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A review of the literature on the radiation reaction force on a charged particle shows that the
expression given for this force obtained by Lorentz, Abraham, and Dirac is in physically reasona-
ble agreement with the radiation of energy, momentum, and angular momentum, and is success-
fully used in investigating the motion of particles in a field. A selection of physical solutions by the
methods presented herein guarantees that the conservation laws are satisfied. In the first approxi-
mation, which is the only one utilized in the majority of physical situations, radiation damping
does not depend on assumptions concerning the structure of the charge of the particle. A theory is
presented of the losses of energy, momentum and angular momentum by a system of charged
particles in the course of their moving together taking into account the external field, the radi-
ation damping forces, and the retarded Lienard-Wiechert forces. Formulas are given for the
spectral and angular distribution of the radiation from a system of particles. The concept of a
center of a system of events with relativistic particles is utilized in constructing a system of
equations for finding the angular momenta of the electromagnetic waves radiated by particles of
the system. The angular distribution and the total intensity of the radiation from a system of
particles at an arbitrary instant of time is obtained. Using the example of the joint synchrotron
radiation from two particles the consistency of all three approaches to the radiation from a system
of particles is demonstrated.
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1. RADIATION DAMPING FOR A SINGLE CHARGE

The equations of motion for charged particles include,
as is well known, forces of radiation friction, arising as a
result of the reaction on the particles of electromagnetic
fields produced by their motion. Although under laboratory
conditions these forces are usually small compared with the
other forces acting on the particles, their presence puts the
equations of motion in the form which differs essentially
from the form of the equations when such forces are ignored.
Therefore the correct definition and the conditions for utiliz-
ing the radiation damping forces in the equations of motions
of charged particles moving with acceleration have become
the subject of numerous investigations in which quite a few

contradictions have arisen. Although radiation reaction
forces have been applied successfully in calculating the mo-
tion of particles in a number of physical situations and
repeatedly exhortations have been made to exclude the prob-
lem of radiation damping from the "eternal" problems of the
mechanics of charged particles and classical electrodynam-
ics, it is still being discussed in the literature, and many fun-
damental monographs and textbooks on the theory of the
electromagnetic field present it evasively. As regards the
connection between the radiation damping of a system of
relativistic particles and their joint radiation nothing at all
has been known until very recent times.

Already in 1871 Stewart1 opined that a moving body
interacting with other bodies within a finite volume by
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means of thermal radiation must experience damping as a
result of this radiation. In 1892 Lorentz2 showed that the
force doing work on a particle with charge e which is equal to
its loss of energy by radiation in its accelerated quasiperiodic
motion contains a third derivative of the position vector of
the particle and (in the frame of reference where the speed of
the particle is small) is given by

'=£'': (U)
in virtue of which the equation of motion of the particle in an
external electromagnetic field with field intensities E and H
takes on the form

mr = eE + — [vH] -f - 5 - r. (1.2)

The force (1.1) has been given the name of radiation friction
or radiation damping force since it was possible to show that
at least in some easily analyzable cases the effect of the force
(1.1) reduces the speed of the particle.

In 1904 Abraham3 starting from the balance of energy
and momentum in the process of radiation found that in an
arbitrary frame of reference the force (1.1) has the form
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if one exludes both the term which is infinite for a point
particle, and also all the terms which vanish for such a parti-
cle. Von Laue4 showed that (1.3) is obtained from (1.1) by a
Lorentz transformation. Planck5 was one of the first to apply
equation (1.2) to an investigation of the damped motion of
an oscillator.

The force (1.3) was obtained by eliminating the electro-
magnetic field from the Maxwell equations and the equation
of motion of a particle in a given field, but the role of the
neglected terms remained unclear. In this connection a
further development of the theory of radiation damping pro-
ceeded along two different paths. In the first case (cf., Sees.
2-6 of the present review) the starting points were the con-
cept of an elementary particle, and also the requirements of
relativistic covariance of the equations and the exact validity
of the laws of conservation of energy, momentum and angu-
lar momentum. As is well known, the elementary nature of a
particle and relativistic covariance of its description are
compatible only if the particle is regarded as a point particle.
In the second case (cf., Sec. 7) the influence of a possible
structure of the particle on the radiation damping force was
emphasized. A consistent treatment of such an effect in the
case of a finite number of degrees of freedom of the particle is
possible in classical theory only in the nonrelativistic limit.
It turns out, however, that all the problems encountered in
reality, including radiation damping and at the same time
not requiring the application of quantum theory, admit an
approximate description which synthesizes the principal
features of both points of view (cf., Sec. 8).

2. RADIATION DAMPING FORCE FOR A POINT PARTICLE
AND ITS PROPERTIES

In 1938 Dirac6 considered the problem of the radiation
damping force on a point particle in four-dimensional form

and showed that the force (1.3) is obtained on the assump-
tion that the particle experiences the limit of half the differ-
ence of retarded and advanced fields produced as a result of
its motion, if one takes into account the balance of energy
and momentum on a three-dimensional surface of an infi-
nitely thin tube surrounding the world-line of the particle.
The limit is taken as all the components tend to zero of the
four-dimensional vector drawn from the particle to the point
in the field, whose three-dimensional part is perpendicular
to the velocity of the particle. The term, neglected in deriv-
ing (1.3) as a result of its becoming infinite for a point parti-
cle, in the process of this limiting transition cancels, and
(1.3) turns out to be an exact expression for the three-di-
mensional force f, which determines the four-dimensional
force" g, = {f/cVl-£2), /fv/(c2Vl ~P2} }, which ap-
pears in the equation of motion for a point particle:

r - f F S ' ( * ) « * + f t , (2.1)

where ds = c dt Vl — P2, «, = dx, /ds is a four-dimensional
velocity, F'" is the tensor of the external field and

2e2 / d 2 U i . d2";, \ 2e2 f~ d2u; / Aui \ 2 l
s^^(^ + u^-^-}=^[-^--^(^-} J -

(2.2)
In transforming one expression (2.2) into another one, and
also below, the identities d'/ds1 («,-«,- + 1) = 0, / = 0, 1, ...
are taken into account. The facts M, = {v/(cVl — /?2),
/A/1 -P2}, co, = dw,/ds = {[w/c2(l -/?2)] + [v(vw)7
c4 (1 -£2)2],/vw/c3(l -P2)2} are also utilized. Dirac also
showed in the same paper that the force (2.2) can be repre-
sented in the form

ft=7FSX, F'H^-j-^-u^,), (2.3)
where the dots indicate differentiation with respect to ds.

Expression (2.2) satisfies the identity
gtut = OJ (2.4)

and leads to the following expressions for the change in the
energy, momentum and angular momentum of a particle
when it traverses a certain region of space where an external
field is acting:
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The first term in each of the right-hand sides of (2.5) and
(2.6) is the change in the energy, momentum and angular
momentum of a particle under the influence of an external
field. The second term of the last expression in (2.5) and the
sum of the second and third terms in the last expression in
(2.6) are equal, up to their sign as we shall verify below,
respectively to the energy, momentum and angular momen-
tum leaving the region, where the particle is moving, togeth-
er with the electromagnetic field radiated by it. The last
terms in (2.5) and (2.6) represent the discrepancies in the
balance of energy, momentum and angular momentum asso-
ciated with the possible accumulation (or expenditure) of
these quantities in the field of the charge. An exact balance of
energy, momentum and angular momentum without any
discrepancy is observed only in two cases, when either wt (s-
2) = w^s^ and Xj(s2) = x j ( s l ) , or wi,(s2) = u>,(s,) =0.
The former case refers approximately to the quasiperiodic
motion of a particle when s2 — *i amounts to one or several
periods (the fewer, the better is the approximation). The
latter case is realized either in the case of arbitrary Sj and s2 in
the case of motion of a particle in space, where the external
field is entirely absent, or in the passage of a particle through
the entire region where an external field acts, with

i,= — <x,s2 = +00 and it is assumed not only that lim
S—f ± 00

wt (s) = 0, but also lim x, (s)Wj (s) = 0. The conditions
5—* ± 00

indicated above limit in an essential manner the selection of
physically acceptable solutions of equation (2.1), and we
shall refer to this below.

3. DERIVATION OF THE EXPRESSION FOR THE RADIATION
DAMPING FORCE

We now pose the question in the reverse order, consid-
ering the expressions (2.4), (2.5) and (2.6) (in the absence
of a discrepancy) as equations defining the force g,. First of
all the question arises concerning the lack of ambiguity in
expression (2.2) as a solution of these equations. Bhabha7

showed that for a point particle, in contrast to an extended
one, the balance of angular momentum does not yet follow
from the balance of energy and momentum. He found, that
taking into account the flux of angular momentum through
the surface of an infinitely narrow tube surrounding the
world line of the particle makes (2.2) the unique solution of
the above system of equations, if one excludes terms with
higher derivatives of the velocity. He also found8 that one
can add to (2.2) an infinite number of terms each of which is
a certain polynomial in the components of the vector ut and
its derivatives of increasing orders, but these terms take into
account the fact that the particle has not only a charge but
also a magnetic moment, while complex systems also have
higher electric and magnetic moments. The required num-
ber of such terms can be easily taken into account in (2.2),
but, firstly, when a particle has charge they in the majority of
physical situations give a negligibly small contribution to the
radiation damping force since they contain higher deriva-
tives of the velocity, and secondly all the corresponding mo-
ments are of quantum origin and taking them into account in

a classical theory is not justified. We then return to expres-
sion (2.2).

Infeld and Wallace9 obtained equation (2.1) with the
force (2.2) starting from the equations of motion of the gen-
eral theory of relativity. A number of other authors10"18 ar-
rived at the same equation but by different paths. A similar
equation was obtained by Wheeler and Feynman19 starting
with the concept of total absorption of radiation by other
charged particles. On the other hand, in Refs. 20-22 it was
shown that the same result can be obtained using only re-
tarded fields in the neighborhood of the world line of a parti-
cle and a renormalization of the mass of the particle, since
only the use of the limit of half the difference of retarded and
advanced fields guarantees automatically mass renormaliza-
tion. This is not surprising since in the limit of zero distances
from the particle the advanced field taken with the opposite
sign differs from the retarded field only by the sign of the
term corresponding to mass renormalization.

In papers by other authors23"25 doubts were expressed
whether the derivation of expression (2.2) was convincing
or correct, or alternatively other expressions forg,- were pro-
posed in its place.26"37 These proposals did not gain support.
In particular, in Refs. 38 and 23 it was shown that the equa-
tion proposed in Ref. 30, leads to contradictions. In Ref. 39 it
was shown that the equations of Ref. 34 cannot be correct,
since in the one-dimensional case they reduce to the equation
of motion of a particle without radiation damping. Stockel,37

who has enumerated in detail all, in his opinion (with argu-
ments ranging from those entirely justified, but harmless for
the theory, to absurd ones) essential defects of equation
(2.1) with the force (2.2), proposed a different equation
that contradicts relations (2.5) and (2.6). One of the subse-
quent papers by Dirac,40 which has not been elaborated in
the literature, can be regarded as a negation of radiation
reaction on the particle.

4. BALANCE OF ENERGY, MOMENTUM AND ANGULAR
MOMENTUM

Expression (2.2) for the radiation damping force which
satisfies relations (2.4), (2.5) and (2.6) cannot be repre-
sented in the form for which the balance between the change
in the energy, momentum and angular momentum transmit-
ted to the particle by the external field, the energy, momen-
tum and angular momentum acquired by the particle, and
the energy, momentum and angular momentum carried
away by the radiation into the wave zone, holds simulta-
neously for each instant of time. This problem, in particular
the seeming contradiction between the disappearance of the
radiation damping force in the case of uniformly accelerated
motion (hyperbolic motion for relativistic particles) and the
presence of radiation was discussed in Refs, 41-50, 15, 51-
60. This balance holds only for the entire period that the
particle is in the field. Indeed, in order that (2.4) should
hold it is necessary that the coefficients of the two terms in
expression (2.2) be equal (in particular, it follows from this
that the coefficient of the first term is not equal to zero), and
then in order that (2.2) and (2.5) should agree it is neces-
sary that the integral of the first term in (2.2) for the indicat-
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ed period should vanish. This is possible if the acceleration of
the particle wt is either the same at the limits of integration,
or vanishes sufficiently rapidly at each of them. The presence
in (2.2) of the aforementioned first term, the integral of the
fourth component of which over a finite time interval is
sometimes referred to as the Schott energy, reflects the fact
that the energy and momentum are accumulated by the field
of the particle moving with an acceleration in an external
field and are then expended on radiation or, conversely, at
first radiation occurs partially or completely at the expense
of the energy of the field of the particle, and later the deficit
in the energy of the field in replenished. Similarly the inte-
grals of corresponding terms additional to (2.2) and asso-
ciated with higher moments must vanish.

At one time in Refs. 42 and 45 the opinion was ex-
pressed that in case of hyperbolic motion no radiation takes
place, since the radiation damping force vanishes. In Ref. 61
a method of altering the boundary conditions for the field
was sought for which this radiation is absent. But this radi-
ation occurs52'53 at the expense of the energy of the field,
since the Schott energy is exactly equal to the radiated ener-
gy. An objection to this explanation based on the absence of
radiation observed by a comoving observer moving with an
acceleration, is rejected in Refs. 62, 60, since such an observ-
er has a horizon of events, and all the radiation, as it turns
out, occurs beyond this horizon.

We note that the first term in the force (2.2) which
prevents a simultaneous balance of energy and momentum is
needed to have agreement between (2.6) and the radiated
angular momentum.

5. EQUATIONS OF MOTION AND SELECTION OF SOLUTIONS

Equations (1.2) or (2.1) represent systems of three or-
dinary differential equations in the three coordinates of the
particle in an external field specified as a function of the
coordinates and velocities of the particle and also of the time.
The fourth equation of the system (2.1) is a consequence of
the first three in virtue of (2.4). Its most important differ-
ence from the equations of mechanics without radiation fric-
tion is the presence of the third derivatives of the coordinates
of the particles with respect to time [and derivatives of high-
er orders if additional terms are taken into account in (2.2) ].
According to the general theory of systems of ordinary dif-
ferential equations they have a unique solution (at any rate
over a certain interval of time; the solution can have an ana-
lytic continuation if the field along the path of the particle is
sufficiently smooth) if 9 arbitrary constants are specified,
for example, the coordinates, the velocities and the accelera-
tions at the initial instant of time. However, it turns out that
arbitrary specification of an initial acceleration leads, as a
rule, to physically unacceptable solutions, i.e., solutions that
violate the conservation laws. In particular, as we have al-
ready seen above, for a particle traversing the region of space
where an external field exists the laws of conversation of
energy, momentum and angular momentum for a system of
particles and the field can be satisfied taking into account
radiation damping forces if the accelerations of the particles
vanish in regions outside the field. But according to other

solutions third order equations a particle can be accelerated
indefinitely expending the energy of its own electromagnetic
field.

The situation here is reminiscent of that which exists in
a number of other divisions of theoretical physics where
from all solutions of the basic equations of the theory only
those are selected which satisfy certain subsidiary condi-
tions. Thus, in quantum mechanics for finite motion of parti-
cles only normalizable solutions of the Schrodinger equation
are physically acceptable. In other cases those solutions of
the Schrodinger equation are selected which possess a defi-
nite symmetry. Of the wave solutions of Maxwell's equations
most frequently only the retarded solutions are utilized. In
this respect the equations of motion with radiation friction
are not exceptional.

A well-known example of a not always acceptable solu-
tion of the equations of motion is the solution of equation
(1.2) in the absence of an external field that has the form
r = a + b? + c exp (3wc3//2e2). Only the solution with
c = 0 is physically acceptable, while the remaining give
"runaway", "self-accelerating" or "nonphysical" solutions.
Other examples are solutions of equation (1.2) for a particle
in a constant and homogeneous magnetic field and of equa-
tion (2.1) for a particle in a constant and homogeneous elec-
tric field parallel to the initial velocity and the initial accel-
eration.63 For the last problem the expression for the
velocity in terms of speed reduces equation (2.1) to the form
of equation (1.2). Other examples of exact solutions of equa-
tions (1.2) and (2.1) were found by Plass,50 who showed
that the authors of Refs. 30 and 64 who asserted that in
certain cases the equations of motion with radiation friction
have no physical solutions at all missed just the physically
reasonable solutions. In all these examples it turns out that
the space of the initial data leading to physically acceptable
solutions is the 6-dimensional subspace of the initial 9-di-
mensional space, with the acceleration at that point being
uniquely expressed in terms of the velocity and the field at
the initial point. It is just the necessity of selection from
among the initial data of such combinations of them which
yield physically acceptable solutions that gave rise to the
extensive discussion of the validity of the expression for the
force of radiation friction. In it, in addition to the authors
mentioned above, the authors of Refs. 65-69 also participat-
ed.

The necessity of selecting initial data leading to reason-
able solutions follows already from matching losses and ra-
diation. Indeed, for a physical solution the integral of the
first term of (2.2) proportional to the difference in the acce-
lerations at the limits of integration must vanish not only for
any arbitrary motion of particles through the entire region of
space occupied by the field, but also for any region without a
field. In the opposite case mentioned in the preceding para-
graph the solution for the motion of a particle outside the
field would have to be regarded as being physical even in the
case when c is different from zero. Consequently, outside the
field the particle can have only zero acceleration. Then from
the theorem of the uniqueness of the solution of a system of
equations with given initial conditions it follows that in the
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region occupied by the field there is only one solution which
corresponds to the position, velocity and zero acceleration at
the initial instant specified outside the field, and after emer-
gence from the field the acceleration vanishes. The self-ac-
celeration of a particle after it traverses any arbitrary field
turns out to be a physical myth belonging to unacceptable
solutions. Therefore Newtonian determinism—determina-
tion of accelerations by the positions and velocities of bodies
at the same instant of time (the nonrelativistic case) is pre-
served also taking into account the radiation damping force,
the dimensionality of phase space is not altered as the order
of the equations is raised, while the force of radiation friction
loses any kind of mystical overtones and can be utilized in
equations of motion even when it is not small compared to
the force due to an external field. The same applies to the
equations of higher order arising when terms are taken into
account that are additional to (2.2), but in this case asymp-
totic limitations are imposed also on higher order derivatives
of the coordinates.

The fundamental question remains—how to choose the
initial acceleration when initial data are specified at the
point where there is already an external field, so that also in
this case one should not deviate from the physically sensible
solution of the equations of motion? Dirac6 proposed to
choose only those solutions for which the acceleration van-
ishes when the particle traverses the field or in a magnetic
field the particle finally comes to rest. Bhabha8 assumed that
one should select solutions of equations (1.2) or (2.1) which
depend continuously on the charge of the particle e as e —>• 0.
It is true that Arley80 noted that in order to be able to expand
the solution in powers of the charge continuity is insuffi-
cient, but one needs analy ticity in the neighborhood of e = 0,
but it is not known whether the physical solutions are analy-
tical. Caldirola81 proposed to regard only such a solution
physical which for any t reduces to the solution for a free
particle if one lets the charge tend to zero. The above recipes
that guarantee the choice of the correct solution are useful
only in those exceptional cases when one succeeds in obtain-
ing an exact solution of the system of equations and in find-
ing all its solutions that depend on 9 arbitrary constants. In
the more general case one has to find the physically accepta-
ble solution by using the method of successive approxima-
tions to equations (1.2) or (2.1) assuming that the forceg, is
small compared to the force due to the external field, and this
we shall discuss in greater detail below.

6. INTEGRAL EQUATIONS. EXISTENCE THEOREM AND
SUCCESSIVE APPROXIMATIONS

An automatic selection of physically acceptable solu-
tions of the equations of motions taking radiation damping
forces into account is possible if they are formulated in the
form of integral equations equivalent both to differential
equations and to initial and final conditions. For the nonrel-
ativistic case these equations have been obtained in the pa-
pers by Haag14 and Rohrlich23 and for equation (2.1) by
Rohrlich.23-71'15 When the final condition wt = 0 is specified
then at the expiration of infinite time they have the form

w
I •

•, (T) = ̂ - \ [Ft (i')—c0wj (T') Wj (T1-) ut (T')] e-^o dt',
*0 J

T (6.1)

3mc3

(T is the proper time of the particle) or, in the nonrelativistic
limit,

(6.2)

The obtained equations can be easily formally integrat-
ed further in order to obtain on the left hand side velocities
and coordinates respectively, but we omit these obvious rela-
tions.

If the initial and finite conditions are specified in a re-
gion without a field, relations analogous to (6.1) and (6.2)
reduce to the equation wf = 0.

In considering the integral equations (6.1) and (6.2) it
strikes us first of all that the acceleration of a particle at each
instant of time is expressed not in terms of the past but in
terms of the future motion of the particle, so that the accel-
eration of the particle is determined by fields which the par-
ticle has not yet reached, over a time interval of the order of
TO. This phenomenon is referred to as "preacceleration" and
is sometimes regarded as a violation of causality.

Grunbaum and Janis82 have shown that the apparent
violation of causality in physical solutions for the motion of
charged particles taking into account radiation damping is a
consequence of the Newtonian point of view on the connec-
tion between force as the cause of motion and acceleration as
its consequence, while one can only speak of the fact that
force and acceleration mutually determine each other over
the entire time interval between the instant of specifying the
initial position and the initial velocity of the particle and the
infinitely removed position when the final condition of zero
acceleration is imposed. Here it is essential that one of the
conditions is specified in the future. One can invoke the ana-
logy with the case when it is necessary to attain a definite
final velocity, for example, in launching space vehicles when
the velocity at each instant of time is determined taking into
account the future action of a force (the difference in the
velocities is expressed in terms of the integral over time of
future forces). Such a description does not arouse funda-
mental objections from the point of view of Newtonion me-
chanics, while the adherents of the Aristotelian point of
view, according to which the velocity of a body is determined
by the force acting on it at that instant, would have said that
there is an unnatural "prevelocity".

Reference 23 sets forth also other arguments in favor of
the proposition that the integral equations (6.1) or (6.2) are
not at all evidence of the violation of causality, and that they
should be regarded as a mathematical instrument for finding
the correct classical picture of motion in the course of the
entire time that the particle is in a field.

The action of the right hand sides of (6.1) and (6.2) can
be picturesquely described in the following manner: accel-
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eration at each instant of time obtained with the aid of the
integral equations is determined by the requirement that in
the immediate future the solution should not deviate from a
physically sensible one. For this purpose in (6.1) and (6.2) a
sort of reconnaisance into the future takes place.

We note that for an electron r0 = 0.62 • lQ~23s, while
for other charged particles and charged microscopic bodies
this time is significantly still smaller. Consequently, all the
corresponding effects are far beyond the limits of applicabi-
lity of classical theory and cannot be directly investigated
with the aid of "test" particles. However, they manifest
themselves and are entirely observable and measurable in
the case of a sufficiently lengthy action, for example, in the
case of spiral motion of a particle in a magnetic field.

To find a solution in quadratures of equations (6.1) or
(6.2) is not any simpler, but rather more difficult than to
solve in quadratures the differential equations (2.1) or
(1.2). Therefore (6.1) and (6.2) serve most frequently to
construct a method of successive approximations for finding
the accelerations at each instant of time. Writing (6.1) and
(6.2) in the form

w. (T) = t (i + CXTO) -- T00, (T + OTO)] e-<* da,

= TUjWW (6.3)

(6.4)

and, expanding the integrands in series in powers of r0, we
obtain

wt. n 00 = w,. »-i (T) + T? (F\m (T) -*,— ' (T) (6.5)

In order to evaluate the terms appearing in subsequent ap-
proximations (6.5), one needs the values of the derivatives
of the acceleration evaluated by means of differentiating
(6.3) and substituting a lower approximation than the one
into which they are being substituted.

We note that the expansions (6.5) and (6.6) coincide
with those which can be obtained directly from the differen-
tial equations (1.2) and (2.1). This shows that the solution
of equations (1.2) or (2.1) by means of successive approxi-
mations, in which at each stage the desired part of the radi-
ation reaction force is regarded as being small compared to
the external force and to the sum of the already obtained
terms of the radiation reaction force, leads automatically to
a physically sensible solution. It is true that the number of
terms which have to be retained in such a series depends on
the actual smallness of the change in the external force dur-
ing the time TO in the reference system under consideration.

The outline for calculating the motion of a particle is
visualized as follows. At an arbitrary initial point, in the field
or outside the field, the initial position and the initial velocity
are specified. Then with the aid of (6.5) or (6.6) the accel-
eration corresponding to the physical solution is calculated
at that point. Then a finite step Ar = v Af, Av = w Af is
made corresponding to the time step A/. The same calcula-

tions are repeated at the new point. Naturally a strong or
rapidly varying field necessitates making the steps Af small
so as not to depart too far from the physical solution due to
the finite accuracy of calculations. The programs and pa-
rameters of such a calculation, and also the criteria for the
agreement of the obtained solution with the integral equa-
tions require a detailed investigation.

A number of papers, in particular those of Ezeilo83 and
Plass84 have been devoted to the problems of the proof of the
existence of physical solutions of the equations of motion in
fields of a general type. The process of convergence of
successive approximations in the solution of the integral
equations (6.1) or (6.2) has been investigated in greatest
detail by Hale and Stokes.85 They showed that in order for a
physically acceptable solution to exist it is sufficient that the
force acting on the particle due to the external field should
fall off faster than the first inverse power of the distance from
the region of the field at its periphery (if the particle leaves
the region of the field) and should increase not faster than
the first power of the velocity of the particle. By this they
proved that the successive approximations (6.5) or (6.6)
obtained with the aid of the integral equations (6.3) or (6.4)
are a convergent (under the aforementioned conditions)
method for seeking solutions of these integral equations.

These results are confirmed by examples of a numerical
solution (by successive approximations) of a number of
model problems dealing with one-dimensional motion of re-
pelling particles.86 In Ref. 87 it was found that in the one-
dimensional problem with attractive particles there is no
physical solution, which does not contradict the aforemen-
tioned theorem since in this problem the condition concern-
ing the asymptotic vanishing of the force in the distant future
is not satisfied since there is no outgoing trajectory in gen-
eral. The last problem becomes soluble if we consider parti-
cles as moving in three-dimensional space and do not at-
tempt to apply classical theory at too small impact
parameters.

Cases may exist which are not embraced by the condi-
tions of this theorem, for example, motion of a particle in a
magnetic field right up to its coming to rest.

Rohrlich15 noted that the results of Ref. 85 are insuffi-
cient to prove the uniqueness of the obtained physical solu-
tion. The conditions under which it is unique have not yet
been investigated. On the other hand, no problems have been
found in which the physical solution for the motion of a
particle is not unique.

In Ref. 88 an example is given in which the authors
assert that they have found two physical solutions for the
problem of a charge initially at rest near a plane layer within
which a force is acting to accelerate the charge. However,
one of these solutions cannot be regarded as being physically
acceptable, since although the acceleration after the charge
traverses the layer vanishes, the acceleration differs from
zero in the region of space where there is no external field of
any kind. We have already mentioned this condition in con-
nection with the discussion of relations (2.5) and (2.6). We
note that in practically realizable physical situations such a
limitation cannot become needed (therefore it is frequently
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forgotten), but it cannot be avoided in discussing model
problems in which the spatial derivatives of the field are dis-
continuous.

Naturally the theorem concerning the existence of a
physical solution of the equations of motion of a particle
does not indicate the numerical procedure which combines
accuracy of results with economy of calculations, particular-
ly if the interval of time over which it is necessary to trace the
motion of the particle is great. It appears that here the
"push-through" method21 might be applicable, but the appli-
cation of this method to the problems under consideration
has not yet been investigated in detail.

7. RADIATION DAMPING OF EXTENDED PARTICLES

A number of authors32'89"100 investigated the possibility
of removing the undesirable, from their point of view, prop-
erties of the equation of motion of a point particle by intro-
ducing a certain finite distribution of the charge of the parti-
cle. Such a description with a finite number of degrees of
freedom turns out to be possible only for nonrelativistic par-
ticles, since otherwise one has to consider the motion of an
infinite number of elements of a particle the motion of which
is described by integral equations,100 the properties of which
and the possibility of describing stable particles are com-
pletely uninvestigated.

On the other hand, at least for electrons, the ideas con-
cerning the existence of a finite structure of the charge of a
particle have no independent experimental confirmation.
And even if such a structure is manifested, its dimensions are
considerably smaller than the distances to which classical
electrodynamics is applicable. Therefore within the limits of
applicability of classical theory taking into account the
structure of a charge appears to exceed the allowable accura-
cy. Since the present review shows that even for a point parti-
cle expression (2.2) for radiation damping is sensible if the
necessary selection of solutions is made, taking into account
a possible structure of some particles is the subject of subse-
quent investigations by means of quantum theory.

8. RADIATION DAMPING IN THE FIRST APPROXIMATION

For laboratory and some cosmological situations that
have been studied the force of radiation damping is in fact so
small, compared to the force due to an external field in the
laboratory reference system, that already the first approxi-
mation when the acceleration, whose derivative appears in
the radiation force, is expressed in terms of the field neglect-
ing radiation damping, turns out to be sufficient to obtain the
equations of motion with the required accuracy (cf.,
Heitler's book101). But in other cosmological problems the
force of radiation damping can be great compared to the
external force in the frame of reference associated with the
cosmic object giving rise to the external field, but is small in
the frame of reference associated at a certain instant of time
with the particle.

However, this does not provide a basis for asserting, as
has been done in Refs. 33 and 36, that the equation of motion
with the expression for the radiation damping force in terms
of the external field in the first approximation is the exact

equation of motion. Indeed, such an equation satisfies the
balance of energy, momentum and angular momentum only
approximately, and not exactly as does (2.1). Similarly, the
replacement of the exact equation by an equation obtained
after a certain finite number of iterations breaks down the
exact balance between energy, momentum and angular mo-
mentum lost by the particle and radiated with the field.

Pomeranchuk67, and also Landau and Lifshitz (Ref. 10
and all the subsequent editions) assumed that equations
(1.2) or (2.1) are applicable only when the radiation damp-
ing force is small compared with the force due to the field (at
least in the reference system in which the velocity of the
particle is small), although Ref. 67 is one of the few applica-
tions of equation (2.1), in which in the system of reference
with respect to which the particle is moving rapidly, the radi-
ation damping force is great compared with the Lorentz
force. It is necessary to specify the reference system in which
the forces are compared, since the condition of smallness of
the force under consideration in an arbitrary reference sys-
tem is not relativistically invariant,102 although the condi-
tion of smallness in the instantaneous rest system of the par-
ticle is invariant.

It is easy to see that the condition formulated in Refs. 67
and 10 for the applicability of the radiation force is not in fact
some kind of a limitation on the set of physical situations
subject to investigation,50 since the same authors have
shown that the indicated smallness of the radiation damping
force in the instantaneous rest system of the particle always
holds under the conditions of applicability of classical elec-
trodynamics. On the other hand, although practically (with
the exception of some model problems) only the first ap-
proximation is used, in the case of a theoretical analysis it is
preferable to use the complete expression (2.2) for the radi-
ation damping force as satisfying the conservation laws ex-
actly and therefore not signifying that the accuracy has been
inadmissibly exceeded.

In the first approximation the equations of motion of
extended particles mentioned in Sec. 7 coincide98 with the
first approximation for the equations of motion for point
particles. Consequently, in the first approximation the radi-
ation damping force does not depend on assumptions con-
cerning the structure of the charge of a particle. Thus, the
first approximation for the radiation damping force realizes
an approximate synthesis of two existing points of view or a
compromise between them.

9. APPLICATION OF THE EQUATIONS OF MOTION OF
PARTICLES WITH RADIATION FRICTION

A number of papers is devoted to the investigation of
the motion of charged particles which do not interact with
other particles in a homogeneous and constant magnetic
field taking radiation damping into account: Refs. 89, 50,
103,75,55,34,35,104,113. In Refs. 106,108,114-116,35 it
was shown that in the case of motion of high energy particles
in a strong magnetic field the spectrum of synchrotron radi-
ation and, particularly, its polarization are changed in an
essential manner compared with the results of calculations
which assume that particles move exactly along a circle. In a
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real synchrotron particles necessarily move along trajector-
ies close to circles, and are supplied with energy, and this
suppresses the effect of radiation damping on the radiation,
but the calculation itself of these correcting interactions re-
quires taking radiation friction into account at least in the
form of a first iteration. On the other hand, the effect of
radiation damping must necessarily be taken into account103

in analyzing the synchrotron radiation of fast particles in
strong magnetic fields of extraterrestrial origin. For synch-
rotron radiation Shen108 indicated ranges of values of the
particle energy and of the magnetic field within which one
should mainly take into account the radiation reaction and
quantum effects. In Ref. 106 it is shown that the radiative
corrections to the radiation emitted by particles in a magnet-
ic field are more important than the quantum corrections, if
the Lorentz factor exceeds 137. Shen and White112 have
shown that the radiation deflection of a beam of particles is
greater than its broadening as a result of quantum fluctu-
ations, since the radiation shift is proportional toLH, where
L is the path length within the field H, and the fluctuational
spread is proportional to -^LH.

In order to give the reader an idea of the order of magni-
tude of the radiation effects arising when particles move in a
magnetic field we note that the relative contraction of the
radius of the orbit during one revolution is for nonrelativistic
particles equal to 4trH(3>H0), where /f0 = m2c4/
e3 = 6.03 • 10nr, while for fast particles this is multiplied55

by the Lorentz factor. If H = 2 T and %/mc2 = 5 • 104, then
Lr/r = — 7 • 10~7. In the case when the particles move in a
tube with the ratio of radii equal to 10~4, then already after a
hundred revolutions they could collide with the wall of the
tube, if necessary corrections and focusing were not intro-
duced. At low energies the radiation changes of the motion
can be less important than scattering by the molecules of the
medium.

Other cases of motion of particles taking radiation
damping into account were investigated in Refs. 97,50,117-
125. Sections 1-9 of the present article were also the subject
of the review of Ref. 126.

10. LOSSES OF ENERGY, MOMENTUM AND ANGULAR
MOMENTUM BY A SYSTEM OF PARTICLES

Until now we have taken into account the action on
charged particles by an external field and by the radiation
field of each particle. But in sufficiently dense beams the
particles interact also with one another, and this in certain
cases significantly affects both their motion, and the nature
of the losses by the particles of energy, momentum and angu-
lar momentum and the resultant radiation. In the nonrelati-
vistic case some aspects of this effect were considered in
Refs. 127,128. The coherence of the radiation by a system of
particles at sufficiently low frequencies was studied in Refs.
129-131.

Each particle with a charge ea at the four-dimensional
point xa gives rise at the field point x (also sometimes re-
ferred to as the observation point) to the Lienard-Wiechert
potential

A<al ( T\ — t> it (I T • y ^ 7 / \ ~ l /" 1 r\ 1 "\*±^ v'V — Kaaia U**- **-a/ uaf ' (. 1U. I )

where
(x - xa = 0. (10.2)

Differentiating the relations (10.2) with respect to x and
taking account that dxka/dXj = ukadsa/dxj we find dsa/
dxj = (x-xa ) j / ( x -xa)ua. Then from ( 10. 1 ) we obtain
the field tensor

_
[<*-*„)»„]»

(10.3)

where again conditions (10.2) are taken into account and
only the retarded fields are selected.

The equations of motion of a system of TV charged parti-
cles situated in an external electromagnetic field and inter-
acting by means of an electromagnetic field have the form

,a = -f FU (xa) dxja,

Axia =

where

dta =l, ..., N,

(«,„«,„ - U]aUitt)

(10.4)

® (Xa).

(10.5)
The first term in ( 10.5) is the external field, the second

has already been written down in (2.3) (the dots indicate
differentiation with respect to dsa ) and the third is the sum
of the fields (10.3), acting on each particle due to all the
others. On substituting (10.3) into (10.5) x is replaced by
xa > xa by the coordinates x'b, a, determined for each pair of
particles with indices a and b from the equations
(xa — x£,0)2 = 0 (Fig. 1), and ua, wa are replaced by
u'b,a . u>'b,a » which refer to the point x'b , a ( the primed instant
of time proceeds the unprimed one). A closely similar form
of the equations of motion of a system of particles is given,
for example, in Ref. 15.

The system of equations of motion for the particles con-
tains not only terms with derivatives of higher order, which
we have discussed above, but also terms with retarded argu-
ments. Although there exists mathematical literature con-
cerning differential equations with retarded arguments,
there is not much known concerning the properties of the
systems ( 10.4) and concerning the effective methods of their

FIG. 1. Coordinates in the case of a retarded interaction between parti-
cles.
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numerical solution. It is clear only that specification of a
finite number of initial data is insufficient for their unique
solution, and a specification of the asymptotic properties on
the periphery of the field is required.132-134 However, a case is
frequently encountered when at sufficiently great distances
between the particles the fields of interaction are consider-
ably weaker than the external field and this makes it possible
to specify at such distances the usual initial conditions which
determine the asymptotic behavior corresponding to the ex-
ternal field.

The total intensity of the change in the energy, momen-
tum and angular momentum of a system of particles is ob-
tained directly from (10.4) when either the equations of mo-
tion have been integrated, or the external field is so strong
compared with the other terms of the field (10.5) that the
motion of particles can be regarded as given:

= 7 2

(10.6)

(*.) - x)aFlh (*„)) dxka. ( 10.7)

The complete field (10.5) appears in (10.6) and (10.7). If
the motion of all the particles is known in the same (labora-
tory) reference system, the time in which we denote by t0

then we can set ta = t0 for all a.
Expressions ( 10.6) and ( 10.7) coincide up to their sign

with the intensities of radiation of corresponding quantities
determined (taking retardation into account) by the fluxes
in the wave zone, only for systems in which the correspond-
ing fluxes in general do not depend on the time, and in the
remaining cases give total losses of energy, momentum and
angular momentum which coincide with integrals with re-
spect to time of these fluxes through surfaces infinitely re-
moved from these systems, after integration of (10.6) and
(10.7) with respect to time over the whole period of the
accelerated motion of the particles or averaging in the case of
quasiperiodic motion.

11. SPECTRAL AND ANGULAR DISTRIBUTION OF THE
RADIATION FROM A SYSTEM

The concept of spectral distribution of radiation is ap-
plicable only to the intensity of radiation averaged over the
entire period of motion of the particles or at least over a part
of it (if sufficiently high frequencies are being considered)
with the angles determining the direction of the radiation
being defined in a reference system which is not comoving
with the particles. In order to find the spectral and angular
distribution of the radiation the potentials and the fields of
the particles are expanded into a Fourier integral or a Four-
ier series at the field point r, t with the aid of harmonics
including the field time t which can be assumed to be the
same for all the particles of the system and all the directions
of the radiation. Therefore the expansion of the retarded po-
tentials of the system of N particles almost literally follows
the presentation of the corresponding paragraphs of the
book of Ref. 10. In particular, for finite motion of particles
with frequency a>0 the spectrum of the radiation is discrete
and the harmonics of the vector potential at large spatial

FIG. 2. Radiation events, surface of radiation sources and a distant sur-
face.

distances !% from the system to the field points (Fig. 2) have
the asymptotic form

— - too pik.% V
1 JTCO C Zj

. dra,

(11.1)

where n is the number of the harmonic, while n is the unit
vector in the direction of the radiation. We have written the
potential (11.1) in the form which is sufficiently accurate
when ^? —> oo for finding the fluxes of the energy and the
momentum of the field; in finding the flux of the angular
momentum it is necessary also to take into account terms of
order 3?~2.

In fact for sufficiently high frequencies in integrals ap-
pearing in (11.1) an essential contribution is made only by
quite small parts of the trajectories of the particles132-52 (re-
gions where radiation is being formed).

The angular distribution of the intensity of the nth har-
monic of the radiation of energy with respect to axes fixed in
the laboratory is obtained in the form

d/,,= lim -£- | [kAJ |2J?2dQ. (11-2)

12. ANGULAR DISTRIBUTION OF THE INSTANTANEOUS
INTENSITY AND THE TOTAL INTENSITY OF RADIATION BY A
SYSTEM OF PARTICLES

In investigating the angular distribution of radiation
emitted by a single charge field points are considered with
coordinates r, t lying on a sphere of radius ^? which is large
compared with the length of the waves being studied, and
whose center is at the point where the charge is situated at
the instant t0, with the direction towards the element of the
sphere being indicated by the unit vector n, and a limiting
transition is then made as 3? —> oo. By this method, in parti-
cular, it has been verified in Ref. 136 that the energy and the
momentum of the radiation from a particle constitute a four-
dimensional vector and agree with (2.5).

For a system of radiating particles one has to character-
ize in a relativistically covariant manner the position of the
system as a whole at the instant tQ of laboratory time. The
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center of events of radiation with coordinates ra , ta , which
are not only at different points, but also as a rule not simulta-
neous in the reference system under consideration, and giv-
ing rise to a field at the point r, t which lies in the direction n,
is1 "the four-dimensional vector X defined in Refs. 138, 139
and having the coordinates

£!?E

T = -
0=1

(12.2)

where P = ££1, pa, W = ̂ =, $a, Me2 = 4%2 -c2P2,
%> a, pa are the energies and momenta of the particles at the
instants of radiation ta. In Ref. 138 it is shown that the co-
ordinates of the center, just as the coordinates of events,
transform according to the representation of the Poincare
group as the inertial reference system is changed. The vector
Xj is canonically (by means of 8JV-dimensional Poisson
brackets) conjugate to the momentum Pt of the system of
events. In the nonrelativistic limit if the times of events coin-
cide, R determines the center of inertia the system of parti-
cles. In Ref. 139 it is shown that the determination of the
center X for N particles contains N indeterminate constants
aa which are subject only to the condition that their sum
should be equal to unity. But in applying to the system of
radiating particles the symmetry condition which we shall
touch upon below yields uniquely that aa = \/N, and this
has been utilized in (12.1) and (12.2). One can show that
the requirements that X and P should be canonically conju-
gate, that X should be canonically independent of the rela-
tive momenta in the system of particles, that a correct nonre-
lativistic transition is made to the symplectic structure of the
usual coordinate-momentum phase space and the symmetry
determine the vector X uniquely.3' The time of the system as
a whole in (12.2) we set equal to the laboratory time t0.

Let the field point r at the instant t be separated from R
by a distance 3ft in the direction n (Fig. 2), and let the instant
t be the same for all the field points. In virtue of (10.2) we
have

(12.3)

The spatial coordinates R of the centers of radiation
events in different directions n need not coincide. In the gen-
eral case they form a two-dimensional closed shell (the sur-
face of radiation sources) which has at each instant of time t0

its own shape and lies within the system of particles. In cer-
tain cases, for example, for particles moving in one plane this
shell shrinks into a double layered area, and in even more
particular cases—into a one-dimensional segment of a
curve, or more accurately into an infinitely narrow sleeve. In
the nonrelativistic limit the shell of the radiation sources
shrinks into a point coincident with the position of the center

of inertia of the system at the instant t0. The field points
separated by 3ft from the corresponding points of the surface
of radiation sources form a surface which goes over as
3ft —>• oo into an infinitely removed sphere (portions of the
surface of radiation sources and of the infinitely removed
surface are shown in Fig. 2).

We consider the sum of the fields (10.3) produced by
the charges of the system on the distant surface at the instant
t of field time. In order to do this we add and subtract in all
the differences xt — xia in (10.3) the coordinates Xt, we add
the fields at r, t and go to the limit as 3ft —>• oo. As a result of
this construction we have xt — Xt =3ftnt, n, = (n, in0),
n2= I ,n0= (t-T}/3ft. With the aid of (12.2) we find that

lim «„=!, lim n2 = 0. (12.4)
,52^00 ,"72^00

The sum of the fields (10.3) contains both terms which
decrease as 3ft —>• oo like 3ft ~ 'and also terms which fall off
more rapidly. In investigating the fluxes of energy and mo-
mentum carried off by radiation the last terms are not need-
ed. We then find the principal part T^ of the energy-mo-
mentum tensor at the distant surface:

71 (2)
1 ih =

e a e b f a f b

a=l 6=1 (12.5)
here and below n denotes the quartet (n, / )•

The flux of energy and momentum across an element of
an infinitely distant sphere referred to an element of the solid
angle and an element of field time is equal to

t = lim c
.#-=0

dQ (12.6)

The element df can be expressed with the aid of (12.2)
and the substitution ta =t— [n(r — ra )/c] which follows
from (10.3) for 5R —> oo in terms of the element of collective
time, if we take into account that dta = dt /[I — (nva/c)]
follows from (12.3):

0=1 l--rnvo

a - - Ppa _ nracPpa

(12.7)

where "$a and pa denote the derivatives of "S a and pa re-
spectively with respect to the times of radiation events ta

taken at instants ta. For a single particle we find as usual
df = df0(l — nv/c).

The total intensity of radiation of energy and momen-
tum per unit laboratory time which corresponds to the state
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of the system of particles at the instant t0 can be found by
integrating the right hand side of (12.6) over the solid angle:

eg.ebia.fb
(nua-n«6)3 (12.8)

Two of the most important methods of choosing angles
specifying the vector n consist of the fact that the angles are
tied either to the arrangement within which the particles are
moving (laboratory angles), or to the motion of the group of
particles (angles with respect to the comoving system of
axes).

For A^ > 1 the coordinates, velocities, accelerations, mo-
menta and energies of the particles and their derivatives in
evaluating the integral (12.8) must be taken at the instants
of radiation ta, with this distinction depending on the direc-
tion of the radiation. In virtue of (12.3) as 0? —>• oo we ob-
tain a system ofN(N — 1 )/2 equations

c(ta-tb) = n'(Ia-Tb), (12.9)

of which only N — I are independent. These N — I equa-
tions and the equation T = t0 are the complete system of N
equations for finding numerically the N Xta for given t0 and
n. Substituting the obtained times for each point of the
sphere in (12.7) and (12.8) we obtain by numerical integra-
tion the total radiation of energy and momentum per unit
laboratory time corresponding to the instant t0.

The radiation from a system of particles found by this
method should not depend on the method of numbering
them. In order to guarantee this it is necessary that the sys-
tem of equations for determining the times of radiation
events should transform into itself upon a permutation of the
numbers of particles. Equations (12.9) indeed satisfy this
condition, while the equation T = t0 satisfies this condition
only when Tis taken in a form symmetric with respect to all
the particles and this has already been utilized above.

For a single particle we find from (12.2) tt = t0, the
shell of radiation sources coincides with the point at which
the particle is situated at the instant tQ, the integral over the
sphere is easily evaluated in the case of arbitrary motion of
the particle and from (12.8) the well known expression

i =-=— w2ut ds, (12.10)

where

is obtained which agrees with (2.5).
For the flux of angular momentum, taking into account

in the energy-momentum tensor terms of order 5?~3, we
obtain

(12.11)

o — nfcg»a)/0/f,n,
1

0=1 6=1

— {ni/sa — nhf,a) /i?ait, — (n,fka — nkfia)

—-2~(nAi —n f t 5 n ) / 0 / b -n(? a + 56)J ,

gia = «/„ ( 1 + qaU>a ~ 3 ""'«'go"a ) + Wja (39oUa - ?oWa),

i = 0, m4 = i lim J? («0—'
j%-«

IV

(12.12)

For a single particle integration over the sphere yields

(12.13)
ds 3c

which agrees with (2.6).
The coincidence of results obtained from formulas from

Sections 10,11 and 12 (in the case of a complete traversal of
the region of the field or averaging in the case of periodic
motion) is guaranteed by the laws of conservation of energy,
momentum and angular momentum for a system composed
of particles and field. We have already seen this agreement in
the case of radiation from a single particle, and for a system
of particles it is demonstrated on the example given below.
In order to clarify the difference in the sense of times appear-
ing in the formulas given above we consider a simplified case
when the particles of the radiating system move in an accel-
erated manner only during a finite time interval Af0 accord-
ing to the laboratory clock, and it is observed with the aid of
a device which is situated at a sufficiently great distance !%
from the system and encompassing the solid angle Afl. We
assume that during the time Af0 the center of the system
undergoes only a small displacement. Then the observer will
note the presence of radiation during a time interval Af
which sometimes can be considerably shorter than Af0. For
this case the integral over time over the interval A/0 of the
fourth component of (10.6) indicates the energy lost by the
system, the integral of the fourth component of (12.8) over
Ar0 and Aft yields the energy that has passed through the
detector (after the lapse of the retardation time ̂ ?/c) during
laboratory time interval Af0, while a similar integral of the
fourth component of (12.6) indicates an energy that has
passed through the detector during the field time interval Af.
The last two energies are close to each other for sufficiently
small Af0 and Aft.

13. JOINT SYNCHROTRON RADIATION FROM TWO
PARTICLES

We consider the simplest case when two identical parti-
cles are moving with the same velocity v along circles of the
same radius a, lying in planes parallel to the xy plane and
separated from each other along the z axis by an amount h.
Assume that one of the circles is shifted with respect to the
other along the y axis by an amount b, that the origin of
coordinates is taken half way between the centers of the cir-
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cles, that the particles move in the same direction with one
particle being ahead of the other by the angle <p, and the
laboratory time is measured from the instant when the mid-
dle of the segment joining the positions of the particles
crosses the* axis. Radiation from these two particles can be
in phase for sufficiently small <p, h /a and b /a. The circle
towards which both trajectories of the particles tend as these
quantities vanish we shall refer to as the central one.

The radiation from the system at each instant of time t0

is concentrated around the straight line tangent to the cen-
tral circle at the point with the angle coordinate a>0t0,
<y0 = v/a. We shall take this straight line as the polar axis of
the comoving coordinate system. The system of equations
for determining the instants of radiation 1 1 and t2 takes on the
form

(13.1)

where

= 1. fq j 4- p — (sin co0f 0 sin 0 cos i|) + cos a)0t0 cos 0)

— p — sin 9 sin t|) , (13.2)

while 0 and if> are the angles specifying the direction n in the
comoving system of axes.

For each t0 and n the system ( 1 3. 1 ) is solved by conver-
gent successive approximations, starting with t^ = t^ = t0.
The kinematic factor ( 12.7) is simplified:

dt __ [l-(l/c)nv1][l-(l/c)nv2] (13.3)

Then with the aid of ( 12.8 ) we find the intensity of radiation
It 2lt

2p sin 2Y

A+A_

2 cos 2V "I
A+A, J

(13.4)

where
A± = 1 — P (cos Y cos 0 ± sin Y sin 9 -cos t),

E = 1 — P cos Y cos 9,

F± — cos Y sin 0 cos ̂  ± sin Y cos 0, (13.5)

and Y is substituted from (13.1). The surface of radiation
sources for this problem turns out to be the segment of the
straight line perpendicular to the central circumference at
the point with the angular coordinate a>0t0 and lying in its
plane. The length of this segment vanishes quadratically for
small q>, h /a and b /a.

The difference in the intensity of the joint emission of
energy by two particles from the sum of the intensities of two
independent particles can be conveniently characterized by
the ratio R of the total intensity according to (13.4) to the
doubled intensity of radiation from a single particle under

the same conditions. In the case of sufficiently small shifts cp,
h /a and b /a we obtain with the aid of (13.1), (13.3) and
(13.4) the approximate expression

M(<p, h, 6) = 2 —

{7 — 1

10 (1-P2
) (A/")2

10 (1-P2)2

70
./I'fjnnn
\ a) (1-f

70 ( a ) (1-P2)3

70
i(p cos <a0t0 ,

IT (l-p2)3 + ' - ' (13.6)

Numerical calculation using (13.4) agrees with (13.6)
and with terms of higher orders not exhibited here which can
be obtained, and shows that the ratio R (<p, h, b) falls off
rapidly from R = 2 as cp, h /a and bcos&tgto/a increase,
crosses the level R = 1 and approaches it from below. The
point of the most rapid falling off of the curve R (<p, 0,0) lies
at £>~0.5 (1 -^2)3/2, of the curve R(0, h, 0)—at
A~0.8X(l-/?2),andofthecurvefl(0,0,&)at(f0 = 0)—
at6~0.2a(l —y92)3 / 2 . The wavelength at the maximum of
the radiation spectrum is close to twice the distance between
the particles in the direction of their motion at which the
sharp falling off of the curve R(<p, 0, 0) occurs. The size of
the region in which the radiation is in phase in the direction h
exceeds this wavelength by a factor of ~ 5/V1 — P2.

Of greatest interest is the case when/?2 > 7/16 and a>0t0

is close to ir/2, or more accurately, cos2a>0t0<9(l — f } 2 ) /
245. In this case R(0, 0, b) does not fall off but increases
from R = 2 as b increases from b = 0, goes through a maxi-
mum, and its smooth falling off occurs (if tu0f0 = ir/2) for
b~25a(l —/S 2 ) . This size of the region where the radiation
is in phase exceeds by a factor of ~ 100/Vl — 02 the wave-
length at the maximum of the radiation spectrum. Thus, the
region where the radiation is in phase has quite different
axes, the greatest of which greatly exceeds the intuitive esti-
mate of the distances between particles for which interfer-
ence of the emitted waves is possible. The intuitive estimate
is of the order of the wavelength of the emitted wave. The
curve R(0, 0, b) for a>0t0 = ir/2 is shown in the case
l/Vl-02 = 3 in Fig. 3. It has a maximum R = 2.44 for
b = 0.28a.

In the casef> = h = 0 it is of interest to examine the time
dependence of the ratio R and to compare it with the time

FIG. 3. Total intensity of radiation from a pair of particles as a function of
the shift b for0 = 2^2/3.
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radiation

FIG. 4. Intensity of energy losses by a pair of particles (dashed curve) and
the intensity of radiation from them (solid curve) as a function of ea0ta for
b = 0.28 and0= V2/3.

dependence of the energy losses, obtained from (10.6) by
changing the sign. This comparison is given in Fig. 4 for the
same value of 0 and for b = 0.28a. Integration of the curves
shown there shows that their averages coincide and are equal
to R = 1.041. If b = 0, calculations with the aid of (10.6)
give exactly the expansion (13.6) and the curves/? (qp, h, 0).

Calculation with the aid of (13.4) shows that in the
general case the angular distribution of the joint radiation of
two particles is broader than the angular distribution of the
radiation of a single particle, which has the width of the
order of the reciprocal Lorentz factor. But if <a0f0 is close to
ir/2 and the shift b is close to the value corresponding to the
maximum of the total intensity, the radiation is compressed
into a beam which is considerably narrower (in the region of
sufficiently small angles), than the radiation from a single
particle.

Utilizing the formulas for the spectral decomposition
(11.1) and (11.2) we obtain for the problem under consider-
ation the spectral and angular distribution

&ll" = 4 cos2 \~ (CP + P— sin 6t sirn|)L-f p — cos6Ll

(eL), (13.7)

where « is the number of the harmonic, dI^\BL) is the
spectral and angular distribution of the synchrotron radi-
ation of a single particle which was already found by
Schott46, and the laboratory angles 0L and if>L have been
used. If cp4.ir/n, in the sector cos0L <ira/(n/3h), sin
i(>L < ira/nfib sin 6L ) the radiation spectrum coincides with
the radiation spectrum of independent particles, but is mul-
tiplied by 4 in place of 2 (by N2 instead of N for N particles).
For N particles such an increase in radiation is possible if all
the particles are shifted in one plane from the central circum-
ference along a single straight line, with the maximum of the
intensity of the radiation being perpendicular to the indicat-
ed straight line, while in the other directions and for other
shifts of the trajectories of the particles the high frequency
part of the spectrum turns out to be suppressed to the extent
that in place of a factor of N 2 once again the factor ./V appears.

In the case of small <p, h /a and b /a the expression
(13.7) can be expanded in powers of these quantities, inte-

grated over the angles and summed over the spectrum. Then
we again obtain expression (13.6) in which averaging over
time has been made.

On the example discussed above we have demonstrated
the agreement between all three possible approaches to the
study of radiation (formulas (10.6), (ll.2) and (13.4) re-
spectively) and, in particular, the justification for using
expression (2.3) for the radiation damping force and for
using the concept of the center of a system of events with
relativistic particles. This example also shows that the the-
ory of radiation from a system of particles can provide the
possibility of foreseeing new phenomena that are manifested
in the case of joint radiation by particles and which could be
observed and useful.

Investigation of other examples shows that (12.8) en-
ables one to trace in the nonrelativistic limit the transition to
multipole radiation from a system of particles.

The author is grateful to S. N. Sokolov, and participants
of the seminars conducted by I. M. Ternov, B. M. Bolo-
tovskii, and L. V. Keldysh for a useful discussion of the sub-
ject of this review, to V. I. Arnol'd and A. N. Shoshitaishvili
for discussions of mathematical problems associated with
the review and to V. L. Ginzburg for useful remarks on the
initial draft of this review.

"Here and below four-dimensional vectors are taken in the form having
imaginary fourth components, and the summation indices in four-di-
mensional scalar products have been omitted in a number of formulas.

2>Consultation with a number of mathematicians and computer scientists
produced the consensus that the Russian term "metod progonki" trans-
lated here as the "push-through" method has not as yet acquired a gener-
ally accepted English equivalent. A brief description of the method is
available in Ref. 140, which states that it may be used to solve boundary
value problems for ordinary linear differential equations when the
"shooting method"141 or "metod pristrelki"142 is not effective.

3)An attempt to introduce different expressions for R and T which are
symmetrical with respect to particles, but associated with internal mo-
menta which depend not only on the individual momenta and energies,
but also on the masses of the particles, leads in the problem discussed in
§14 to a contradiction between the different approaches to the radiation
from a system of particles.
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