe moving D W everywhere except in a narrow (~ (0 /
S) ~ 10~2) range of velocities in the vicinity of the limiting
wall velocity c.88 Eleonskii et al.91 have obtained solutions
describing the DW motion within the framework of the
equations for the vectors m and 1 without the approximation
m| < jl| or a Al <<5.. Notice, however, that in writing down

the expression (1.3) for the energy of the magnetic material
we in fact used the long-wave approximation condition
|Al|<l/a2. Strictly speaking the expression for the energy
also contains terms of the order of aa2(Al)2, which can be
dropped only in the long-wave approximation.17 In the indi-
cated narrow region of velocities where the DW thickness is
comparable to the lattice constant, we cannot, generally
speaking, describe the DW in the magnetic material within
the framework of the long-wave approximation for the mac-
roscopic magnetization density, and must proceed from an
analysis of the exchange interaction of the discrete spin sys-
tem of the magnetic material.88

c) Velocity of the forced motion

The preceding analysis was peformed for the idealized
case of a magnetically ordered medium without allowance
for dissipation. In this case the DW wall can move "by iner-
tia" with any velocity lower than the limiting velocity c, and
the purpose of the investigation is to compute the structure
of a D W moving with a given velocity.

But of greater practical importance is the problem of
the computation of the velocity in the case of the stationary
motion of a DW acted upon by an "external force"—as a
rule, an external magnetic field H, which removes the equiv-
alence of the states to the right and left of the DW. If the
relaxation processes in the system are sufficiently weak, then
the computation of the function v(H) can be carried out on
the basis of the known solutions for a nondissipative medi-
um.27 The problem can be formulated as follows: if we know
the magnetization distribution in the DW, we can compute
the velocity dependence of the dynamical retarding force
acting on the wall, i.e., find the form of the function F( v). By
equating this force to the "external force" acting on the wall,
we can find the dependence of the DW velocity on the exter-
nal force. The applicability of this approach is due to the
weakness of the relaxation in the magnetic material, and can
be justified by the inequality g(&H) 4a>0, where (A//) is the
magnetic resonance line width and a>0 is the resonance fre-
quency. This condition is fulfilled in the majority of magnet-
ic materials.

The external force acting on a unit area of the DW is
equal to the difference between the energies of the phases "to
the right" and "to the left" of the wall, and is directed to the
side of the more favored phase. In the simplest case, when
the DW separates domains of two phases with a magnetiza-
tion jump equal to AM and the same energy in zero field, the
strength of the magnetic pressure PH = HAM. For DW in
WFM the expression for PH can be reduced to the form

„
a. (3.10)

In writing down (3.10), we assumed that the external field
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H is parallel to the equilibrium direction of m.
The computation of the retarding forceF(v) is a signifi-

cantly more complicated problem (see Refs. 102-105). The
point is that the relaxation phenomena in magnetic materials
require a microscopic treatment, and cannot always be de-
scribed in a phenomenological fashion. Allowance for the
relaxation is often made by adding relaxation terms to the
Landau-Lifshitz equations, or by introducing a phenomeno-
logical dissipation function that depends on one relaxation
constant. The value of this constant is taken, for example,
from magnetic-resonance experiments.

In the description of DW motion in a magnetic materi-
al, this approach is only qualitatively applicable. The point is
that, first, a magnetic material is a medium with strong spa-
tial and temporal dispersion, and even in the case of small
magnetization oscillations the dissipation, which is deter-
mined by the imaginary part of the magnetic susceptibility,
cannot be described by a single phenomenological constant
(see Ref. 17, §31). Second, the DW-induced deviations of
the magnetization are not small, and are not determined
only by the linear susceptibility. Finally, an important con-
tribution to the retarding force acting on the DW is made by
the processes of Cherenkov emission of quasiparticles (e.g.,
phonons). The contribution from these processes leads to
the appearance of sharp peaks in the F ( v ) curve at DW ve-
locity values close to the phase velocity of the quasi-parti-
cles.

We shall discuss the contribution of the quasiparticle-
emission processes in Sec. 4. As to the description of the
magnon-induced retardation we shall use the phenomenolo-
gical approach (the simplest and clearest approach), taking
account of the spatial dispersion by choosing a dissipation
function for the magnetic material.

Let us, following Ref. 106, write the dissipation func-
tion of the magnetic material in the form

here we have introduced relaxation constants, Ar and Ae ,
due, respectively, to the relativistic and exchange interac-
tions. An estimate for the relation between them is

Ke ~ a2Kr -H- .

The dissipation function determines the rate at which
the energy of the system is dissipated. Using the relation
2Q = vF(v), we can compute the retarding force acting on a
unit DW area. Substituting (3.7) or (3.8) into (3.11), we
obtain for the magnon drag the expression

At low velocity values y<c, this formula goes over into
the usual formula for the retarding force acting on a moving
DW (see Ref. 27), but with the relaxation constant A re-
placed by the effective value [Ar + (Ae /xl ) ] . The two con-
tributions to F(v) can, on the basis of the estimate for the
ratio Ae/Ar, be expected to have the same order of magni-
tude (whereas only/1,, makes a contribution to the homogen-
eous-resonance line width) . At higher DW velocities the two
terms depend differently on the DW velocity, i .e., the dis-

persion in the magnetic material is manifested fully.
By equating the expression (3.12) for the retarding

force to the expression (3.10) for the magnetic pressure, and
separating out the function v (H), we can obtain a theoretical
curve for the dependence of the wall velocity v on the exter-
nal field//. For Ae <Ar;Co, this procedure can be carried out
analytically, and it is easy to obtain for the function v (H) the
expression

(3.13)

where/u is the DW mobility. The function v ( H ) , in the form
(3.13), was first obtained in Refs. 89 and 90.

A more detailed analysis of the experimental v(H)
curve may enable us to determine the constants Ar and Ae

independently. It is significant that, on the strength of the
theoretical ideas, the exchange and relativistic relaxation
constants should depend differently on the temperature.17

Thus, the determination of Ar and Ae from the v (H) curve is
of interest not only for the more accurate determination of
the laws governing DW retardation, but also for the investi-
gation of the general picture of the relaxation processes that
occur in magnetic materials.

Experiments on the study of the motion in the orthofer-
rites of DW with velocity approaching the limiting velocity,
were first performed by one of the present authors (M. V.
Ch.), Shalygin, and de la Campa,61'62 and are described in
Sec. 2 above. The v (H) curve obtained in these experiments
is in good agreement with the formula (3.13), as illustrated
above by Fig. 13, which was taken from Ref. 107. The experi-
mental v(H) curve exhibits deviations from the smooth
curve given by the formula (3.13). These anomalies have the
form of shelves, and are due, as we have already noted, to the
Cherenkov emission of quasiparticles. A theory of DW mo-
tion with allowance for this effect will be presented below in
Sec. 4.

In spite of the fact that the phenomenological descrip-
tion of the relaxation agrees quite well with experiment,
there are a number of questions, the answers to which can-
not, in principle, be found in this approach. For example, it is
of interest to compute the relaxation constants A from first
principles, and compare their absolute values and tempera-
ture dependences with experiment.

The problem of the computation of the DW mobility in
the orthoferrites was raised in the 1970's by a number of
authors (see Refs. 81 and 53b). But these authors in fact
computed the lifetime of the magnons with k = 0, and from
these results they computed the relaxation constant A(T),
which was then used, on the basis of (3.13), to compute//. In
view of the above-noted circumstances (the strong disper-
sion of the susceptibility of the magnetic materials and the
soliton nature of the DW), the good agreement of the tem-
perature dependence of/u with experiment achieved in this
approach seems to us to be fortuitous.

In Refs. 102 and 103 a microscopic theory of DW retar-
dation in ferromagnets is proposed which consistently takes
account of the characteristics of the problem. The retarda-
tion is treated as a consequence of the interaction of the DW
with the magnon thermostat. The method developed can
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also be used to analyze DW retardation in the WFM. In Ref.
105 a theory of DW retardation in the orthoferrites is con-
structed on the basis of a microscopic approach. It is shown
that at room temperatures fj, <x l/T2, which agrees with ex-
periment. This dependence should be replaced by/* a 1/ras
the temperature is lowered. At r<&a,~20°K, the domi-
nant contribution to the retardation should be made by the
processes of phonon scattering by the DW108 and the inter-
action of the DW with defects,109 since the magnon density n
is small in this case: n <x exp( — fco^T).

The coefficient in the dependence fi oc l/T2 for T4faol

is, in order of magnitude, equal to the experimental value.105

A more precise quantitative comparison is difficult, since the
theoretical value of the DW mobility essentially depends on
a large number of crystal constants, including those that
have a slight effect on the static and linear high-frequency
properties of the orthoferrites.

It seems to us that the investigation of the DW mobility
in high-grade single crystals over as broad a temperature
range as possible is quite a pressing problem, since it will
allow us to ascertain the laws governing the interaction of
the magnons with the magnetic soliton describing the DW.

4. CHERENKOV EMISSION OF QUASIPARTICLES DURING
THE MOTION OF A DOMAIN WALL

The first experiments on the study of DW dynamics in
orthoferrites revealed the existence of anomalies, described
above in Sec. 2, in the dependence of the wall velocity on the
driving field. These anomalies had the form of segments with
a small differential mobility (small shelves) at wall veloc-
ities close to the (longitudinal and transverse) sound velo-
cites.52-61

In subsequent experiments it was established that simi-
lar anomalies (shelves) occur at other velocity values not
connected with the velocities of sound63'64'75"77; there can be
several score of such shelves (see Sec. 2). Anomalies have
been observed at the sound velocities in iron borate as well.93

According to the theory of forced DW motion devel-
oped above, the anomalies in the dependence v (H) are due to
anomalies in the dependence of the retarding force F on the
wall veclocity v. Specifically, when the DW velocity is close
to the phase velocity of some wave in the magnetic material,
there occurs intense Cherenkov emission of this wave. This
radiation plays the role of an additional relaxation channel.
Consequently, the form of the function F(v) and, hence, that
of the function v(H), undergo a drastic change in a fairly
narrow range of velocity values.

These ideas are used in Ref. 110 to explain the anoma-
lies that occur in the v(H) curve for the orthoferrites at DW
velocities close to the velocities of sound.6' It is suggested in
Refs. 89, 64, and 112 that the remaining anomalies may be
connected with the emission of other quasiparticles, e.g.,
surface or optical magnons and phonons. The emission of
Rayleigh phonons is theoretically considered in Ref. 113.
Thus, there arises a general concept, according to which
each anomaly in the v(H) curve is accounted for by a defi-
nite quasiparticle branch. Within the framework of this con-
cept, the problem of analyzing the elementary-excitation
spectrum in a magnetic material on the basis of data on DW

motion89'112 114 is one that arises naturally.

a) General relationships

Let us discuss some general laws governing the Cheren-
kov emission of quasiparticles112 during the motion of a DW.
For this purpose let us write down the Hamiltonian for the
interaction between some field u and a moving DW:

Hint = j dr U (1, m) u; (4.1)

here u is the field operator for the corresponding field and
U(\, m) is determined by the magnetization distribution in
the DW. Since at points far from the DW the Hamiltonian of
the system does not contain terms linear in u, we can assume
that U vanishes if 1 = I0 and m = m,, (10 and m,, are the equi-
librium values of the vectors 1 and m).

Generally speaking, Hint contains terms that are non-
linear in u, but it is sufficient to limit ourselves to (4.1) in our
problem. We shall also assume that the field u is linear. The
nonlinearity of the excited field is taken into account in Ref.
115. It turns out that under certain conditions shock waves
of the u field can be excited which travel with a velocity
different from the DW velocity, and move away from the
wall. But this circumstance is not important for the analysis
of the DW retardation.

If the field operator u is represented in the form of su-
perposition of creation and annihilation operators for quasi-
particles with momentum k, then the Hamiltonian (4.1) will
describe the processes of quasiparticle emission (absorp-
tion) by the moving DW. Since the DW is a plane, the quasi-
particles produced by it will have a momentum only along
the normal n to the DW. Thus, (4.1) can be rewritten in the
form

(4.2)Hint =

where S is the area of the DW and L and k are the dimensions
of the system, and the component of the momentum along n.
The amplitude Uk is proportional to the Fourier transform

Notice that we can easily gain some insight into the
structure of Uk without having to specify the form of the
field. Since the deviation of the magnetization in the DW is
localized in a region A£~*0, and decreases exponentially
outside this region, it is not difficult to obtain for Uk the
estimate

Uh exp — kx0 (4.3)

here g is a parameter characterizing the intensity of the inter-
action of the field u with the field of the magnetization. Be-
cause of (4.3), it is important that the DW interact intensely
only with the long-wavelength quasiparticles, for which
k% l/x0, i.e., whose wave vectors k are much smaller than
the dimension of the Brillouin zone.

We shall assume that the interaction of the magnetiza-
tion field with the field u is weak, i.e., that g<1. In this case
the effect of the D W on the quasiparticles of the field u can
easily be taken into account on the basis of (4.2) and stan-
dard perturbation theory (see Ref. 116). Let us write out the
general expression for the rate E of loss of DW energy per
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unit DW area:

= v kdk\Uh — kv); (4.4)

here cok is the frequency of the quasiparticle with wave vec-
tor k. The quantity E /2 has the meaning of a correction, due
to the interaction with the given field of the quasiparticles, to
the dissipation function Q of the wall. It is easy to see that
E 7^ 0 only in the case when the equation

or v = (4.5)

has a real root. Thus, Cherenkov emission occurs when the
wall velocity coincides with the phase velocity i;ph of a quasi-
particle. This condition changes in the presence of defects
(see Sec. 4c below).

Let us, making use of the presence of the 8 function in
(4.4), rewrite the expression for the dissipation function Q
in the form

dot
dka

V (4.6)

where ka is a real root of (4.5); the subscript "a" numbers
the roots of this equation.

The possession or otherwise of roots by (4.5) affects the
behavior of the quantity (u) as well. If (4.6) has no roots,
and Q = 0, then the mean value of the field u is localized near
the DW, and (u) decreases exponentially as
(g — ut)-+ ± oo. If, on the other hand, Q ^0, then the quan-
tity {u) is nonzero on one side of the DW:{w}^0 for
I" — vt—>-+oo and (u)=Q when g — vt—>—ao if
y

ph(ka) < y g ( & a ) and, conversely, (u) = 0 when
£ — vt—*+ca and (u)=£Q when g — vt—*—ao if
vph(ka)>vg(ka). Here yg = dcok/dk is the group velocity
of the quasiparticle. This result follows from the fact that the
transfer of the field energy occurs with the group velocity. In
consequence, the wave packets of the field u either are ahead
of (yph <i>g) , or lag behind (yph >vg), the DW. For this
quantity the case yph = yg, i.e., the linear quasiparticle dis-
persion law, is a special case.

For nonactivation particles with a linear dispersion law
of the form cok = sk, it is, in accordance with the formula
(4.6), to be expected that the peak emission will occur at
v zzs, i.e., the quasiparticles for which j is smaller than c also
contribute to the DW-energy dissipation. This condition is
satisfied by the longitudinal and transverse phonons in
ortho-ferrites and in iron borate. It should, however, be not-
ed that the situation is a special one for the quasiparticles
with a linear dispersion law; for example, (4.6) is divergent
when v = s. In this case it is necessary to take into considera-
tion either the deviation of the dispersion law from the linear
law, or the damping of these quasiparticles.110

b) Emission of acoustic phonons

At present only the v(H) anomalies occurring at vzz.s,
and v~s, have been reliably identified with quasiparticle
emission. Therefore, let us consider in greater detail the
emission of acoustic phonons.

The interaction of the magnetization field with the field

of the elastic deformations is determined by the magneto-
elastic energy wme :

= Ml [fih, l

(4.7)

where llo) and m(0) are the equilibrium values of the vectors 1
and m in the homogeneous phase 4>n , ulm = 1/2
X (du,/dxm + dum /dx, ) is the strain tensor, u is the elastic-
displacement vector, and /and/' are the magneto-elastic
interaction tensors. If we limit ourselves in the expression for
wmc to only the terms containing the vector 1, then, on ac-
count of the symmetry of the orthoferrites, which belong to
the group D £ , that element of the tensor/ which describes
the interaction of a DW located in the zOy plane with trans-
verse sound propagating along the y axis will be equal to
zero, i.e.,fikjy = 0 if/, k, and /assume the value* orz. At the
same time the tensor describes the interaction of a longitudi-
nal acoustic wave propagating along they axis with the DW,
i-e-»/fc,w 7^0 if'. k=x,z. Therefore, to describe the interac-
tion of the DW with a transverse acoustic wave, we must
include the m-dependent magnetostriction energy. Among
the nonzero elements of the tensor/' are elements of the type
f'ikjy : for / = x, z these are/^ y2 andf'2yxy . Thus, the interac-
tion of the DW with transverse sound is described by the
energy

(Jxy, (4.8)

where 10 is the value of the vector 1 in the DW. Since the
quantity my is proportional to the DW velocity [see (3.7) ],
w'mc will also be proportional to this velocity.125

Replacing IQ(X) and my by their distributions in the
DW and uik by its expression in terms of the phonon creation
and annihilation operators, we obtain a Hamiltonian of the
form (4.2). Naturally, the amplitudes of this Hamiltonian
depend on the phonon polarization, so that, instead of Uk,
we should write U ^ ( k ) . The structure of these amplitudes
for ac-type DW can be schematically written in the form

U i ( k ) = f l g l [ x 0 ( s ) k ] ,
(4.9)

Vt (k) = — fig, [x, (s) k], E/l = -L ftgz [Xo (S) k),

where the/'s are the effective magnetostriction constants,

Ejj (s)
(4.10)

The dissipation function describing the transfer of ener-
gy from the DW to the phonons is given by the formula
(4.6), in which we must sum over the phonon polarization
and take as k the roots of Eq. (4.5). To determine the roots
k0 of this equation, let us represent the phonon dispersion
law in the form

(k) = sKk [1 — ox (ffl/c)2]. (4.11)

The coefficient <7A determines the deviation of the dispersion
law from the linear law. The values kM are then given by the
formula

ka). = ̂ ^^. (4.12)
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FIG. 20. Dependence of the strength of the phonon drag on the domain
wall velocity. 1) Weak phonon attentuation; 2) strong phonon attenu-
ation.

The dependence of the dissipation function on the D W
velocity is governed largely by the functions g^ [x0/c0]. In-
deed, when kgXQ^-l, i.e., when the inequality s^ — v\^crs^
(a/x0)

2 is satisfied, the quantity QA is exponentially small:
QA <xexp[ — 2|sA — v\Xo/cra2s^ ] . Consequently, when the
phonon attenuation is ignored, the phonon drag is substan-
tial only in a narrow range of velocity values (see the curve 1
in Fig. 20):

" - 10-̂ . (4.13)

Within this range the phonon drag F^ is quite large.
Estimating its maximum value from the formula./^ =
v, we find that for a Bloch wall

Pmaxr tx, z '•
St
— (4.14)

The quantity g^ is a small dimensionless magnetoelas-
tic coupling constant. Using the standard values25

fMl ~3X 107 erg/cm3 andf ~ 10~5, we obtain for f™" the
estimate: F™M ~ 107 dyn/cm2. Because of the presence of the
small factor (s,/c)2x0.05, the value of ff" is smaller:
Ff"~5xlOs dyn/cm2. In the case of a Bloch DW only the
terms containing mx, my <x (v/c) contribute to Ft. If we ig-
nore the effect of the motion-induced structural change in
the DW, then we find the F, = 0 (Refs. 110 and 117). the
fact that F, is smaller in magnitude than F, is clearly re-
vealed in experiments on Bloch-DW motion (see Sec. 2
above). Let us note that if in an experiment the DW turns
out to be inclined to the a-c plane, then the value of F, turns
out to be much higher.'17.

When phonon attenuation is taken into account, the
phonon drag mechanism remains qualitatively the same, but
the quantitative values of Fmax and the velocity interval Av
change appreciably. Allowance for the attentuation can be
adequately made at the phenomenological level by "smear-
ing" out the S function in the formula (4.6):

r ( (4.15)

where r(«) is the phonon line width, which can be ex-
pressed in terms of the viscosity of the crystal:

F (o>) = -£- o>2 = v&2. (4.16)

The experimental 17 value for the orthoferrites at room
temperature is of the order of 10~ n sec, i.e., y~ 1 cmVsec.
We can, by analyzing (4.4) with allowance for the substitu-
titon (4.15), easily show that the phonon attenuation is ap-
preciable when y>Tc = cr(sx0)(a/x0)

2~10~* cmVsec.
This condition is fulfilled in orthoferrites at room tempera-
tures.

If Y>Yo then Q(v) is given by the interpolation for-
mula110

(4.17)

i.e., F(v) has the form of a Lorentzian peak with the maxi-
mum at v = 3^ (see the curve 2 in Fig. 20). Consequently, in
the situation with strong sound attenuation the F(v) peak is
symmetric, and the decrease at the wings occurs in a power-
law fashion.

The maximum value ofF(v) decreases with increasing
Y like l/y.

//max ̂  Jfl r f rr 47 = ' 0 (4.18)

while the width of the peak is given by the relation

and increases with increasing y. For an ac-type Bloch wall in
YFeO3 at room temperature we find

F™* « (1 —10) • 102 dyn/cm2

Ffax « (0.5 - 5) • 10 dyn/cm2 10-'.

The investigation of the retardation of the other types of
walls can be carried out in much the same way.117 An impor-
tant point here is the fact that, for the majority of the DW,
including the intermediate-type DW, the expression for F,
does not contain the small factor (s,/c)2 that occurs in the
case of the Bloch DW. For these DW the widths of the anom-
alies atv =s, and v = s, are of the same order of magnitude.

The value of the D W velocity is found by equating the
retarding force to the strength of the magnetic presssure:

Bv + F (v) = 2m0H. (4.19)

Using the F(v) curve (see Fig. 20), we can solve this
equation graphically. The form of the function v0(H) de-
pends essentially on the relation between the mobility coeffi-
cient B and the amplitude of the function F(v). If
B + (dF(v)/dv) >0 (low wall mobility), then the function
v0(H) is single-valued (see the curve 2 in Fig. 21). This
curve clearly exhibits a region of low differential mobility (a
shelf). We can, in accordance with (4.19), estimate the
width of this shelf:

&.H. (4.20)

Since m0~10 G for jF1"" ~ 102-103 dyn/cm2 we obtain
A#~ 10-100 Oe. The characteristic shelf widths observed in
experiments on intermediate-type-DW dynamics at room
temperatures are 30 Oe for YFeO3 and 100 Oe for TmFeO3.
In line with the fact that F"ax for transverse sound and the
Bloch D W is smaller than for longitudinal sound, the experi-
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FIG. 21. The v(H) curve for the domain wall when allowance is made for
the phonon drag (schematic). 1) High mobility: nonunique dependence;
2) low mobility: unique dependence. The dashed line in curve 1 corre-
sponds to the regions of instability of the straight domain wall.

mentally observed shelf width at v = 5, is smaller than the
width observed at v = s,. This rule was revealed in experi-
ments (Fig. 22). For the remaining types of DW the widths
of these shelves are of the same order of magnitude, which is
in accord with the theory expounded above.

When the mobility// or the value of F"ax increases, the
condition B + (dF(v)/dv)>0 may be violated in the region
where F ( v ) decreases. In this case there arises at velocity
values satisfying the condition

B+
 dy <Q, (4.21)

a region of field intensities H where the function v0(H) is
multivalued (see the curve 1 in Fig. 21). According to the
general nonlinear-dynamics laws (see Ref. 118), to this re-
gion corresponds a region, indicated by the dashed line in
Fig. 21, of instability of the uniform motion of a straight
DW. This instability manifests itself experimentally as es-
sentially nonstationary motion of the DW. The laws govern-
ing such motion will be discussed in the following section.

c) Emission in an inhomogeneous crystal

Real samples of magnetic materials always contain in-
homogeneities of various types: both random (defect clus-
ters, dislocation pile-ups, etc.) and regular quasiperiodic in-
homogeneities of growth origin. As shown in Ref. 109, the
conditions for quasiparticle emission are much less rigid in
an inhomogeneous crystal. In particular, the emission is pos-
sible at any DW velocity, and there arises the possibility of
emission of surface magnons (SM), i.e, magnons localized
near the DW, and having the linear dispersion law
£(kL ) = ftckL [1 — (i>2/c2)]~1/2 [see (3.11)].

The physics of this phenomenon is as follows. In a per-
fect crystal a quasiparticle can acquire from the DW only the
momentum #k = tike^, where e^ is the unit vector along the
normal to the DW, and the energy fuo = fik^v [see (4.4)-
(4.6) ], which leads to the rigid condition (4.5). In the pres-
ence of inhomogeneities the transfer of additional momen-
tum q tf from an inhomogeneity is possible. For this to be
possible, the Fourier expansion of the inhomogeneity should
contain the term 4>9exp(/qT). The law of conservation of
energy and momentum in an elementary act of quasiparticle
emission can be written in the form e(q + kset) = fiktV,

and, for any v, this conservation law can be satisifed by an
appropriate choice of q.109 In particular, in the emission of a
SM the component q$ is transferred to the DW, while q± is
transferred to the SM, and the conservation law has the form
e(q1) = ftuq^ , where q1 is the component of q in the plane of
the DW. Accordingly, the retarding force stemming from
the SM emission has the form [see Ref. 109, formula (10)
withf(yt i) =

(4-22)

here ̂  is the amplitude of the SM emission in the presence
of inhomogeneities. If we assume that the defects are distrib-
uted randomly, and that the crystal is infinite, then (4.22),
after being averaged over the defects, yields the monotonic
function F(v) =F0 + Dv2. The quantity F0 determines the
contribution of this process to the coercive force. 109 The D W
motion can become unstable when D < 0 (see the estimate in
Ref. 109).

It is pointed out in Ref. 124 that, if we assume that the
inhomogeneity is periodic, but the crystal is finite, then the
SM excitation can occur at some selected discrete set of DW
velocities. Let us discuss this phenomenon in greater detail.

We shall, following Zvezdin and Popkov,124 assume
that the inhomogeneity in the crystal is periodic, with period
2ir/qg , in the direction of motion of the DW (i.e., along the £
axis ) . Furthermore, let us, in accordance with the Zvezdin-
Popkov model,124 assume the presence of an inhomogeneity
of any kind along the normal to the surface of the platelet
( the § axis ) . If we denote the platelet thickness by /, then the
SM wave vector in (4.22) may assume the discrete values
q\"} = irn/l, where n is an integer. For a SM with a given « to
be emitted, it is necessary that the Fourier expansion of the
inhomogeneity along the £ axis contain the term exp (iirns /
/).

It follows from the conservation law in (4.22) that, in
the model in question, the emission of a SM is possible when

nn I . u» \ - l /2

i.e., when v = vn , where vn is given by the formula124

\2-|-l/2 ,..„.,,
(4'23)

Thus, if there exists in the crystal a system of three-
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FIG. 22. Magnetoelastic anomalies on the v(H) curve for the Bloch (1)
and Neel (2) domain walls in a YFeO3 sample of thickness 25 fj.m.n

581 Sov. Phys. Usp. 28 (7), July 1985 Bar'yakhtarefa/. 581



dimensional inhomogeneities that are periodic over the
plane of the platelet, then flexural vibrations of the DW will
be excited during the motion of the wall with a velocity be-
longing to some discrete set of velocity values vn . As a result,
the retarding force increases, and anomalies of the shelf type
appear in the v (H) curve, when v ;= vn . This is apparently the
only mechanism that allows us at present to explain the ex-
periments (see Sec. 5 and Fig. 26 there) in which more than
10 such shelves were observed. The question of the origin of
the inhomogeneities of the requisite type, however, remains
open.

5. NON-STEADY-STATE NON-UNIDIMENSIONAL DOMAIN
WALL MOTION

The experimental v(H) curve for certain DW moving
with supersonic velocities (see Figs. 15 and 17) reveals the
existence of a velocity instability region that manifests itself
in a strong straggling of the transit times of the DW. It is
natural to relate this instability with the instability of the
uniform DW motion in the region of negative differential
mobility (see Fig. 21 in Sec. 4).

Let us investigate the non-one-dimensional motion of a
DW, treating the wall as a membrane with surface energy a
and mass m, . ' 19 The equation for the wall displacement/^,
z, t) with allowance for the driving force PH and the drag
(let us recall that c2 = a/m. ) has the form

\ dx*

(5.1)

here fi is the DW mobility, B = 2m0/fi, and F(v) is the
phonon drag. Let us consider small deviations from the
steady-state solution, i.e., let us set/= v t + q>. For <p we ob-
tain1117'118

(5.2)
where v = B + <LF(v)/dv. From this it follows that, when
v(y0) <0, (p increases exponentially in time, and uniform
motion is unstable.

Let us estimate the values of the parameters of the mag-
netic material at which the inequality (4.21) can be satisfied,
and instability can develop. It is easy to see that this inequa-
lity is satisfied at sufficiently small values of B, i.e., at large
values of the mobility, specifically, when f i > f i c , where

AF (v) I \ - l ̂  2m0&v ,
dy |j ** ^mai '

= 2m0 (max (5.3)

FIG. 23. Single-shot high-velocity photographs of the dynamic domain
structures in YFeO3 in a 140-Oe magnetic field, taken at 20-nsec intervals
(a-c), and in a 2300-Oe magnetic field (d).74

here Ay and /^ are characteristics of the phonon peak and
m0 is the magnetization of the WFM. In the linear approxi-
mation the DW inhomogeneity grows exponentially in time.
It is clear that the exponential increase of the deviation of the
shape of the wall from the rectilinear shape will be stopped
by the nonlinearity of the system. This regime of DW motion
has thus far not been theoretically analyzed; therefore, the
experimental investigation of the developed DW-motion in-
stability is especially urgent. In a number of investiga-
tions74""76 this regime of wall motion was investigated by the
method of high-speed photography, which made it possible
to obtain information about the shape of the moving DW in
an orthoferrite. It was shown in these investigations74"76 that
a solitary, straight, intermediate-type DW in an yttrium
orthoferrite platelet does not change its rectilinear form
right up to the velocity of transverse sound. Upon further
increase of the driving pulsed field, the shape of the moving
DW changes when the motion becomes supersonic.72'74

There appear on the wall semispherical leading sections
whose velocities can be significantly higher than the velocity
of sound. The higher the DW mobility in the sample under
investigation is, the more pronounced are the indicated lead-
ing sections. In YFeO3 samples, which were investigated in
the experiments indicated above,74"76 a maximum mobility
of 2 X104 cm/sec-Oe is attained at a temperature of 110 °K.
The high-speed dynamic-domain-structure photographs
shown in Fig. 23 were taken at this temperature. The radius
of curvature of the leading sections varies from several
hundred to 120,um as H is varied from 120 to 2650 Oe.

On passing through the sound velocity the D W changes
its apparent width. Two to three nanoseconds after passing
through the sound velocity the DW broadens sharply and
becomes inhomogeneous and non-one-dimensional.76 Ten to
fifteen nanoseconds after this the DW straightens, and its
apparent width decreases (Fig. 24).77'120 The time intervals
indicated above are comparable to the relaxation time in yt-
trium othoferrite.

The leading sections appear at random places, and do
not, as a rule, recur at the same places from time to time.
Figure 25 shows a series of twin dynamic domain structures
in YFeO3, obtained during one passage of the DW through a
sample cut perpendicular to the optic axis. In a 127-Oe mag-
netic field the central part of the DW remains straight and
moves with the velocity of transverse sound, the leading sec-
tions occurring at places closer to the edges. The positions of
these sections change from time to time (see Fig. 25). Final-
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FIG. 24. Domain wall in the process of surmounting the sound barrier in
YFeO3 at 110°K.77 The time interval between two consecutive photo-
graphs is ~ 2 nsec.

ly, in high fields virtually the entire DW moves with con-
stant velocity, which is indicated by the constancy of the
form of the dynamic domain structures obtained at 5- and
15-nsec time intervals. In Fig. 25 the dark band shows the
region traversed by the DW during the indicated time inter-
val.76'77 The process of formation of leading sections and the
modification of the shape of the moving orthoferrite DW
constitute a DW self-adjustment that becomes more and
more stable as H increases. The point of intersection of
neighboring leading sections have velocities that are higher
by a factor of 1/cos(a/2), where a is the angle at the singu-
lar point of the DW. The DW curvature, on the other hand,
also facilitates the straightening of the wall with time. For
these two reasons the DW straightens in the course of its
motion.

Thus, the orthoferrite DW ceases to be a one-dimen-
sional object on going through the sound velocity limit. The
experimental data on supersonic DW motion indicate the
necessity of the development of a theory of non-one-dimen-
sional, non-steady-state DW dynamics in orthoferrites.

The existing one-dimensional DW-dynamics theory ex-
plains the initial stage of the development of the one-dimen-
sional-DW instability during supersonic motion. As can be
seen from the formula (5.3), the higher the DW mobility is,
the stronger should be the experimentally observed instabil-
ity of the wall. The results of the experimental investigation

FIG. 25. Photographs of two dynamic domain structures in YFeO3 at
110 °K in the course of one passage of the domain wall through the sam-
ple.77 The dark bands are the regions traversed by the DW during the time
interval (5 nsec) between two consecutive light pulses in 160-Oe (a) and
750-Oe (b) magnetic fields.

are as follows: when/i < 103 cm/sec-Oe the instability prac-
tically does not occur, but at /i ~ 20 X103 cm/sec-Oe, which
corresponds to T= 110°K, there occurs a strongly pro-
nounced instability consisting in the occurrence of a kink in
the wall and the motion of the various wall sections with
different velocities.75'77

The theoretical estimate obtained for /zc from (5.3)
with A//=30 Oe, Fmax = 2m0A#, Au = O.ls, ~2x 104

cm/sec is,uc s; 103 cm/sec-Oe. This value agrees in order of
magnitude with the experimental value. Thus, it can be as-
sumed that the existing theory can elucidate the mechanism
underlying the onset of the instability, i.e., the linear phase of
the development of the DW-motion instability at velocities
close to the velocity of sound.

Experiment shows that the nonlinear phase of the non-
stationary motion is characterized by large-scale inhomo-
geneities with characteristic dimensions of the order of the
dimensions of the orthoferrite domains. The nonstationary
processes leading to the development of this instability ne-
cessitate the analysis of the essentially nonlinear equation
(5.1) with allowance for the inhomogeneities along the x
and z axes (it is possible that the modification of the shape of
the moving DW begins with a depression in thickness of the
wall).

From a sequence of twin dynamic domain structures
similar to those shown in Fig. 25 we can determine the veloc-
ity for the stationary DW motion in orthoferrites with an
accuracy higher than the accuracies achieved with all the
methods employed earlier. This type of investigation has
been carried out for a number of orthoferrites over a broad
range of temperatures.77

Figure 26a shows the v (H) curve at 290 °K for a DW of
the intermediate type in a 120-//m-thick YFeO3 platelet cut
perpendicular to the optic axis. In the region below the
transverse-sound velocity the character of the dependence
v(H) duplicates the analogous dependences obtained with
the aid of the other techniques. In the 70-150-Oe region the
DW velocity is constant and equal to the transverse-sound
velocity. At higher// the DW velocity becomes equal to the
velocity of longitudinal sound. After this, in the region of
still higher H the DW moves with a velocity that takes on
discrete values, the transition from one velocity to another
occurring quite abruptly. About ten such velocities can be
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FIG. 26. Magnetic field dependence of the domain wall ve-
locity in YFeO3 at 290 "K ( I ) and 110 °K (2) ,77

H, kOe

seen in Fig. 26. These anomalies were first observed in the
expriments reported in Refs. 63 and 64. The number of re-
gions of constancy of the DW velocity in the interval from
the longitudinal-sound velocity depends on the thickness of
the orthoferrite platelet.

Similar experimentally observed anomalies are report-
ed and discussed in Ref. 114. In the experiment in question
the dynamics of DW under the action of a strong high-fre-
quency field was investigated.

It is at present not clear which quasiparticle emission is
the cause of the anomalies that occur at velocities higher
than the velocity of sound but lower than the limiting veloc-
ity. In Ref. 76 the occurrence of these anomalies is attributed
to the emission of Lamb waves. But subsequent experiments
performed on platelets immersed in H2O and CC14 showed
that the v(H) anomalies have practically the same form,77

which raises difficulties for such an interpretation. It is pos-
sible that some of the v(H) anomalies are due to the excita-
tion of optical phonons or excitons. But it seems to us that
these anomalies can most naturally be explained within the
framework of the mechanism of surface-wave excitation on
the DW in the presence of periodic inhomogeneities (see
Sec. 4c). The set of velocities vn, (4.23), allows us to de-
scribe satisfactorily the experiment in the range of 2-jr/g^
values from ~ 10 to 40//m. This interpretation is complicat-
ed by the fact that there are no data on the inhomogeneities
in the samples used.

Figure 26 shows the v (H) curve at 110 °K for a 100-yum-

thick YFeO3 sample cut perpendicular to the optic axis. The
transition to the supersonic velocity occurs very abruptly
here. The DW velocity changes abruptly from 4 to 14 km/
sec in a very narrow range of magnetic-field intensities. This
is due to the very high DW mobility, which can attain a value
of 2 X 104 cm/sec-Oe. As H increases further.the DW veloc-
ity assumes constant values in several regions before going
over to the limiting value, which remains constant right up
to the highest attainable magnetic field intensities, which
range from 3 to 5 kOe, depending on the experimental condi-
tions. It should be noted that the samples continued to have a
two-domain structure right up to the indicated fields in all
the cases in which they underwent thorough chemical po-
lishing. The superlimitmg velocities observed earlier with
the aid of the method involving the measurement of the time
of passage of the DW over a given distance between two light
spots63 were due to the appearance of new domains (which
can be interpreted as localized perturbations of the magneti-
zation field) in the region in front of the moving DW in not
too thoroughly polished samples.

A similar simulation mechanism of DW motion with a
"superlimiting" velocity was first proposed in Ref. 89, and
was called there the soliton mechanism. It is important for
its explanation that the wall divide the phases <!>„ and 4>u,
in which the magnetization m0 is parallel and antiparallel to
the external field H. When H^O the phase 4>n is metasta-
ble. Because of this a nucleation center of the stable <£,,
phase can be created in the <J>U phase at some moment ?0-

./ / / / / / /

// / // 7

FIG. 27. Schematic representation of the soliton mechanism of
simulation of the superlimiting domain wall motion.89
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This nucleation center can have the shape of a plane or cylin-
drical dynamic domain (magnetic soliton). The production
of the soliton can occur (fluctuationally or on a defect) with-
in the domain, or else it can be stimulated by the leading edge
of the DW. In the latter case the soliton will be created in the
vicinity of the D W.

The subsequent evolution of the system is clear from
Fig. 27. The created soliton does not possess a topological
charge, since it contains two DW's of opposite signs. Under
the action of an external field the soliton grows and becomes
deformed. The DW's then move in opposite directions. One
of them, labeled by the number 2 in Fig. 27, moves back-
wards and undergoes mutual annihilation with the original
DW, labeled by 1. The second DW, labeled by 3, moves for-
ward, and can be detected at the point of observation /0. It is
clear that this DW will arrive at the point of observation
faster than the original DW would have. Thus, even if the
velocity of each DW does not exceed c, the speed of "signal
transmission" by the moving wall can be significantly higher
than c. If in an experiment we record the crossing of a given
point by the DW, then the soliton mechanism can simulate
the motion of a DW with velocity higher than c. Such a
mechanism of DW translation has been observed by the
method of high-speed photography in ferrite-garnets.121

In very strong fields, in which the <£„ phase is absolute-
ly unstable, the velocity c is not the limiting velocity, and
true superlimiting DW motion is, in principle, possible.91'112

The front of the DW is then unstable,91 and, moreover, DW
motion with v > c is accompanied by Cherenkov emission of
magnons.112 For orthoferrites the corresponding field is of
the order of several score kilo-oersted, and no measurements
in pulsed fields of such intensity have thus far been carried
out.

Nonstationary supersonic D W motion can be accompa-
nied by a specific complication of the wall structure. At
110 °K there can propagate along a DW moving with the
velocity of transverse sound in YFeO3 a kink whose velocity
can be as high as 20 km/sec.122 The process of formation and
motion of a kink is illustrated in Fig. 28. This figure shows
photographs, taken with a 5-nsec time interval between the
light pulses, of a twin dynamic domain structure in a YFeO3

platelet located in a magnetic field of intensity 121 Oe. The
DW has, as it goes through the transverse-sound velocity
limit, a shape that is normal for the instability region. Upon a
further increase of H the character of the DW motion
changes abruptly. The velocity of the right semispherical
part of the DW decreases sharply from 14 to 4 km/sec, while
the left part of the D W still continues to move with a velocity

of 4 km/sec. There appears on a DW moving with the veloc-
ity of transverse sound a kink that moves from right to left
with a velocity of 20 km/sec. Figure 28 shows the successive
positions of the kink at 5-nsec intervals. The time interval
between two consecutive frames is ~ 3 nsec.

The formation of a kink can be explained by taking ac-
count of the field inhomogeneity in the sample. As described
in Sec. 2, a solitary DW is produced in a sample with the aid
of a gradient magnetic field, as a consequence of which the
resultant field acting on the moving DW decreases. A DW
moving steadily with a velocity of 14 km/sec then finds itself
again in a magnetic field corresponding to its non-steady-
state motion, its velocity decreases to 4 km/sec, and the mo-
tion becomes a steady-state one with velocity equal to the
velocity of transverse sound. If this process occurs nonuni-
formly in the DW plane, than a kink is produced. The ade-
quacy of this mechanism is borne out by the fact that the
amplitude of the kink decreases with increasing V//. On the
whole, a DW with a kink is a complicated dynamical forma-
tion with a mass that varies along the length of the wall. The
velocity of the kink is bounded from above by the velocity of
the flexural waves on the DW, a velocity which coincides
with the spin-wave velocity c on the linear section of the
spectrum and with the limiting velocity for the DW motion.
Thus, this velocity plays the decisive role in the dynamics of
both the DW itself and the kink that propagates along it. The
formation and motion of a kink on the DW confirms the
existence of a discrete set of velocities for the stationary su-
personic motion of the DW. The formation of kinks on mov-
ing orthoferrite DW should occur in other transitions from
one steady-state velocity to the next.

CONCLUSION

The results presented in this review of experimental and
theoretical investigations of nonlinear DW dynamics in
WFM demonstrate the generality of the laws governing DW
dynamics in different WFM and an essential difference
between DW dynamics in WFM and DW dynamics in ferro-
magnets, e.g., in ferrite-garnets. The investigation of DW
dynamics in WFM revealed for the first time supersonic DW
motion under conditions of Cherenkov emission of sound,
the existence of regions of instability of rectilinear DW mo-
tion, the formation of kinks on DW, and quasirelativistic
DW dynamics with a limiting velocity equal to the phase
velocity of the spin waves.

Let us briefly formulate some problems that are, from
our point of view, of greatest interest for further research.
These are, first and foremost, experimental and theoretical

FIG. 28. Photographs of three consecutive posi-
tions of a kink on a domain wall in YFeO3 at
110 °K, taken at 5-nsec intervals.122 The time inter-
val between two consecutive photographs is ~3
nsec.
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investigations of the unstable motion of DW both at veloc-
ities close to the velocity of sound and at velocities in the
neighborhood of the limiting velocity. The latter instabilities
should develop in magnetic fields of higher intensities than
those that have been used to date.

It is of interest to carry out a detailed analysis of the
relaxation processes. To obtain information about the inter-
nal processes, we must perform experiments over a broad
range of temperatures and use more perfect single crystals.
Of no less interest is the study of the interaction of moving
DW with inhomogeneities, for which purpose a crystal with
a controllable defect structure should be used.

The combination of high transparency, large Faraday
rotations, high mobilities, and record-high DW velocities
makes the WFM promising materials for construction of the
devices of the type of optical shutters, space-time light mo-
dulators, and other devices for the optical processing of in-
formation.

"Active research into other types of materials with mobile domains is
going on at present. Among these materials are amorphous metallic films
containing rare-earth metals and ferrite films with submicron domains.
But the experimental data on these materials are considerably less com-
plete, and we shall not discuss them below.

2>This approximation does not hold in a narrow neighborhood of the com-
pensation point for the mechanical moments of ferrite sublattices."

3)It should be noted that the presence in a garnet of strong anisotropy in
the basal plane, or of a strong field in the plane of the wall can, apparent-
ly, hinder the formation of inhomogeneities in the plane of the DW, in
virtue of which the one-dimensional Walker model provides a better
description of the DW dynamics, (Ref. 12, p. 77).

4)It is worth noting that, if for |'—> + «> and £—> — oo, the same values of m
correspond to the wall and only the 1 values differ, then such a wall in not
topologically stable, and can be annihilated. For this purpose it is suffi-
cient to create in the DW plane a ring disclination (a line of discontinuity
of the vector 1), and then increase the radius of the ring.31 The potential
barrier that must be surmounted in this process is finite. Such a situation
is characteristic of antiferromagnets without weak ferromagnetism.

5)As recently shown in Ref. 123, the limiting DW velocity in a WFM with
an odd principal axis may be determined by the relativistic interactions,
and may differ essentially from c.

61A similar problem is discussed in Ref. 111 for a ferromagnet and from a
somewhat different standpoint.
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