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This review describes the present status of research on the blue phase of cholesteric liquid crys-
tals—a phase state of liquid crystals with unusual properties, whose order parameter exhibits
three-dimensional spatial periodicity and which appears in a narrow temperature interval (of the
order of 1°). Experimental results and current theoretical models of the blue phase are presented.
The phase transitions between the isotropic liquid, the blue phase, and the cholesteric phase are
studied using Landau's theory. The discussion of methods for studying the blue phase emphasizes
both the most informative optical methods and the theory of the optical properties of the blue
phase. It is pointed out that the study of the blue phase is of substantial interest for the physics of
the condensed state as a whole, and unsolved problems in this area are briefly discussed.
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"Liquid crystals are beautiful and mysterious; I am fond of
them for both reasons."
P. de Gennes, The Physics of Liquid Crystals

1. INTRODUCTION

One of the most interesting and intensively studied
questions in the physics of liquid crystals at the present time
is the so-called blue phase of cholesteric liquid crystals. Its
puzzling physical properties have stumped researchers for
almost 100 years since Reinitzer discovered liquid crystals in
1888." Moreover, it was even doubted that the blue phase
exists as an equilibrium thermodynamic state. Within the
last several years there has been a qualitative jump in the
level of understanding of the physical essence of and the
methods for studying the blue phase. The general features of
the nature of the blue phase may be regarded as understood,
the 100-year puzzle has been solved, and researchers must
now clarify many specific questions regarding the structure,
thermodynamics, and optics of the blue phase and other
problems. As often happens, reality turned out to be richer
than the first notions about the blue phase, and studies of the

blue phase have a much deeper significance than the prob-
lem of liquid crystals itself. Thus, in particular, it turned out
that there exist not one but at least three modifications of the
blue phase, and phase transitions between them are interest-
ing from the viewpoint of the physics of phase transitions in
general and the problem of melting in particular.

Liquid crystals generally characteristically exhibit an
enormous variety of phases and corresponding phase transi-
tions between them.1"3 For this reason liquid crystals are
both a convenient object for experimental study of phase
transitions and a unique proving ground for testing different
approaches used in the theory of phase transitions (in solids,
two-dimensional systems, etc.). The blue phase, which is the
subject of this review, is an excellent illustration of this gen-
eral assertion.

We shall briefly describe the physical properties of the
blue phase.4 This phase is observed in several cholesteric

535 Sov. Phys. Usp. 28 (7), July 1985 0038-5670/85/070535-28$01.80 © 1986 American Institute of Physics 535



liquid crystals in a narrow temperature interval of the order
of 1-0.1° between the isotropic liquid and the cholesteric
phase. As is well known, *~* in the cholesteric phase the di-
rection of predominant orientation of the molecules varies
along some axis so that a one-dimensional spiral structure is
formed. In contrast to this, in the blue phase the tensor order
parameter, characterizing the correlation in the orientation
of the molecules, exhibits a spatial three-dimensional peri-
odicity; in addition, as in cholesterics, the period is of the
order of the wavelength of the light. This leads to the unus-
ual and, at first glance, contradictory optical properties of
the blue phase: optical isotropy and gigantic optical activity,
selective scattering, and complicated polarization character-
istics of scattering. The phase transitions out of the blue
phase (blue phases) into neighboring phase states are weak
first-order transitions and in some cases, possibly, second-
order transitions.

This review summarizes and generalizes the results of
studies of the blue phase in the light of the latest theoretical
and experimental achievements, which have led to a qualita-
tive jump in the understanding of this "delicately" organized
phase state of matter.

2. EARLY STUDIES OF THE BLUE PHASE2*

At the beginning of this century Lehmann discovered
that in a narrow temperature interval (of the order of 1 °C)
near the point of the isotropic-liquid-cholesteric transition
some substances exhibit an intermediate phase, which
differs from both the isotropic liquid and the cholesteric
phase.7 Lehmann's observations were later cofirmed by
many investigators,8"20 in particular by Gray,8 who called
this intermediate state the blue phase. It turned out that this
phase is more easily observed when the temperature is
lowered, i.e., by moving away from the isotropic liquid. It
has been established experimentally that the blue phase has
the following properties: 1) light is selectively scattered in
the visible part of the spectrum (Fig. 1), as a result of which
this phase appears to be colored blue, whence comes its name
(in many cases colored "platelets" can be seen in it); 2) a
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FIG. 1. The wavelength dependence of the selective reflection (a) and the
rotation of the polarization plane of light (b) by cholestery 1 pelargonate at
the temperature of the transition 91.35 "C from the blue phase I into the
blue phase II.21 The samples were 25 and 12/im thick, respectively.
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FIG. 2. The temperature dependence of the refractive indices of choles-
teryl myristate at a wavelength of 589 nm.31 n, is for the isotropic and blue
phases, n0 and ne are for the cholesteric phase. 1) Heating, 2) cooling.

strong wavelength-dependent rotation of the polarization
plane of light appears21; 3) linear birefringence does not oc-
cur—the phase is optically isotropic14 (Fig. 2); 4) according
to experimentally observed manifestations, the phase transi-
tion out of the isotropic liquid into the blue phase is thermo-
dynamically analogous to the isotropic-liquid-cholesteric
transition,20'22 a fact which is indicated by the anomalies in
the heat capacity, which are of the same order of magnitude
in both cases; 5) the cholesteric-blue-phase transition (ob-
served when the temperature is raised) is characterized by a
weak thermal anomaly20-22; 6) the NMR spectra show that
long-range orientational order exists in the blue phase and
they differ both from the spectra for the isotropic liquid and
from the spectra for the cholesteric phase23; and, 7) the dy-
namics of the pretransitional fluctuations of the isotropic
phase for liquid crystals in which the transition occurs into
the blue phase differ from those cases when the transition
occurs directly into the cholesteric phase, bypassing the blue
phase.24-25

These facts permit regarding as firmly established the
assertion, first stated by Lehmann,7 that the blue phase is a
new type of liquid crystal and is not simply a specific texture
of cholesterics.8 The long time required to recognize the blue
phase as an independent phase state of liquid crystals is a
consequence of the unusual physical properties of this state,
in particular, the fact that it is thermodynamically stable in a
very narrow temperature interval but can be supercooled by
several degrees below the temperature of the phase transi-
tion. Moreover, calorimetric 20>22 and optical26-27 measure-
ments have shown that within this narrow interval of ther-
modynamic stability a phase transition between two or even
three different and thermodynamically stable phases (they
are called BP I, BPII, and BP III) occurs.

The first experiment clearly demonstrating the validity
of the notion of a blue phase as a thermodynamically stable
independent phase was performed in 1975 by Armitage and
Price.20 Using the method of differential scanning calori-
metry (DSC) (Fig. 3) they obtained a finite jump in the
enthalpy at the point of the cholesteric-BP transition. Calor-
imetric measurements indicating the possibility of a phase
transition prior to the transition of the isotropic liquid into
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FIG. 3. Thermograms of cholesteric-blue-phase-isotropic-liquid transi-
tions (DSC: 0.62 °C/min).53

the cholesteric phase were also performed earlier.13-28 But
the authors of these studies did not interpret the results ob-
tained as being an indication of a transition into the blue
phase.

In addition to everything else, Armitage and Price dis-
covered a very small change in density (only about 0.004%)
at the point of the cholesteric-texture- blue-phase transition.

These results, on the one hand, confirmed the existence
of a blue phase which is thermodynamically stable in a very
narrow (~ 1 K) temperature interval, while on the other
hand, they indicated that the cholesteric-blue-phase transi-
tion is a first-order transition, since a discontinuity of the
properties was observed. From the smallness of the jumps,
however, it followed that the structures of the neighboring
phases must not be very different from one another. The
question regarding the nature of the molecular ordering in
the blue phase, however, remained unresolved.

The approach to the solution of structural questions
regarding the blue phase was complicated by the observation
that the blue phase is optically isotropic (see Fig. 2). This
fact was indirectly demonstrated by Saupe's work.14 Earlier
quantitative measurements of the index of refraction were
performed by Pelzl and Sackmann29 and Demus et a/.30

Stegemeyer, Bergmann, et a/.21'31 studied the selective
reflection of light in the blue phase and showed that it is very
similar to the selective reflection in the cholesteric (see Fig.
1). To wit, just as in cholesterics, frequency-selective reflec-
tion with normal incidence occurs only for light with a parti-
cular circular polarization. Light with the opposite circular
polarization is not selectively reflected. The wavelength of
the selective reflection is lower for oblique incidence. As the
temperature is lowered, the wavelength of the selectively re-
flected light increases in the entire interval of existence of the
blue phase, and at some temperature, corresponding to the
transition between the different forms of the blue phase, it
undergoes a jump.

Selective scattering in the blue phase was also observed
to differ from the selective scattering in the cholesteric (see
Fig. 1). Strong reflection occurred not in one frequency re-
gion, as in the cholesteric, but rather in two frequency re-
gions. Characteristically, the wavelength of selective reflec-
tion in the lowest observed order was always longer than the
wavelength of selective reflection in the cholesteric.

The frequency dependence of the rotation of the polar-
ization plane of light also was analogous to that in the choles-
teric. Just as in the cholesteric, high optical activity was ob-
served and the direction of rotation of the polarization plane
depended on the frequency of the light (see Fig. 1). The
direction of rotation was opposite on different sides of the
region of selective reflection, and at some frequency in the
region of selective reflection the rotation vanished, i.e., the
point where the sign of the rotation changed was observed.
In the blue phase, in contrast to the cholesteric phase, several
points where the sign changed could be observed.

Because of the difficulties arising in the experimental
study of the blue phase, owing, in particular, to the narrow
temperature range in which the blue phase exists, the results
of the early studies were often of a qualitative character.
Nevertheless, indications of the polymorphism of the blue
phase, i.e., the fact that in the indicated narrow temperature
interval the investigator could be dealing with not one but
several modifications of the blue phase, already appeared in
the 1970s. This was indicated both by optical and calorime-
tric studies4 and by NMR studies32 (Fig. 4).

a) The nature of the blue phase

The nature of the molecular ordering in the blue phase
cannot be regarded as being finally established. Several pos-
sibilities are under discussion, but intensive experimental
and theoretical studies currently being performed suggest
that the puzzle of the blue phase will be finally solved in the
near future. Here it is worthwhile to underscore the fact that
independently of which of the possibilities under discussion
for the structure of the blue phase is (are) realized in nature,

FIG. 4. NMR spectra of deuterated cholesteryl nonanoate.32 a) Cooling,
b) heating.
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FIG. 5. The structure of the blue phase first proposed by Saupe.14a) Cubic
body-centered lattice, b) arrangement of molecules projected onto the
face of the cubic lattice.

the blue phase is an example of an extremely interesting and
very complicated structural state, the physics of which is of
interest on general grounds, and the results obtained here
have a deeper significance than the problem of liquid crystals
as such.

The possible structure of the blue phase was proposed in
1969 by Saupe14 (Fig. 5). Based on the observed optical iso-
tropy, he proposed that a body-centered cubic lattice of
point defects in the orientation of the director appears in the
blue phase and, excluding the immediate neighborhood of
these defects, the local configuration of the director is simi-
lar to the configuration in the usual cholesteric phase. As
Saupe himself pointed out, however, he did not present suffi-
cient theoretical justification for the possibility of the real-
ization of this structure.

The theoretical justification for the fact that the struc-
ture exhibiting three-dimensional periodicity is theoretically
stable was presented by Brazovskii, Dmitriev, and Filev,33'34

who studied the isotropic-liquid-cholesteric transition with-
in the framework of Landau's theory of phase transitions.
These studies led to the conclusion that depending on the
values of the parameters in Landau's expansion of the free
energy, aside from the direct isotropic-liquid-cholesteric
transition, intermediate phases, in particular a hexagonal
phase, can exist between the isotropic liquid and the choles-
teric.

Other models of the blue phase, purporting to explain
the optical isotropy, have also been proposed. These include
a model of an ensemble of globules with a cholesteric struc-
ture in which the distinguished axes of separate globules are
oriented completely randomly35'36 and a model of a conical
helix with the director tilted at an angle of 54.74° to the axis
of the helix.37 Both models give optical isotropy on a macro-
scopic scale, but they do not explain the other properties of
the blue phase. As will be evident from what follows, reality
turned out to be more complicated and more interesting than
the first models of the blue phase mentioned above.

b) Experimental studies of the blue phase

The theoretical work performed by Brazovskii etal.33'3*
stimulated further experimental and theoretical studies of
the blue phase. A very favorable opportunity for studying
the properties of the blue phase arose. The theory, developed
primarily within the framework of Landau's theory of phase
transitions, made very general predictions regarding the
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FIG. 6. Transmission spectra with cooling of a mixture of 85% choles-
teryl nonanoate and 15% cholesteryl chloride (polycrystalline sample).26

86.40 °C—isotropic liquid; 86.30 °C—fog phase; 86.20 °C—BP II; from
86.10 to 82.00 °C— BP I phase; 80.00 °C—cholesteric. The steps on the
curves correspond to the interplanar distances.

physical properties of the blue phase, in particular, its struc-
ture, since the complexity of the object under study pre-
cluded an unequivocal theoretical prediction of all proper-
ties of the blue phase. Under these conditions, experimental
studies of the blue phase permitted narrowing the range of
models of the blue phase under consideration and checking
the validity of the theoretical predictions regarding the na-
ture of this phase.

Very substantial progress in elucidating the structure of
the blue phase and the symmetry properties of the order pa-
rameter (its space group) was made by the experimental
studies performed by Meiboom and Sammon26 as well as by
Johnson, Flack, Crooker, and Svoboda.27'38 These two ex-
perimental groups used optical methods. The first group
studied transmission spectra (Fig. 6), while the second
group studied spectra of selective reflection by the blue
phase (Fig. 7). In this sense the results of these groups,
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FIG. 7. The temperature dependence of the wavelength of selective scat-
tering for the cholesteric and the blue phases BP I and BP II for 50:50
mixtures of chiral and nonchiral biphenyls.27 BP I is supercooled below
33.6 °C.
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FIG. 8. Angular dependence of the coefficient of reflection for a single
crystal of BP II at 76.74 °C.41 A = 4880 A, mixture of cholesteryl nonan-
oate and the nematic 60CB.

which are essentially close, successfully supplement one an-
other. Using a different technique, based on the observations
of the faceting of the crystallites (perfect regions) of the blue
phase, Marcus also established limits on the possible space
groups of the blue phase.39'40 He was the first to observe
clearly multiple-scattering effects in selective reflection
from the blue phase (Fig. 8).41 The latter results indicate
that Marcus was able to obtain quite large perfect sections of
the blue phase (see also Refs. 119 and 120), while the quanti-
tative characteristics of selective reflection indicate that the
characteristic values of the spatial Fourier harmonics of the
dielectric-permittivity tensor for the blue phase are several
times smaller than those in the cholesteric phase of the same
substance.

Nicastro and Keyes42 carried out systematic optical
studies of the blue phase of a homologous series of choles-
teryl n -alkanoates (for n < 18). In most compounds they ob-
served two forms of the blue phase, low-temperature BP I
and high-temperature BP II. It is interesting that they ob-
served the existence of optical anisotropy in the blue phase,
though it is small (A«ss 0.004). We should also mention
earlier studies by Chistyakov and Gusakova,10"12 who stud-
ied the textures of the blue phase by optical methods.

KizeF and Prokhorov43 made a quantitative determina-
tion of the structural parameters of the blue phases from
circular-dichroism spectra (Fig. 9). Demikhov and Dol-
ganov observed jumps in the temperature dependence of the
rotation of the polarization plane of light at the points of the
phase transitions of the blue phase.44

Because the blue phase exists in short-pitch cholester-
ics, in the experimental studies considerable attention was
devoted to studying the blue phase of different compounds
and mixtures, for which the pitch in the cholesteric phase
depends on the concentration of the components (Fig.
1Q) 42,45-48 jjjese studies provided quantitative information
on the correlation between the cholesteric pitch and the exis-
tence of the blue phase. Moreover, they revealed that the
width of the temperature interval and the number of ob-
served blue phases depend on the cholesteric pitch. The pat-
tern established here is on the whole as follows. The blue
phase is first observed with a pitch less than some definite
value (a unique value for each type of compound or compo-
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FIG. 9. Spectra of circular dichroism in BP II, obtained and identified in
Ref. 43. Mixture of cholesteryl nonanoate and cholesteryl chloride, a)
Normal (1) and b) oblique incidence of light on the sample (2, 3 for
different directions of incidence of light on the crystal).

nent of the mixture). As the pitch decreases, the tempera-
ture interval in which the blue phase exists becomes wider.
Moreover, near the threshold value of the pitch the blue
phase exists in a narrow temperature range and only one
form of the blue phase is observed, whereas in compounds or
mixtures with a shorter pitch the temperature range of the
blue phase becomes wider and a larger number (up to three)
of its modifications can be observed. The transition out of
the blue phase directly into the smectic phase, bypassing the
cholesteric, was also studied.121

In Refs. 49 it was observed that the blue phase is very
sensitive to the pressure. As the pressure is raised, the optical

FIG. 10. Phase diagram for a mixture of chiral and racemic forms of the
same substance.46 The temperature is measured from the point of transi-
tion into the isotropic phase; the concentration of the racemic component
is plotted along the abscissa axis.
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FIG. 11. Pressure dependence of the wavelength of selective reflection at
constant temperature (102 °C) for cholesteryl nonanoate with increasing
(a) and decreasing (b) pressure.49

characteristics of the blue phase change in a manner entirely
analogous to the way they change when the temperature is
lowered. For cholesteryl nonanoate,49 appreciable changes
appear in the selective scattering (appearance and vanishing
of reflections) when the pressure is changed by only several
bars (at a pressure of the order of 100 bar), and the blue
phase exists in a pressure range of the order of 10 bar (Fig.
11). In addition, the blue phase is observed in a wider range
when the pressure is raised than when it is lowered, i.e., a
phenomenon analogous to the well-established possibility of
supercooling of the blue phase when the temperature is
lowered apparently appears.

An anomalous increase was also observed in the viscos-
ity of the mesophase in the temperature range of the blue
phase50; it was observed in binary mixtures of cholesterics
and appeared only for concentration compositions exhibit-
ing a blue phase (Fig. 12). The existence of elastic shear
moduli of the blue phase, which owe their existence to the
three-dimensional spatial periodicity in the structure of the
phase, was discovered experimentally by Clark et a/.51 and
Cladis et al.52

The effect of an external electric field on the blue phase
was studied in Refs. 48,53,54, and 122. It was found that the
application of a comparatively low voltage causes the ap-
pearance of birefringence and increases the wavelength of
selective reflection. Then as the voltage is raised the blue
phase transforms into a cholesteric or nematic, and in some
voltage range transitions are induced between different mo-
difications of the blue phase.

Summarizing the results of the experimental studies, it
should be stated that up to three modifications of the blue
phases, which are customarily denoted as BP I, BPII and BP
III in order of increasing temperature of existence, have now
been observed in a narrow temperature interval between the
cholesteric and isotropic phases. The low-temperature
phases BP I and BP II exhibit a three-dimensional spatially
periodic order-parameter field (dielectric permittivity ten-

200 -
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FIG. 12. The temperature dependence of the kinematic viscosity of mix-
tures in the region of the isotropic-liquid-cholesteric transition.50 The
blue phase occurs in the 45:55 mixture and is absent in the 40:60 mixture.

sor), which forms a primitive or body-centered cubic lattice,
belonging to space groups of classes O or T. With regard to
the highest-temperature phase BP III, which is also referred
to as the fog phase because it exhibits strong and wavelength-
nonselective scattering of light, the nature and the structure
of the order-parameter field of this phase remain unclear. At
the temperatures at which the blue phases exist and the
phase transitions between them occur, many physical prop-
erties of the substance, which in this region are easily affect-
ed by very weak external perturbations, undergo a change.
Phase transformations in blue phases are, however, probably
manifested most sharply in the optical properties, as a result
of which optical studies have proved to be the most sensitive
method for studying blue phases and have provided most of
the information on these surprising and still puzzling liquid-
crystalline phases.

c) Theoretical results

Brazovskii et a/.,33'34 having pointed out the general di-
rection of study, left adequate scope for the construction of
specific theoretical models of the blue phase and for the de-
velopment of methods for studying this phase. Hornreich,
Shtrikman et a/.55"61 have worked most actively with Lan-
dau's theory. This group makes definite assertions about the
structure of the phases BP I and BP II and has begun study60

of the fog phase (BP III) as well as the effect of an external
field on the blue phase.123 A detailed analysis of the possible
structures of the blue phase was carried out by Kleinert and
Maki within the framework of Landau's theory.62 Kleinert
also studied the relation between the cholesteric pitch and
the period of the blue phase as a function of the number and
magnitude of the harmonics in the Fourier expansion of the
dielectric permittivity tensor of the blue phase.63 It follows
from the theory that the period of the blue phase is not
shorter than the pitch of the helix, and the longer the pitch,
the higher is the harmonic represented in the Fourier expan-
sion. This is in agreement with the observational data, in
particular, with the observed increase in the period of the
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FIG. 13. The structure of disclinations in cubic cells of different space
groups.78

blue phase as the temperature is lowered.
An alternative approach to the description of the blue

phase, based on a modification of Frank's theory, was pro-
posed by Meiboom et a/.64"66 This theory, starting from the
description of the structure with the help of the director,
predicts the existence of a three-dimensional lattice of linear
defects (disclinations) in the director field in the blue phase
(Fig. 13). The appearance of disclinations is linked to the
fact that a double twisting of the director is locally energeti-
cally advantageous, but for topological reasons the double
twisting of the director leads to the formation of disclina-
tions. We note that, as will be shown below, a structure simi-
lar to the disclination structure can also be obtained within
the framework of Landau's theory.

We shall mention an even earlier variant of the theory of
the blue phase, proposed by Finn and Cladis.48 Based on
microscopic optical observations and thermodynamic con-
siderations they proposed an emulsion model for the struc-
ture of the blue phases: BP I is the emulsion of spatially
ordered intrusions of the isotropic phase into the cholesteric
matrix; BP II is an emulsion of spatially ordered, cholesteric,
spherical, microscopic formations in the isotropic phase;
and BP III is a disordered emulsion of cholesteric intrusions
in the isotropic phase (Fig. 14). For all its attractiveness,
this model, which solves the problem of the structure of all
three modifications of the blue phase at once, has still not
been adequately substantiated.

Because of the informativeness of optical studies of the
blue phase, considerable attention has been devoted to the
theory of its optical properties. The relationship between the
selective scattering of the blue phase and its symmetry prop-
erties was studied in Refs. 57, 67, and 68, and the pretransi-
tional rotation of the polarization plane of light near the
point of the transition into the blue phase was studied in
Refs. 69 and 70.

The fog phase remains possibly the most puzzling and
least studied phase from both the theoretical and experimen-
tal viewpoints (see Refs. 39,60,48). Most investigators feel,

FIG. 14. The qualitative form of the structure of blue phases in the emul-
sion theory.48'115

however, that the 100-year old puzzle of the blue phase is
close to being completely solved, since physical models ap-
propriate to the nature of the blue phase and methods for
describing it and studying it experimentally have been
found.

3. THEORETICAL MODELS OF THE BLUE PHASE

a) The dielectric permittivity tensor and the order parameter

As mentioned in the Introduction, blue phases exist in
the temperature range between the isotropic liquid and the
cholesteric. It is therefore natural to suppose that the blue
phase is structurally similar to the cholesteric, i.e., the
centers of gravity of the molecules are randomly distributed
but the molecules have some predominant orientation,
which can be different at diiferent points r. We shall accord-
ingly select the parameter of orientational order in the blue
phase, as in cholesterics and nematics, in the form of a trace-
less rank-two tensor Q(r), characterizing the degree of the
predominant orientation of the molecules at each point.1>z In
nematics and cholesterics the order parameter is usually as-
sumed to be a uniaxial tensor, which is expressed as follows
in terms of the director n (the unit vector fixing the predomi-
nant direction of orientation of the molecules):

(3.1)

where S= (3{cos20) — l)/2, and the brackets indicate
averaging over the orientation of the molecules; 9 is the angle
between the director and the long axis of the molecule; and,
the scalar S is also often called the order parameter, because
it characterizes quantitatively the degree of orientation^ of
the molecules. Generally speaking, however, the tensor Q is
biaxial both in cholesteric crystals and in the blue phase, and
according to both theory and experiment the biaxial nature
of Q is maximum near the transition into the isotropic phase
and is of the order of (£//?) (J" is the correlation length at the
transition point and/> is the pitch of thejhelix).2'71 We shall
therefore assume below that the tensor Q is biaxial, i.e., we
shall not require that it be represented in the form (3.1).
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We shall now discuss the relationship between the phys-
ical characteristics of the liquid crystal and the order-param-
eter tensor. In principle any tensor or scalar equilibrium
characteristic of the blue phase (more precisely, its differ-
ence from the corresponding characteristic in the isotropic
phase) can be expressed, based on symmetry considerations,
in the form of a series in powers of the tensor Q(r) and its
derivatives. The expression for the free energy is presented
below as an example [see (3.26)]. Phenomenological ex-
pressions can be obtained in an analogous manner for the
viscosity, density, elastic moduli, and other physical quanti-
ties.

It may thus be regarded that the most characteristic
physical properties of a liquid crystal are determined in
terms of the order parameter Q( r), and the spatial structure
of the crystal is given simply by the variation of the tensor
Q(r) in space. However, because the transition from the iso-
tropic liquid into the liquid crystal is a first-order transition
and the jump in the order parameter is not very small (ex-
perimentally S~0.3 for the transition into the cholesteric
phase and somewhat smaller at the point of the transition
into the blue phase), the expansions of physical quantities in
powers of Q in most cases are suitable only for semiquantita-
tive estimates. In combination with symmetry consider-
ations, such expansions are nevertheless very useful.

Thus, for example, the existence of a predominant ori-
entation of molecules is manifested in the dielectric charac-
teristics by the fact that the dielectric permittivity tensor of
the blue phase Ed (r), just as of other types of liquid crystals,
is locally anisotropic. If the anisotropic traceless part £(r) is
separated from £d (r)

_ a i_g ,»d. ,, ,3 2)

then in the case of uniaxial crystals [the order parameter has
the form (3.1) ] it follows immediately from symmetry con-
siderations that the tensor E is proportional to Q:

(3.3)

where ̂ a = Y\\ — YL istne anisotropy of the polarizability of
one molecule, Nm is the number of molecules per unit vol-
ume, and A is a coefficient of proportionality of order unity,
which appears because of the effects of the local field.72 The
value of £a is numerically small in the blue phase and in
cholesterics: |ea | ̂ 0.1 in the optical frequency range.

If, however, the crystal is biaxial, then the expression
(3.3) is generally speaking not valid, since the principal axes
of the tensors e and Q may not coincide because of the anisot-
ropy of the local field. In the case of small anisotropy of £a

and small biaxiality tj (ij is defined below), however, the
corrections to (3.3) are of the order of ijel and can be ne-
glected.

It will therefore be assumed everywhere below that e is
proportional to Q and, as is usually done,33'34 £ will be used
below as the order parameter.

We note that a tensor of rank four can also be used to
give a phenomenological description of the liquid-crystal
phase transition.105 This approach, however, precludes a
complete description of the spatial symmetry of the ordered

phase (in the best case it determines only its crystal class).
Using a spatially modulated rank-two tensor as the order
parameter of the blue phase, however, makes possible the
description of not only the crystal class but also the space
group of the blue phase. The theory presented below can be
regarded ideologically as an extension of Landau's theory73

to a liquid-crystal transition in which the modulation of a
scalar quantity (density) is used as the order parameter.

b) Symmetry restrictions on the order parameter

1) Local characteristics

As follows from the definition (3.2), the tensor e,
which, unless otherwise stated, will be assumed to be real, is
a symmetrical traceless tensor of rank two. Such a tensor can
be locally completely specified by five real numbers, which
are functions of the coordinates (for example, three nondia-
gonal and two diagonal elements). The symmetry of the
crystal imposes additional restrictions on the components of
the order parameter. For example, in uniaxial nematic crys-
tals with a symmetry axis of infinite order the tensor e has
the form (3.1). The quantity S, which depends on the ther-
modynamic quantities (for example, on the temperature)
and can be calculated in some theory or other (for example,
Landau's theory; see Sec. 3c), is therefore the only remain-
ing parameter.

As another example we shall study a cholesteric1'6

which exhibits a one-dimensional helical structure. This
means that the properties of the cholesteric are invariant
under a rotation of the crystal by an angle <p around the axis
of the helix (which we choose to be the z axis) and a simulta-
neous displacement along z by q>p/2ir (p is the pitch of the
helix). Locally the cholesteric has two mutually orthogonal
second-order axes orthogonal to the z axis. In these axes the
tensor e is diagonal (point symmetry 222)

6i 0 0

0 ea 0
O 0 E,

(3.4)

where el + £2 + £3 = 0. Experiment shows that in all choles-
terics the tensor E is almost uniaxial, i.e., in (3.4) two princi-
pal values almost coincide, for example £2~

£3- It is therefore
convenient to introduce a parameter 77 characterizing the
biaxial nature off:

/2 0 0 \
e-4 ° -M-1 0 ,2 \o o -i-nJ

(3.5)

where 77 = (e2 — £z)/£i = (2£2 + e1)/el. When 77 = 0
(3.5) becomes a uniaxial tensor. We underscore once again,
however, that based on purely symmetry considerations in
general £2^£3, since the z axis corresponding to £3 is distin-
guished—this is the axis of the helix. At an arbitrary point z
the tensor E(Z) is obtained from (3.5) by a rotation by an
angle <p:

e(Z) = 7WV, (3'6)

where Tv is the matrix describing a rotation by an angle cp
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around the z axis. From here we obtain the tensor e (z) in the
cholesteric

e(z)

/l + 1 + (3— n)cos2tp
= -^-[ (3— ri)sin2q>

V 0

(3
— (3— T

0
) cos 2<p

0
0

— 2— 2t]

(3.7)

Two parameters £, and e2 (or £, and T?) are functions of the
thermodynamic quantities and the pitch of the spiral (in Sec.
3c it is shown how they can be calculated) .

The most general form of the tensor £(r) in the blue
phase,67 i.e., the most general form of the tensor that is invar-
iant under all transformations of the space group describing
the symmetry properties of the blue phase, can be deter-
mined in an analogous manner from symmetry consider-
ations. Experiments show26-27-38^10'43 that the observed sym-
metry of the blue phases is described by cubic space groups.

In studying the symmetry properties of £(r) in the blue
phases we shall make use of a general feature of all cubic
groups: the existence of a third-order symmetry axis orient-
ed along the diagonal of the cube. The existence of such an
axis leads to the fact that all components of the tensor £(r)
depend on two arbitrary periodic functions of the coordi-
nates/i(r) and/2(r):

e(x, y, z) =
/!<*, y, z) h(z, x, y) h(y,z, x)\

Z, x, y) h(y, z, x) f * ( x , y , z ) \ (3.g)
f t ( y , z , x ) f t ( x , y , z ) f i ( z , x , y ) J

It may be directly verified that the tensor (3.8) is indeed
invariant under rotations by 120 and 240° around the third-
order axis, which is equivalent to simple cyclical permuta-
tion of the coordinates x, y, z and a corresponding cyclical
permutation of the components of the tensor £(r) (for exam-
ple, x-̂ -̂ z-**, £xx-+£yy-+£z^£xx etc.).

Aside from the third-order axes, the cubic groups nec-
essarily contain other symmetry elements—second- and
fourth-order rotational axes, screw axes, and translations
(because of the chirality of the blue phases we do not study
groups with centers of inversion74 and reflection planes, i.e.,
our analysis is restricted to enantiomorphic groups). These
symmetry elements further restrict the form of the functions
/!(r).67-75 Thus for the groups T1-P23, T2-F23,
T3 — 723, because of the presence of second-order rota-
tional axes, the functions/(r) satisfy the following rela-
tions:

/i (x, y, z) = /j (a:, y, z) = /, (x, y, z) = /x (a:, y, z),

/2 (x, y, z) = /2 (x, y , z ) = — /2 (x, y, z) (3.9)

= / 2 (Xi y> z)i
where x = — x, y = —y, z = — z. For the groups
7l 4-7J2,3andr5-72I3, because of the presence of the
screw axes 2, we have

/ I i -\ / i — \ \

(3.10)

All remaining cubic groups contain the subgroups T 1 or T4,
and for this reason the relations (3.9) or (3.10) and the
following additional relations also hold for them: for O ' — P
432, O 3 - F432 and O s - 1432 the relations (3.9) and

/,. (x, y,z) = fi (x£y),

for O2 - P4232 the relations (3.9) and

/,(*, y, z) = fi±—x,±—z,±—

(3.11)

(3.12)

for O4-F4132, O6-P4332, 08- 74,32 the relations
(3.10) and

and, for 0 1 -P4^32 the relations (3. 10) and

it(x, V, z) = fi~-x, ---z, - — J / . (3-14)

In addition, for body-centered groups (723, 72,3, 7432,
74^2) the additional relation

(3.15)y, z) = fi + x,- + y,

holds, while for face-centered groups (F23,F 432,7^4,32) the
additional relation

x, y, z) = f i (4- + *. -J- + V' z]

(3.16)

holds. It should be noted that the relations (3.9)-(3.14) are
presented for coordinate systems whose axes are oriented
along the edges of the cubic unit cell, and the origin is located
at the point with maximum point symmetry.74 No other rela-
tions follow from the requirements that £(r) be invariant
under transformations of enantiomorphic cubic space
groups. Of course, the expressions (3.9)-(3.16) are not suf-
ficient for determining the form of the functions/ (r), but
they do impose strong restrictions on the tensor e ( r ) and the
spatial Fourier harmonics represented in it, as well as on the
phase relations between different Fourier harmonics.

2) Fourier representation of the order parameter

We shall expand the tensor £(r) in a Fourier series in
terms of reciprocal-lattice vectors of the crystal T:

E (r) = S 8T exp (JTI-), (3.17)

where T — (2ir/d) (Ax + ky + /z); x, y, z are the unit coor-
dinate axes; h, k, and / are arbitrary integers called Miller
indices; d is the size of the unit cell of the crystal; and the
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Fourier harmonics e* are determined by the relation

eT = -Jr J8 ( r )exp( - JTr )d r (3.18)

[the integration in (3.18) extends over the volume of the
unit cell ]. First of all, from the form of the tensor e (r) (3.8)
or from (3.18) it follows that £T in cubic crystals has the
form

•hkl fink th
12 12

kl _ 1 flhh
I 'i2

hll,

;klh
II /?*' (3.19)

where

(3.20)
It follows from (3.19) and the traceless nature of the tensor e
that the Fourier harmonics eHkl, elhk and e'^are expressed in
terms of the same set of five (in general complex) numbers.
Further, from (3.20), using the properties of the functions
ft (x, y, z) (3.9)-(3.16), we can obtain restrictions on the
quantities/?*' for particular reflections (they are presented
in Table I). These relations, as will be evident from what
follows, substantially simplify the analysis of the optical
properties of the blue phase and of phase transitions in it.

TABLE I. Reflections in cubic groups and restrictions on the components of er.

Indices of reflections Types *l* Kly
T £T

E£- m

7*1 7*2 7*3

AGO
hkO
hhh
hkl

f h = 2n + i
1 I h = 2n

r h = 2n + l
\h = 2n

hhh
hkl

c
c

c

*

c
c
c

c

R
R
0
C

0
R
I
R
0
C

RI
RI
0
Cl

0
RI
7j
RI
0
Ci

0
7?2
C
C2

^5

0
72

R2

c
C2

0
7
C
Cs

7?
0

7?
7
C
C3

7
7j
C
c«

0
7
7?j

/i
C
C4

0, +2
0, +1, +2

0
0, +1, +2

±1
0, +2

0, +1, +2
0, +1, ±2

0
0, +1, +2

0s, 0s

!
h = lm + I
h = lm +2
h = hn

( h = 2n + l
\ h = 2n

( h = 4n + i
h = *in + 2
& = 4n

hkl

*
*, c

c
c

c

0
0

-2R
I
R
0
0
0
c

0
R
R
7

7?
0
0
0
c,

^iR
0
0
7]
7?!

(1+0 *r
R
C2

R
0
0
7?
7

(l=pi) /?
7
7?
ca

1)

7
0

— 7?
— 7

(1 + 0 7?
7
7?
C4

1
+2
0

0, +2
0, +2

0
0
0

0, ±l,+2
O1, O3, Ob

fcOO
hhO
hhh
hkl

c

c

— 2R
R
0
C

7?
7?
0
Ci

0
*1

7?
C2

0
7
7?

C3

0
— 7

7?
C

4

0
0, +2

0
0, ±1, +2

0*

f h — 2n + i
i h = 2n

hhO
hK)

( h = 2n + l
X h = 2n

hkl

*, c

c
c

c

0
— 27?

R
R
0
0
C

R
R
R
RI
0
0
Ci

0
0
fll
7
f{

C2

0
0
/
7
7

7?
C3

/
0
/

/i
7
#
C4

±2
0

0, +2
0, ±1, ±2

0
0

0, +1, ±2
o4, o-

i fc = 4 n ± l
fcOO | fe = 4re+ 2

{ fe = 4re

f h = 2n + l
\ h — 2n

( h = /in ± 1
h = lm-\- 2
h = ltn

hkl

*
*, c

c
c

c

0
0

— 2R
I
R
0
0
0
c

0
R
R
I
R
0
0
0

Ci

+iR
0
0
/i
RI

(1 + 07?
7
7?
c.

7?
0
0
7?
7

(1±0 *
7
7?

C3

0
7
0

— 7?
— 7

(1+0 7?
~7

7?
C4

—1
±2
0

0, ±2
0, +2

0
0
0

0, ±1, ±2

R, I, and C are real, imaginary, and complex quantities, respectively; the letter c denotes chiral
reflections, while the asterisk denotes reflections which become allowed as a result of the local
anisotropy of e. The condition for the existence of reflections for body-centered lattices (T3, T5,
O5,OS) isA + k + 1= 2n, while for face-centered lattices (7"2,O3,O4) the condition is that A, A:,
and / must have the same parity.
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The expressions presented above for the order param-
eter e(r) and its Fourier harmonics were obtained in the
single coordinate system presented above. It is often conven-
ient to study each Fourier harmonic er in its own coordinate
system, in which one of the axes (thez axis) is oriented along
T while the other two axes are perpendicular to T. In this
coordinate system the tensor e' can be expanded in terms of
five basis tensors &m(m = 0, +1, ±2), each of which has
the property that its transformation under rotations of the
coordinate system around T by an angle q> reduces to multi-
plication by ex.p(imtp) (i.e., the tensor £T can be expanded in
terms of the irreducible representations of the group of rota-
tions around the vector T) :

ST= T. e(r; m) am,
m=-Z

(3.21)

where £(T; m) are the coefficients in the expansion, and
— 1 0 0'

0 — 1 0
0 0 2

1 Ti 0'
f t —I 0
0 0 0

0 0 ±i
a ± J = - L I 0 0 1

* \±i 1 0

(3.22)

The basis tensors am can also be expressed in terms of the
vectors T and m = (m, — /m2)/v2 (where the unit vectors
m,, m2 and T/|T| form a right-handed triplet):

(3.23)

The expansion (3.21) is especially useful if the vector T
is parallel to one of the symmetry axes of the crystal. Selec-
tion rules with respect to m, characterizing the space group,
appear for the corresponding Fourier harmonics in this
case.57 These rules determine for each group and for each T
those m for which £(T;W) ̂ 0 in (3.21).

We shall illustrate this assertion by a specific example.
Let the vector T be oriented parallel to the second-order axis.
The tensor £ (r) does not change under rotations by an angle
IT around this axis and, therefore, the corresponding Fourier
component £T also must not change. As noted above, how-
ever, the basis tensors am acquire under such a rotation a
factor exp(imir). When m = ± I this factor is equal to — I,
and therefore terms with m = + 1 must be absent in (3.21).
If the vector T is parallel to the third- or fourth-order axes,
then only the term with m = 0 remains in (3.21). The selec-
tion rules for the case when the vector T is parallel to the
screw axis n} can be found in an analogous manner. In this
case, terms with those values of m for which (m —jh)/n is
not equal to an integer (for definiteness the screw axis here is
assumed to be parallel to the x axis and T = 1irhyi/d vanish in
(3.21). The selection rules found in this manner were used in
constructing Table I (see the last column).

Symmetry restrictions are thus most important for the
Fourier harmonics £T with vectors T parallel to the symme-
try axes [for cubic crystals these are vectors of the type
(A 00), (hhO), and ( h h h ) ] . In addition, using the expres-

sions (3.9)-(3.14), (3.19), and (3.20), the equivalent
Fourier harmonics can be interrelated and all these Fourier
harmonics can therefore be expressed in terms of one of
them. Fourier harmonics corresponding to vectors T trans-
forming into one another under the symmetry operations
contained in the space group of the crystal are said to be
equivalent. Moreover, it turns out that for equivalent Four-
ier harmonics the components (modes) of the expansion
(3.21) with fixed m can be expressed in terms of one of these
components. The totality of these equivalent modes will be
denoted below by the symbol [hkl; m ]. Symmetry consider-
ations do not, however, yield any relations between nonequi-
valent Fourier harmonics, for example, Fourier harmonics
with different |T|. Therefore, in general, an infinite number
of parameters is required in order to determine the structure
of the blue phase.

Experiment shows, however, that actually only a small
number of parameters is important. Thus two reflections
(100) and (110) (and reflections equivalent to them) are
observed for BP II (the probably group is O2) and three
reflections (110), (200), and (211) (and reflections equiva-
lent to them) are observed for BP I (the group Os). Polariza-
tion measurements show26'27'38 that modes with m = 2 make
by far the greatest contribution to the observed reflections.
Including only the enumerated modes, with the help of
(3.17) and (3.21)-(3.23) we obtain the following expres-
sions for the functions^ (r), determining in accordance with
(3.8) the spatial structure of the order-parameter tensor
2(r):

/, (x, y , z ) = e, (100; 2) (C t - C„)

+ e (110; 2) [2CyCz - Cx (Cy + C t ) ] ,

j, (x, v,z) = -e (100; 2) S,

+ e (110; 2) (Y2SX (Cy - C,) - SaSz};

(3.24)
for O2 and

A (a:. y,z) = E (110; 2) (2SVCZ - SXC'„ - StCx)

+ e (200; 2) (C22 - C2y)

+ (2/3) e (211; 2) [2^6 (CttS£y - C2ySzCx)

2»J ^yL J,O z -f" L>2yGZ3x

+ S22CxS,j], (3.25)

U (x, y, z) = e (110; 2) [SZCV - Vz (C XC y + S X S Z ) }

— s (200; 2) S2.T

+ (2/3) 8 (211; 2) I - Y&(S2ZSxSa + StyCtCx)

— 5o2 xoa67 — 2CazCxCy

+ 2C,VS,SX\,

for O*, where the notation Cx = cos(2-irx/d),
Sx = sin(2irx/d), etc. was introduced. For reasons of sym-
metry the coefficients e(hkl; 2) in expressions (3.24) and
(3.25) are real. Their absolute values and signs must be de-
termined either experimentally or theoretically. In the next
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section it will be shown how the theory of phase transitions,
aside from symmetry considerations, also restricts the num-
ber of nonzero parameters in the expansions (3.17) and
(3.21) and specifies the structure of the blue phase.

c) Phase transitions (Landau's theory)

1) The free energy and characteristic modes

As mentioned already, liquid crystals are distinguished
by the large variety of phase transitions. Landau's theory is
currently most widely used to describe these transitions
theoretically. The comparative simplicity of this theory, the
small number of free parameters (which can be measured
experimentally), and the nontriviality and diversity of its
predictions make this theory very attractive and interesting.
We shall therefore begin our description of phase transitions
in the blue phase with Landau's theory.

We shall study the isotropic-liquid-liquid-crystal phase
transition, in which the order parameter is the tensor e(r)
introduced above. The corresponding theory for the isotrop-
ic-liquid-nematic-cholesteric transition was developed by
de Gennes,76 while Brazovskii, Dmitriev, and Filev33'34 and
Hornreich and Shtrikman55"66 developed the theory for the
isotropic-liquid-blue-phase-cholesteric transition. Bra-
zovskii and Dmitriev showed that depending on the ratio of
the parameters in Landau's expansion of the free energy the
isotropic-liquid-liquid-crystal phase transition can corre-
spond both to a direct isotropic-liquid-cholesteric transition
and to a transition through intermediate phases that are
linked to the observed blue phases. It is significant that the
intermediate phases exhibit a three-dimensional spatial mo-
dulation of the order parameter and are realized for choles-
terics with a quite short pitch. Developing this approach,
Alexander17 and Hornreich and Shtrikman55"61 specified
the structure of the intermediate phases and showed that
several intermediate phases with a cubically symmetrical or-
der-parameter field can be realized in a narrow temperature
interval between the isotropic liquid and the cholesteric.

We shall now give a detailed exposition of the corre-
sponding theoretical results. The expansion of the free ener-
gy in powers of the order parameter and its derivatives has
the following form33-76:

F = +F3 {e} {e}, (3.26)

where F0 is independent of e, while F2, F3, and F4 contain
second, third, and fourth powers of £:

JdrSp(e3),

jdr[Sp(e2)]2.

(3.27)

(3.28)

(3.29)

In (3.26)-(3.29) as is usual in Landau's theory, the
coefficient a is proportional to T — Tc where Tc is the tem-
perature of the absolute instability of the isotropic liquid

relative to a transition into the nematic phase with qc — 0,
P = 0, and the coefficients cv c2, qc>P>Y ar^ assumed to be
independent of T. These coefficients have the following
physical significance: cl and c2 are the elastic moduli of the
liquid-crystalline phase; qc is inversely proportional to the
cholesteric pitch ( qc ̂ 0 only in systems consisting of mole-
cules with left-right asymmetry); the finite value of the coef-
ficient P is linked to the physical nonequivalence of the
states with e and —£l;y ensures that the system is stable
relative to an increase in e. The presence of a term in (3.27)
with first derivatives (the so-called Lifshitz invariant) leads
to the appearance of spatially nonuniform structures (cho-
lesterics and blue phases).

At a fixed temperature Ta. structure that minimizes Fis
realized. This structure could be determined by writing La-
grange's equations corresponding to the functional (3.26)
for 2(r), but this procedure yields a complicated system of
nonlinear equations whose general solution is unknown61

[expression (3.26) is easily minimized only in the case
qc = 0; the corresponding structure (nematic) is obtained
as a limiting case of the cholesteric in the limit qc-+Q, and we
shall not take the time to study it].

Because of this difficulty, in order to find the minimum
of the functional (3.26) we shall first find the structure of the
order parameter that minimizes its quadratic part F2{e}. Us-
ing the Fourier expansion of the tensor £(r) (3.17) and the
expansion of ET in terms of the basis tensors (3.21) we find
that the quadratic part can be diagonalized in the representa-
tion used,

X |e (T , (3.30)

and the contribution of each component £(T, m) (i.e., of
each normal mode) can be easily analyzed separately. The
energy of each mode (the coefficient in front of \e(r, m) \ 2)
is given by the expressions

(3.31)

6±2 (T) = a + CjT2 =F

where T= |T|. It follows from the condition of stability rela-
tive to the formation of structures with large r that

c,>0, Cl+4 (3.32)

From (3.31), under the condition (3.32),it also follows that
the mode with m = 2 has the lowest energy (for definiteness
we assume that qc > 0); in this case

= 2 T = ?0) = a — (3.33)

It thus appears that the minimum of the free energy
(3.24) should correspond to a structure in which only the
mode with m = 2 is represented. Such a structure, however,
by no means corresponds to the minimum of the cubic term
F3{£} in (3.26). This is linked to the fact that structures with
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m = 2 are substantially biaxial, while F3{e} reaches a mini-
mum in uniaxial structures.U6 To verify this, we diagonalize
the tensor e in the expression (3.28) for F3{£}. Then

F3 {e} = (3.34)

where £„ £2, e 3 = —£l—e2 are the eigenvalues of the tensor
E [see (3.4)]. Minimizing (3.32) under the condition that
Sp(£2) = const, we obtain

(e2 — (3.35)

The two solutions of(3.35),e2
 = £1i and £3=£l, evidently

correspond to uniaxial structures, while the solution
EI = £2 = £3 = 0 does not correspond to a minimum of
F3{e}.

The considerations presented above, though they are
not entirely accurate, show that there is a contradiction
between the square and cubic terms in the free energy: these
terms reach their minima in different structures, and togeth-
er they produce a minimum of the free energy for some com-
promise structure. The particular structure that appears as a
result of the compromise depends on the value of qc.

For small qc (qc <ff 2/y, i.e., a large pitch of the helix)
the minimum of (3.24) is achieved in a one-dimensional he-
lical structure (cholesteric), in which the mode with r = 0,
m = 0 is present together with the mode m = 2m T = qc.
When qc ># 2/y the cubic structure with the space group
O5, in which the modes [110; 2] are determining, is most
advantageous.61 These modes make a negative contribution
to the cubic term F3{e}, which lowers the total free energy.
For intermediate values of qc structures in which the modes
[100; 2] (the group O2) of the modes [200; 2] and [211; 2]
(the group O8) are represented together with the modes
[ 110; 2] are advantageous. These sets of spatial harmonics,
further decreasing the free energy because of the cubic term,
compensate the loss in the quadratic term appearing because
of the fact that for harmonics with different r (52(r) cannot
be minimized simultaneously for all T [see (3.31), (3.33)].

Parametrization of the free energy. Before we present
the expressions for the free energies of different phases, it is
convenient to put Eqs. (3.26)-(3.29) into dimensionless
form in order to decrease the number of parameters in them.
There are six parameters in all (a, c1( c2, qc, /?, 7), but by
selecting the units of measurement of the free energy, tem-
perature, and length the expression (3.26) can be represent-
ed in a form with three dimensionless parameters t, K and c2/

where d is the size of the unit cell,

F t- ^ a K*I — -oj-fl, K = I
(3.37)

,,,, .
K(hkl; TO)

[we dropped in (3.36) the term that does not depend on e ] .
We emphasize that the summation in (3.36) extends not
over separate modes, but rather over different sets of equiva-
lent modes, which are enumerated by the index /, and the
number TV, in the definition of//, represents the number of
modes contained in this set. The coefficients f f ( i , j , n) and
/*(',./> n, s) in (3.36) are simply numbers that determine
the contribution to the free energy, for a given space group
4>, associated with the interaction between modes with dif-
ferent i,j, n, and s. These numbers are obtained from the
cubic and quartic terms, respectively, by summing the con-
tributions from all equivalent modes; in addition, because of
the integration in (3.28) and (3.29) over r only those combi-
nations of modes for which T, + T; -t- rn = 0 and
T, + TJ, + Tn + TS = 0 contribute toff and/*, respectively.
Because of the enormous number of such combinations the
summation can be carried out analytically only in the sim-
plest cases when only one or at most two nonequivalent
Fourier harmonics are included.61'62

Thus the expression for the free energy depends only on
three parameters: the dimensionless temperature t; the pa-
rameter K, characterizing the "degree of twisting of the he-
lix"; and, the ratio of the elastic moduli c2/cv The cases K «< 1
and A>! correspond precisely to small and large qc, dis-
cussed above.

2) Structural characteristics

The equilibrium values of the period d of the structure
formed and of the quantities fit are determined from the
condition that/assumes its minimum value. Since the value
of the period enters only into the quadratic part of (3.36),
from the condition df/dd = 0 we obtain an expression for d:

(4-m2)] (

-. (3.38)

(3.36)

The expression (3.38) is also useful for analyzing the results
of experimental measurements, since its right and left sides
contain quantities which can be measured independently,
making it possible to check the self-consistency of the mea-
surements. We emphasize, however, that (3.38) is a conse-
quence of the assumption that cubic and quartic terms in the
expression for the free energy do not contain derivatives; this
assumption is by no means obvious. In addition, the exis-
tence of three different elastic moduli and not two, as in
(3.27), in cholesterics apparently indicates that it is desir-
able to include such terms.

The problem of finding the equilibrium values of ju, is
more difficult. The coefficients ff and f f in (3.36) can in
principle be calculated for the group T4 (as the group with
the lowest symmetry among those studied) for a very large
set of/z,, and the equilibrium values n, can then be deter-
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mined by minimizing the quartic polynomial obtained. The
values of fij found in this manner determine which of the
cubic groups corresponds to the minimum of the free energy
with fixed values of the parameters t, x, c2/cl (the group T4

is a subgroup of all cubic groups, and the values of n, for it
can therefore correspond to groups of higher symmetry).
This program requires, however, quite long numerical calcu-
lations and has thus far not been implemented. It should be
noted that the procedure described above, generally speak-
ing, does not give an absolute minimum of the free energy;
but it does permit finding the minimum among several valid
structures of blue phases. The calculations can be simplified
by using available experimental data, which show that in
blue phases only some fi, have an appreciable magnitude.
Focusing on these data, we shall proceed from the general
expressions for the free energy to expressions for the specific
structures containing a finite number of nonequivalent
modes.

2. 1) Cholesteric. 2>61 This is a one-dimensional structure
consisting of one mode with T = 0 and m = 0 ( we denote it
by the amplitude //0) and two equivalent modes with
r = + 4?r/ p, m = 2 and amplitude //c. The equilibrium
value of/? is determined from (3.38)/> = 2*/ = 4ir/qc and is
independent of (40, fic . The free energy of the cholesteric has
the form

. (3.39)

Minimizing the expression (3.39) with respect to fi0

andfj,c we find that the temperature of the transition of their
isotropic phase into the cholesteric phase / IC and the equilib-
rium values of f40 and /uc forf<f,c are given by the relations

3/21
J

*°-1 • •- os/3-40'
if
if

Hc=l7 3^ + -g-K2n0. (3.41)

The transition is a first-order one when x < 3 and a second-
order one when ?O3, since in the last case the cubic term
vanishes for the cholesteric structure (at the minimum of
/c). The change in entropy is given by the relations

(3.42)

0,

if «<3,

if «>3.
The point of the second-order transition, however, as we
shall see below, is not reached because of the transition into
the blue phase. We note that in a nematic (i.e., when K = 0)

*IN = tic '!(* = 0) = 1, A,SiN = ASIC (K = 0) = 1,

(3.43)
and the relations (3.43) give an idea of the above-chosen
(3.37) scale of measurement of the temperature and en-

tropy, and therefore of the free energy also.
As already pointed out above, the cholesteric structure,

generally speaking, is biaxial and the parameter 77 [see
(3.5) ] is given by the relation

110=1-, , ,£.. ... » • (3.44)

The biaxiality is maximum at t = tlc and increases with
/r.but numerically it is quite small. Thus for K2 = 0.5 and
t = tK, r)c —0.04 (see Refs. 124-126 for a more detailed
discussion).

2.2) Blue phases. Since the structure (structures) of the
blue phase has not been finally established, we shall study
several of the most probable structural models of this phase.
The phase O5, which must correspond to the asymptotic lim-
it AC—»-oo (this phase has apparently not yet been observed
experimentally), has the simplest structure. This phase has
only one set of equivalent harmonics [110;2] (wedenotethe
corresponding amplitudeby^2)- It follows from (3.38) that
d = 2VIir/qc and the free energy for O 5 has the form61

/j. fc.ii
" — " — K iV-*

23 /2
32

499
384

(3.45)

Minimizing/0 s with respect to/^2
 we find the temperature

tIO, of the transition from the isotropic phase into the O5

phase (the transition is always a first-order one), the jump in
the entropy at the point of the transition &Slos, and the
equilibrium value o f f j , 2 for t<,tI0s

 61:
1587 , ,-
1996

225

: 0.612, (3.46)
S — t)

998

The phase Os is locally biaxial; but, unlike a cholesteric, the
biaxiality parameter 17 varies from point to point.

2.3) The phases O2andO8. For values of K ~ 1 and when
two or three nonequivalent modes are included the struc-
tures of O2 and Os are energetically more advantageous than
O 5. The group O 2 includes, together with the modes [110;
2], the modes [100; 2] [accordingly, we write //(110;
2) =/Li2 and fi( 100; 2) =//J. From (3.36) we obtain the
following expression for the free energy/Q2

 61

3(4 + 3/2)
8

139-12
48

23/2
32

499 ,
384 ^"-

13

(3.47)

The equilibrium values of the spatial period and of the quan-
tities //! and/z2

 can be obtained from (3.47) by numerical
minimization. For example, at t = 1 and K = 1 yuj=:0.577,
(j,2~ — 0.323, d^ 1.13 (2ir/qc). Detailed numerical calcu-
lations show that in spite of the temperature dependence of
fj,l and//2, the ratio fi2/Pi and therefore the ratio of the size
of the unit cell d to the pitch of the spiral p are virtually
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independent of / and K. It is interesting to note that the nu-
merically computed ratio //2/i"i is close to the value obtained
by minimizing the cubic part in (3.47) holding p\ + /ul
fixed [ i.e., in other words, when minimizing Sp (£3) holding
Sp (£2) fixed].

In the O 8 phase, taking into account the modes fi (110;
2)=/i2,/i (200; 2)=/t4 andfj, (211;2)=/*6> the expression
for the free energy has the form

2re2

_

0.1012^- 2,

: + 0.

1 .7339ji2M>6 + 2.1643^11*1*; + 0,5539

+ 0.9817u-t|i; + (3.48)

[we obtained the coefficients in (3.48), describing the inter-
action of the modes fj,2 and fi4 with fi6, numerically] .3) Nu-
merical minimization of the expression (3.48), for example,
for t = 1 and K= 1 gives fi2~ -0.494, fi4 = -0.374,
//6 = 0.246,0? = 1.29(2v2ir/0c) and shows that, as in the O 2

phase, the ratios /J-4/fJ-2> y"e/i"2 and ^ //> are almost indepen-
dent of t and «•.

Thus Landau's theory allows the calculation of the val-
ues of the parameters determining the structure of the blue
phases. These parameters can be measured directly in opti-
cal experiments, and their measured values (see below) are
close to the values obtained above from Landau's theory.

The results of numerical calculations of the energy of
different phases can be used to construct the phase diagram
inthef-«- (temperature-chirality) plane (Fig. 15).

In the approximation used above (small number of har-
monics), however, the phase diagram is not very reliable.
This is linked to the fact that the values of the free energies of
different phases are numerically very close in wide intervals
of t and K. Because of this circumstance the existence of
modes with low amplitude which are not included in ( 3.45 ) ,
(3.47), and (3.48) can substantially change the position of
the boundaries between the phases in the t-K diagram ( at the
same time, the relative amplitude of the strong modes re-
mains virtually unchanged) . The question of whether or not
Landau's theory gives a quantitative description of the phase
diagram of blue phases therefore remains open.

d) The disclination theory

Besides the foregoing description of the blue phase
based on Landau's theory, an alternative approach based on
more specific physical models of the structure of the blue

FIG. 15. Phase diagram (a), calculated using Landau's theory (the iso-
tropic phase, O 2,0 5,08, and the cholesteric are studied). Since the energy
of the O 2 phase is only negligibly lower than that of O 8, the diagram (b),
obtained with the O2 phase excluded, is also shown. Harmonics with
m = 2 up to (220) were included in constructing the diagrams.

phase was proposed in Refs. 64—66 and 78. In this approach
it is assumed at the outset that the blue phase is locally uniax-
ial and its structure can be described with the help of the
director n. The main difference between the structure of the
blue phase and that of the cholesteric consists of the fact that
at each point the cholesteric is twisted in only one direction
perpendicular to the director, while in the blue phase local
twisting occurs in two directions perpendicular to the direc-
tor, i.e., a double twisting occurs. Since the existence of dou-
ble twisting is incompatible for topological reasons with the
continuity of the director field, linear defects in the field of
the director, called disclinations, arise in the blue phase. The
physical arguments in favor of such a structure are clear.
Because the helical structure is energetically advantageous
and because of the fact that there is nothing to distinguish
one of the directions perpendicular to the director, the local
minimum of the elastic energy corresponds to double twist-
ing of the director. We shall now show that the same conclu-
sion also follows from the theory of elasticity of liqud crys-
tals.

For a uniaxial crystal with a tensorial order parameter
(3.1) the elastic part of the free-energy density (3.27) can be
rewritten in a one-constant approximation in the form66

(3.49)

where K is Frank's modulus of elasticity (K = c ̂ S 2). For a
cholesteric the local change in the director can be written in
the form n = (1, gcz, 0), where <7cz|<l, and in this case
Fe = 0. If, however, the twisting occurs in two directions z
andy, then locally n = (1, qz, — qy). It is easy to verify that
in the last case the minimum of (3.49) appears at q = qc and
is equal to — Kq2

c/2, i.e., the double twisting is locally fa-
vored. What are the structural consequences of the fact that
the double twisting is energetically favored locally? Because
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of the incompatibility of the continuity of the director field
with the double twisting of the director in a macroscopic
sample, as noted above, the discontinuity is accompanied by
sharp changes (disclinations) in the orientation of the direc-
tor, and in the corresponding regions the local elastic energy
increases rapidly. For this reason, energy considerations
(referring to the total elastic energy) indicate that the struc-
ture with double twisting of the director can be realized if the
corresponding energy gain (compared with the energy of the
usual cholesteric ordering) is greater than the energy loss
due to disclinations. In the opposite case, cholesteric order-
ing of the director must be realized. The drop in the energy of
disclinations as the temperature approaches the point of the
transition into the isotropic phase, combined with a sharp
increase in the gain in energy from the double twisting as the
pitch of the helix decreases (qc increases), suggests that for
small-pitch cholesterics the double twisting of the director
can be energetically advantageous near the temperature of
the transition into the isotropic liquid. The quantitative the-
ory of the described model, developed in Refs. 64 and 66,
completely confirmed the qualitative considerations pre-
sented above and produced structural models of the blue
phase consisting of cubic lattices of linear disclinations in the
director field.

The following expression for the elastic energy of a liq-
uid crystal is the starting point in Refs. 65 and 66:

-(divn)2 K, - (n rot n + qc)
z + —j*- [n rot n]2 -

d iv[(ny)n-ndivnl , (3.50)

which in the one-constant approximation (KU=K22

= K33=K, A"24 = 0) reduces to (3.49). The expression
(3.50) differs from the usual expression1-2 in that it contains
the last term,79 which has the form of a total divergence. It is
this term that yields the gain in energy in the case of double
twisting. The usual argument that this term does not make a
contribution to the volume energy, since it reduces to an
integral over the surface, does not work in this case because
the integration over the surface includes also an integration
over the surface of singular lines (disclinations) . In the blue
phase the disclinations have a finite volume density, and the
integration over their surface gives a contribution to the to-
tal energy which is proportional to the volume.

To find the structure of the blue phase the expression
(3.50) was minimized numerically.65'78 As a result, it was
shown that the elastic energy (3.50) plus the energy of the
disclinations has a stable minimum for structures with the
spatial symmetry O2,O5, and O 8 in a small temperature in-
terval near the point of the transition into the isotropic liquid
( see Fig. 13) .65>78 The fact that, as calculations showed, only
a small number of spatial Fourier harmonics of e(i ) have an
appreciable magnitude in these structures deserves special
mention.78

The energy of the nucleus of the disclinations, which is
assumed to be strongly temperature dependent, was taken
into account in a model fashion. This allowed a qualitative
explanation of the phase diagram of blue phases (including
also transitions between the phases O 2 and O s ) , the tempera-

ture dependence of the density of the blue phase and its lat-
tice spacing, as well as the large (~30) magnitude of the
ratio of the latent heats of the isotropic-liquid-blue-phase
and blue-phase-cholesteric transitions.

The model described gives a deeper understanding of
the physical factors responsible for the blue phase in Lan-
dau's theory. It is clear that the existence of a blue phase in
this theory also follows from the fact that the complicated
(non-one-dimensional) change in the order parameter as a
function of the coordinate is advantageous [the expressions
(3.49) and (3.50) follow from (3.27) in the one-constant
approximation]. Moreover, it can be shown that in the case
of a biaxial order-parameter tensor, in contrast to the uniax-
ial tensor (director) studied above, the local minimum of the
elastic part of the free energy (3.27) is achieved with local
rotation of each of the three principal axes of the tensor £(r)
as a function of r.

In the case of a biaxial order-parameter tensor, in spite
of the complicated nature of its spatial variations, discontin-
uities in the order-parameter field can be avoided in a com-
plicated structure in which not only do the principal axes of
the tensor £ (r) rotate as a function of the coordinate, but the
principal values of the tensor also vary in space.

It is interesting to note that the calculation described
above based on the Landau theory of the structures of the
blue phase for the groups O 2 and Os gives results which are in
good agreement with those of the disclination model. In-
deed, it turns out that in most of the volume of the unit cell
the tensorial order parameter corresponds to a prolate ellip-
soid (i.e., for example, £i>0, while £2<0 and e3<0). In
addition, the local biaxiality rj [see (3.5) ] is small and of the
same order of magnitude as in the cholesteric (Fig. 16). For
this reason, the blue phase can be described approximately
with the help of the director n(r) in the corresponding part
of the volume. In comparatively small regions (approxi-
mately 3% of the volume) the tensor e(r) corresponds to an
oblate ellipsoid (£, <0, while e2>0 and E3>0), and these
regions can be compared with the core of the disclinations

FIG. 16. Computed distribution of the biaxiality parameter 17 over the
volume of the unit cell. The relative fraction of the volume corresponding
to different values of 17 is plotted along the ordinate axis, t = I,K= 1, tjf^
is the biaxiality parameter for the cholesteric (3.44).

550 Sov. Phys. Usp. 28 (7), July 1985 V. A. Belyakov and V. E. Dmitrienko 550



studied in the disclination theory. These "disclinations" lie
along a third-order axis (see Fig. 13). The expressions
(3.24) and (3.25) make possible a detailed study of the
structure of the core of the disclinations. In particular, it
turns out that in the O * structure the core of the disclinations
has approximately the shape of a cylinder with a radius
RzzQ.Q37d (ifit is assumed that the lattice spacing^ = 3000
A, then a completely reasonable value of the order of 100 A is
obtained for R). For structures with the O 2 and O 5 symme-
try the corresponding analysis with the help of Landau's
theory shows that the core of the disclinations does not have
a constant transverse radius but is rather spindle-shaped; in
addition, the order parameter vanishes at the tips of the spin-
dles.

Thus the two theories of the blue phase, which have
thus far been developed in greatest detail, produce very simi-
lar results. They actually differ only by the degree to which
the corresponding models are specified and by the methods
used to obtain the results. In Landau's theory the modes
responsible for the minimum of the elastic energy are sought
first, and then the structures which minimize the total free
energy (i.e., actually structures with minimum local biaxia-
lity) are constructed from these modes. In the disclination
theory, on the other hand, local uniaxiality is assumed at the
outset, and then the structures which minimize the elastic
energy are sought. It is therefore not surprising that the re-
sults obtained are similar.

To check the predictions of the theories described here
experimentally, the structure of the blue phase must be relat-
ed to its properties, primarily its optical properties. The fol-
lowing sections of this review are devoted to this question.

4. OPTICAL PROPERTIES

The experimentally observed peculiarities of the optics
of blue phases and cholesterics are linked to the diffraction of
light by the periodic structure of these phases, and their opti-
cal properties have many common features. It turns out that
because of the absence of birefringence the theoretical de-
scription of the optics of the blue phase is even somewhat
simpler than that of the cholesterics, and is analogous to the
theory of diffraction of x rays in ordinary crystals, differing
from the latter only by its polarization properties.57'67-68

As is well known, a crystal diffracts radiation if the
wavelength of the light in the crystal and the direction of
propagation of the light satisfy the Bragg condition
2dr sin 0B =A, where dT is the spacing corresponding to
the reciprocal-lattice vector T, while 26 B is the scattering
angle. It is convenient to rewrite this condition in the vector
form

T2+2X0T=0, (4.1)

where x0 is the wave vector of the wave incident on the crys-
tal (including the index of refraction of the crystal x2,
= (27T//1)2 = £oco2/c2). The wave vector of the diffracted

wave v.T is given by the relation xr = x0 + T. The relation
(4.1) is purely geometrical in nature and determines only
the position of the regions of diffraction (reflections) corre-
sponding to different T. The use of (4.1) for the identifica-
tion of experimentally observed reflections imposes strin-

gent restrictions on the possible structures of the blue phase,
in particular, its possible space groups.26'27'43 Here the situa-
tion is analogous to the x-ray diffraction structural analysis,
which is used to determine the symmetry of the crystal under
study and the orientation of the crystallographic axes from
the observed aggregate of reflections.

More detailed information on the structure of blue
phases, as will be evident below, is contained in the intensi-
ties and polarization properties of the reflections and their
frequency (or angular) width.

a) Kinematic theory

We shall begin our study of the optical properties of
blue phases with the simplest kinematic approximation; the
results for cholesterics are given in Refs. 1, 6, and 80. This
approximation neglects multiple scattering of light and at-
tenuation of the primary beam due to scattering in the sam-
ple and can be used to describe scattering in small perfect
samples, in which the intensity of the scattered beam is much
lower than that of the incident beam.

In the kinematic approximation the intensity of the re-
flections IT and the coefficient of reflection R are propor-
tional to the square of the corresponding Fourier harmonic
£T:

pf (ft p , \ — ^ .— I p*pTA 12 D / A ^ \
J-1 v*-'0' **df — r — **d*-' ^0 ^T> I ̂  ^ /

10

where 70 is the intensity of the wave incident on the crystal,
|e*£Te0|

 2 is the polarization-structure factor (see below),
and the factor R T depends on the dimensions and shape of
the crystal and determines the angular and frequency width
of the reflection. For example, for a crystal shaped in the
form of a plane-parallel plate with a thickness L the factor
RT has the form RT = {sin^ax2, L/2(xrs)]}/|6 \a2£2

0,
where a = (r2 + 2x0T)/2x2,, b = (XOS)/(XTS), and sis the
normal to the surface of the sample. The quantity RT reaches
a maximum at a = 0, i.e., when (4.1) holds, and at the maxi-
mum RT~L 2; the angular and frequency width of the re-
flection is proportional to L ~'.

The expression (4.2) demonstrates an important prop-
erty of light scattering in the blue phase. Namely, its strong,
quite complicated, and informative polarization depen-
dence, which distinguishes light scattering in the blue phase
from the diffraction of x rays (in the latter case the structural
information contained in the polarization characteristics is
almost never used). The polarization dependence ofR and
the information on the structure of the crystal is contained in
the polarization-structure factor |eJ£Te0|

 2, which describes
the diffraction scattering of the wave with polarization e0

into the wave with polarization ed. If the polarization of the
diffracted wave is not analyzed, then the factor |eJ£Te0

 2

must be summed over all polarizations ed, after which the
coefficient of reflection assumes the form

where AT =£Te0.
When the incident wave is polarized, the diffracted

wave is also completely polarized, and its polarization vector
is given by the expression
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et = [AT-xt(xTA,)x^] |AT-xT(xTAt)x?|-» (4.4)

[ we note that the expression (4.2) reaches a maximum when
ed =eT].

We shall study in greater detail the polarization proper-
ties of scattering in the blue phase.67 Near the point where
the Bragg conditions hold for a definite reflection corre-
sponding to the reciprocal lattice vector T, the polarization
properties of the scattering, as follows from (4.2)-(4.4), are
determined by the form of the Fourier harmonic eT. It is
convenient to introduce the characteristic polarization vec-
tors e0(7 (where a = 1, 2), which are the characteristic vec-
tors of the operator £n*£T

mj(Sml — xT,xrm/x2) in (4.3) and
the corresponding polarization vectors eTCT [see (4.4) ]. The
expression (4.3) assumes its maximum and minimum values
precisely for the eigenpolarizations, and the diffraction scat-
tering from each eigenpolarization e0o. proceeds only into
the corresponding eigenpolarization of the diffracted wave
eT0., since (e*2E

Te01) = (e?1£
Te02) =0. The polarization-

structure factor for the eigenpolarizations is equal to Fa \
 2,

where

f'a = (e?0e
Teoa). (4.5)

The simple kinematic approach presented above per-
mits describing and understanding many qualitative fea-
tures of the optical properties of the blue phase. In the gen-
eral case of an arbitrary ratio of the components with
different m the eigenpolarizations determined by the polar-
ization vectors e0(7,erCT in the expansion (3.21) are elliptical
and depend on the ratios of the different components ET and
their Bragg angle 0B. In what follows, reflections with ellip-
tical eigenpolarizations will be called chiral reflections, since
for them the coefficients of reflection for right- and left-po-
larized light differ; chiral reflections are labelled in Table I
by the letter c. The eigenpolarizations for nonchiral reflec-
tions are linear.

In the particular case when only one term with m = 2 or
m = — 2 is present in the expansion (3.21), light with the
eigenpolarization which is the same as in the cholesteric (in
the kinematic approximation) undergoes maximum diffrac-
tion scattering. For this polarization (we denote it by e0+)
the ratio of the axes of the polarization ellipse (lying in the
scattering plane and perpendicular to it) is equal to sin &B,
while the direction of rotation on the polarization ellipse is to
the right for m = 2 and to the left for m = — 2. The diffract-
ed wave in this case has the same eigenpolarization indepen-
dent of the polarization of the incident wave. Light with
orthogonal polarization in this case is not diffracted, while
the polarization-structure factor in (4.3) is equal to \e(r;
+ 2) | 2 (1 + sin2 6>B )

2 ej + e0|
 2/4. For 0B = «/2 (back-

wards diffraction) in the case under study only the right- or
only the left-circularly polarized light, respectively, is dif-
fracted. The experimentally observed polarization charac-
teristics of scattering, as already mentioned, provide evi-
dence for the fact that the amplitude of modes with m = 2
(or m = — 2) is much higher than that of other modes.

If unpolarized light undergoes diffraction scattering in
the blue phase, then the scattered beam is in the general case

partially polarized. With the help of the formulas (4.2)-
(4.5) we obtain the following expression for the degree of
polarization of the scattered beam Pr (when the incident
beam is unpolarized)

Pr= - \Ft (\F1\*+\Ft (4.6)

The polarization, represented in the reflected beam, is de-
scribed by the vector erl if IF, | > \F2\ ander2 if\F2\ > |F,|. In
a particular case the scattered beam can be completely polar-
ized even when the incident beam is unpolarized. For this it
is necessary that the light with one of the characteristic po-
larizations not be diffraction-scattered, i.e., one of the ampli-
tudes FI or F2 must vanish. This situation occurs, for exam-
ple, in the case studied above, when only the component with
m = 2 or — 2 appears in (3.21).

Thus far, in applying the kinematic formulas to the de-
scription of the polarization properties, we implicitly as-
sumed that the same is perfect. A real sample can consist of
separate small perfect blocks with the axes of separate blocks
oriented randomly. We shall briefly discuss the physical pic-
ture of diffraction by imperfect crystals of the blue phase and
methods for describing it theoretically. A qualitative feature
of imperfect crystals is that the waves diffracted by different
blocks are not coherent with respect to one another and gen-
erally speaking have different polarization. In the general
case, this leads to partial depolarization of the diffracted
beam, even when the incident beam is completely polarized.
The polarization state of partially polarized beams is de-
scribed with the use of Stokes parameters81 (or, which is
equivalent, the polarization tensor80"83); the three Stokes
parameters and the intensity of the wave form a four-vector.
The interaction of an arbitrarily polarized wave with the
crystal can be described by the so-called Mueller matrices82

(real 4 X 4 matrices), which transform the four-vector of the
incident wave into the four-vector of the diffracted (or trans-
mitted) wave. The convenience of such a description is
linked to the fact that the Mueller matrices for noncoherent-
ly scattering blocks simply add, which, for example, enables
averaging over orientations of the blocks in a simple manner.
The elements of the Mueller matrices are expressed in terms
of quadratic combinations of Fourier harmonics eT of the
form e]?£J"m, and in the kinematic approximation the ele-
ments of the Mueller matrices are directly proportional to
e]*er

lm. Mueller matrices therefore contain all information
on the interaction of light with the crystal, with the excep-
tion of information on the phase ofeT. Specific expressions
for the Mueller matrices in the case of the blue phase with
random orientation of separate blocks are presented in Refs.
57 and 68. The use of Mueller matrices also permits unifying
the study of polarization properties.38

We note that the kinematic approximation can be used
to describe optically thick imperfect crystals of the blue
phase, in a manner similar to the way this is done for choles-
terics60-80'83 and for diffraction of x rays.84

1) Circular and linear dlchroism

Thus far we have been talking about selective reflection
of light by the blue phase. Naturally, a maximum in the in-
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tensity of the reflected light is accompanied by a minimum in
the transmitted intensity. This, as has been pointed out, is
also used to study the blue phase experimentally.26'43'85 In
particular, the method of measuring circular dichroism,43'95

which depends on the difference in the coefficients of trans-
mission T± of left ( — ) and right ( + ) polarized light and
is defined by the ratio

De = (T+ - T-) (T+ J- T- (4.7)

is informative. Assuming that the sample is nonabsorbing, in
the kinematic approximation it is easy to express the quanti-
ty Dc in terms of the reflection coefficient R ± for right (left)
polarized light (4.3). Namely, since/? ± = (1 — T± )<<!,

Dc «-|- (R_ — R+). (4.8)

From (4.3) and (4.8), assuming that only the mode with
m = + 2 is present in eT [see (3.21)], an expression can be
obtained for the wavelength-integrated circular dichroism
from each separate reflection:

\ e (T; ±2) |2 (1 + sin29B) (sin (4.9)

In addition to circular dichroism, linear dichroism Z),
of diffraction origin, associated, analogously to (4.8), with
the difference of the coefficients of reflection ( and transmis-
sion) for two orthogonal linear polarizations (for example,
for polarization parallel to the plane formed by the vectors
x0 and T and perpendicular to it), also occurs in the blue
phase. It is significant that the circular and linear dichroisms
depend differently on the components of the tensor £T and on
the Bragg angle, and their combined measurement gives ad-
ditional information on eT . If only the component with
m = 2 (or with m = — 2) contributes to ET , then
DI = cos2 0BDc/2 sin 0B and linear dichroism is absent in
backward diffraction reflection (0B = Tr/2).

We emphasize that the presence of diffraction linear
dichroism is not inconsistent with the cubic symmetry of the
crystal. From symmetry considerations it follows only that
linear dichroism is absent only when light propagates pre-
cisely along the third- and fourth-order axes. Physically this
is linked to the mutual compensation of linear dichroism
from different reflections. However, even with a small (of
the order of the angular width of the reflection) deviation
from the third- or fourth-order axis, this compensation
breaks down, and an appreciable linear dichroism can be
observed. We note that linear dichroism, unlike circular
dichroism, does not occur in unoriented samples. It is signif-
icant that in the kinematic approximation both circular and
linear dichroism are equal to the sum of the dichroisms from
separate reflections, while in the dynamic theory this, gener-
ally speaking, does not happen.

b) Optics of perfect samples

1) Basic equations

It was assumed above that scattering within a separate
perfect region of the blue phase is small. However, it is now
possible to obtain samples with quite large perfect re-

gions,41'43'85 for which the kinematic approximation pre-
sented above may be unsatisfactory, because in this approxi-
mation multiple scattering, which is especially important in
the case of thick (L>(x0s)/Xo|FCT|) samples, is neglected.
Because of the complicated form of the dielectric permittivi-
ty tensor the exact analytic solution of Maxwell's equations,
i.e., multiple scattering is taken into account exactly, cannot
be obtained. We shall therefore describe below the optics of
perfect samples of the blue phase based on the approxima-
tion known as the dynamic theory of diffraction, analogous
to the manner in which this is done in the case of cholester-
ics.6'80

In this theory under the conditions of diffraction [i.e.,
when the Bragg-Wolf conditions (4.1) hold, at least approx-
imately] the field of the light wave in the blue phase E(r, ?) is
represented as a superposition of two plane waves with the
wave vectors kg and kT = k0 + T:

E(r, t) = (E0e^«r + E^eik^)e-ia>t. (4.10)

From Maxwell's equations, using the expansion (3.17) and
e(r), we arrive at the following system of equations for the
amplitudes E0 and ET

 67:

,En4-S-TE. = 0. (4-11)

where x2, = e^/c2. It turns out that it is easier to solve the
system (4.11) for the blue phase than the corresponding
problem for the cholesteric, which is a consequence of the
absence of birefringence in the blue phase. In particular, the
eigenpolarizations of the solutions of the system (4.11) coin-
cide with the above-discussed eigenpolarizations e0<7, er<,,
found in the kinematic approximation. In the eigenpolariza-
tions the equations (4.11) separate into two uncoupled sys-
tems of two equations. Expanding the amplitude of the wave
in terms of the eigenpolarizations (E0 = 22

 = 1 E0ae0l7,
E r =2 2

 = 1£T<TeTCT), we obtain

(4.12)

where the quantities FT are denned in (4.5), F _a

We call attention to the fact that the dynamic system
(4. 12) is completely equivalent to the corresponding system
in the theory of diffraction of x rays. The detailed results of
the dynamic theory of diffraction of x and 7 rays can there-
fore be used to describe the diffraction of light in the blue
phase.86"88 The difference in the description of the diffrac-
tion of light in the blue phase is associated only with the
polarization properties. In the x-ray case the dynamic sys-
tem has the form (4.12) in the linear eigenpolarizations TT
and a, lying in the scattering plane and perpendicular to it,
respectively, while for the blue phase the eigenpolarizations
in the general case are elliptical and depend on the direction
of propagation of the light beams.67
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We note here that the polarization characteristics of the
interaction of light with the blue phase differ from those for
the case of a cholesteric. In a cholesteric, when light propa-
gates at an angle to the cholesteric axis, the eigenpolariza-
tions change in the region of selective reflection (with re-
spect to angle or frequency), whereas in the blue phase the
polarization characteristics of the eigenwaves remain almost
unchanged in the entire region of selective reflection (to the
extent of the relative narrowness of the reflections).

2) Reflection and transmission of light

Making use of the noted analogy between the optics of
the blue phase and the diffraction of x rays, we present im-
mediately the final results for the optical characteristics of a
plane-parallel layer of the blue phase in the case when a mo-
nochromatic plane wave is incident on the layer (Fig. 17).
We shall also expand the amplitudes of the wave incident on
the crystal W , the wave diffracted by the crystal Er , and the
wave transmitted by the crystal E' in terms of the eigenpo-
larizations: Ee = 2*_, E^0a, Er = 2*_, E*,tn, E1

= 2£= , E^eo,,. Then, for Bragg geometry (b<0, see Fig.
17a).

(4.13)

(4.14)

(4.15)

(4.16)

while for Laue geometry (b > 0, see Fig. 17b)

1 sin Z),£ = .££ (cos

where a = (r2 + 2x0T)/2x£, A = ^a2 + (FaF _a/be\),
1= Axo£/2(xTs), b — (XOS)/(XTS), and s is the inward
normal to the surface of the sample. The parameter a char-
acterizes the deviation of the wavelength and (or) the angle
of incidence from the values determined by the Bragg-Wolf
condition (4.1). Assuming that these deviations are small
(| a •< 1), we find that in terms of the angle of incident 6

a = (9B — e)sin20B, (4.17)

and in terms of the wavelength A

a _ /^ ^ ^sin26-X"1 (4 18)

where A B = 47rV^ sin 9 / \ r \ . The quantity / in ( 4. 1 3 ) and
(4. 14) is the dimensionless thickness of the crystal, while the
quantity A is proportional to the diffraction correction to the
wave vector x0.

The expressions (4.13)-(4.16) completely solve in the
two- wave approximation the problem of diffraction of light
in the blue phase. For example, the coefficients of reflection
for the incident wave with the eigenpolarizations have the
form

e;2, (4.19)

(4.20)

Ra= |F0|
2

in the Bragg case and

Ra = \Fa |
2 e-'ir'A-2 sin2 1

in the Laue case.

3) Polarization characteristics

If the incident wave has an arbitrary polarization ee and
the degree of polarization ¥* , then the coefficient of reflec-
tion is given by

FIG. 17. Diffraction geometry, a) Bragg case, b) Laue case.
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In the case of an unpolarized incident beam (F* = 0) the
expressions for the degree of polarization of the reflected and
transmitted light assume the form

Pr=\Rl-Ra\(Ri + R^-1, (422)
Pt=\Rl-R2\(2-Rl-R2)-

i.

The polarization vector of the reflected beam coincides with
e01 if/?!>/{2anclwithe02if/{2>^i- The transmitted beam
has an additional polarization, i.e., e02 when Rl>R2 and e01

when R2>Rj. In the case when only the single component
with m = 2 OT m = — 2 is present in eT, the polarization
properties coincide with the kinematic properties.

Using expressions (4.13)-(4.16), Mueller's matrices,
describing the reflection and transmission of a wave in a
perfect crystal, can also be obtained.

It should be noted that the expressions presented here
were obtained neglecting the reflection of rays at dielectric
boundaries, i.e., it is assumed that the average dielectric per-
mittivity of the blue phase coincides with that of the sur-
rounding medium. When the average dielectric properties of
the blue phase and of the external medium differ apprecia-
bly, reflection by dielectric boundaries can have an observ-
able effect on the characteristics under study. In this case,
the dielectric boundaries can be taken into account by well-
known methods6'80 without any fundamental difficulties.

4) Multiple-scattering effects

The formulas of the dynamic theory ( 4. 1 3 ) - ( 4. 1 6 ) de-
scribe a number of multiple-scattering effects which are ab-
sent in the kinematic approximation. Thus the frequency
(angular) width of the region of diffraction scattering (see
Fig. 8), i.e., the width of the frequency (angular) interval of
selective reflection of waves with the eigenpolarizations, is
proportional to \Fa for thick samples [see (4.13) and
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(4. 1 5 ) ] and it is therefore proportional to the corresponding
harmonic in the Fourier expansion o f e ( r ) . (We note, how-
ever, that in the case of backward diffraction the angular
width is proportional to V \Fa \ . In the Bragg case the region
of selective reflection in a thick crystal is given by the inequa-
lity a\<^\FtrF_a \/b£o, and in this region the coefficient of
reflection Ra is close to unity.

The dynamic approach also describes the experimental-
ly observed rotation of the polarization plane of light in the
blue phase and, in particular, the reversal of the sign of rota-
tion (see Fig. 1). From (4.14) and (4.16) we find (in the
case of circular eigenpolarizations eOCT ) the following expres-
sion for the angle of rotation cp, of the polarization plane of
the light transmitted through a layer of the blue phase:

(4.23)

The point at which the sign of the rotation of the polarization
plane changes corresponds to a = 0. We also note that in
perfect samples of the blue phase, just as in a cholesteric, the
angle of rotation of the polarization plane, as follows from
(4.23), depends nonlinearly on the sample thickness (see
Refs. 6 and 80).

Another effect of multiple scattering are the so-called
Pendellosung beats,86'87 which are beats in the coefficients of
reflection and transmission as well as in the polarization
properties of beams as a function of the light frequency (or
the angle of deviation from the Bragg condition) for a fixed
sample thickness or as a function of the thickness with the
remaining parameters held fixed. The period of these dy-
namic beats is expressed directly in terms of \Fa , which
admits an exact determination of these quantities,87 inde-
pendent of the measurement of the absolute scattering inten-
sities.

Another result of the dynamic analysis are the peculiar-
ities of the manifestation of linear birefringence and linear
dichroism in the blue phase, whose existence is linked to
multiple scattering effects and is not inconsistent with the
fact that the structure of the blue phase belongs to cubic
space groups. We are talking about diffraction birefringence
of waves with eigenpolarizations, which turn out to be circu-
lar only for particular directions of propagation of light in
the blue phase, just as for propagation of light along the
cholesteric axis, while in the general case they are elliptical.
The difference in the effective refractive indices AH of the
eigen waves is proportional to the difference i/> of the phases
of the waves with eigenpolarizations passing through the
crystal: An = ^(XOS)/KO£, where the angle i/> is given by the
expression (4.23) without the factor 1/2. The existence of a
predominant linear component in elliptical eigenpolariza-
tions is manifested precisely as linear birefringence. The
characteristic feature of such birefringence is its strong fre-
quency (angular) dependence and the reversal of the sign in
the region of selective scattering [when the sign of a in
(4.23) changes] . In the particular case when only the com-
ponent with m = 2 or — 2 is present in er , linear birefrin-
gence and linear dichroism vanish at 0 B = ir/2 and grow as

the Bragg angle decreases. For nonchiral reflections the dif-
fraction birefringence is linear and is described in Ref. 67. In
the general case, many reflections, and not only one reflec-
tion, contribute to the diffraction birefringence; this case re-
quires a special analysis (for diffraction of x rays this prob-
lem was solved in Ref. 89).

It may thus be concluded that the experimentally ob-
served small linear birefringence42-90 can have a diffraction
character, and it cannot be interpreted unconditionally as an
argument against the cubic nature of the blue phase. An-
other qualitative result linked with multiple scattering is the
depolarization of light beams even in perfect samples of the
blue phase, if the beams have a finite angular (or frequency)
width. This is a consequence of the frequency (angular) de-
pendences of the polarization of the diffracted beams dis-
cussed above and following from (4.13)-(4.16). Asaresult,
in a perfect sample, even for a completely polarized incident
beam ( with non-eigenpolarization ) , because of the nonmon-
ochromaticity and angular divergence the diffracted beams
are only partially polarized.67 These depolarization effects
can, however, be manifested only in samples with a high •
degree of perfection, since in imperfect samples depolariza-
tion is predominantly a result of the lack of coherence of the
scattering by separate crystallites.

The observation of dynamic effects by Marcus41 (see
Fig. 8 ) in selective scattering indicates the practical signifi-
cance of these effects for the study of blue phases.

Another dynamic effect (bleaching), linked with
multiwave diffraction of light in the blue phase, was ob-
served in Ref. 78. The theory of multiwave diffraction in the
blue phase has thus far not been developed, but symmetry
considerations make it possible to study in some cases the
polarization properties for multiwave diffraction also. It
should be noted that multiwave diffraction in the blue phase
can, in analogy to the case of diffraction of x rays,117-118 be
used to determine the relative phases of the harmonics £T in
the Fourier expansion

c) Pretransitional phenomena in the isotropic phase

Substances having a blue phase also exhibit some opti-
cal peculiarities in the isotropic phase in the pretransitional
region at temperatures somewhat above the transition tem-
perature. In this region the average order parameter is equal
to zero, but fluctuations of the order parameter and there-
fore of the dielectric permittivity can occur also, leading to
scattering of light and manifested also in corrections to the
average index of refraction. Because of the chiral asymmetry
of the molecules the fluctuations also are right-left asymmet-
rical, and for this reason the scattering and index of refrac-
tion are different for light with right and left circular polar-
ization, which causes rotation of the polarization plane and
circular dichroism. We emphasize that all these phenomena
are closely interrelated: scattering by fluctuations attenuates
a light wave as it propagates in the crystal, i.e., it causes the
appearance of an imaginary part in the index of refraction; in
its turn, the presence of the imaginary part unavoidably adds
(because of the dispersion relations) a fluctuation correc-
tion to the real part of the index of refraction. In terms of the
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phenomenological language we can say that the isotropic
phase near the point of the phase transition is a medium with
strong spatial dispersion because of the fact that the charac-
teristic dimension in the system (radius of the fluctuations)
is not very small or even comparable to the wavelength of the
light.

The unified nature of pretransitional optical phenom-
ena is manifested in the fact that they are all determined by
the same quantity: the correlation function of the fluctu-
ations of the order parameter G£'(r" — r')
= (£ij(r")£kl(r')), where the angular brackets indicate

averaging over thermal fluctuations. A peculiarity of sub-
stances exhibiting a blue phase is that when the pitch of the
helix is small (when *2>1), one mode with m = 2 or
m = — 2 (plane mode) makes the main contribution to the
fluctuations, while when x2^l, other modes can also be
significant.

The correlation function G *' was calculated by Bra-
zovskii and Dmitriev33 in the Gaussian approximation, i.e.,
under the assumption that the fluctuations are small and
that in the expression for the free energy of the fluctuations
terms of order higher than second in e can be omitted (see
also Refs. 2, 34, 76, and 91-94). In this approximation the
Fourier component of the correlation function Gy'(q) has
the form

!(q) = - (4.24)

wherea^ and Sm (q) are given by (3.23) and (3.31), and kB

is the Boltzmann constant. The physical meaning of the
expression (4.24) is quite obvious: the modes for which the
energy Sm (q) is minimum make the main contribution to
the correlation function. As we saw above [see (3.33)],
Sm (q) reaches a minimum when |q| = qc and m = 2 (i.e.,
the plane mode makes the maximum contribution to the cor-
relation function).

Light scattering makes possible direct measurement of
the correlation function. The cross section for scattering of a
light wave with wave vector x0 and polarization vector e0

into a wave with the corresponding vectors x^ and e, is di-
rectly proportional to <7,$'(x0 —

 xi):

(4.25)

The structure of the correlation function and the contribu-
tion of different fluctuation modes to it can be studied by
measuring the polarization of the light and the momentum
transferred x0 — x (this question is discussed in detail in the
review by Belyakov and Kats91).

Another method used to study the correlation function
consists of studying the rotation of the polarization plane in
the isotropic phase.44'93'95 Other effects of spatial polariza-
tion, linked to fluctuations, can also be observed in this case.
Indeed, in an isotropic medium the expression for the Four-
ier harmonics of the dielectric permittivity tensor is deter-
mined by three constants and has the form

4} K X) = 8tr ((0, X2) ( dtj — ̂ /

where e, = (x£dx)/}c2 and eu = (Sp£d — f;)/2 are the
longitudinal and transverse dielectric permittivities; the
imaginary part of the pseudoscalar yc = — ieiJk-x.k£

d
ij/2-x.2

produces circular dichroism, and the real part produces ro-
tation of the polarization plane.

Far from the point of the transition into the blue phase
the effects of spatial dispersion are weak, £u = £/ = EO, and
yc describes molecular rotation of the polarization plane.
Near the transition all three quantities £tr , £, , and yc can
have singularities. Thus far, however, only the pretransi-
tional behavior of yc has been studied theoretically and ex-
perimentally.

We shall present quantitative expressions for the fluctu-
ation correction to £d , obtained under the assumption that
pretransitional fluctuations in E are small.33'34'76 As is well
known (see Sec. 9 in Ref. 97), in this case £d = £0 + A£,
where £0 is the dielectric permittivity in the absence of fluc-
tuations, and A£ is proportional to (£<5E), where <5E is the
local correction to the electric field generated by the fluctu-
ations in e. Using the explicit expression for <5E in terms of
£,98 for the fluctuation correction Ae, following Ref. 97, we
obtain

Ae = -5J- (e (r) j f (r-r') e (r') exp [ix (r'-r)] dr') ,

(4.27)
ys

where F(r — r') is the photon Green's function.98 After
averaging using (4.24) and the Fourier components of
T(r — r'), we obtain

A _ ">2 ,,_ f fAe,, = -jr- hm |_ J ,„,(q) x,(qa_2ttq_ te)
-|
J .

(4.28)

From (4.26) and (4.28) the expressions for EU, E, and YC
can be represented in terms of elementary functions of the
dimensionless quantities qc/x, t, K2 and c2/c\. In the general
case these expressions are very cumbersome, and different
limiting cases have been studied only for yc .

33-34-68-70 Thus
for media with a long pitch (*2<1) the modes m = ± 1
make the main contribution to the rotation of the polariza-
tion plane, and

24nE(1
3 [o — c

• (4.29)

; (CO, X2 (4.26)

In the case of a short pitch in the immediate vicinity of the
transition point (when t — /r2</c2), modes with m = ± 2
can make an important contribution to yc, and the magni-
tude and sign of the rotation in this case are strongly depen-
dent on the wavelength.70 In addition, in this region the
imaginary part of yc, which is responsible for the fluctu-
ation-induced circular dichroism, can be significant.68

We underscore the fact that the linear dichroism of mol-
ecules can also cause the appearance of fluctuation-induced
circular dichroism in the isotropic phase (as in the case of
cholesterics6'80). Including it in A£ introduces a factor
(1 +/' Im£a/Reea)2 in expressions (4.27)-(4.29) [see
(3.3) for £a ). Thus the measurement of circular dichroism
in the region of linear dichroism of molecules affords an-
other possibility for studying pretransitional fluctuations.
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The above analysis of pretransitional phenomena was
based on the assumption that fluctuations are weak. The
case of strong fluctuations, which can even change the na-
ture of the transition from the isotropic liquid into the cho-
lesteric and the blue phase,2-33'34 are also of great interest,
but this question has thus far not been adequately studied.

5. STRUCTURAL STUDIES OF THE BLUE PHASE

In this section we shall discuss the fundamental paths
for determining the structure of the blue phase and the prac-
tical results achieved in this direction. Studies of the struc-
ture of the blue phase (as also, incidentally, structural stud-
ies of crystals in general) involve three stages: 1)
determination of the translational periodicity of the struc-
ture (finding the dimensions of the unit cell); 2) determina-
tion of the symmetry properties of the lattice (establishing
its space group); and, 3) determination of the unique coordi-
nate dependence of the order parameter £(r) (the electron
density in structural studies of ordinary crystals) within the
entire unit cell. The stages are listed here in order of increas-
ing complexity, and the solution of the problem at the third
stage implies the complete determination of the structure
under study.

a) Optical structural analysis

Since optical methods are most informative, we shall
study them first. As we saw above, each Fourier harmonic in
the expansion of £(r) (3.17) leads to the appearance of a
reflection in the scattering of light by the blue phase. The
experimental determination of all Fourier harmonics £T fol-
lowed by reconstruction of e (r) with the help of the formula
(3.17) therefore completely solves the question of the struc-
ture of the order-parameter field in the blue phase. The ex-
pansion (3.17) can formally include an infinite number of
harmonics. But, as experiment shows (see, for example,
Refs. 43 and 85) only a small number of reflections have
appreciable intensity. For this reason, in practice the "opti-
cal structural analysis" of the blue phase reduces to the prob-
lem of determining a comparatively small number of tensor
Fourier harmonics ET .

Let us consider what this means. In the most general
case, each Fourier component is determined by 12 param-
eters [this follows from the number of independent (six), in
general complex, components of the symmetrical tensor eT;
here we do not assume that Sp ( e r ) = 0]. Nonvanishing Sp
(eT) corresponds to taking into account the spatial modula-
tion of the isotropic part of the dielectric susceptibility £d.
For the isotropic component the conditions for the existence
of reflections are the same as for the component with m = 0
(as for x rays74). We note that the modulation of the isotrop-
ic part of £d can be linked, for example, to the modulation of
the density and is, as a rule, neglected. The number of inde-
pendent parameters that must be determined experimentally
can be decreased by using additional considerations or mak-
ing additional assumptions in structural studies of the blue
phase. For example, the use of the symmetry properties of
£(r) in cubic crystals very severely restricts the number of
independent parameters of ET for reflections of a particular

type (see Table I). Using the results of the theory of phase
transitions in the analysis of the structure of the blue phase
also makes it possible to decrease substantially the number
of free parameters. Thus, within the framework of Landau's
theory, as mentioned in Sec. 3c, in the approximation under
study the expansion (3.21) for each ET contains only one
nonvanishing term with m = 2 (or — 2). This theoretical
result makes it possible to reduce to two the number of free
parameters in the harmonic.

Without making any additional assumptions regarding
"optical structural analysis," we assert that the usual mea-
surements of the intensity and polarization characteristics
do not permit determining only the phase ofer, i.e., only one
of the parameters of er. This is linked to the fact that the
intensity and polarization characteristics depend on qua-
dratic combinations of eT. The remaining parameters in ET ,
however, can in principle be measured. As is well known,82

the study of the polarization characteristics of scattering in a
fixed geometry makes possible the determination of only
seven parameters in eT [ this restriction is linked to the trans-
verse nature of light waves; for example, for backwards re-
flection (6 B = ir/2) it is impossible to measure components
with m = + 1 ]. For this reason, measurements of the inten-
sity of scattering and of the polarization characteristics for
two arbitrary orientations of the incident beam are in princi-
ple sufficient to determine £r, with the exception of the
phase.

The above analysis of the structural and symmetry
properties of the blue phase and their relationship to the
optical characteristics of this phase lead to the following re-
sults. 1) The dimensions of the unit cell are determined by
the frequency (angular) position of the regions of selective
reflection [see (4.1) ]. 2) The space group of the structure is
determined by the set T (Miller indices) of observed reflec-
tions (regions of selective reflection). Here it should be not-
ed that just as in x-ray structural analysis, in many cases the
same collection of observed reflections can correspond to
several space groups. The situation is further complicated by
the fact that in reality only several reflections with the lon-
gest wavelengths are observed, while, for example, simple
and body-centered groups differ only starting with the se-
venth reflection42 (in order of increasing |T| ). In such cases
additional information must be used in order to unequivo-
cally establish the space group.

b) Polarization measurements and the phase problem

Structural studies of the blue phase reveal additional
possibilities for making comparisons with x-ray structural
studies. They are associated with the fact that polarization
measurements in the optical range have been completely
mastered, unlike the x-ray range, where the complexity of
polarization measurements virtually precludes the use of the
corresponding information. By measuring the polarization
characteristics of the reflections it is possible either to estab-
lish uniquely the space group or to reduce the number of
competing possibilities. Establishing the chirality of definite
reflections (i.e., the difference in the scattering of light by
opposite circular polarizations) is especially informative.
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Thus in the O5 group the second reflection is nonchiral, in O 2

the third is nonchiral, and in O8 the sixth is nonchiral (see
Table I). In principle polarization measurements allow the
separation of all groups, with the exception of T3 and T5

(Refs. 67 and 68)(for the groups T 3 and T5 the polarization
properties of the reflections coincide, and only the relative
phases of the reflections of separate types differ). The com-
plete determination of the structure under study requires
determining £T for the observed reflections taking into ac-
count their relative phases and indicates, in accordance with
(3.17), the possibility of reconstructing uniquely the coordi-
nate dependence of the order parameter e (r). We emphasize
again, however, that the usual diffraction measurements,
both in the x-ray and optical ranges, including polarization
measurements, do not give information on the phases of e,
which are required for determining, according to (3.17), the
coordinate dependence of £(r). This "phase problem" is
common to all diffraction methods.99'100 In practice, how-
ever, because of the existence of sources of coherent optical
radiation it is much easier to determine the phase in the opti-
cal range than in the x-ray range. In particular, the method
of recording the interference of the object beam (in our case
the diffracted beam) with the coherent reference beam
whose phase is known, which is often realized in practice
(for example, in recording holograms), can be used.

It should be noted that the determination of £(r) re-
quires only the relative phases of the Fourier harmonics with
different T. To find these phases, multiwave diffraction in
which the Bragg condition (4.1) holds for several T at the
same time and the intensity and polarization of the diffract-
ed wave carry information on the relative phases of the cor-
responding eT (in this case sources of coherent radiation are
not required) can be used as in the case of x rays.117'118

It is also important to note that the symmetry proper-
ties of cubic space groups impose restrictions on the relative
phases of harmonics with different T, and in the case of spe-
cial reflections [ (h 00), (hk 0), (hkk) , and (hhh) ] they also
impose conditions on the relative phases of the components
for each eT (see Table I above). The latter is equivalent to
the restriction on the relative phases of the quantities e(r;
m) with different m. As a result, for reflections of the form
(A00) and ( h k O ) , actually observed in experiments, the
phase problem reduces merely to determining the sign of er,
which is much simpler than the general case.

In concluding this section we shall note a specific pecu-
larity of "optical structural analysis" of the blue phase,
which is useful to keep in mind when performing experimen-
tal studies. Because of the informativeness of polarization
measurements in structural studies it is desirable to use thin
samples in order to simplify the interpretation of the mea-
surements. A kinematic description can be used for them,
and the polarization characteristics of scattering are inde-
pendent of the thickness (see Sec. 4), in contrast to thick
samples for which a thickness dependence could exist. In the
blue phase the azimuthal dependence of the characteristics
of selective scattering, i.e., the dependence on the angle of
rotation of the sample around the reciprocal lattice vector T
in the Bragg condition (4.1), is informative. In this case the

componentse(r; m) with m = 0, ±1, ±2 and the interfer-
ence between them are responsible for the modulation of
measured quantities with periods of 2ir, IT, 2ir/3, and ir/2 in
the azimuthal angle. By measuring this azimuthal depen-
dence of the scattering characteristics (for example, the
scattering intensity of two circular and two linear polariza-
tions) it is therefore possible to determine the amplitude and
the relative phases of the components £ ( T; m) in the expan-
sion (3.21). Of course, samples which are as close as possible
to being single-domain must be used here, because, for exam-
ple, the azimuthal dependence under study simply does not
occur in scattering from completely unoriented polydomain
samples. Here we call attention to the fact that the polariza-
tion characteristics are determined from the results of rela-
tive measurements, in accordance with which the polariza-
tion of selective scattering is expressed in terms of the
relative magnitudes of the components e(r; m) and their
phases and not in terms of their absolute magnitudes. As a
result of this, the accuracy with which the relative values of
£(T; m) are determined depends directly on how well multi-
ple-scattering effects have been excluded in the polarization
properties (how well the kinematic approximation is satis-
fied) or how accurately they are included if they are impor-
tant.

c) Results of structural studies

As already pointed out, the entire program for deter-
mining the structure of the blue phase as described above can
in principle be implemented based on optical measurements
without any additional assumptions or information. The ex-
perimental studies performed both in pure substances and in
mixtures have produced significant information on the
structure of blue phases, but they do not yet provide a unique
reconstruction of this structure. With regard to the magni-
tude of the period in blue phases, all investigators agree that
the blue phases are observed in substances (mixtures) with a
short cholesteric pitch ( p ̂  5000 A). It turns out that in all
substances studied approximately the same ratio is observed
between the maximum wavelength of selective reflection
A BP (in the medium) and the cholesteric pitch: A BP j ~ 1 Ap,
A BPII sr 1.2/7. As the temperature is lowered, the period of
the blue phases increases—very strongly for BP I and much
more weakly for BP II, according to data obtained by Mei-
boom and Sammon,26 and does not change at all for BP II
according to other data.27 According to the theory (see Sec.
3) the period is virtually independent of the temperature and
^BPI ~l-3/>, -4.BPII ~ l-13/». The observed small disagree-
ment between theory and experiment can be attributed, for
example, to the fact that the harmonics dropped from eT in
the theory are neglected.

With regard to the space groups of blue phases, here the
picture is less clear and different authors have proposed dif-
ferent space groups for the BP I and BP II phases. It is
unanimously agreed upon only that BP I and BP II have
cubic structures. Most investigtors26'27'38"41-43-66'78'85 are in-
clined to believe that the BP I phase has a cubic body-cen-
tered lattice (group O8) and the PB II phase has a simple
cubic lattice (O 2 ) . Polarization measurements performed on
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oriented samples43'85 are especially convincing here, since in
this case the orientation of the reciprocal lattice vectors rela-
tive to the crystallographic axes has been established. It
should be emphasized, however, that because of the finite
accuracy of the measurements other possibilities, for exam-
ple the subgroups of the groups O 2 and O8 (O2 has the sub-
group T1, while Os has the subgroups T5 and T4), cannot be
completely excluded. For example, the only two sets of re-
flections (100) and (110) observed in BP II, assigned to the
group O2, can be formally interpreted as the reflections
(200) and (220) of any cubic group except O', O2, O3, and
O4 (see Table I). A larger number of reflections must be
measured in order to make a more reliable determination of
the group.

The measurements of selective scattering of light in
cholesteryl «-alkanoates (3<n<18),42 in which one of the
phases is assigned to the group Os, diifer somewhat from the
results presented above. It is concluded in Ref. 101, based on
the chirality of the third reflection, that the BP II lattice is
body-centered. The absence of unanimity regarding the
question of the space groups of blue phases is in all probabil-
ity attributable to the fact that different authors arrive at
their conclusions based on a small number of reflections,
though, of course, it has not been excluded that in different
compounds and mixtures the blue phases have different
symmetry. Another factor that could interfere with the iden-
tification of the space group is the deviation of the polariza-
tion properties of reflections from the theoretically predict-
ed properties because of multiwave effects; in particular,
chirality can appear in nonchiral reflections. Phase separa-
tion can also make it difficult to identify phenomena occur-
ring in mixtures.102

The structure of the compounds studied has not yet
been completely determined by optical methods, but addi-
tional assumptions make progress possible here. Thus if in
accordance with the theory it is assumed that the modes e (r,
2) make the main contribution, then the ratio of the moduli
of the amplitudes of these modes for different harmonics can
be calculated from the data on circular dichroism.43-85 As-
signing to £(T; 2) the signs following from the theory, £(r)
can be reconstructed from the formulas (3.24) and (3.25) to
within a coefficient. We note that for a number of mixtures of
cholesteryl nonanoate and cholesteryl chloride these ratios
are on the average equal to \e (110; 2) |: \£(200; 2) |: \e(2\\;
2)|sl:l:0.33forBPIand|£(100;2)|:|e(110;2)|=:2.5for
BP II43-85 and are close to the values following from Lan-
dau's theory [we recall that e(r, 2) and//, in (3.47) and
(3.48) are related by the relation (3.37) ]. The signs of e(r;
2) can also be determined (i.e., the "phase problem" can
actually be solved) experimentally by NMR, which is a very
effective and promising method in structural studies of blue
phases.32'71'103 NMR spectra can contain information on the
dielectric permittivity tensor £(r) and its spatial distribution
in the phase under study. For this reason, in particular,
NMR data can be used to determine experimentally the
phase relations between different Fourier harmonics £T,
which, as we have seen, can be determined to within a phase
factor comparatively simply from optical measurements.

Using the values of £T measured by optical methods for cal-
culating the NMR spectra and regarding the phases of these
quantities as free parameters, the corresponding phases can
be determined from the condition that the measured and
computed NMR spectra coincide, and the distribution £(r)
in the structure under study can thereby be completely re-
constructed. As an example, Fig. 18 shows the NMR spectra
calculated in accordance with Ref. 103 for the O 2 and O *
groups; in addition, spectra for all combinations of signs of
£(110; 2), £(200; 2), £(211; 2) are presented (for O2 the
signs are unimportant). If the signs are the same as those
following from Landau's theory, then the spectra for O 2 and
O8 practically coincide and are analogous to the spectra ob-
served experimentally.32 For other signs the spectra for O8

differ markedly from the observed spectra, which makes the
choice of phases in this case unique.

6. CONCLUSIONS

The preceding sections of this review show that in the
last few years great progress has been made in the study of
the blue phases of liquid crystals, and this work lies at the
frontier of modern research not only in the area of liquid
crystals, but also the physics of the condensed state as a
whole. Here problems are posed and in many cases, as we
have seen, solved for the example of liquid-crystalline sys-
tems, but the significance of the problems extends beyond
liquid crystals in themselves; the results are of general phys-
ical interest and are important, for example, for the theory of
phase transitions with a complex order parameter and, in
particular, the theory of melting, problems of defects in con-
densed media, hydrodynamics of anisotropic liquids, etc.
Here for the time being there are more unsolved questions
than questions for which a definite answer can be given.

Ad)

Ad)

FIG. 18. NMR spectra calculated following Ref. 103. a) Signs of the
Fourier harmonics from Landau's theory; b) for the group O * with incor-
rect signs of the Fourier harmonics.
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Moreover, the application of new methods to the study of
blue phases51'52'104 raises new problems. As a result of this, in
this review primary attention was devoted to research paths
along which most progress has been achieved: symmetry of
blue phases, phase transitions in them, and optical proper-
ties. Other paths which are no less interesting and important
are only mentioned here because they have not yet been ade-
quately researched.

Therefore, in conclusion we shall briefly mention cur-
rent problems and unsolved questions concerning blue
phases.

One of the main problems is the structure of BP III (the
fog phase), in which long-range translational order is ab-
sent. One possibility is that BP III is a region of strongly
developed fluctuations in the isotropic phase33'34 [estimates
show68 that the usual fluctuations (see Sec. 4) cannot ex-
plain the magnitude of the circular dichroism observed in
this phase ]. It is also possible that BP III consists of nuclei of
the blue phases BP I or BP II in the isotropic liquid48-60 (see
Fig. 14). Some modern theories of crystallization suggest an
interesting possibility.3'105"107 These theories predict that
phases without translational order but with long-range
orientational order (cubic or icosahedral) can exist between
the liquid and crystalline phases; in this case, anisotropy
should be observed in light scattering by BP HI. Other possi-
bilities have also not been excluded, and BP III must be
further studied experimentally and theoretically.

The study of the hydrodynamic and elastic properties of
the blue phase are also at the starting stage. Because of their
three-dimensional periodic structure blue phases must have
an elastic shear modulus, equal in order of magnitude to Kq2

c

i.e., 103-104 dynes/cm2. Preliminary experiments on unor-
iented samples have given precisely this value.51'52'131 A the-
ory has not yet been advanced for this problem. It is desir-
able to measure the shear moduli (there are two in cubic
crystals) for perfect samples, since it is known that the elas-
tic moduli of crystals are very sensitive to the degree of per-
fection of the sample. Lattice vibrations in blue phases have
not yet been studied and the yield stress of the blue phases
has not been determined. These questions are apparently
also closely related to the anomalies in the viscosity, which
were observed a long time ago in the region of the isotropic-
liquid-cholesteric transition (increase in the viscosity by
several orders of magnitude and its strong dependence of the
rate of shear). It is shown in Ref. 50 that these anomalies are
associated with the presence of blue phases and vanish in
cases when blue phases do not occur (see Fig. 12). Many
uncertainties remain, however, because the viscosity anoma-
lies are observed in some substances in a very large tempera-
ture interval of ~ 15°.5 It would be interesting to study diffu-
sion in the blue phases, since the presence of "disclinations"
can strongly affect transport phenomena (diffusion along
dislocations occurs in ordinary crystals).

We note that the existence of shear moduli at zero fre-
quency (if they indeed exist) would mean that the blue phase
is actually a solid, but a very unique one. Although three-
dimensional long-range order in the orientations of the mol-
ecules exists in the blue phase, long-range order does not

exist in the arrangements of the centers of gravity of the
molecules. The molecules can therefore flow (though with a
high friction) through the lattice of the order parameter (an
analogous "permeation" process also occurs in the choles-
teric structure1'5).

The question of orientation of blue phases by surfaces is
very interesting. In some cases the blue phases are apparent-
ly oriented so that the vector of the strongest harmonic in the
structure would be perpendicular to the surface.85

The electrical properties of blue phases have not been
adequately studied. Only the untwisting and transition of
blue phases into the cholesteric or nematic phases in an ex-
ternal field and field-induced birefringence have thus far
been observed.48'53'54'122 We note that piezoelectricity can
occur in the crystal class T, but should be absent in the class
O?1 This result, however, was obtained for weak deforma-
tions. Since in blue phases small loads can lead to large defor-
mations (because of the smallness of the shear moduli), the
question of piezoelectricity deserves a detailed theoretical
and experimental study.

More accurate and thermodynamically equilibrium
thermal measurements in the isotropic and blue phases,
which, in particular, would resolve the question of the role of
fluctuations in the phase transitions studied, are extremely
desirable.131 With regard to the best developed optical meth-
ods for studying blue phases, here, in analogy to x-ray dif-
fraction,117'118 multiwave diffraction effects could be very
useful for structural studies (in particular, for determining
the phase of the structural amplitude). This question has,
however, not yet been studied theoretically or experimental-
ly.

We also point out some general conclusions that can be
drawn for other areas of solid-state physics from the results
obtained for the blue phase. 1) Lifshitz's invariants in Lan-
dau's expansion can lead to three-dimensional (in particu-
lar, cubic) structures (this could be important for magnetic
materials and ferroelectrics, where an analogous situation
can occur). 2) The cubic term in Landau's expansion does
not necessarily reach a minimum in body-centered struc-
tures, which could be significant for the theory of melting of
solids,108 for the theory of matter in neutron stars,109 and for
cubic smectics (D smectics)128 and lyotropic crystals.129 3)
Apparently there is a far-reaching analogy between the dis-
clination structure of blue phases and the disclination struc-
ture in the lattices of some solids.110 In particular, in both
cases disclination-free structures can be constructed in a
space with more than three dimensions (on three-dimen-
sional spheres in a four-dimensional space1 J 1>112). Construc-
tions of this type are useful for understanding the nature of
short-range order in glasses, amorphous solids, and li-
quids. 111-113'130 Analogies between the physical properties of
the blue phase and colloidal crystals, which have been inten-
sively studied in recent years (see the review of Ref. 114),
should also be noted. These include, in particular, the Bragg
diffraction of light, elastic moduli comparable to those in the
blue phase, analogous phase transitions, anomalies in the
viscoelastic properties, etc. There is thus still much left to be
done in the study of blue phases. It is, however, significant

560 Sov. Phys. Usp. 28 (7), July 1985 V. A. Belyakov and V. E. Dmitrienko 560



that an adequate approach has been found to a problem with
an almost 100-year history, and for this reason new progress
in the study of this extremely interesting phase state of mat-
ter should be expected in the near future.

The authors thank E. I. Kats and D. I. Khomskii for
useful remarks.
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