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This review discusses the results of theoretical and experimental studies of biphonons (phonons
bound to one another) and other effects of strong anharmonicity for the spectral region of over-
tones and compound tones of high-frequency optical vibrations of the crystal lattice. Longitudi-
nal-transverse splitting of a biphonon and features of the structure of its spectrum in anisotropic
crystals and Fermi resonance with bulk and surface polaritons are discussed, as well as the effect
of this resonance on the dispersion of polaritons. Considerable attention is paid to analyzing the
experimental data (infrared and Raman spectra) in which biphonons and cardinal rearrange-
ment of the dispersion of a polariton in the region of a Fermi resonance have been found. The
influence of a Fano antiresonance and singular points of the density of states are discussed in
connection with Raman spectra of polaritons.
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1. INTRODUCTION

Contemporary optical methods enable one to obtain
rather exact and full information, in particular, on processes
involving simultaneous creation or annihilation of several
quasiparticles (two in the simplest case). These processes
are of special interest, since a "residual" interaction between
the quasiparticles must be manifested to some extent, and
certainly can not always be considered weak.

In the case of phonons, anharmonicity acts as such a
"residual" interaction that is generally not taken into ac-
count in calculating the frequencies and amplitudes of nor-
mal vibrations. In this harmonic approximation,1-2 which
arose at the very beginning of the development of contempo-
rary solid-state theory, the excited states of the lattice corre-
spond to sets of different phonon numbers of various types.
For example, the energy of the excited state of a lattice with
two phonons as referred to its ground-state energy is

(1)

Here /, and 12 are the numbers of the branches of the phonon
spectrum, while kj and k2 are the wave vectors of the phon-
ons. The state being studied, in contrast to a state with one

phonon, is characterized by the values of the two quasimo-
menta ^k, and /2k2> and thus is a two-particle state. Analo-
gously one can write down the energy of the states of a lattice
with a large number of phonons. Since the phonons (k,, 1,),
(k2,12), etc. do not interact with one another in multiple-
particle states of this type when one neglects anharmonicity,
the width of the band of any multiparticle state proves to be
the sum of the widths of the energy bands of the individual
phonons.

Taking into account the anharmonicity of the lattice
vibrations gives rise to interaction of the phonons with one
another. Whenever this interaction proves strong enough,
states of mutually bound quasiparticles can be formed in
addition to the multiparticle states cited above. That is, they
constitute states absent in the description of the crystal in the
harmonic approximation. In states of this type the quasipar-
ticles move through the crystal as a unit and hence, just like
individual phonons, are characterized by only a single value
of the wave vector.

The bound state of two phonons is usually called a bi-
phonon.^ In the course of the past ten years, a rather com-
plete theory of biphonons has been developed. Also, as is
most essential, convincing experimental proofs of their exis-
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tence in different types of crystals have been obtained.
Although biphonons as well as other, more complicated

phonon complexes must be manifested in inelastic neutron-
scattering spectra, currently the most important experimen-
tal results have been obtained by analyzing infrared spectra
as well as spectra of Raman scattering by polaritons.

As is known, Raman scattering by polaritons is allowed
by the selection rules only in crystals lacking as inversion
center. It is precisely in this type of crystal that a Fermi
resonance with polaritons, which will be discussed below,
has proved to be the physical phenomenon most sharply
manifesting the features of biphonon spectra. Let us explain
what we have said.

In crystals the polariton (light) branch intersects not
only the region of fundamental frequencies of the lattice vi-
brations, but also the region of two-particle, three-particle,
etc., states. Resonance with these states affects the polariton
dispersion law. The result of this influence can be studied
directly by observing the spectra of Raman scattering by
polaritons. In this case actually a resonance occurs that is
analogous to the Fermi resonance in molecules, since one of
the normal waves in the crystal (polariton) resonances with
states analogous to the overtones or compound tones of the
intramolecular vibrations.

We recall, as is known, that resonance with the dipole-
active modes in the region of the fundamental optical lattice
vibrations leads to splitting of the polariton branch. This
splitting has been well studied by various methods. The es-
sential point is that it arises even in the harmonic approxima-
tion and as a rule, it is inessential here to allow for anhar-
monicity.

A different situation occurs in the region of the over-
tones or the compound tones of the lattice vibrations, which
leads to a number of qualitatively new effects. Namely,
whenever the anharmonicity is rather strong and biphonons
arise under its influence, a gap can be formed in the polariton
spectrum at the biphonon frequency. Such a gap arises if the
biphonon is sufficiently dipole-active, so that the width of
the gap is larger or of the order of magnitude of the width of
the polariton level. Since, by definition, the frequency of the
biphonon lies outside the band of two-particles (two-
phonon or dissociated) states (1), the gap in the polariton
spectrum must also lie in the stated spectral region. There-
fore the observation of a gap under these conditions at the
same time proves the formation of a biphonon, which in
many studies has been used both for interpreting spectra and
for estimating the anharmonicity constants (for details see
below in Sees. 3 and 4).

When a polariton enters the band of two-particle states,
a situation arises of the type that occurs in a Fano antireson-
ance: the polariton state with the given value of the wave
vector Q resonates with the entire continuum of two-particle
states of (1) having the total wave vector k, + k2 = Q.
Owing to this resonance, depending on the values of the
characteristic anharmonicity constants that determine the
intensity of the interaction of the polariton with the two-
particle states, various effects can occur. For example, when
the anharmonicity constants are small enough, the entrance
of a polariton into a band must be accompanied only by an

increase in the width of its level (a new channel of its decay is
opened) without a substantial effect on the dispersion of the
polariton. Conversely, when the interaction of the polariton
with the band of two-particle states is intense enough, the
dispersion of the polariton also changes, both inside the band
of two-particle states and on the approaches to it (see Sec.
4). The overall pattern of the effects that arise within the
band substantially depends also on the distribution of the
density of states in the band (singular points, etc). At pres-
ent it would seem to constitute the most interesting aspect of
study of Fermi resonance with polaritons.

Evidently a pattern analogous in many ways must occur
also for surface polaritons. In connection with the develop-
ment of studies on surface spectroscopy, we shall also dis-
cuss the features that arise here (Sec. 5).

Before proceeding to discuss the results obtained here,
let us make some remarks on the history of the development
of the studies.

First we stress that biphonons are fully analogous to the
bound states of two magnons.4"6 Moreover, crystalline hy-
drogen states of this type were studied by Van Kranen-
donk7-8 more than twenty years ago, and shortly after this
they were also observed experimentally.9 In fact, Refs. 7 and
8 treated only bound states of two different quasiparticles
under conditions in which the motion of one of them can be
neglected in the first approximation (Van Kranendonk
model). This situation did not allow use of the Van Kranen-
donk method for analyzing the biphonon spectrum in the
compound-tone region for a number of crystals (CO2, NO2,
OCS, etc.; see Ref. 10), and also for analyzing the spectrum
of vibron states in molecular crystals (see the review of Ref.
11).

A generalization of the biphonon theory that allowed
escaping the framework of the Van Kranendonk model has
been carried out in Refs. 12-14. Subsequently a series of
studies3'15"17 has treated the influence of anharmonicitiy on
the dispersion of polaritons in the spectral region of biphon-
ons and two-particle states, while Refs. 18 and 19 have treat-
ed the contribution of biphonons to the nonlinear polarizabi-
lities of the crystal. Questions of the theory of local and
quasilocal biphonons in disordered media have been dis-
cussed in Refs. 12, 20, and 21. The influence of anharmoni-
city in crystals on neutron inelastic-scattering spectra has
been discussed in Refs. 22 and 23.

In the presentation below we shall touch again to some
extent on the results of the studies mentioned above. Yet we
note now that the studies of Ref. 13 were started in connec-
tion with attempts at interpreting second-order Raman
spectra in diamond. The interest in this crystal arose from
the fact that Krishnan24 had observed, as early as 1946, a
sharp peak in the Raman spectrum of diamond at a frequncy
then thought to exceed twice the maximum optical-phonon
frequency ( f l 0 x 1332.5 ±0.5 cm"1) by about 1.9 ±1.5
cm"1. Since the nature of this peak remained unclear, the
authors of Ref. 13 advanced the hypothesis that the peak
arises from the excitation of a biphonon. It was assumed that
the stated phonon frequency fl0 corresponds to the value
k = 0, that optical phonons with small k have a negative
effective mass, and that formation of biphonons with an en-
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ergy exceeding the energy of two-particle states requires re-
pulsion rather than attraction.

Since that time no peak in Raman spectra analogous to
the peak observed by Krishnan has been observed in the se-
ries of crystals such as silicon and germanium having a struc-
ture of the diamond type and having a greater anharmoni-
city than diamond. This has impelled the authors of Ref. 25
to refine the calculations of the structure of the phonon
bands in crystals having a diamond-type structure. It was
shown by detailed calculations that the dispersion curve of
the stated high-frequency phonon in diamond does not have
the highest maximum at k = 0, but at k^O. This result im-
plied that the peak observed experimentally in Raman spec-
tra of diamond lies in the region of the two-phonon contin-
uum and cannot correspond to a biphonon, but most likely
involves features of the density of two-particle (dissociated)
states (however, see Ref. 93).

Apparently a bound state of two phonons for the over-
tone region was first identified in Ref. 26. In this study the
absorption spectrum was measured of an HC1 crystal in the
region of the overtone of the fundamental vibration (i.e., at
co = 2ft, (I = 2775 cm"1). Along with a broad absorption
band corresponding to excitation of two free phonons (the
width of this band is 2 A, where A is the width of the phonon
band, A s; 90 cm"'), an absorption peak also proved to lie in
the region of lower frequencies with a maximum at co = 5 313
cm"1 and a half-width ~20 cm"1) (for spectra of liquid
HClseeRef. 92).

We emphasize that anharmonicity cannot be taken into
account within the framework of perturbation theory in the
theory of biphonons or more complicated phonon complex-
es, as is done, e.g., in the theory of heat conductivity, thermal
expansion, etc.27'28 In many crystals for the optical branches
of the spectrum, the dimensionless parameter A /A, which is
the ratio of the anharmonicity constant A to the width A of
the phonon band, can be of the order of unity. It is precisely
in situations of this type that strong anharmonicity gives rise
to qualitatively new features in phonon spectra.

Moreover, we must consider the idea that anharmoni-
city in crystals, together with quantum objects formed from
a small number of quasiparticles, such as biphonons, also
makes possible "elementary" excitations corresponding to
propagation of purely classical nonlinear waves (of the soli-
ton type) that are solutions of the corresponding nonlinear
equations of motion. In quantum language one can say that
this type of excitation corresponds to bound states of a large
number of quasiparticles. While this is a matter for the fu-
ture, an analysis of the experimental conditions under which
one might note, e.g., Raman processes involving these
waves, would substantially assist the development of study-
ing them. The energy of nonlinear "elementary" excitations
must be large in comparison with the energy of one quasipar-
ticle (phonon, polariton), so that the study of Raman scat-
tering by nonlinear waves, at least far from structural phase-
transition points accompanied by formation of a soft mode,
would probably require the use of quite powerful light
sources. However, under high pumping levels of crystals, the
concentration of various types of quasiparticle (e.g., phon-
ons or polaritons) can sharply increase. In this connection

the highly interesting question also arises of the conditions
of existence of second sound or other excitations in a system
of quasiparticles not in a state of thermodynamic equilibri-
um, and of whether this sound can be observed by optical
methods. If one is speaking, e.g., of polaritons, then the ve-
locity of second sound in a system of them must be of the
order of the velocity of light. Just like the observation of
polaritons themselves, the observation of second sound
would require, e.g., small-angle Raman study.

While mentioning here along with biphonons, to which
this review is devoted, also the classical nonlinear waves of
the silicon type and second sound in a system of quasiparti-
cles, we have wished only to call attention to the wide possi-
bilities opened up here and the directions of searches and
analysis of the effects of strong anharmonicity of phonons,
and also to the place taken in this field of solid-state theory
by studies of such simple products of strong anharmonicity
as biphonons.

In the following sections of this review we shall discuss
the foundations of the theory of biphonons, examine the fea-
tures of Fermi resonance, in particular Fermi resonance
with polaritons, and also analyze the existing data obtained
in studying infrared absorption and Raman spectra.

We emphasize that reviews by one of the present auth-
ors3 have already been devoted to discussing the effects of
strong anharmonicity in Raman spectra, so that the atten-
tion in the present article has been concentrated mainly on
the results of the theory and experiment not found in Ref. 3.

2. THE GREEN'S-FUNCTION METHOD IN THE THEORY OF
BIPHONONS: FERMI RESONANCE AND THE STRUCTURE OF
THE SPECTRUM

a) Model Hamiltonian

One can conclude that the anharmonicity of the optical
vibrations in crystals for the overtone region of the spectrum
of intramolecular vibrations can be very considerable, even
from purely qualitative considerations. Actually, in isolated
molecules the anharmonicity energy^ of the intramolecular
vibrations usually amounts to a value of the order of 1-3% of
the quantum energy of the fundamental vibrations tfft. Here
one takes the anharmonicity energy A to mean the quantity
A = (2/zft — E2)/2, where E2 is the energy of the excited
state having the quantum number « = 2. For example, when
ft = 1000 cm"1, the energy A usually proves to be of the
order of 10-30 cm"1. At the same time, as is implied, e.g.,
from measuring second-order Raman spectra (see Ref. 29),
the intermolecular interaction energy in crystals, which de-
termines the width of the phonon energy band A for the
stated region of frequencies ft also can be of the order of
magnitude of tens of reciprocal centimeters. Therefore the
dimensionless ratio^ /A, as was noted in the Introduction, is
generally not small. This is precisely why, whenever the
width of the phonon bands is of the order of A, the spectrum
of optical vibrations in the overtone or compound-tone re-
gions can have a highly complex structure. In the harmonic
approximation (see Ref. 36) the Hamiltonian of the crystal
describing the effect of the intermolecular interaction on the
spectrum, e.g., of nondegenerate molecular vibrations, can
be written as follows:
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X^ T/ ft+ /?^J ' nm^n^m' (1} overtones have I Wnm \ ~In — ml whereas the quantity

Here B n
+ and Bn are the Bose operators for creation and

annihilation of a quantum of intramolecular vibrations with
the energy fifl in the molecule «, and Vnm is the matrix ele-
ment of the interaction energy of the molecules n and m
corresponding to transfer of one quantum of energy from
molecule m to molecule n. If several molecules are contained
in the unit cell of the crystal, then the index n is composite,
«=(n,a), where n is the integral lattice vector, and a is the
number of the molecule in the unit cell: a = 1,2,. . .

To take intramolecular anharmonicity into account,
one must add the following operator to the Hamiltonian of
(2):

Thus the complete Hamiltonian is11

H'^H0 + HA. <4>

We have chosen the operator of (3) in such a way that the
correct values of the energy of a crystal with two vibrational
quanta are obtained in the absence of an intermolecular in-
teraction.

When we take many intramolecular vibrations into ac-
count, the Hamiltonian has the form

3 BB

(4')

This Hamiltonian must be used in discussing the spectra of
crystals containing molecules with degenerate or close-lying
frequencies.

At the same time, strictly speaking, one can use the op-
erator (4) or (4') for studying the state of a crystal with two
vibrational quanta only in cases in which the intramolecular
anharmonicity of the form of (3) is fundamental, while the
component of the anharmonicity involving the existence of
an intermolecular interaction can be omitted.21 We also em-
phasize that intermolecular anharmonicity can prove im-
portant, even in the limit of large A, in calculating the width
of biphonon bands. In this case one must include the follow-
ing term in the Hamiltonian H':

#T = -|-S Wnm(BlYBll, (5)
n, m

This leads to the joint/transfer of two vibrational quanta
from molecule m to molecule n and vise versa (n^m). Of
course, this transfer of two vibrational quanta is allowed also
when one uses the Hamiltonian of (4). However, in this ap-
proximation the corresponding matrix element differs from
zero only in second-order perturbation theory in the inter-
molecular interaction Vnm. As we can easily convince our-
selves, this matrix element equals V\m, so that the terms
containing Vnm could be omitted under the condition that

V2 iy Tim -
^4 '

(6)

V2
nm can decline with increasing |n — m| as n — m| 6or

faster. For the dipole-active overtones it is also important to
allow for the operator of ( 5 ) , because this operator corre-
sponds to Coulomb long-range action. For example, in cubic
crystals it leads to longitudinal-transverse splitting of bi-
phonons. Fortunately, inclusion of the operator of ( 5 ) in the
complete Hamiltonian (see also Refs. 3 1 and 32) only insub-
stantially modifies the schema of the calculation, as will be
illustrated below.31

If the anharmonicity is so large that the inverse rela-
tionship holds instead of (6), then specifically the terms
containing Wnm make the fundamental contribution to the
width of the biphonon energy band. In this case the bi-
phonon energy is

(7)

This relationship is exact in the limit of large A. The quanti-
ties Wnm that figure here, and which determine the matrix
element for transfer of two quanta from molecule n to mole-
cule m, must be found by taking the intramolecular anhar-
monicity into account. In order to stress this situation, we
shall write the corresponding matrix elements in the form
W^m . In line with what we have said, in the following analy-
sis of the biphonon states we shall use a more general Hamil-
tonian than (4) in the form

Even if this inequality is satisfied for small |n — m , it gener-
ally can break down for large | n — m |, since the dipole-active

In deriving this Hamiltonian we have started with the
model of a molecular crystal. Actually its field of applicabi-
lity also covers nonmolecular crystals, provided only that
one is speaking of optical phonons whose band width is far
smaller than the phonon frequency. In these regions of the
spectrum the vibrations inside the unit cell resemble molecu-
lar vibrations in molecular crystals, since the relatively small
phonon band width indicates weakness of interaction of the
vibration of atoms lying in different unit cells.

b) Fermi resonance in crystals

One can find the energy of the biphonons, in particular,
by using the Green's function method. Within the frame-
work of the model being discussed, this method proves high-
ly productive, This is because, despite allowing for anhar-
monicity, all the Green's functions needed for calculating
the dielectric permittivity of the crystal, its nonlinear polari-
zabilities, the density of states, the Raman cross-sections,
and other physical properties can be found exactly without
using perturbation theory. Below we shall illustrate what we
have said by going to a model even more general than that
discussed above. Namely, we shall seek the Green's func-
tions in the presence of Fermi resonance in the crystal.

In Fermi resonance in an isolated molecule, the fre-
quency of one of the molecular vibrations proves to be close
to the frequency of an overtone (or a compound tone) of
some other vibration. In the case, e.g., of nondegenerate vi-
brations, resonance arises here of the two excited states of
the molecule. Owing to the anharmonicity of the intramole-
cular vibrations, this leads to characteristic doublets of com-
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parable intensity in absorption spectra or Raman spectra or
even in the other types of spectra (depending on the symme-
try of the molecule and the type of vibrations). If degenerate
vibrations also participate in the Fermi resonance, the num-
ber of lines in these spectra can be large.37 In going from an
isolated molecule to a crystal, branches of optical phonons
arise in the region of the fundamental vibrations of the mole-
cule owing to the translational symmetry and under the in-
fluence of the intermolecular interaction. In the overtone
and compound-tone region, bands of multiparticle states
arise, and if the anharmonicity is strong enough, also bands
of states of mutually bound quasiparticles, (e.g., biphon-
ons). Therefore, in a Fermi resonance generally a large num-
ber of excited states of the crystal resonate with one another,
so that the spectra that arise here are substantially compli-
cated.

In order to analyze them, and in particular, to study the
effect of Fermi resonance on biphonon spectra, we must gen-
eralize somewhat the Hamiltonian of (8).

We shall assume that the conditions for Fermi reso-
nance are fulfilled even in the free molecule. That is, for the
sake of simplicity, there are two nondegenerate vibrations B
and C with the frequencies fti and fl2, for which, e.g., we
have 2ft i s ft2. In this case, when we take the intramolecular
cubic anharmonicity into account (with the constant T), we
must add to the Hamiltonian of (8) the sum of two terms:

(9)

(10)

Here the operator fff gives rise to the interaction of the B
and C vibrations (B and C phonons), and the operators Cn

and Cn
+ (Bose operators for creation and annihilation of a

quantum of intramolecular vibrations with the energy 1KI2)
also figure alongside the Bose operators Bn and B n

+. The
anharmonicity constant F differs from zero only for pairs B
and C of intramolecular vibrations for which the matrix ele-
ment {2B | TT 11C) =?r2 j differs from zero. Here IT is the poten-
tial energy of the intramolecular vibrations with allowance
for anharmonicity, whereas 1C)=C + |0) and |2B>
= (B +)2|0). Here |0> is the ground state of the molecule.
Since the quantity IT is fully symmetric with respect to all
symmetry elements of the molecule, the condition 7T217^0
imposes evident restrictions on the symmetry of the B and C
vibrations being treated. It is also evident that the anhar-
monicity term of (10) for F^O is the fundamental term in
the region of crystal energies Ex 2fi£lI^fifl2, while the ad-
dition of another type of anharmonic term, e.g., terms of the
form C + C2 + h.c. (Hermitian conjugate), etc., leads only to
small corrections. Thus, the complete Hamiltonian H ac-
quires the form

(B, C). (11)

For simplicity we shall assume that the unit cell of the crystal
contains one molecule, and transform to the momentum rep-
resentation for the operators B and C:

(B, C),

ffa (C) = 2 »Q2c*cB + S' n2mc;cm,
n

HF (B, C) = r 2 ((BW

In this representation the Hamiltonian of ( 1 1 ) has the form

—JT S
k , k ' , q

+-£=- 2 (Ztf^-Ck+k'+hx..),
k, k'

where we have

If we introduce the operator

(12)

then we can write the Hamiltonian H in a more compact
form:

(k) C£Ct - A (k) T+ (k) T (k)= S
k

Assuming the temperature of the crystal to be zero, we
shall seek the retarded Green's function

Gk
1( (t) = - i6 (t) < 0 | Ck (t) Ci (0) | 0 > . ( 12')

Here we have 0(t) = 1 for t > 0, and 0(t) = 0 for t < 0, while
we also have the functions

G i i > ( * ) = - i e ( t ) < 0 | Z ' ( k , t ) « (0 ) | 0> ,

Evidently we have

'

Employing the usual method (for details see Ref, 3b), we
can easily convince ourselves that the Green's function is

, k)] (13)

Here we have R(E,k) = 2f[p0(e,k)/(E-£)}ds (f>0(£,k)
is the density of two-particle states for .4 = F = 0), and

A (E, k) = 1 + 2 [A (k)- £_
r
E

2
;.(k) ] R (E, k), (13')

G<*. fcos _ 2*r* (£' k> (14)kk (w)- [ £_e 2 ( k ) 1 A ( B ) k ) •

To calculate the Raman cross-section and the cross-sec-
tions of nonlinear optical processes, we must know also a
series of other Green's functions in addition to the functions
G £n, and G £2), in particular, the two-particle Green's func-
tion Gk*q,«' (*)> as defined by the relationship
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I = iO (t) < 0 | B i • = - - q x / -=- + q' -5- - q'

One can show that

r.4> ,..v _ 2 2(k)6£5
q'(o))-rGt6,V((a)

"k, q, q' (W) — =• = =

Here G ̂  (co) is the Fourier component of the Green's func-
tion Gg^(t), while

Gv'.V (t) = - J9 (i) {0 | T (k, i) fi^ _ , (0) fij_ , (°) I ° > •
2 q' 2 + Q >

The latter is defined by the relationship

, k')

whereas

(16)

(17)

is the Fourier component of the Green's function

The expressions given above imply that taking the an-
harmonicity in the system of the phonons into account,
which is characterized by the anharmonicity constants A
and F in the framework of the model being discussed, with
poles of the form of ( 1 ) , leads directly to appearance in the
Green's functions of a new type of poles defined by the rela-
tionship

A(k, co) = 0 . (18)

This equation allows one to calculate the energy of the bi-
phonons allowing for the Fermi resonance of the two-parti-
cle states of the B phonons with the band of C phonons. The
relationship (18) implies that the anharmonicity constants
are as though renormalized when one takes account of the
Fermi resonance:

The new anharmonicity "constant" becomes a function of
the energy E, while its eflFective value in the energy region
under discussion proves to depend substantially on the posi-
tion of the energy of a C phonon with respect to the band of
two-particle states. Therefore, generally a Fermi resonance
strongly affects the conditions for formation of biphonons
and the positions of the levels. Let us explain what we have
said by turning to Eq. (18).4) We can conveniently rewrite
this equation, which determines the value of the biphonon
energy E = E' + iy, in the form

<D, (E) = <D2 (E). (19)

Here we have
i(k) r2

3e2(k)-£

(D2 (£) = 2A (k) j( p°(^ k) de + 2ml (k) p0 (E, k).

(20)

(21)

c) Biphonons and quasibiphonons

The graph of the function 4>j (E) for the case A > 0 is
schematically shown in Fig. 1 (here we have taken into ac-
count the fact that T2/Ae2 (k) < 1). In this same diagram, the
dotted line indicates the value of the function fy^E) upon
neglecting the Fermi resonance (i.e., when F = 0: in this
case we have <&i(E) = — 1). Figure 2 shows for the same
case A > 0 the variation of Re <J>2 (E) without account taken
of damping. Within the framework of the model being dis-
cussed, the damping of biphonon states can involve the de-
cay into two free phonons. Evidently, this type of quasista-
tionary (resonance) states—quasibiphonons—can have a
physical meaning only in the region of small p0(E,k), where
their width is r<ReE = E'.

The function Re4>2(£) in three-dimensional crystals is
everywhere bounded. In particular, for states with small k,
we have the functionsp(e,k~) xp(e,0). In the neighborhood
of the edge of e(e = emin or E = £max), the bands of two-
particle states arep0(e,0) =p0^J\£ — e\. Therefore, as E ap-
proaches e outside the band of two-particle states, the func-
tion <&2(E) =Re4>2(£'), while remaining finite, has an

FIG 1 . The function <£,(£). Here £2 (k) is the energy of a C phonon, and
( T2A4 ) .

FIG. 2. The function Re <I>2 (£) (solid lines). The dotted line corresponds
to the function 4>, (£) = - 1 . The open circle corresponds to a biphonon,
and the solid circle to a quasibiphonon.
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infinite derivative (see Fig. 2) . Figure 2 also shows the func-
tion <!>! = — 1 for T = 0. This diagram implies that, when-
ever the value of &2(E) f°r E— >emin approaches a quantity
smaller than unity (i.e., |*2(

enun )| < 1)» a bound state of
two phonons arises, or a biphonon. Along with the biphonon
state, which has an energy E2 < £min ( open circle in Fig. 2 ) , a
quasibiphonon is also formed ( solid circle in Fig. 2 ) with the
energy Eqb , lying inside the band of two-particle states. If the
anharmonicity is not too strong, so that the quantity
|4>2(emin ) | does not exceed unity by too much, the quasibi-
phonon lies in a region of low density of two-particle states.
Its width proves to be small in comparison with the band,
while a maximum arises in the density of states upon allow-
ing for anharmonicity that is not associated with Van Hove
points.

Actually, the density of states having the total wave
vector q + q' = k is determined by the relationship

p (E, k) = - ^F 2 (1 + 6qo) Im Git'q,

V + + C. ' (22)

For noninteracting phonons (i.e., when A = F = 0), we
have

p(£, k)^Po(£, k)

If A 7^0, but r = 0 (no Fermi resonance), the function
G ̂  q (E) is determined by the relationship

42 (k) A-M#, k)

so that
, k)

1622 (k) D ( E , k) p0(g, k) . (23)
( £ , k )

Here we have

R' (E, k) a Re R (E, k) = 2 j p° ̂  de ,

Po («' k) de (23a)

In the region of the energy £'where^0(£',k) = 0, i.e., outside
the band of two-particle states, Eq. (23) reduces to the fol-
lowing:

p (E, k) = 4£> (E, k) | A (k) 1 5 [1 + 2A (k) R (E, k)],
(23b)

or

p (E, k) = 8 (E - £b).
Here the biphonon energy Eb is a root of the equation

< _ K H ? = (24)

Inside the band of two-particle states in the energy region
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we can write the relationship (23) in the form

1 T

FIG. 3. The functions 4>, (E) and 4>2 (E) in the presence of Fermi reso-
nance. Here emfa and £„„„ are the boundaries of the band of two-particle
dissociated states. The lower left open circle corresponds to a biphonon,
and the right-hand circle to a quasibiphonon.

EzzEqb, where £qb is a root of the equation

(25)

Here y = irp0 (J?qb,k)//)(£qb,k) is the half-width of the
quasibiphonon level. The presented expression for 7 implies
that this half-width can be rather small only when the quasi-
biphonon level lies in a region of low densities of levels of
two-particle statesp0 (£qb,k).

Now let us proceed to discuss the case with a Fermi
resonance (A ̂ 0 and F/0).

In this case the position and number of the roots of Eq.
(19) depend substantially on the relationship between the
quantities^ and F, and on the position of the energy £2(k)
with respect to the band of two-particle states. To illustrate
what we have said, Figs. 3-5 show the graphs of ®i(E) and
<&2(E) and indicate the roots of Eq. (19) in three limiting
cases.

Figure 3 corresponds to the case in which both the ener-
gy £-2(k)ofaCphonon and theenergy£(k) =£2(k) + [T2/
A (k) ] lie outside the band of two-particle states and are far
enough from the energy £min at its bottom. In this case the
number of solutions of Eq. (18) lying outside the band of
two-particle states is two. One of them (the lower one) is
genetically associated with the C-phonon state, and trans-
forms into it as the energy of a C phonon becomes farther
removed from the band of two-particle states.

In the case depicted in Fig. 4, the energy £2 (k) lies in the

FIG. 4. The same as in Fig. 3, but with £min <£2<
£m«•
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FIG. 5. The same as in Fig. 3, but with £2 > £maj[ .

band of two-particle states, while we have A x P. For the
energy region E< £min , Eq. (19) has only a single solution,
and a quasibiphonon state is not formed.

If the energy of a C phonon lies above the band of two-
particle states and the width A of this band is large in com-
parison with F, a situation can occur that corresponds to
Fig. 5. In this case the solutions of Eq. (19) lie on different
sides of the band of two-particle states, and a quasibiphonon
state can be formed.

To find the density of states in the presence of a Fermi
resonance Eqs. ( 15)-( 17) have to be used. This can be car-
ried out analogously to what was done for the case T = 0.
We shall not present the corresponding calculations here.

The dielectric permittivity in the region of two-phonon
spectra is also determined by the Green's functions found
above.

Taking account of the anharmonicity, which affects the
density of two-particle states of (23), simultaneously gives
rise both to new resonances of the light-absorption coeffi-
cient x(.E') with biphonons (outside the band of two-particle
states) and with quasibiphonons (inside this band) (see
(23a) and (23b) and also Ref. 3b). Moreover, interesting
features arise in the density of states p(E, K), and hence in
the light-absorption coefficient x(E),atE values that corre-
spond to the Van Hove critical points of the unperturbed
(i.e., with ,4 = 0) density of states p0(E,K).

The function x(E) is nonanalytic with respect to the
anharmonicity constant A(0). If the anharmonicity is not
taken into account ( A =0), the function x(E) is propor-
tional to the density of states p0(E, K) and has the same fea-
tures. When one takes account of anharmonicity ( A ^0),
the derivative of x(E) approaches + oo on both sides near
the critical points, and four cases can arise, which are pre-
sented in Fig. 6. Their existence becomes obvious when we
take account of the fact that the density of states p0(E, K) is
continuous in three-dimensional crystals, while its deriva-
tive shows a discontinuity at the analytic singular points.
Thus, for example, at the minimum E~Emin we have

p0(E, 0) = a = const, E < Emin,

min, a,
At these critical points the function R '(E,0) (see (23a))
remains continuous, but its derivative increases without
bound on the side of the singularity where the density of
states p0(E,Q) is constant (e.g., in the region E~Emia we
have dR 7dE^ - oo as E^-Emin , E < Emin • for more details
see Ref. 16).

*(£) *(£)

Scr

FIG. 6. Singularities of the absorption coefficient at the Van Hove critical
points with anharmonicity taken into account.

The features of the dielectric permittivity arising from
anharmonicity can be manifested not only in the absorption
spectra, but generally can also give rise to features in the
polariton spectrum of the crystal.

3. EXPERIMENTAL STUDIES OF BIPHONONS

a) Infrared absorption spectra

As we have already stressed, many crystals have exhib-
ited biphonons both in infrared absorption spectra and in
Raman spectra.

In speaking of infrared absorption spectra, along with
the study of Ron and Hornig,26 which has already been dis-
cussed in the Introduction (in this regard see also the theo-
retical studies of Refs. 94,95), let us also mention the studies
of Dows and Schettino41 and Schettino and Salvi.42

In Ref. 41 the spectrum of a CO2 crystal was studied in
the frequency region corresponding to the compound tone of
the intramolecular vibrations v1 and v3 (v,+v2~3720
cm-1).

Reference 42 was concerned with measuring the in-
frared spectra of crystals of N2O and OCS. The CO2 and
N2O molecules are linear, do not possess permanent dipole
moments, and form a simple cubic lattice upon crystalliza-
tion with four molecules per unit cell oriented along the te-
trahedral axes. The OCS molecule is also linear, but forms a
crystal of the trigonal system with one molecule per unit cell.

Since the CO2 molecule is symmetric, its stretching vi-
bration v3 is infrared-inactive and practically shows no dis-
persion. Therefore the Van Kranendonk model can be used
in interpreting the experiment for the region of the com-
pound frequency vl + v3, as was actually taken into account
in Ref. 10.

Figure 7 shows the transmission measured41 for a crys-
tal 1.8-^m thick. The calculations performed in Ref. 10
showed that the sharp absorption peak in this case corre-
sponds to excitation of a biphonon.

Analogous results have been obtained42 for an N2O
crystal in the frequency region corresponding to the com-
pound frequency v2 + v3. The N2O molecule is not symmet-
ric, and hence all its three intramolecular vibrations vlt v2,
and v3 are infrared-active. Its bending vibration v2 is doubly
degenerate and possesses a weak dispersion throughout the
Brillouin zone (less than 3 cm""1), owing to the small value
of the dipole moment. Therefore, for the frequency region of
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FIG. 7. Fragment of the transmission spectrum of a CO2 crystal. The
graph is taken from Ref. 10 (see also Ref. 41). The dotted lines indicate
the absorption spectrum calculated in Ref. 10.

v2 + v3, just as for the v1 + v2 region, one can also use the
Van Kranendonk model (this has been done in Ref. 10).
Figure 8 shows the transmission spectrum42 of a film of N2O
crystal 18-/nn thick in the v2 + v3 band.

b) Raman spectra

Extensive experimental material has been obtained by
studying the effects of anharmonicity in crystals by Raman
scattering.

First of all we note the studies of Scott,43 which were
devoted to investigating the temperature-dependence of the
soft mode in crystals of A1PO4 and in quartz. As the temper-
ture increases and approaches the a-fi phase transition
point, the frequency of the soft mode declines and enters the
band of two-particle states of acoustic phonons. These stud-
ies have stimulated investigations on the theory of Fermi
resonance in crystals.

A biphonon has been noted in calcite,44'45 where the
relatively narrow band of two-particle states
(2vp -1424-1430 cm~') proved to lie close to the funda-
mental tone of another vibration. Two maxima were dis-
tinctly observed in the Raman spectrum: one maximum
within the limits of the band (the change in frequency of the
photon in Raman scattering is Aophot = 1425 cm"1) and
another maximum below the band (biphonon, Aw =1412

100

o -
2850 2830 2870 2790

FIG. 8. Transmission spectrum in the v2 + v3 band of an N2O crystal. The
graph is taken from Ref. 10 (see Ref. 42). The dotted lines indicate the
absorption spectrum calculated10 for an N2O crystal 18-/im thick.

cm *). Analogous maxima have also been detected in the
infrared transmission spectra of the extraordinary ray in a
specimen oriented at a 45° angle to the optic axis.

The anharmonicity of phonons is manifested very dis-
tinctly in the optical spectra of an NH4C1 crystal (in the low-
temperature IV phase). Hence this crystal has been the ob-
ject of numerous studies46"48 (Ref. 46 also studied the
Raman spectra of ammonium bromide and the deuteroam-
monium halides). In the IV phase these crystals have a cubic
structure and the NH4

+ groups interact relatively weakly
with one another. The simplicity of the structure of the crys-
tal is due also to the presence of only one structural unit per
unit cell. Although the crystal is nonmolecular, the theory of
vibrational excitons and biphonons developed for molecular
crystals is quite suitable for the optical vibrations of the
NH4

+ ion (the space-group symmetry of the crystal is T'd;
the point-group of the crystal coincides with the local group
of the NH4

+ ion (rd), which has no center of inversion
owing to the symmetry of the ion).

The Raman spectrum of the NH4C1 crystal shows a
band of two-particle states with sharply distinguished edges
(2v4 = 2800-2910 cm"1), and with an intensity peak at the
lower edge of the band (see below for the interpretation of
this peak). A Fermi resonance is observed in the region of
3100 cm"', where the sum of frequencies of two phonons is
close to or coincident with the frequency of the fundamental
tone of a dipole-active vibration. Strong hybridization oc-
curs between the one and two-phonon states. A longitudinal
biphonon was first identified and the magnitude of the longi-
tudinal-transverse splitting was determined49'50 from Ra-
man spectra obtained by using various polarizations of the
incident and scattered light.

Experimental results of no less interest have been ob-
tained in Ref. 51, where Raman spectra were studied in a
crystal of HIO3: this crystal is biaxial (point-group symme-
try 222). The phonon spectrum of this crystal has been well
studied, and is usually subdivided into four groups: lattice
vibrations (0-220 cm"l), deformation vibrations of the IO3

group (290-400 cm"1), stretching vibrations of the IO3

group (600-845 cm"1), vibrations of the OH group (non-
planar deformational (twisting) (560 cm"1), planar (de-
formational) (1160 cm"1), and stretching (2440 cm"1)).
Nevertheless, the Raman spectra in the frequency region
s;2270 cm"1 (scattering angle #~90") show a broad band
at the low-frequency edge of which (i.e., at a> = 2270 cm "')
there is a rather narrow and intense peak. According to Ref.
52, the scattering in the frequency region 2270
cm"1<tu<2940 cm"1 corresponds to excitation of two-
and three-particle states. Apparently the peak at <a = 2270
cm"l indicates the existence of a biphonon split off from the
overtone band of the fundamental vibration at the frequency
ft = 1160 cm"'. Upon cooling the crystal from T = 300 K,
one observes a substantial decrease in the width of this line,
and its position is somewhat shifted toward the band of two-
particle states.

Among the numerous experimental studies of biphon-
ons, we note moreover Ref. 53 (also Ref. 45), which has
shown that measurements of second-order spectra with
allowance for anharmonicity in the Van Kranendonk model
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allow rather complete information on the density of states in
the phonon band. Especially we call attention to Ref. 75,
which contains the first experimental demonstration of the
possibilities of studying the homogeneous width of two-par-
ticle states by active Raman spectroscopy using picosecond
pumping pulses. Reference 75 has studied the spectral re-
gion of the 2v2 overtone in liquid and crystalline CS2 at
T = 165 and 160 K, respectively. For coherent pumping of
the overtones, two picosecond pulses were used, superim-
posed in time with the frequencies as and a>L, so that
COL — o)s = il0> where fl0 is the overtone frequency (in the
liquid fl0 =

 795 cm~', while in the crystal fl0 = 801 cm~' is
the quasibiphonon frequency). The evolution (decay) of the
excitation of the crystal caused by the picosecond pulses was
studied from the dependence on the lag time of the intensity
of the anti-Stokes third (probe) pulse at the overtone. It was
shown that the excitation caused by the picosecond pulses of
both liquid and crystalline CS2 decays exponentially. In liq-
uid CS2 the decay time T2 is 1.8 ± 0.15 ps, whereas in the
crystal T2 = 14 + 3 ps. Such a sharp decrease in the homo-
geneous width in the crystal as compared with the liquid
state apparently indicates the existence in the liquid of decay
channels of the 2v2 overtone that are absent in the crystalline
state (breakdown of translational symmetry, fluctuation of
short-range order, etc.; see Ref. 75). This type of study as
applied to polaritons in the overtone region of the spectra
might yield information on the many effects discussed
above, e.g., on the width of the polariton lines (see also Ref.
98).

4. FERMI RESONANCE WITH POLARITONS

a) Microscopic theory

Let us examine the effects that arise whenever the
branch of C phonons corresponds to dipole-active vibra-
tions. In the region of small k~2w/A, where A is the wave-
length of light having the frequency a)^£l2, this type of
phonon interacts strongly with the transverse photons. Con-
sequently, instead of C phonons and transverse photons, in
the long-wavelength region new elementary excitations are
formed—polaritons (see also Refs. 54-56, 72). In their
properties (spectrum, polarization) at small k they substan-
tially differ from photons in vacuo and from phonons.

The spectrum of polaritons can be found by using the
macroscopic Maxwell equations, provided only one assumes
the dielectric-permittivity tensor of the medium to be
known.38 The results of the corresponding analysis, in which
the point is to use the theory of lattice vibrations in the har-
monic approximation, are known and have been presented in
many monographs and textbooks on solid-state theory.
Without going into the details, we stress here that a gap al-
ways arises in the polariton spectrum in the region of a fun-
damental dipole-active vibration (C phonon, exciton, etc.)
(we are not taking account of spatial dispersion here). The
width of this gap is proportional to the oscillator strength of
the corresponding resonance. Upon taking account of many
phonon branches, many gaps are formed, and this situation
is also well known. At present a rather detailed theory of
Raman scattering by polaritons exists, with account taken of

many phonon bands. It enables one to calculate the Raman
cross-section at different scattering angles, provided only
that one knows the dielectric-permittivity tensor of the crys-
tal and the dependence of the polarizability of the crystal on
the displacements of the lattice nodes and the electric field
created thereby.57

The essential point is that the mentioned gaps in the
polariton spectrum differ from zero even within the frame-
work of the linear theory, just like the corresponding inter-
action between a photon and a phonon. Generally they do
not require allowance for anharmonicity. Therefore it is rea-
sonable to understand a polariton Fermi resonance to mean
only a situation in which the vibrations of overtones or com-
pound tones resonate with a polariton. We shall proceed to
analyze this type of rather complicated situation, which re-
quires one to take into account multiparticle excitations of
the states of the crystal. Figure 9a depicts schematically a
typical polariton spectrum, while the band of two-particle
states of B phonons is shown against its background. If bi-
phonons are formed under the influence of anharmonicity,
then these states also resonate with the polariton, affecting
its spectrum.

Since the Raman scattering by polaritons is very intense
for many crystals lacking an inversion center, whereas sec-
ond-order Raman scattering (i.e., Raman scattering accom-
panied by the excitation of two quasiparticles) is relatively
weak as a rule, the crossing of the biphonon levels and the
band of two-particle states indicated in Fig. 9a by the polari-
ton branch under the influence of anharmonicity leads in
many cases to repumping of the Raman scattering intensity
from the polariton to the biphonon and the two-particle
states, which can be considered a characteristic marker of
the phenomenon. However, we note, along with this eifect,

FIG. 9. a) Polariton dispersion in a region of Fermi resonance without
allowance for anharmonicity; (£2 (0) is the energy of the fundamental
vibration for K = 0; Emia and £mlul are the minimum values of the energy in
the band of two-particle states; Eb is the biphonon le vel); b) the same, but
with allowance for anharmonicity.
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which is of great importance in the experimental study of the
states mentioned above, that a substantial alteration of the
spectra of polaritons and two-particle states also occurs in
the crossing region (see Fig. 9), and can be manifested in the
Raman spectra. However, as we shall show below, the char-
acter of these changes depends cardinally on whether bi-
phonons are formed in the region of overtones or compound
tones. Therefore, by studying spectra of Raman scattering
by polaritons under conditions of polariton Fermi reso-
nance, one can decide experimentally on the presence of
bound states of phonons (biphonons). At present extensive
experimental material has been obtained in this field, and the
special next section is devoted to reviewing it. Now we shall
turn to the results of the previous subsection and show how
Fermi resonance with polaritons can be treated within the
framework of the microtheory (see also Ref. 15).

In order to take into account the interaction of phonons
and photons, we should add to the Hamiltonian of (11) the
Hamiltonian of the free field of transverse photons H0(a)
and the Hamiltonian of the interaction of the field of trans-
verse photons with the phonons Hmt.

We must include in the Hamiltonian HiM with
allowance for anharmonicity not only the terms quadratic in
the Bose operators a, B, and C, but also the cubic terms. We
shall discuss the structure of these terms below. At present
we emphasize that the linear transformation from the opera-
tors a, B, and C to the operators for creation and annihilation
of polaritons, i.e., to the operators £p

+ (K) and ^(K),
where p is the number of the polariton branch and k is the
wave vector of the polariton, diagonalizes the quadratic
component of the complete Hamiltonian. However, such a
diagonalization of the quadratic component of the complete
Hamiltonian is actually not necessary for analyzing spectra
in the region of a Fermi resonance. The transformation from
the operators a and C to polaritons in the spectra region
being discussed is actually important, since here taking ac-
count of retardation substantially affects the structure and
spectrum of the C phonons. As regards the two-particle
states of the crystal corresponding to excitation of two B
phonons, it can prove important to take their retardation
into account only in extreme cases. Providing that we are not
speaking of the edges of the band of two-particle states, the
fundamental contribution to the two-particle states, even
with small values of the total momentum (only these states
resonate with the polariton) comes from the states
B ct/2) + qJ5 (t/2) _ , |0) with large q. Since it is not essential to
take into account retardation for B phonons with large val-
ues of the wave vector, the meaning of the statement made
above on the degree of influence of retardation on the two-
particle states of B phonons becomes clear. The extreme
cases mentioned above can arise in crystals where an energy
minimum or maximum corresponds to small k in the band of
B phonons, the B phonon is dipole-active, and the oscillator
strength corresponding to it is large enough. In these cases
the edge of the band of two-particle states, respectively a
minimum or maximum, is spread out by an amount of the
order of the energy of the longitudinal-transverse splitting of
a B phonon e^L. Then it can become important to take retar-

dation into account if the width A of the B-phonon band is
small in comparison with £ya. Yet if the inequality A>f yp l

holds, just as will be assumed below, it is not essential to take
into account retardation of the B phonons. Bearing in mind
what we have said, let us write the component of the com-
plete Hamiltonian quadratic in the Bose operators in the
form of the sum H0(B) + H^):

p, k

(k) = -fjatp (k) is the energy of the polariton (p, k).
Now let us turn to the Hamlitonian Hint and discuss

therein the structure of the terms cubic in the operators for
creation and annihilation of quasiparticles.

Evidently, in the case being discussed of a crystal with
one molecule per unit cell, these terms have the form

•tf I n t = SS[rp(k)(^)HP(k)-^+h.,]. (26)
n p, k

To find the quantities Tp (k), we must take into account
the fact that the operators Cn are expressed in terms of the
operators for creation and annihilation of polaritons as fol-
lows (see Ref. 55):

k)IS(-k)]. (27)

Here up and vp are certain coefficients. Therefore, upon tak-
ing (27) into account we find that Tp (k) = rw0(k)- How-
ever, in addition to the operator of (26), Hmt actually con-
tains also an operator corresponding to the direct interaction
of transverse photons with the overtones. This operator is

n, k, V

It arises upon taking into account not only the terms linear in
(Bn + B n

+ ) in the dipole-moment operator of the molecule,
but also the terms proportional to (Bn + B + )2 (see Refs.
15 and 58). Thus the operator under discussion corresponds
to taking into account the so-called electro-optic anharmon-
icity,29 so that the constants T ,̂ (k) that figure (26) are de-
termined by the total contribution of both the mechanical
and the electro-optical anharmonicity. Hence they generally
depend on the two independent phenomenological constants
F and D.

By comparing the Hamiltonian of (11) with the Hamil-
tonian

H = H0 (B) ) (B),

where H(L>(B) is the third term in ( 1 1 ), we conclude that
the overall structure of the Hamiltonian has been conserved
upon transforming to polaritons. This situation allows us to
proceed directly to formulating the results, rather than re-
porting the calculations.

First of all, let us turn to analyzing the dispersion law
for polaritons in the region of a Fermi resonance. To do this
by analogy with ( 12a), let us examine the expression for the
Fourier components of the Green's function

) = - *6 (t) ,f 0 Q (k. 0) I 0).
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Taking into account only the polariton branch/? that crosses
the region of two-particle states, we find the following
expression upon allowing for anharmonicity:

& (E) = (28)

Here we have

k) = 1 + 2B (E, k) IR (E, k) + 2jtzp0 (E, k)].
(29)

(30)

Near the center of the Brillouin zone (k^;0), the den-
sity of states can depend on k only because of the nonanalyti-
city of the dispersion relationship £,(k) for B phonons.
Henceforth we shall neglect this dependence and assume
that the quantities R(E,k) andp0(E,k) depend only on E as
k—*Q. Consequently we obtain the following expression for
the Green's function of (28):

(E, k) = {[1 + 2B (E, k) R (£')]* + [4np0 (E) B (E, k)]*}-'

( [ l + 2AR(K)\(i~2B(E, k) B (£)] + 16.̂ -Po (£) AS (£, k)
X

[£- (31)

Outside the band of two-particle states, i.e., whenp0(£')-*0,
or inside this band, but with/>0(£)</{(£), the imaginary
component of the Green's function, which determines the
density of polariton states, acquires the form

i-.™,,., ... i r p ( k ) i *

i (E) ={

l - f -2f i (£ , k) /?(£)]
B (E, k)

(32)

We can conveniently write the equation for the polari-
ton energy 1 + 2B (E,k) R(E)=0 in the form

- R(E). (33)

The left-hand side of Eq. (33) can equal zero outside the
region of the spectrum of two-particle states if a biphonon
level exists for Fp (k) = 0. If the biphonon energy in this
case is Eb ( k ) , we can write the left-hand side of Eq. ( 3 3 ) for
E~Eb (k) in the form «2(k) [E - Eb (k) ], so that Eq. (33)
acquires the form

2 (34).
a a (k) .A(k)

This relationship implies that, when k,, has a value such that
-E'b(ko) = ^(M, i.e., at the crossing point of the biphonon
level with the polariton, a gap is formed in its spectrum (see
Fig. 9a) with the half- width

6 =
rp (kc)
0(k0)

\(A)

Owing to the possible decay of a polariton into two
phonons, the polariton level is broadened inside the band of
two-particle states, and the very concept of a dispersion
curve requires some refinement. We shall understand the
dispersion law of a polariton to be the dispersion of the maxi-
mum of its density of states, i.e., the maximum of the imagi-
nary component of the Green's function of (31). We can
easily convince ourselves that the maximum of
ImG y (E,]t) for a fixed value of k corresponds to the condi-
tion

R (E) + 2B (E, k) [R* (E) + (2nPo (£))«] = 0. (35)

This transforms into (32) asp0(E)-*Q. Thus, in the sense
pointed out above, Eq. (35) is a generalization of (33). Let
us write Eq. (35) in a more convenient form:

(35a)

Here the left-hand side involves only the properties of B
phonons, and the right-hand side involves the polariton.

We can find the dispersion of the polariton at Fermi
resonance by solving Eq. (35a) for all values of the wave
vector k (Figs. 10-12 show the possible situations under the
condition that the lower branch of the polariton dispersion
curve %?p(k) crosses the region of frequencies of two phon-
ons) . Along with the existence of the gaps indicated above in
the biphonon energy region (see Fig. 10), and in the pres-
ence of a strong enough interaction of the polariton with the
two phonons (see Fig. 11), the following features can arise:

a) The band of two-particle states can contain a fre-
quency region in which Eq. (35) has no solutions (see the
cross-hatched part of the band of multiparticle states in Figs.
11 and 12). In the sense of the definition of the dispersion of
a polariton that we have adopted (as the maximum of the
imaginary part of the Green's function), the dispersion
curve is not defined in these regions, and one can say that a
"gap" arises in the polariton spectrum. However, such a
"gap" differs substantially from gaps outside the band,
where the imaginary part of the Green's function equals
zero. For the "gaps"in the band of two-particle states, the
imaginary part of the Green's function differs from zero. In
the region of the "gap" this can lead to strong damping of
electromagnetic waves. Consequently the polariton disper-
sion curve becomes "diffuse". However, it is precisely in
these frequency intervals that one can observe maxima in the
infrared absorption spectra (see Ref. 50).

b) In the vicinity of the analytic critical points of the
density of states, both on the right and the left, the derivative
of/, (E) in Eq. (35a) always increases without limit in mo-
dulus (see the remark at the end of Sec. 4). Therefore, at the
critical point itself this function always has a vertical tan-
gent. Here the four types of singularities can occur that are
indicated in Fig. 6. At the critical points of the density of
states the polariton dispersion curve has horizontal tan-
gents. The dispersion curve also has such a singularity for
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FIG. 10. a) Graphical solution of Eq. (35a) forfc = oo and in the presence
of the biphonon £ = £ b ( 8 f p ( & = « > ) is the polariton level for large k
when unperturbed by anharmonicity; the ec, are the Van Hove critical
points); b) polariton dispersion curve in the presence of Fermi reso-
nance—case of strong anharmonicity (dotted curve—polaritons without
taking interactions with two phonons into account); TP—band of two-
particle states.

FIG. 11. The same as in Fig. 10: case of strong Fermi resonance (large
values of the constant T (k), small values of A). £qb is the quasibiphonon
level (/, (£qb) = 0). The gap in the polariton spectrum encompasses part
of the TP band and a region below the band.

Multiparticle band
LTCT" Quasibiphonon

FIG. 12. The same as in Fig. 10: case of weak anharmonicity (small values
of the constants^ and T (k)). A gap of small width arises in the TP band
below the quasibiphonon level £qb.

frequencies outside the band of two-particle states, but close
to its boundaries (see Fig. 10-12). The various phenomena
in which Fermi resonance with polaritons is manifested and
in which the polariton dispersion curve is observed can be
employed to study the phonon bands. Naturally, the broad-
ening of the dispersion curve in the band of two-particle
states must diminish the resolving power of these methods
and hinder the discovery of singularities near critical points.
Perhaps the situation that proves to be the most convenient
is the one that is characterized by a relatively weak anhar-
monicity with low values of the constants A and Tp (k) (see
Fig. 12). Here the broadening will be small, while the width
of the "gap" will occupy a small fraction of the entire band.

More detailed studies of the phenomenon of Fermi res-
onance with polaritons with account taken of the concrete
structure and symmetry of the crystals, of nonanalytic criti-
cal points, etc., will prove to be of current interest only upon
future improvement of the sensitivity of the experimental
methods for the region of the continuum of two-particle
states.

b) Macrotheory: transverse and longitudinal biphonons

We have already stressed above the fact that one can
also find the polariton spectrum within the framework of
macroscopic electrodynamics, which requires that one
should know the dielectric-permittivity tensor of the crystal.
As one should expect, the results of the corresponding analy-
sis are equivalent to the results of the microtheory. Never-
theless, we shall employ the macrotheory below as applied to
cubic crystals and shall show how one justifies the possible
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existence of longitudinal and surface biphonons within the
framework of this approach (see also Ref. 3).

We stress in this connection that the microscopic theory
developed above of Fermi resonance with polaritons cannot
be directly applied to cubic crystals. In this type of crystal
the dipole-active transitions correspond to triply degenerate
states (for the corresponding generalization of the theory,
see Ref. 32), while above we have considered these transi-
tions nondegenerate for the sake of simplicity.

It is well known that the dielectric-permittivity tensor
with neglect of spatial dispersion reduces to the scalar e (co).
If we take no account of attenuation we can represent this
scalar in the region of the band of two-particle states as fol-
lows:

(O2 —

f,f (tt>')(co')2da>'
$ O)2- (CO')2 (36)

Here £„ is a quantity that is determined by the contribution
of remote resonances, which can be considered independent
of co in the region of the spectrum being studied. Also we
havefllb = E£(0)/Vt, where££(k) is the energy of a trans-
verse biphonon having the wave vector k, Fb is a coefficient
proportional to the oscillator strength of a biphonon, and F
(co') is a quantity proportional to the oscillator strength cor-
responding to the excitation of two free B phonons having
the total energy fieo'. The quantity F (co') is also proportional
to the density of energy levels having the total wave vector
k = 0 in the band of two-particle states. Thus we have F
(co') =0 if the frequency co' lies outside the band (Fmia,
fi'max). The integral over the frequency in (36) is taken as the
principal value, and this formula also allows for the fact that
the resonances of £ (co) corresponding to the frequencies of
the fundamental lattice vibrations (i.e., the frequencies
found in the harmonic approximation) do not lie in the fre-
quency interval being studied.

In cubic crystals with neglect of spatial dispersion, the
polaritions are strictly transverse, so that their dispersion
law, i.e., the dependence of the frequency on the wave vector,
can be found from the relationship

: (to) =- (37)

If we let the velocity of light approach infinity, i.e., neglect
retardation, the relationship (37) acquires the form

e (&>)->-oo. (38)

This relationship implies that the resonances off (co) corre-
spond to the frequencies of transverse vibrations found upon
allowing only for the instantaneous Coulomb interaction.
Hence, the resonance in (36) at the frequency flib corre-
sponds to taking into account the resonance at the trans-
verse-biphonon frequency, which is reflected in the notation.

In addition to transverse polaritions, longitudinal
waves can also exist in the spectral region being studied,
whose frequencies satisfy the equation

e ( c o ) = 0 . (39)

These waves are not manifested in infrared absorption spec-
tra, but with an appropriate choice of the incident and scat-
tered light, they can be observed in Raman spectra.

To find the dispersion of the polaritions, one must use
Eq. (37) to find the value of co as a function of k. We shall
proceed to discuss the form of this function below. But first
we shall study the features off (co) that stem from Eq. (36).
First we note that the quantity e (co) acquires the values
+ oo or — oo, depending on whether the frequency co ap-
proaches ftib from the right or the left. But if the frequency
co lies inside the band of two-particle states, then, since the
function F (co') is finite, the value of £ (co) is also finite and
remains so even when the frequency co approaches one of the
boundaries of the band of two-particle states from the out-
side. A singularity arises only in the derivative of £ (co), since
the density of states/? (co') in three-dimensional crystals and
hence also the quantity F (co1) in the vicinity of either of the
boundaries of the band E has, as was mentioned earlier, the
formp(co') = pQ->j\'fJco' — e\. This is exactly why, when co ap-
proaches one of the boundaries of the band of two-particle
states from the outside or approaches the frequencies of the
critical points of the density of states, the function e (co)
remains finite, but has an infinite derivative.

In view of what we have said, we can schematically rep-
resent the £ (co) relationship in the frequency region being
discussed with fi£lib < £min in the form shown in Fig. 13. The
fact that a term exists in the expression (36) arising from the
presence of a biphonon, as we see from Fig. 13, causes a
frequency interval to arise near the frequency ftjj, in which e
(co) <0. This means that the electromagnetic waves in this
frequency region—bulk polaritons—are impossible (owing
to (37) they would correspond to negative values of A:2).
Thus, in full accord with the results of the microtheory, this
frequency region corresponds to a gap in the spectrum of
bulk polaritions.

We note that the vanishing of the quantity e (co) at a
certain value of the frequency co=fl^b (E(£l^) = 0,
flj|b > flib) indicates that a longitudinal biphonon is also
formed with the energy #fi||b in the case being studied of a
cubic crystal, simultaneously with the transverse biphonon,
which leads to the appearance of the "gap" in the polariton
spectrum. The frequency of the longitudinal biphonon in the
region of small k can depend on k only weakly (see Fig. 9b).

We emphasize that the longitudinal-transverse splitting
of the biphonon in the case being discussed no longer follows
the well-known Lyddane-Sachs-Teller formula, which is

FIG. 13. Dependence of the dielectric permittivity on the frequency in the
region of overtone frequencies. E ̂  and £ib are respectively the longitudi-
nal and transverse biphonon energies, £min and Emtl are the minimum
and maximum values of the energy in the band of two-particle states.
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valid for the region of an isolated frequency of a fundamental
vibration. Owing to the contribution of the integral term, the
low-frequency value of e (co) is determined by the relation-
ship

e (0) = Eoo + Fb + F (co') dco'.

Thus, generally speaking, the Lyddane-Sachs-Teller rela-
tionship mentioned above fly = e(0)fll/e( <x> ) for the fre-
quencies fl||b and fllb no longer holds (see also Ref. 32).

We can consider the remarks made above, which are
based on using relationship (36) for e (co), to be justified
only in crystals where the widths of the lines are small in
comparison with the magnitude of the longitudinal-trans-
verse biphonon splitting. We shall show in discussing the
experimental data that this type of situation can actually
occur.

For anisotropic crystals an analysis of the features of
the dispersion in the region of two-particle states also can
prove useful. In this case, in writing the phenomenological
relationship of the type of ( 36 ) defining the ^-dependence of
the dielectric permittivity tensor etj (co), we must take into
account the fact that the dipole-active biphonons, just like
dipole-active phonons, transform for k = 0 according to cer-
tain representations of the crystal class. Therefore, e.g., in
uniaxial crystals the dipole-active biphonons can be polar-
ized either along the optic axis (transition frequency f l l b ) or
transverse to it (transition frequency ft2b )> so that we have

Si j (ff l) = 6:": ^—5- §;3811 v ' n m2_o?, IJ

Ih

JJ (o/) (co')2 dm'

ffl'-a|b
(40)

Here the tensor quantity Fy (co1) is zero when i^j, while F^ ^
(co1) =F22 (co'). We assume in writing the relationship (40)
that the optic axis of the crystal lies along the z axis, while
spatial dispersion and damping are not taken into account.

In closing we note that also Fermi resonance with plas-
mons59 can exist in degenerate semiconductors, along with
Fermi resonance with phonons and polaritions. In this type
of crystal the spectrum of long-wavelength longitudinal vi-
brations reduces not, even in the region of the fundamental
frequencies, to plasmons and longitudinal phonons, but to
plasmophonons.60

It turns out that analogous "mixing" effects must gen-
erally occur also in cases in which the plasmon frequency is
close to the frequency of an overtone or a compound tone,
i.e., when the conditions are realized for Fermi resonance
with the plasmon. In contrast with the situation already
mentioned above, which was discussed in Ref. 60, in this case
it is very essential to take anharmonicity into account. Reso-
nance with a biphonon, if the latter is formed, leads to the
appearance in the plasmon spectrum of a gap, and this effect
can be most simply understood and described by starting
with purely phenomenological considerations.

For the details, together with the microscopic theory of
the effect, see Refs. 3b and 59. We also point out Ref. 61, in
which the intensity of Raman scattering by plasmons and

phonons was calculated under conditions of Fermi reso-
nance.

The experimental detection of Fermi resonance with
plasmons in a ZnSe crystal has been reported in Ref. 62.

5. FERMI RESONANCE WITH SURFACE POLARITONS:
SURFACE BIPHONONS AND SPLITTING OF THE DISPERSION
CURVE

It is well known that surface electromagnetic waves can
propagate along the boundary between two media (surface
polaritons), with their amplitude declining exponentially
with distance from the boundary into the interior of either
medium (see, e.g. Refs. 38 and 63). The dispersion curve of
surface polaritons (SPs) at the boundary of isotropic media
lies in the region of the gap of the spectrum of bulk polaritons
that arises upon longitudinal-transverse splitting (inside
this gap the dielectric permittivity of the medium acquires
negative values). At the boundary with a vacuum, the dis-
persion law of SPs with retardation taken into account is
given by the relationship

, 2_ to2 e (to)
~ C2 E(0)) + l '

The effects of strong anharmonicity, which are analogous to
the effects in the bulk of the crystal, can lead to substantial
changes in the spectrum of surface polaritons. Thus, in the
region of the longitudinal-transverse splitting of biphonons
filb «y <ft||b, where E(OJ) <0, surface biphonons should
also exist. One might study surface biphonons, e.g., by using
the method of frustrated total internal reflection. As is well
known, in contrast to the method of Raman scattering by
polaritons, this method is effective independent of whether
the crystal has an inversion center, and in this sense is more
universal. At the same time, the experimental discovery of a
surface biphonon in the frequency region lying below the
band of two-particle states would indirectly indicate the ex-
istence of both transverse and longitudinal biphonons. Actu-
ally, owing to the fact that £„ >0, the magnitude of E (to)
determined by Eq. (36) can be negative in a certain frequen-
cy region a> <£min/fi only when (36) contains a resonance
term with the frequency flib < emin /ft.

Now let us discuss the problem of the surface-polariton
spectrum at Fermi resonance, i.e., under conditions in which
the SP frequencies lie near the band of two-particle states of
some kind of optical surface phonons (Fig. 14) (see Refs. 64
and 65).

One can take into account the effect of surface phonons
on the spectrum of surface polaritons within certain limits
within the framework of the theory of SPs with account tak-
en of the transition layer.63-66 These studies have shown that
the dispersion equation of a surface polariton at the bound-
ary of two isotropic media having the dielectric permittivi-
ties E (u>) and el (EI > 0 is constant) with allowance for the
polarizability of a transition layer of thickness /<!/& (A: is
the component of the wave vector of the polariton parallel to
the surface) has the following form:

(41)

Here y (a>) is the polarizability of the transition layer, and
we have
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FIG. 14. Dispersion of surface polaritons in a region of Fermi resonance
without allowance for the influence of critical points. The hatched region
is the band of two-particle states. The dot-dash line indicates the polariton
dispersion curve without allowance for Fermi resonance.

If the band of two-particle states (see Fig. 14) lies within the
region of variation of the frequency of surface polaritons
( f l i , fls ) , where fls is a root of the equation el + E (ca ) = 0,
then in the absence of damping one can represent the quanti-
ty Y (<») as follows:

In (42) the first term is determined by the contribution of
surface biphonons, while the integral is determined by the
contribution of the band of two-particle states of surface
phonons; the quantities/b and ,4 (&>') are proportional to the
oscillator strengths respectively of the transition to the bi-
phonon state and to a state of energy fuo'in the band; g ( a>' ) is
the density of states in the band of two-particle states. In the
neighborhood of the biphonon frequency flb , the surface-
polariton spectrum is split with a separation proportional to
the quantity fi. If it exceeds the width of the polariton line,
then it can be detected experimentally. (For observations of
a gap in the spectrum of surface polaritons, see, e.g., Ref.
38). Inside the band of two-particle states, the behavior of
the polarizability y (co ) of the transition layer, just like the
solutions of Eq. (41 ), depends on the density-of-states func-
tion^ (a> ) . At the edge of the band of two-particle states with
k = 0 in the two-dimensional case, the density of states does
not depend on ca. Therefore here the integral in (42) di-
verges logarithmically: in the limits as a— *2ct}min and
co— »2<ymax (ct)min andtymax are the boundaries of the surface-
phonon spectrum):

/(CO) 2coA
• I n

— wHere we have A = <u
As an analysis of the solution of Eq. (41 ) shows, given

this frequency-dependence of / (a)), frequency doublets
arise (Fig. 15) near the edges of the band of two-particle
states in certain intervals of the wave vector for each k. The
components of the doublets approach one another with in-
creasing k. The. estimates made in Ref. 64 show that the
components of the doublet should be separated by zz2-6
cm^1 for a width of the band of two-particle states cam^.

FIG. 15. The same as in Fig. 14, but with allowance for the influence of a
singular point.

— ®min —20-40 cm"1 and with the usual values of the re-
maining quantities (flL,A (ca), etc.).

One or several singular points of the density of states
must always exist inside the band of two-particle states.
Since we are discussing surface phonons, i.e., two-dimen-
sional phonons, the singularities of the functions g (co) in
(42) differ from those in the three-dimensional case. In the
two-dimensional case at the singular points co l, the density of
states diverges logarithmically, so that in a certain region of
width 2<aa the function g (co) has a nonregular component67:

Ag- (to) == — g0 In
CO—COj (43)

Here g0 is the mean value of the nonregular component. One
can easily show that such a singularity leads to a discontin-
uity in the values of the integral / (co) in (42), with

Hence the dispersion curve of a surface polariton for ca ~ a l

also undergoes a discontinuity (see Fig. 15). Here the mag-
nitude S of the gap that arises depends essentially on the ratio
80/8 1 (81 is the mean value of the regular component of the
density of states in the band).

Thus the study of Fermi resonance with surface polari-
tons enables one, in principle, not only to find the position of
the surface-biphonon frequency, but also to study certain
singularities of the structure of the band of surface phonons.

Apparently it has been possible by using the frustrated
total internal reflection method to observe for the first time
the effect of an overtone of a surface vibration on the spec-
trum of a surface polariton (see Ref. 68).

6. THEORY OF RAMAN SCATTERING OF LIGHT BY
POLARITONS AT A FERMI RESONANCE: DENSITY OF
STATES AND FANO ANTIRESONANCE

In crystals lacking a center of inversion, the dipole-ac-
tive phonons that form polaritons are also active in Raman
spectra. Therefore Raman scattering by polaritons is widely
employed for studying the dispersion of light in the infrared
region of the spectrum.69"71 In particular, one also observes
in Raman spectra the features of the dispersion of normal
electromagnetic waves, particularly in the region of Fermi
resonance, that we have already discussed in the previous
sections of this article.

499 Sov. Phys. Usp. 28 (6), June 1985 V. M. Agranovich and I. T. Lalov 499



At Fermi resonance the intensity of Raman scattering is
determined by: a) Scattering by a polariton-this is a first-
order process. The polariton leads to displacement of the
nuclei and to simultaneous appearance in the crystal of a
low-frequency macroscopic electric field. Both these factors
give rise to a polarization that leads to Raman scattering, b)
Two B phonons in a crystal also create an extra polarization,
but scattering in an overtone is now a second-order process.
Thus, Raman scattering at Fermi resonance by polaritons
proves to result from the interference of the stated two con-
tributions.

Schematically one can write the perturbation operator
that leads to Raman scattering in the following form72:

Here the quantity <5 &> («) is determined by the change in
the contribution of electrons to the polarizability of mole-
cule «(n=n, a, a = 1, 2, ... , a, where a is the number of
molecules in the unit cell) that arises upon displacement of
its nuclei, E («) is the value of the field intensity at the point
rn . One can expand the polarization 8 & (n) in a power
series in the normal coordinates «J,6) and «^c) characterizing
the motion of the nuclei in the molecule and in powers of the
intensity of the low-frequency macroscopic field Ep (n ) that
accompanies the polarition:

H , =

; (n) = S aft

S
j , i

+ S

n) E, (n) 2
, i, r

(n) .

Herea(a) ,b(a} ,c(a) ,andrf(a) are certain tensors that define
the change in the polarizability of the molecule a caused by
the displacement of its atoms. The operators u^ and u£c)

correspond to the partial displacements of the nuclei in the
molecule n under the influence of the normal coordinates of
the B phonons and C phonons; c(or) is the electro-optic ten-
sor that defines the change in the electric-polarizability ten-
sor under the influence of the field Ep (n). We can represent
the operators u(

n
by and wj,c) in the following form:

p, k

Here e is the effective charge, while p<6) , p(2) , and p(c) are
the matrix elements of the dipole-moment operator of the
molecule, |p

+ (k) is the operator for creation of a polariton
of the/9th branch having the wave vector k, and S p ( k ) is the
amplitude of the electric field of the same polariton (see Ref.
36). One can express the operators Cn and C n

+ by using the
linear transformation (27) in terms of the polariton opera-
tors § p (k) and g + (k) . In the operator H 1 we shall keep
only the terms that lead to processes of Raman scattering of
the polariton ( pa , ka , fico' ) to give rise to the polariton ( pb ,
kb,tieo"). Then we obtain the following expression for the
perturbation operator:

'x-fcSlpa (ka) ?p6 (k,)

(k) |p- (k) |pa (ka) & (k6) + h.c. .

Here k = ka — kt corresponds to the wave vector of the
low-frequency polariton p from the Fermi-resonance region,
while the quantities Fa (k)andD^ (k) are expressed in an
obvious way in terms of the tensors a, b, c, and d, the vectors
w p(c),etc.

A calculation of the Raman cross-section by the Van
Hoye method has been given in Ref. 15 (see also Ref. 17).
Without going into the details of the calculations, we shall
write out the expression for the double differential Raman
cross section per unit length of crystal per unit solid angle o"
and per unit frequency interval of co" for crystals with one
molecule per unit cell:

(k)
(44)

Here the quantity Mab equals V2kl/[(2ir)3-f?vavl,],va and
vb are the group velocities of the polaritons, and x (a, k) is
the spectral density:

Y. (co, k) = (44')

Also we have E = fi(co' — co"); for the rest of the notation
see Sec. 6a.

The principal component of the frequency-dependence
of the Raman cross section is determined by the renormal-
ized anharmonicity of the spectral density of states x {co, k)
of (44'). The maximum of the Raman cross section with
respect to k corresponds to the value k0 (co), which is the
solution of Eq. (35). If the value of co lies outside the band of
two-particle states, the solution determines the wave vector
k of the polariton at Fermi resonance, while the spectral
density ?c(A) (co, k) coincides with the a-function (see
(32)). In the band of two-particle states itself, the ko (co)
relationship determines the dispersion curve of normal elec-
tromagnetic waves in the generalized sense pointed out
above. Precisely in this sense the dispersion of maxima in
Raman spectra determines the dispersion curve of polari-
tons, even in the band of two-particle states.

Since in the presence of strong anharmonicity regions of
values of frequencies co% exist for which Eq. (33) has no
solutions for any value of the wave vector, gaps arise in the
Raman spectra. If the frequency cog lies inside a gap outside
the band of two-particle states, then scattered light having
the frequency co" = co' — cog is absent in the Raman-scatter-
ing process.

In the band of two-particle states the spectral density of
(44'), and correspondingly also Raman scattering, always
differ from zero. Therefore, if the frequency cog lies in the
band of two-particle states, then diffuse light scattering
arises without a marked maximum in k. Here the integral
intensity of light scattered in all directions can prove to be
considerable. For some regions of values (o^cog, the integral
intensity sometimes proves to be so small that a trough50'70

(or "gap") is clearly visible in the Raman spectrum.
The last factor in (44) expresses the interference of the
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contributions to the Raman cross section of the overtone F
(k) and the polariton D (k). The interference can lead to
troughs in the intensity of the Raman spectrum for certain
values of k that satisfy the relationship

r (k)
~̂l

 x P W 7~l /I \ f\

F (k) -(- 2j <£ Dp (k) = 0.
P

For these values of k = ka — k;,, the Raman intensity must
be suppressed, and evidently this effect is analogous to the
Fano antiresonance in atomic spectra73 (the possibilities of
antiresonance in spectra of Raman scattering by phonons
resulting from the interaction of a discrete level and a contin-
uum of states have been discussed earlier in Ref. 74, and in
connection with Raman scattering at Fermi resonance by
polaritons in Ref. 65). Evidently, this type of trough in the
Raman intensity can be appreciable only in crystals in which
the partial Raman intensities in the overtone F (k) and the
polariton D p (k) are quantities of the same order of magni-
tude. Studies of the form of the polariton curve a> (k) in an
antiresonance region are generally difficult. Only attentive
analysis in each concrete case can show whether an observed
trough in the intensity results from antiresonance, or
whether it reproduces features of the spectrum of electro-
magnetic waves in the crystal that are determined by its
spectral density (44')-

7. EXPERIMENTAL STUDIES OF FERMI RESONANCE WITH
POLARITONS

Fermi resonance with polaritons has already been stud-
ied for more than ten years. Therefore considerable experi-
mental material exists at present on Raman scattering at
small scattering angles in noncentrosymmetric crystals. In
many cases it allows one to reconstruct the spectrum of nor-
mal electromagnetic waves in the overtone region (see Refs.
69-71 and below). In this regard we shall discuss the exist-
ing experiments in the light of the most recent data, both
theoretical and experimental.

At first the attention of investigators was focused on the
strongest effect of anharmonicity: the appearance of a bound
state of phonons and correspondingly of a gap in the polari-
ton spectrum near the two-phonon band. The first convinc-
ing proof of the existence of a gap pertained to the uniaxial
crystal of lithium niobate LiNbO3.

76>77 In this crystal the
dispersion curve for transverse polaritons is split in a region
(o> ;= 525 cm"1; Fig. 16) containing no first-order vibrations

500
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FIG. 16. Polariton dispersion curve in the biphonon region in a LiNbO3
crystal.76
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(the frequency of the nearest first-order vibration is of the
order of 582 cm"1). Subsequently an analogous pheno-
menon has been observed for a large number of crystals, and
the results of the corresponding experiments will be dis-
cussed below. However, we emphasize that gradually the
attention of experimentalists has shifted toward studying the
phenomena in the band of two-particle states itself. First of
all, this interest in them was aroused by the fact that, as it has
turned out, broad phonon bands are very often encoun-
tered,78'79 and in these regions of the spectrum the interac-
tion of polaritons specifically with unbound states of phon-
ons governs both the linear and the nonlinear optical
properties of crystals. The interaction of the polariton p, k
with the band of unbound states models the situation in
which the interaction occurs between the individual level i?
(k) with a continuum of states corresponding to the same
value of the wave vector k. We must bear in mind the fact
that most crystals whose polariton spectra show Fermi reso-
nance have a complicated phonon spectrum, and the bands
of unbound states corresponding to different overtones or
compound tones lie very close together or overlap. Therefore
one often cannot observe the dispersion curve of polaritons
in the vicinity of a solitary band or in the band itself, and the
effects on the polariton spectrum of different bands are
superimposed on one another. Nevertheless the fundamen-
tal results discussed below provide an idea of the nature of
Fermi resonance with polaritons, and also of its influence on
the properties of the crystals in the corresponding frequency
regions.

The band of two-particle states is manifested most
sharply in the polariton spectrum of the noncentrosymme-
tric cubic crystal of NH4C1. We have already spoken of the
spectrum of its states at large k and have noted the relatively
simple structure of its phonon spectrum.46 Analysis of the
first and second-order Raman spectra here enables one to
establish the positions of the bands of unbound states. It has
been shown from the studies performed that effects are ob-
served in the Raman spectrum of the crystal under discus-
sion from interaction of polaritons with the already men-
tioned band 2v4, which lies in the region 2800-2910 cm"1.
This band is well isolated from the bands of the fundamental
tones, yet at the same time it is rather intense in the Raman
spectra. One sees in the spectrograms the sharply marked
boundaries of this band, and intense diffuse scattering exists
inside it. Nevertheless, the polariton dispersion curve in the
region where it approaches the boundaries of the band, as
well as its course in many regions inside the band, are rather
clearly visible (see Ref. 80). The maxima of intense scat-
tered light in certain places inside the band enable one to
determine unambiguously the position of the polariton dis-
persion curve (Fig. 17). On the whole one observes a pattern
of the Raman spectrum that qualitatively corresponds to
that described in Sec. 7 with respect to the behavior of polari-
tons inside the band of two-particle states. Here approxi-
mately the same features of Raman scattering by polaritons
are also observed inside other bands of unbound states.50 In
this case one could quantitatively compare theory with ex-
periment if one knew the distribution of the density of states
in the aforementioned band of two-particle states, as well as
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FIG. 17. Section of the polariton spectrum in NH4C1 crystals.50'70 The
behavior of polaritons has been studied in greatest detail in the 2v4 band.
Note also the singularities of the polariton dispersion curve in the v2 + v4

band.

the parameters of the crystal that govern the anharmonicity
constants. In principle both can be found on the basis of
model calculations or measured in independent experiments
(e.g., the density of states can be measured with inelastic
neutron scattering).

The manifestation of Fermi resonance in Raman spec-
tra of a crystal of LiIO3 has been reported.81>82>99 High-reso-
lution measurements82'99 have made possible the detection
of four breaks in the polariton dispersion curve in the region
1500-1600 cm~l. In the vicinity of each of the resonances,
the course of the polariton dispersion curve is analogous to
its course in LiNbO3 and agrees well with the predictions of
theory (see Ref. 99).

The course of the polariton dispersion curve in the
bands of unbound states has also been observed in a crystal of
lithium formate.78'83 A change in the course of the dispersion
curve is observed in two regions (2150-2450 and 2520-2570
cm~'). Here the polariton curve is broadened, but remains
continuous.5' Characteristic bends of the curve are observed,
whose amplitude is greater than its width. Qualitatively the
polariton spectron is very similar to the spectrum due to a
weak interaction between phonons and polaritons (see Fig.
12). Of course, one cannot interpret the details of the ob-

served structure of the polariton curve within the framework
of a model having one band. One requires a more complex
theory that allows for the simultaneous interaction of the
polariton with a large number of bands. In the presence of a
rich phonon spectrum and with a large number of overlap-
ping bands of multiparticle states, it is difficult to take into
account the influence of each band individually (with its
critical points and singularities). A distinctive stochastic
problem arises for describing the behavior of polaritons in
such a spectral region: to calculate the dispersion of a polari-
ton interacting with a large number of "random" continua
with overlapping boundaries.

In an HIO3 crystal a rearrangement of the polariton
spectrum is observed, both in the biphonon region and in the
band of two-particle states.52 One observes a gap in the re-
gion of frequencies of the bound state in the polariton
branch, while in the band the Raman line is strongly broad-
ened. The structure of the spectrum in the band becomes
more distinct upon cooling the crystal, while the polariton
curve even breaks inside the band.

The broadening of the polariton branch in the region of
dissociated states arises from the opening of a new decay
channel, and we have already mentioned this effect above.
The casue is not yet evident of the breaks in the polariton
branch that arise in this same region of the spectrum on
lowering the temperature of the crystal. Only by future stud-
ies can we hope to elucidate which of these breaks arise from
critical points of the density of two-particle states, from the
formation of quasibiphonons, or from interference of the
type of a Fano antiresonance.

We note that the temperature-dependence of the width
of the spectral lines at Fermi resonance with polaritons (see
Refs. 35 and 51) can be very strong. Its nature is as yet little
studied, and the analysis here first of all hinges on the ques-
tion of the temperature-dependence of the widths of the bi-
phonon and quasibiphonon lines. Since the binding energy in
a biphonon is generally small in comparison with the energy
of short-wavelength acoustic phonons, it would be natural to
assume that the width of the level of a biphonon is

r « 2r0 + v.di, -
Here T0 is the width of the level of an individual optical
phonon, while 7dis is the width arising from the thermally
activated process of dissociation of a biphonon accompanied
by its conversion into two free phonons (crudely speaking,
7dis ~ Y(f ~u/kr when u>kT, where U is the binding energy
in the biphonon). For a quasibiphonon (E = Eqb~), one
could write an analogous expression for T, but with ydis

~/?o(-£'qb ) > Po (E) is the density of two-particle states for
E = £qb. In both cases, i.e., for the biphonon and the quasi-
biphonon, we have T > T0. This is precisely the situation that
must be subjected to experimental analysis. A breakdown of
the stated inequality might mean that anharmonicity sub-
stantially changes also the relaxation processes responsible
for the decay of individual high-frequency optical phonons.

Since in uniaxial crystals the frequency a p (k) of the
extraordinary polaritons (see, e.g., Refs. 69 and 70) depends
strongly on the direction of the wave vector k, changes in the
direction of the wave vector of the incident light with respect
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to the optic axis, and hence, changes in the wave vector k of
the polariton being created, enable one to vary the relative
position of the energy of the polariton and the energy band of
two-particle states. Here the conditions of Fermi resonance
are varied. In particular, as was shown in Ref. 79, upon
gradually changing the direction of the wave vector k of the
polariton and shifting it from the extraordinary to the ordi-
nary ray, one can observe a change in the polariton-two-
phonon interaction from the change in the form of the dis-
persion curve. The dispersion curve initially broadens, then
bends appear in it and increase in amplitude, while the dis-
persion curve breaks as k approaches the direction of the
optic axis. The latter indicates in this case a sharp increase in
the anharmonicity constant. Reference 79 has explained
such a strong influence of Fermi resonance by the large an-
harmonicity of hydrogen bonds, which makes possible a
considerable polariton-two-phonon interaction.

A break in the polariton curve in the band of two-parti-
cle states in the CdS crystal has been reported.84 A broad
band is observed in the region of 204—213 cm~' in the Ra-
man spectrum of this crystal with two maxima, apparently
associated with extrema of the density of the band of two-
particle states. In the cited study it was also possible to ob-
serve the course of the polariton dispersion curve inside this
band. The position of the observed break in the polariton
curve is associated84 with the Van Hove critical points. This
interpretation is analogous to that treated in this section.

The results of studies of Fermi resonance with polari-
tons in the CaCO3 crystal (calcite) obtained with hyper-
Raman scattering85 are of considerable interest. These re-
sults are the first demonstration of the potentiality of
applying hyper-Raman scattering to study effects of anhar-
monicity in centrosymmetric crystals, where the process of
ordinary Raman scattering by polaritons is forbidden by the
selection rules. In the previously mentioned calcite crystal,
the anharmonicity is not strong enough for biphonon forma-
tion, but it creates decaying states in the bands of two-parti-
cle states (quasibiphonons) that are manifested in the in-
frared absorption spectra. The quasibiphonons give rise to
breaks in the polariton curve that are not very broad (see
Fig. 12), which have specifically been observed in Ref. 85.
The authors were able to compare successfully the theory
developed in Refs. 15-17 with experiment (Fig. 18). The
data, which were mutually in agreement within the frame-
work of a unitary model for the position, width, and intensi-
ty of the Raman lines, as well as for the infrared spectra of
calcite, made it possible to determine the anharmonicity
constant.

8. CONCLUSION: PROSPECTS OF FURTHER STUDIES

The possibility of formation of biphonons and other,
larger phonon complexes substantially enriches the vibra-
tional spectrum of multiparticle states of crystals. Although
a number of important results have been obtained already in
this field of studies, both in the experimental and theoretical
areas, much yet remains to be done. In particular, three-
phonon and other more complex bound states of phonons
merit further study (analysis of them is just beginning88).

tit, cm
3500i-
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20 25

FIG. 18. Dispersion curves in a GaCO3 crystal. Dots—polariton frequen-
cies measured in Ref. 85; dotted line—polariton dispersion without
allowance for Fermi resonance of the two-particle states; solid lines—
calculated dispersion relationships with allowance for Fermi resonance.85

However, even biphonons and their role in many optical pro-
cesses have been insufficiently fully studied at present. In
connection with what we have said, we wish first of all to call
attention to the topicality of calculations of biphonons in
crystals of different structures for the field of degenerate vi-
brational transitions.

Also studies of biphonons in one- and two-dimensional
crystals might be of great interest. In crystals of this type,
and also in three-dimensional crystals in which certain
phonons can be considered quasi-one- or quasi-two-dimen-
sional, the conditions for formation of biphonons must be
more favorable, other conditions remaining the same, than
in ordinary three-dimensional crystals.

In speaking of biphonons in one-dimensional crystals,
we wished to call attention to their possible role in processes
of energy transport along protein molecules.89 These mole-
cules possess vibrations with an energy £ =; 0.2 eV. Therefore
the formation of stable and mobile complexes consisting of
two or three vibrational quanta might prove important in
connection with the problem of energy transport with e x. 0.5
eV (see Ref. 89). However, evidently, this type of biphonon
energy transport to macroscopic distances, which are impor-
tant only in biology, can be considered to be real only under
the condition that the lifetime of the vibrational quanta is
large enough. In this sense, the problem of the lifetime that
arises here has the same importance in principle that it has in
connection with evaluating the role of soliton transport.90

We have already emphasized above that the conditions
for formation of local or quasilocal biphonons in disordered
crystals can differ substantially from the analogous condi-
tions for formation of local states in the region of the funda-
mental frequencies. In connection with the already started
development of experimental studies of spectra of disor-
dered crystals in the region of overtones and compound
tones of the fundamental vibrations, further analysis of the
spectra of disordered crystals in the spectral region of multi-
particle states seems topical and theoretically interesting. As
is known, the coherent-potential method91 was developed
and is being successfully applied for calculating the spectra
of one-particle states (electrons, phonons, Fresnel exci-
tons). Yet when the question involves the spectrum of two-
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particle states, then a number of theoretical problems arise
in taking account of anharmonicity (see also Ref. 60) that
require additional analysis, and which primarily involve the
need for ensuring the correct asymptotic behavior of the
method at low concentrations of a dopant (going over to the
dispersion equation for a local biphonon or quasibiphonon).
Also the development of the theory of surface biphonons
merits further attention. The conditions for formation of
these states also differ from the conditions for formation of
surface states in the spectral region of the fundamental vi-
brations. It has been shown20 with the model of a bounded
one-dimensional crystal that situations are generally possi-
ble in which surface phonon states are not formed, and the
spectrum of surface states begins only in the region of over-
tones or compound tones of vibrations.

In closing we emphasize that biphonons and other ef-
fects of strong anharmonicity should be manifested not only
in the absorption and luminescence spectra of pure and
doped crystals, in nonlinear processes, and in Raman spectra
and inelastic neutron-scattering spectra, but perhaps also in
processes of radiationless decay of electronic excited states
of a crystal. The analysis of this problem, as well as many
other manifestations of states of phonons bound to one an-
other, is of interest and will probably be a matter for the
future.

" This Hamiltonian is (formally) the Bose analog of Hubbard's Hamil-
tonian.96 This situation offered grounds to the authors of Ref. 97 to
discuss the possibility of a phase transition for phonons, analogous to
the Mott transition for electrons.

2' The converse situation has been studied in Ref. 31,
3> We also note the study of Pitaevskii,30 which discusses (see also Ref. 34)

weakly bound biphonons that arise in the limit of small \A |<A.
4) When F = 0, Eq. (18) is analogous to the known analysis33 of the condi-

tions for formation of local states of phonons in the neighborhood of an
isotopic impurity.

5) Thus the experiments contradict the theory of Ref. 86a according to
which the polariton branch cannot enter the band of two-particle states
(see also Ref. 86b).
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