Diffusion shocks in an inhomogeneous current-carrying collisional plasma
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The evolution of density profiles in current-carrying inhomogeneous plasma is examined for
evolution rates that are slow in comparison with acoustic and Alfven velocities. When the density
profile is smooth in comparison with /. = T'/eE, diffusion is initially unimportant and evolution
can often be described by the equation for a simple nonlinear wave. The breaking of this wave
leads to the appearance of regions with a steep density gradient, i.e., diffusion shocks. The excep-
tion is ambipolar diffusion in simple plasma consisting of ions and electrons of a single kind and
having constant mobilities. Examples of such stationary and moving shocks in ionospheric, gas-
discharge, and semiconductor plasmas, and in electrolytes, are discussed.
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1. INTRODUCTION

Problems involving the shape and evolution of spatial-
ly-inhomogeneous charged-particle density distributions in
the presence of a current flowing through the system are
frequently encountered in different branches of physics.
Such problems are very topical in the physics of semiconduc-
tors, gas discharges, and electrolytes. Similar problems arise
in the analysis of the motion of inhomogeneities in ionos-
pheric and fully ionized plasmas.

If we confine our attention to isothermal plasmas, the
evolution of the inhomogeneous plasmas is determined by
the particle mobility and diffusion, and is commonly de-
scribed by the following set of equations:

Pa 1 div TP =1, —R,, (L.1)

yop— 5q’1aE~ﬁaVﬂw a=1,2, ...,k

=1z (1.2)

where Z,, is the charge on particles of type a and 5a , l;a are
the diffusion and mobility coefficients (which are tensors in a
magnetic field or in anisotropic media). We shall consider
that the Einstein relation
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b, (1.3)

is satisfied. The terms I,, R, correspond to the generation
and recombination of particles. The quasineutrality condi-
tions

\Zyng =0, 2 Z

e @& e a
o ¢4

(1.4)

determine the self-consistent electric field in the system.

For the so-called simple plasma without a magnetic
field, which contains only two types of carrier whose mobili-
ties do not depend on the density, field, or direction, the set
of equations given by (1.1)—(1.4) reduces to the well-known
ambipolar diffusion equation’

Iz DyAnyy =11, — Ry, (1.5)
where D, = (b,D, + b,D,)/(b, + b,) is the ambipolar diffu-
sion coefficient. This linear equation does not contain the
electric field, so that the evolution of the plasma inhomoge-
neity is independent of the current. This situation is, how-
ever, exceptional. Even in the absence of a current in a sys-
tem consisting of more than two kinds of carrier with
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constant mobilities (for example, electrons and two kinds of
ion in weakly ionized plasmas, or electrons, holes, and fixed
charged centers in semiconductors), the system defined by
(1.1)~(1.4) can no longer be reduced to the ambipolar diffu-
sion equation. In particular, at certain stages of the evolution
process, the field fluxes can collect some of the components
at their density maxima. For example, in a gas discharge, the
ambipolar field confines electrons to the plasma. Since,
usually, 7, » T;, negative ions are drawn by this field into
the plasma in the case of electronegative gases, thus produc-
ing sharply inhomogeneous profiles detached from the
wall.? In the general case, the diffusive evolution of inhomo-
geneities in multicomponent plasmas is a relatively complex
process that depends on the shape of the initial inhomogene-
ity and on the degree of nonlinearity, i.e., on the relative drop
in the component densities. The situation is simplified in the
linear case, when density perturbations are small in com-
parison with the stationary homogeneous background. The
general solution of the linearized system (1.1)(1.4) consists
of the sum of k — 1 diffusion modes w, = w,(k ?), each of
which in general depends on the diffusion coefficients of all
the components and on the generation-recombination terms
in (1.1). The transition to ambipolar diffusion was investigat-
ed in Refs. 3 and 4 by considering the example of three-
component plasma in which the mobilities of the two kinds
of positive ion were equal. It was found that the linearity of
(1.5) was a consequence of the complete mutual compensa-
tion of several nonlinear effects.

The nature of the evolution of an inhomogeneity is, in
general, radically altered when a sufficiently strong current
is introduced into the system. One can then arbitrarily iden-
tify two groups of effects. Firstly, there are the effects asso-
ciated with the change in the rates of generation-recombina-
tion processes in the electric field due to the plasma
inhomogeneity. They include, for example, losses, >° several
instabilities in the gas discharge,”® many phenomena near
the electrodes, and so on. We shall not touch upon these
complicated and interesting problems, and will confine our
attention to the analysis of the effect of the self-consistent
electric field of the inhomogeneity on its evolution, which is
due to the change in the diffusion and field fluxes (1.2). The
characteristic feature of the resulting density profile is the
steepening of the inhomogeneities, i.e., the appearance of
regions in which the density gradients of the components can
substantially exceed the initial values. The reason for this
phenomenon is as follows. For sufficiently smooth inhomo-
geneities, whose characteristic scale in the direction of the
current is L » /1 = T /eE, the diffusion terms can be ne-
glected in the fluxes (1.2). When generation and recombina-
tion are unimportant, which is frequently referred to as the
drift approximation,® the linearized system (1.1)—(1.4) de-
scribes the propagation of (k — 1) different types of un-
damped wave.” The nonlinearity of the finite-amplitude
waves is reflected, above all, in the fact that different points
on the wave profile move with different velocities. This re-
sults in wave breaking, i.e., the density profile becomes mul-
tivalued in the drift approximation. To obtain physically
meaningful results, we must take into account the diffusion
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components of the fluxes (1.2). Diffusion arrests wave break-
ing, and narrow regions (of width ~/;) in which the plasma
parameters are subject to rapid variation are found to ap-
pear. For waves of small amplitude, the problem can be re-
duced to the Burgers equation.'® These diffusion shocks are
analogous to shock waves in ordinary gas dynamics.'*>-!* As
in the latter case, they may be looked upon as discontinuities
in drift velocities, where the position and velocity of these
discontinuities can be found without investigating the diffu-
sion processes. Diffusion determines only the density profile
in the interior of the shock. The influence of generation and
recombination can frequently be reduced to the broadening
of the shock and to a complication of its structure, namely,
the formation of a relaxation zone, as in the propagation of a
shock wave in a relaxing gas.!*'5

Kolrausch and Weber'®!” were the first to note the for-
mation of shocks in electrolytes. They showed that, in a fully
dissociated electrolyte containing three types of ion, the flow
of current produced discontinuities in drift solutions. If ion
mobility depends on ion density, these discontinuities
should also occur in the solution containing two kinds of ion.
Laue'® has generalized these results to the case of a variable
degree of dissociation. Particular attention was devoted in
these papers and in experiments'®2! to the evolution of an
arbitrary discontinuity in initial conditions. It was shown
that, depending on the direction of the current in the electro-
lyte containing two kinds of ion, the mobility of which de-
pends on density, the boundary between solutions with dif-
ferent concentration can move, remaining sharp, or it can
diffuse. On the other hand, when there are three kinds of ion,
the sharp boundary may split into two discontinuities in the
course of the evolution process, namely, a moving and a sta-
tionary discontinuity.’” When the current is reversed, a con-
tinuous density profile and one stationary discontinuity are
produced. The structure of a weak discontinuity was exam-
ined in Ref. 20, where an expression analogous to the for-
mula for the profile of a weak shock wave'> was obtained.
The corresponding measurements were found to be in good
agreement with theory.

A. V. Gurevich,?* who considered the example of par-
tially ionized plasma in a magnetic field, was probably the
first to note the formation of diffusion shocks. The nonlin-
earity of (1.1)~(1.4), which leads to the breaking of the drift
profile, was due to the dependence of the transport coeffi-
cients on the charged-particle densities, which in turn was
due to Coulomb collisions.

Sharply inhomogeneous density and field profiles have
been observed?*>** in semiconductors with hot carriers. It
was noted in Refs. 2?7 that they constituted stationary dif-
fusion shocks, produced because the electron mobility was a
function of the electric field. Numerical simulation of the
evolution of inhomogeneities in ionospheric plasmas led to
the discovery®® of regions in which there was a sharp rise in
the density gradient. These regions can be interpreted as dif-
fusion shocks.?**° It is shown in Refs. 30 and 31 that the
generation-recombination terms in (1) frequently lead to the
broadening of the shocks and to the formation of a relaxation
zone.
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Since Egs. (1.1)—(1.4) have a wide range of validity, the
formation of such diffusion shocks is a relatively general fea-
ture of current-carrying plasmas. Factors such as the multi-
component nature of the plasma, Coulomb collisions, de-
pendence of mobility on electric field, anisotropy produced
by a magnetic field, and plasma inhomogeneity across the
field, lead to nonlinear equations, when the quasineutrality
condition is taken into account, and to the breaking of the
drift profiles. Hence, the corresponding sharply inhomogen-
eous distribution of charged-particle density and electric
field appear under very different conditions during the evo-
lution of inhomogeneities in gas-discharges, ionospheric and
semiconductor plasmas, and electrolytes and fully ionized
plasmas.

The steepening of density profiles in current-carrying
plasmas may be the reason, especially in a magnetic field, for
the numerous instabilities seen experimentally. These are
complicated phenomena that have not been well studied. In
the first instance, they appear as a broadening and turbuliza-
tion of the shock itself. We shall not examine these questions
except when direct experimental evidence is available.

We shall consider several examples which we will use to
illustrate the characteristic features of this phenomenon.

2, WEAKLY IONIZED MULTICOMPONENT PLASMA IN THE
ABSENCE OF A MAGNETIC FIELD

Consider a plasma containing electrons and two kinds
of positiveion. Let/, = R, = 0and suppose that the b, are
constants. Neglecting diffusion, and using the quasineutrali-
ty condition

n, = ny + n,, 2.1)
we find that, in the one-dimensional case,

E—F (b1 be) n{® - (by+ be) ng® _ G
T (by4be) ny (b be)my

T (by+be) ny(byt+be) ny ?
. (2.2)
S b,y 1(by 4 be) n® - (by -+ be) m® ]

.0 e =0
k]

P - (2.3)
0z (b1 + be) niF (22 £ be) 12

a=1, 2,

where E,, n'Y are, respectively, the field and density of the
uniform-plasma components at infinity.”

A. Three-component plasma with one kind fixed ions

The simplest case is b, > b,,b, = 0.¥ We then have
n, = n = const, so that (2.3) yields

(2.4)

n an
0t1 +V (ni) 6::1 = O’
where the velocity of points on the profile ¥ (»,} is the nonlin-
ear analog of the rate of ambipolar drift, which is related to
the flux in the drift approximation, I",(n,):

dry(ny) _ jbng®
14 (nl) = dlnl et (nl_ﬁném)z - (25)
The solution of (2.4) is'3
(@ t) =n @ — 7 (ny)0), (2.6)

where n,y(x) is the initial density profile of ions of kind 1.
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FIG. 1. a—Initial density profile, n,; b—n, profile fort > t., 4 = 2. In-
sert shows a graph of I' (n,).

Consider the evolution of the simple initial Gaussian
profile 7,,(x,0) = An{ exp( — x?/a?) (Fig. 1a). It is clear
from (2.5) that ¥ (n,) decreases with increasing n, i.e., points
corresponding to greater density move more slowly. The re-
sult is that the frontside of the profile becomes flatter, where-
as the backside steepens and then becomes multivalued, so
that the wave breaks. Since wave breaking produces a sharp
rise in the density gradient, diffusion becomes important in a
narrow region. The onset of the shock can be defined by!*~!*

(2.7)

4 (m () 1
el I

t, = min [
i.e., the instant of time at which the characteristics (2.4) be-
gin to cross in the (¢,x) plane. The position of the shock and
the concentrations #,” and n;* on the left and right of the
shock can be determined readily from the conservation of
the number of particles, since the area under the curve n,(x)
with the shock should be equal to the area under the three-
valued drift solution (Fig. 1b); n;* > n. The shock velocity
W can be determined from the conservation of flux in the
coordinate frame attached to the shock.

W — Ty (i) =T (n7) .

n{—ny

(2.8)

B. Structure of a diffusion shock

When diffusion is taken into account, instead of (2.4) we
have

on ar g an

6t1 + axl T [Da () axl ]:0’
where D, ~D,(2n, + n)/(n, + nY) is the ambipolar diffu-
sion coefficient for b, > b,. Transforming to the coordinate
frame moving with the shock velocity W, and neglecting the
slow variation of W with time, we obtain
J-o

dn dr d dn
—Vxto @ [Da () %
where X = x — Wzt This equation has a solution that tends
asymptotically ton* for X — + oo if Wis given by (2.8)and
n;t >n[ . Integrating (2.10), we obtain

(2.9)

(2.10)

dn, (nf —ny) (ny—ny) ng®
bel  (2n1+ny9) (n]+n) (nT+n5V)

Ric T (2.11)
which determines the density profile in the shock. The spa-
tial scale of a strong shock (n;" —ny 2n)is JIF 17 (11
are the values of /- = T /eE to the left and right of the dis-
continuity), and the potential drop across it is ~ T /e. For a
weak shock (An, = n" — n;~ <nf), it follows from (2.11)
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nf —ny th X (nt —n7) n{®
2 2y (R ng®) @nt T rg®)

ny (X) =

(2.12)

and the shock width is proportional to (An,)~ ' (Refs. 13-15).

When the plasma density is low enough, the Debye
length r, becomes greater than / 1. The quasineutrality con-
dition is then violated in the shock, and its width becomes of
the order of I, = r2/; » r,4,] +. The potential drop across it is
much greater than T /e, and this may be looked upon as an
analog of the double layer in plasmas with collisions.** As in
gas dynamics, the evolution of the drift profile (2.6) and the
position and velocity of the shocks (2.8) are independent of
structure. We shall assume through out that /. (or /,) are
small in comparison with the characteristic scales of the
problem. Thus, if the initial density profile n,,{x) has a dis-
continuity, then, for #;" > n, the discontinuity will propa-
gate with velocity (2.8) without spreading out by diffusion.
In the opposite case, on the other hand, the characteristics of
(2.4) on the (x,t) plane are found to fan out,'*' so that the
discontinuity with n,* <n; vanishes. It is commonly said
that this discontinuity does not satisfy the evolution condi-
tion.>>-33 It is then convenient to use the graph of the drift
flux I';(n,) (see Fig. 1b) which, in our case, plays the same
role as the well-known Hugoniot adiabat in gas dynamics.
The directed segment (n;” — n;")on the T',(n,) graph corre-
sponds to the diffusion shock. According to (2.8), its slope is
equal to the velocity of the shock. The arrow shows that the
density in the shock satisfying the evolution condition must
increase. In fact, the total flux in the shock is lower than the
drift flux, i.e., the diffusion flux must be negative (n; <n;").
In general, the shock is stable!*>? if the velocity of small
signals on either side of it is directed toward the shock, i.e.,

V() >Wi>V(n)). (2.13)

1 . _
+§(n1+n1),

Since the graph of I'\{n,) is convex, it follows that n” <n.?

The evolution of a complex initial profile may lead to
the appearance of several discontinuities, their coalescence,
and so on. Asymptotically, for |n,/n{” — 1|1, an arbitrary
perturbation will, in general, transform into a rectangular
wave with a diffusion shock on the backside for n, > n'” and
on the frontside for n, <n'¥ (Ref. 13).

C. Three-dimensional case

Instead of (2.4), we have
by

__bmi (2.14)
ebe (ny +n§")

an . .
7} +div =0,
where the current density is j = eb, (7, + n!”)E and satisfies
the equation

div j = 0.
We now introduce the coordinates &, £, which label the cur-
rent lines, and the coordinate A along the current. Using
(2.15), we find, instead of (2.14), that

ony bij (L, B M) 8 ny
ot + ebg TN ny4ng® =0

(2.15)

(2.16)

Substituting
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A
s:S J(7~’ da’,

0

where j, is the current density on the boundary, we obtain an
equation that is identical with (2.4):
6n1

+V (n) Zi=o0,

6n1

where

P Jo (G B bing
ebe (- ngE *

Thus, the breaking of the profile occurs along the current
lines.
For the spherically symmetric case, for example, we
have
b T an,

6n1 o
+ ebe (n; +ngP)2 09 =0,

where ) is the volume and I the total current. conservation
of the number of particles leads to the area rule in terms of
the coordinates n,, {}.

D. Three-component plasma with constant mobilities

Let us now consider the evolution of a plasma profile
consisting of electrons and several types of ion with constant
mobilities b, and b, ,..., by _ ;. Substituting I, =R,

neglectmg diffusion, and using the quasineutrality COndlthIl
k—

z n,, we find from (1.1)—(1.2) that

a=1

k-1

ana +boE 2 ng” (bg + be) 61- =1 ~e =0,
B=1 52 (bg+be) np (2.17)
-t
a=1,...,k—1,
B-1 by b
2 na__zabTe:q,(x), (2.18)
a=1

The function ¥(x) is determined by the initial profile and is
independent of time. According to (2.17)—2.18), an arbitrary
initial perturbation should split into k — 2 propagating sig-
nals and one nonpropagating signal corresponding to the
perturbation ¥(x). Substituting the dimensionless densities

n o Pa(batbe) (2.19)

o P (x) bebe
and the coordinate

b2 Ydz'
s= | _vewEde (2.20)
0 Y nQ (ba-tbe)
a=1
we obtain, instead of (2.17) and (2.18),
6na ;a _ _
+ b EO asT_—1~—*—0, a—1,...,k—1, (2.21)
2 Nada
a={
o~ b
S =1, g =2e, (2.22)
(]

When k = 3, the system (2.21)-(2.22) reduces to an
equation analogous to (2.4):
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—I—V(nj) 0n1 aarzl n ~b1E0q20;1/0s Y
[n1 (g1 —2) + @1]®

anl

(2.23)

Consider the evolution of a plasma perturbation. If the
initial profiles n,4(x) and n,,(x) are similar:

ni () __ n{»

g (2) ngo> >

(2.24)

then it is readily seen from (2.18) and (2.19) that the A, do
not depend on x and are equal to their equilibrium values n2.
Consequently, in this case, the perturbation will not evolve
in the drift approximation. The inclusion of diffusion leads
to a slow spreading of the initial profile.

On the other hand, when ¢(x) = ¢'?,

ny (I t)—n{®
ny (x, )—n{0"

ni (x)—ni® b
nyo (2)—ny®

byt be ,
by+be’

- _bl (2.25)
A, ~ ng4,so that, according to (2.21), this perturbation will
be completely transported by the field out of the initial local-
ization region L, and a profile with a diffusion shock will
form. An arbitrary initial profile of scale L will decay in the

course of time into moving and stationary parts. For
Be > b 1 b 2s

ng (@, t)="ng (z) + 1y (z, t)+ nd, (2.26)
where the stationary profile is

7o (2)=bg (2) ni, (2.27)
and the moving profile is

o (@ 1) = ba¥ (2) [ng (2, )= ]+ 00 (2.28)

where 7, (x,t) satisfies (2.23) and pr0pagates with velocity
T’(Fta ). It is clear from (2.23) that, for b, > b,, the backside of
the profile 7, (x,2 ) will break, whereas, for b, > b, this will
occur on the frontside.
We now consider the case where n,y(x)=n3 and
n,lx)> 119, From (2.18) and (2.27), we have

y (:c)—n‘°’ - "io' b_1 -1

e Gt (2.29)
Hence, it is clear that, when

ny (2.30)

0 bl
gy, <!
the perturbation of ions of the second kind, which appeared
intheregion L during theevolution process, will substantial-

ly exceed the initial perturbation of ions of the first kind.
For i, (x,t ) we have

= 0
ny (x, t)=n" (1+ Z::?OI) [ny (z, t)—n ]+ 0 >n?,
(2.31)

0
bon

n, (. ) =ng® (143500 ) (1 —ny (2, 1)) — 0]

+n<n? (2.32)
If only ions of kind 2 are present at infinity, we find that,
outside the region of initial perturbation,

(2.33)

n =0, ny=n (1— rabe ) >0.

o)
n;0 by

Hence, 7, is less than b,7/b,. Thus, when the initial pertur-
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bation is strong, and the maximum value of n,, exceeds
b,n/b,, the n, profile remains practically unaltered for a
long time t X ¢, = n,, L /b,n"E,. On the other hand, a plas-
ma sheath may flow out in the direction in which there are
practically no ions of kind 2 and n, ~n'b,/b,. Fort>t,, an
ambipolar peak containing only ions of kind 2 remains in the
region of the initial perturbation.

For plasmas with three kinds of positive ions, we find
from (2.18)—(2.22) that, for b, » b, andif we eliminate 71,,

Onl+_£ _ b Eq _ —0,

(@1—q3) nl:/HQ:;—‘h) ny+4s (2.34)
6n n3bsE
a’3+ 2 3b3E0 =0.

(41— q2) ;1+(43_42) ;3‘f“h

This set of equations describes the propagation of two
types of signal. Their velocities are different, so that they
will, in general, separate after a time ~ L /bE, and can be
considered separately. When the third kind of ion is present
as a small addition, the first mode is practically the same as
(2.23). For the second mode, on the other hand, the nonlin-
earity is small, and the signal propagation velocity is close to
V, = b;E,. A small perturbation 7, can be obtained from the
first equation by expanding the second term into a series and
assuming that the propagation velocity is V.

E. Formation of shocks in gas-discharge plasma

Situations that can be described by separating the pro-
file into drift and steep segments are also possible in real gas-
discharge plasmas, but are complicated by the fact that ioni-
zation and recombination processes play a very important
role, as do processes in regions near the electrodes. Their
mechanisms are quite complicated and are usually not well
known.

As the first example, consider the evolution of inhomo-
geneity in a dc discharge containing a readily ionizable addi-
tive. Assuming that the additive is fully ionized, we find that
its density n, in the drift approximation is given by

T by S nE =0, (2.35)

For the main-gas ions and electrons, we have
anz+b an Z(E) (n,-i—nz)—%. (2.36)
(2.37)

j=¢(n +ny) be (E)E;

where 7 is the recombination lifetime, and the ionization
probability Z and electron mobility b, are, in general, func-
tions of the electron temperature T, . If the scales exceed the
energy relaxation length (~7,/eE), the relationship
between T, and E is determined by the local balance of Joule
heat release and heat transfer.*

ForL » b,Er, [ thedensity of ions of the main gas can
be found by equating to zero the right-hand side of (2.36).
Substituting for E from (2.37)in (2.35), we obtain a nonlinear
equation for the additive ion density. The rate of ionization
Z(E)is rapidly varying (usually exponential function of the
field: Z = 7~ ' exp[ — a(n, + n,)/nY], wherea > 1and n),
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FIG. 2. Flux of ions of fully ionized additive in the drift approximation in
units of b, En (a = 4).

E, are, respectively, the ion density and the field in the dis-
charge without the additive. When n, S nY, we have
b, = const (this approximation is valid for b, for example,
when the main gas is helium or hydrogen), and the additive
ion flux is

abEgny

Fi (ni) = a—In [1__("'1/";0))] . (2.38)

On the other hand, when #, is large, the flux I'; = b, j/(eb. )
is constant. The function I';(7,) is shown in Fig. 2 by the
broken line. This is accompanied by the breaking of the
backside of the additive density profile, and we have the
shock 1 — 2,in which thereis a changein n,, n,, E, T, . If, on
the other hand, b, depends on the field, the situation is deter-
mined by the form of this dependence. The graph of I'(n,)
for b, ~ E ~'/2is shown by the solid curve in Fig. 2. Shocks
moving along the field (3 — 4), against the field (5 — 6), and
fixed shocks (7 — 8) are then possible.

Let us now consider the one-dimensional discharge in a
gas flow.>*> We shall consider that b, decreases with increas-
ing field. The ambipolar drift velocity is then nonzero, even
in simple plasma, and is given by'%**

V== LB+ U,

e

(2.39)

where U is the flow velocity. The relation between E and 7 is
set by the conservation of current: eEnb.(E) =j. The first
term in (2.39) is negative and is directed away from the cath-
ode. The graph of the flux I'(») for different signs of U is
shown in Fig. 3. When U < O (curve a), only shocks of the
form 1 — 2, moving toward the anode, can occur. When
U > O(curve 4 ), both moving and stationary shocks are pos-
sible, depending on the initial and boundary conditions.
In the stationary case, the plasma density is given by

V () W2 = Z3(E)in — B, (2.40)
where A is the recombination coefficient and L is the length
of the discharge gap. When U < 0, the resultant plasma drift
velocity (2.39) points toward the anode. If we apply the
boundary condition#(L ) = oo to the cathode,>® we find that,
with the exclusion of narrow regions near the electrodes, the
density profile becomes

T iV idn (2.41)

L—z= S Z () n—pn?
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FIG. 3. Drift flux of plasma in a discharge with a flowing gas: a—flow
from cathode to anode (U < 0); b—flow toward the cathode. Broken
curve-U = 0. Equilibrium density #, = Z (n,)/ .

For sufficiently large L, it describes a continuous fall in
the density between the cathode and the equilibrium value
n,, characteristic for the positive column. The profiles calcu-
lated in this way are in good agreement with experiment.*®
If, on the other hand, U > 0, then, for n, < n, [n, corre-
sponds to the maximum of I'(n)], the boundary condition
n(0) = o is satisfied by the solution consisting of a smooth
segment with a high density at the anode:

V(n)dn
x= g ﬁn"'—(—)Z {(n)n°®

ne

where I'(n,) = I'(n,), and the shock 3 — 4. When, on the oth-
er hand, n, > n,, the solution with the shock satisfies the
condition #(L ) = 0. Unfortunately, very little work has been
done on boundary conditions in gas-discharge plasmas. In
particular, it is not clear which electrode characteristics cor-
respond to particular boundary conditions for our truncated
equations. The formation of a sharply inhomogeneous field
profile near the anode was observed in Ref. 35. The compli-
cating factor was that filamentation ensured that the dis-
charge at the anode was laterally inhomogeneous. The den-
sity in the filaments was much higher than in the main
column, but there was a simultaneous increase in the electric
field as well. It would appear that, having ensured sufficient-
ly intensive external ionization near the anode [#(0) = o], it
is possible to produce the above laterally inhomogeneous
regime with a shock.

3. EVOLUTION OF A DISCONTINUITY IN INITIAL
CONDITIONS

In general, an initial discontinuity produced in multi-
component plasma will disintegrate.’” For example, in a
plasma containing two kinds of positive ions with constant
mobilities, an arbitrary discontinuity at x =0, ¢ =0 in the
densities n, and n, corresponds to the discontinuity in 7, and
¥ given by (2.18) and (2.21). According to (2.23), a discontin-
ity in 7, that satisfies the evolution condition will propa-
gate with velocity ?7(711), but will decay otherwise. When dif-
fusion is taken into account, the equation for i has the
following form acording to (1.1):
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Gr=D: (4

Ly Ze(teR252), e
where T; is the electron and ion temperature, respectively.
The quantity 7, < 1 varies smoothly near x = 0 for ¢ # 0,
according to (2.23). Hence, the quantity 1 + #,(D; — D,)/D,
can be taken outside the derivative, and Equation (3.1) then
reduces to the diffusion equation with coefficients that are
smooth functions of time.

The evolution of discontinuities in initial conditions
was observed in Ref. 20 in solutions of binary electrolytes. If
the ion mobilities in a fully dissociated solution are functions
of density, we have's"’

e |fon K ( b,y

N 3R on
T by by 3

v 8z

=0,

ny=n,=n.

(3.2)
The ratio b,/(b, + b,) = R (n) is called the cation transfer-
ence number. The evolution of the sharp boundary between
two solutions of different density was investigated experi-
mentally. When R is independent of density, the boundary is
fixed and diffuses only as a result of ambipolar diffusion. Its
width increases as 7 . If the function R (n) is nearly linear,
the motion of the boundary is found to change when the
current is reversed, but its spreading is determined by diffu-
sion, as before. If, on the other hand, d2R /dn® # 0, the
boundary satisfying the evolution condition n* > n~ for
2R /9n* < 0 will propagate with velocity
W= I R(nY)—AR(n)

n*—n-

)_ e On
=7 et

, (3.3)
and will not spread by diffusion. When the current is re-
versed, the boundary should rapidly spread, approximately
in proportion to ¢. Figure 4 shows the measured refractive
index gradient dk /dx (approximately proportional to the
density of the solution) for different directions of the current
relative to the density gradient. It is clear that the evolution
is in good agreement with the three cases examined above.
For KCl, the transference numbers are practically indepen-
dent of n, whereas, for CaCl, the function R (n) is practically
linear [theratioR “(n™ — n™)/(2R ') characterizing the non-
linearity of R {n) is equal to about 0.1]. For Cdl, this quantity
is much greater, i.e., of the order of 0.4.

4. WEAKLY-IONIZED PLASMA IN A MAGNETIC FIELD
A. One-dimensional case

In a magnetic field, the situations in which diffusion
shocks appear become even more varied. Consider, for ex-
ample, a one-dimensional plasma inhomogeneity which is
infinite in the direction of B and E; X B and contains ions of
twokinds.”® We shall suppose thatf = 8m7n¢ /B> < 1,s0that
the perturbation of the magnetic field is unimportant. The
ion density n, vanishes as y — oo (the y axis lies along the
electric field) and n, forms a uniform background at the ini-
tial time: n,( »,0) = n{. In a strong enough magnetic field,
the mobility and diffusion of electrons across the magnetic
field are negligible in comparison with the corresponding ion
parameters. Hence, in the absence of generation and recom-
bination, the total plasma density is

ny+n,=n(y, t=0). (4.1)
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FIG. 4. Evolution of the dk /dx profile when the current flows through the
initially sharp boundary between the two solutions. The right and left
families of curves refer to opposite current directions. The successive pro-
files were recorded at intervals of 2 hours. The solution densities »™* and
n~ are: a—0.2N:0.58, KCL; b—0.1N:0.2¥, CaCl,; c—0.1¥:0.2N,
Cdl.

Neglecting diffusion, we find from the continuity equations
that

B by (4.2)
Ey " by nm+by ny?
an w0 9 n .
‘6_;+biLb2_LEon2 Wm—o (43)
The solution of (4.3) is
— byt ym _ by Eet
glss = ~_bZ)_rL__g° s (1—go)2:|’ 44
where
3 dy 78
0

In terms of the coordinates s, ¢, the rate of displacement of
points on the profile, ¥ (g) = b,, E,/(1 — g)?, increases with
increasing g, which for b;, < b,, corresponds to the break-
ing of the frontside.

This problem is of interest in connection with the evolu-
tion of plasma clouds in the ionosphere. When this type of
cloud has a sufficiently large transverse dimension, the ion-
ospheric plasma can be described by the so-called two-layer
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FIG. 5. Closure of currents in the ionosphere. The initial inhomogeneity
was produced at the origin. The upper part shows lines of constant density
of injected ions and the lower part of the background plasma. The deple-
tion region is shaded. Diffusion shocks are indicated by 4-4’, B-B".

model.>” The magnetic lines of force are then regarded as
equipotentials, and the ionosphere under the cloud is ap-
proximately described by a layer of plasma bounded in the
direction of the magnetic field by dielectric walls, with mean
mobility b, and density &, integrated along the height (along
B). (For a discussion of this model, see Refs. 29 and 30.)
Injected ions are characterized by the integrated density

N1:S n, dz

and mobility 5, at the height of escape. Many features of the
evolution of real plasma clouds can be understood by analyz-
ing the one-dimensional problem, namely, a plasma filament
that is infinite in the Hall direction.

Since electrons can effectively flow only along B, and
redistribute themselves between the inhomogeneity and the
background ionospheric plasma, we have N, + N, = N ()

by analogy with (4.1). The injected-ion current is compensat-
ed by the background current flowing in the opposite direc-
tion, as shown schematically in Fig. 5. So long as the dis-
placement of ions in the vertical direction is unimportant,
the equations describing the evolution of the quantities N, ,
are the same as (4.1)-(4.3) except that n, , is replaced with
nys.
The solution of (5.3) for an initial perturbation of the
form

Ny, t=0)=ANPexp (~£), 4>1, (45
was analyzed in Ref. 29.

Since the mobility of ions across the magnetic field in
the ionosphere decreases rapidly with height, we have
b, > b, .Provided A is not too large, and satisfies the con-
dition

b
1<A<ﬁf, (4.6)

the solution given by (4.4) is as illustrated in Figs. 6 and 7.
Analysis of (4.4) readily shows?® that the rate at which the
injected particles N, flow out is variable. Initially, for
t S t,=alb, E,A)"" (this stageis.illustrated in Fig. 6), the
field is only slightly perturbed and the original ¥, profile
moves with velocity ~ b, E,. It is only on the frontside of
the profile that the formation of a depletion region in the
background plasma produces an increase in the field up to
~ E, A, so that the rate at which the ions &, flow out be-
comes very high (~ b,, E, 4 ). Background ions ejected from
the depletion region fill the original profile and reduce the
electric field in this region. A substantial reduction occurs in
the time in which n, at the center of the profile becomes
~ N9, i.e., in the time ~ ¢,. This is accompanied by the
formation of a shock on the frontside. For ¢ » ¢,, the rate at
which the injected ions flow out falls to &,, E,, so that a
substantial fraction of them flows out of the original profile
foralongtime ~ Aa/b,|E,(see Fig. 7). Whend > b,,/b,,,
it follows from (4.2)—{(4.4) that the electric field inside the
inhomogeneity is low right from the outset: E ~ E,/4, and
the rate of outflow of injected ions is of the order of 4, E,,.

FIG. 6. Graphs of N,, =N, ,/N¥forb,,

=0.2b,,. A = 4/y7. Curve 1-initial profile of N;
curve 2-t =0.5a/b,, E,, ty = y/a.
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FIG. 7. Graphs of N, (1) and N, (2) for the same conditions as in Fig. 6 at
time t = 2a/b,, E,.

B. Shocks, in the Hall direction

The difference between the electric field (in the direc-
tion of E,) on the edge and at the center of the profile has an
important effect on the Hall motion of real inhomogeneities.
When (4.6) is satisfied, this difference should lead to the
stretching of the plasma bunch in the Hall direction, and
appreciable deformation should occur in a time ~ ¢. This
phenomenon has been observed in two-dimensional numeri-
cal calculations®® (Fig. 8). As can be seen, there are large
density gradients, which correspond to diffusion shocks oc-
curring both in the direction of E, and in the Hall direction.

The analytic expression describing the appearance of
the shock in the Hall direction can be readily obtained in the
simple example examined in Ref. 30. Suppose that &, = b,,
A % 1, and that the original inhomogeneity N, is elongated
in the direction of x || E; X B. In the two-dimensional case,
instead of (4.3) we have

FIG. 8. Lines of constant density of injected (a) and background (b) ions
and equipotentials (c) obtained by numerical simulation of the evolution of
a barium cloud in the ionosphere, using the two-layer model.?® The coor-
dinate frame moves along the x axis with drift velocity cEy/B; b,,/
b,, = 1.25X 1072, which corresponds to injection at a height of 200 km;
A = 8; the scale is in units of 2¢ = 8km; the time after injection is aB /
cE, ~ 0.8¢,. The background-plasma depletion region lies in the left bot-
tom corner of Fig. b. The fact that the inhomogeneity is pulled at an angle
to the Hall direction is due to the presence of the Hall current in the
background plasma (b,, ~ b,y).

475 Sov. Phys. Usp. 28 (6), June 1985

N 1 by Ve NLE+ b (B, 22— E. %) =0,

v By @7
where @ = 1, 2 and b,y are the Hall mobilities. We shall
suppose that the ions are magnetized, sothat b4 = by = ¢/
B.

For electron density N = N, + N,, instead of (4.1) we
have

aN aN aN
When the inhomogeneity is elongated in the x direction,
the conservation of current

Vi (NVE)=0 (4.9)

gives rise to the same field as in the one-dimensional case:

E, = E,NY/N. Let us now consider the evolution of the

profile near y = 0. If the initial inhomogeneity is symmetric

in y, the resultant density is such that dN¥ /dy, _, = O at all

times. Hence, we can neglect the last term in (4.8):
N |, buEN® aN

“at N az =0.

(4.10)
This equation describes a breaking wave, and the shock oc-
curs on the backside of the inhomogeneity (in the direction of
ExB)while Nt > N onthediscontinuity. The steepen-
ing of the backside in the Hall direction has frequently been
observed in experiments with barium clouds in the ionos-
phere. A typical example®®*? is shown in Fig. 9. The numeri-
cal solution of (4.8)—(4.9) reported in Refs. 37 and 40 also
indicates a steepening of the backside of the inhomogeneity.
It was also shown in Refs. 37 and 40 that a gradient drift
instability develops in the region of the shock, and this leads
to its turbulization. On the other hand, the barium-plasma
tail that flows out in the Hall direction is stratified. In other
words, and instability is also found to develop in this region.
A possible mechanism of stratification, involving the inertial
drift of ions in the nonstationary inhomogeneous electric
field, was proposed in Ref. 41. Density profiles averaged
over the strata, and the rate of outflow of plasma from the
cloud, are in good agreement*®>° with (4.10). In numerical
calculations, a shock in the Hall direction was obtained
within the framework of the complete three-dimensional set
of equations describing the evolution of the inhomogeneity
against the background of unbounded homogeneous plasma
(Fig. 10).

C. Effect of ionization and recombination on the evolution of
shocks

These phenomena correspond to the spatial scale W7,
where W is the velocity of the shock and 7 is the characteris-
tic relaxation time. We shall suppose that it is much greater
than the thickness of the diffusion shocks, but much smaller
than the scale of the initial profile. Then, as in gas dynam-
ics,'*"* discontinuities can form in drift solutions consisting
of a diffusion shock and a relaxation wave.

Suppose that, in the example of subsection A consid-
ered above, there is rapid recombination of ions of kind 2
(Ref. 30):

aN, N§O — N,

a
T-}-bu,,—y(ENz):—T . (4.11)
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As 7 — 0, we have from (4.3)

azv1 +0 arl

Ny

740)
+b1_|.b2J.E A ay bi_LN1+b2 Nvo;

=0, (4.12)
The shock is formed on the backside of the profile for any
ratio of b,, and b,,. Its structure can be investigated by
transforming to the system X = y — W, which moves with
velocity W. Assuming, for simplicity, thatb,, = b, = b, we
obtain

IV NVDE, 5 3
"X N (4.13)
W_ﬁ = (N— Ni —-J\rim)'['hj,
N, (W—___”onvvé'” )= (W—-_”E'ﬁ’j°’) =K. (414
The solution, for which N = N, + N, becomes (N;" + N¥),

(N +N®) for X— + w0, corresponds to K
= — Wn;"N; /N?. Equation (4.13) then becomes

AN _(N—N-)(N+—N)

4N (N—NT)(N*—N) (4.15)
dXx (1—WN)t !

i.e., it describes a transition on a scale ~/Wr, N* > N ~.
When the time is large in comparison with the breaking

time, we have N <« N;" and K—0, W—bENY/

(N + NY). In this case as X — + o, the densities N, N,

1

FIG. 9. Cloud of Ba* ions in the Spolokh-1 experiment®%?°
at different times. The lines correspond to an equal number of
particles along the line of sight. The arrow shows the direc-
tion of drift in crossed fields in the reference frame moving
with the neutral-particle wind velocity. The Hall shock is
produced on the backside of the inhomogeneity.

vary very rapidly, and diffusion becomes important. The ¥,
N, profiles then consist of two portions, the first of which is

analogous to the relaxation zone of a shock wave,’*!* and
has the scale Wr:
Ny=0, N,=N=N"4Bexp (7). (4.16)

In this region, N, rises from N ¥ to (NP + N ;). The diffu-
sion shock liés on its right boundary. Since its thickness is
small, the density & is continuous in its interior, N, falls to
N, and N, rises to N ;*. Hence, B =N | exp( — X,/ Wr)
in (4.16), whre X is the coordinate of the diffusion shock.

5. PARTIALLY AND FULLY IONIZED PLASMA
A. Partlally ionized plasma In a magnetic field

Inclusion of electron-ion collisions leads to the forma-
tion of shocks even in simple plasma consisting of ions of a
single kind.?? In a magnetic field, the particle filuxes are re-
lated to E by

I‘e.iz:FbAe. 1E, (5.1)
where Be,i are the mobility tensors which depend on den-

sity.*2 In the one-dimensional case, current conservation in
the direction of the inhomogeneity q yields

20 [(Be+ b))t (B” + B(®) Eolq.

Substltuting this into the continuity equation and neglecting
diffusion, we obtain the following first-order nonlinear
equation??

(5.2)

(5.3)

o T

where £ is the angle between q and B. In the absence of a
magnetic field, the mobility ratio

bell _ € ( € Vea

)_‘ __ MyVya
bi i me (Vea +Ve1) miVia  Vea+ Vet -

MeVea

(5.4)

is independent of density. Hence, the velocity of the signal is
zero:

b,
V(n): om ( be +b1‘fl) 6n be||';‘|;71 N =0

and the diffusion shock does not occur despite the fact that
the mobilities themselves can be very dependent on density.
In a magnetic field, on the other hand, a rapidly varying V (n)
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(bg | OS2 B+b,, sin? B) (b{“Eq)g+ (b cos? B+b;, sin®B) (SgEo)q] Loy
— T (B by )y) cos® B (b, +by,)sin?f ’

dg

can occur, according to (5.3), when v, ~ v,; if the plasma
magnetization is W, 0 Ve Via ~ 1 (0, are the cyclotron
frequencies). The corresponding example for q || E, X B is
given in Ref. 22. When the magnetic fields are strong, V' (n)
tends to zero whatever the orientation of the inhomogeneity
relative to E; and B.

B. Fully lonized plasma in zero magnetic field

In this case, diffusion shocks occur in multicomponent
plasmas containing ions with different charges z,. Let us
consider isothermal fully ionized plasmas containing ions of

two kinds, namely, singly-charged ions 1 and ions 2 of
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FIG. 10. Three-dimensional evolution of an initially Gaussian profile
n,(r,0) = An exp( — */a*) on a background of a homogeneous isother-
mal weakly ionized plasma in crossed fields, with allowance for drift and
diffusion. 4 = 25; b,y = b1y = by; b =0;b,) = 1.25by; b, =0.5by.
The time corresponds to theinstant 1.6ea®/Thy = 1.6a/Epb y; E,, =T/
ea; the coordinates are given in units of a. Level lines in the z = 1-3 sec-
tions correspond to total plasma densities of 1.51%" and 2n. The deple-
tion region is shaded at the 0.9n” level. As can be seen, the profile is highly
twisted in the direction of E, X B.

charge eZ. The system is quasineutral and isobaric if

ne=n = n, + Zn,, (5.5)

n~)—n1+n2=%. (5.6)

Ignoring inertia and pressure gradients of the components,
we find that the equations of motion are
eE + agyn; (U, — V) T Qealty (Ve — 0p) = 0,

eE + ogn (v, — vy) — Qqanty (Vg — 1) = 0;

(5.7)
(5.8)

wherea,, ~ Z%a,,, Q. /@, ~ Jm./M,/Z> If the plasma
is at rest at infinity, then », » v,, v, and
/ 2

V= — - — —

en %ern+Qeatty

(5.9)

where j is the currrent density. Substituting (5.5)—(5.9) into
the continuity equations for ions, given by (1.1)—1.2), we
obtain the nonlinear equation describing the breaking wave:

an 0
FTIrT

X{(Po'—znT)(Z+1) [ (teg— Z%ey) - (ZZ:o_M —F]} -0,

Po(Z—1) eqygn (5.10)
where
_ 1 (Gep—Zaey) Zpe 1,0 __ Po\
Pt Bal el [ ooy = [0 — (e —gp) 0¥

The expression in the braces in (5.10) can be interpreted as
the flux I'(n). Since d*I"/dn? > 0, the evolution condition
leadston™* < n~.In other words, since points on the profile
with lower values of n move against the field E, more rapid-
ly, the frontside of the plasma density profile should break.
This situation occurs in the region near the wall of a tokamak
or in high-current arc discharges in which the temperature
and mean free paths are large and the impurity density may
be considerable.
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C. Fully ionized plasma in a magnetic field

As in the case of weakly or partially ionized plasmas, a
much greater variety of diffusion shocks can occur when a
magnetic field is present. Let us consider the example of
shocks produced in the Hall direction, which recalls the situ-
ation in weakly ionized plasma (cf. Section 4D). Suppose that
aplasmabunchof density n, (x, , z) is allowed to enter a fully
ionized plasma of density n,(z), which is bounded by dielec-
tric walls parallel to B(B||z). The bunch enters along the x
direction. The deceleration of the bunch produces an inertial
drift of the ions in the y direction, which gives rise to the field
E, that maintains the motion of the plasma in the original
direction. the variable field E generates MHD waves propa-
gating in the background plasma. These waves are damped
out in a time of the order of the skin time, and the electric
field becomes potential.

The evolution of the electric field occurs in two stages.
In the first stage, the field is transported along B because of
the high mobility of electrons. The inertial current in the
inhomogeneity is closed during this period by the inertial
counter current in the background plasma, and terms (v - V)y
can be neglected in comparison with dv/d¢. Assuming, for
simplicity, that the masses of the background and injected
ions are equal, we have

4 (5.11)

LZ
. JE
divy | 55 0 (@, ¥, 9+ (9)] 5 da=00.
0
When L, is not too large, E will cease to depend on z at the
end of the fast stage (by analogy with the two-layer model of
Section 4A). Integrating (5.11) with respect to time, we
therefore obtain, at the end of the fast stage,

ViV (E — Eg) =0,
where N=N, + N,,

LZ
Ny ,= 5 ny, ,dz

0
are the integrated particle densities in the inhomogeneity
and the background plasma, respectively, E, = Bv,/c, and
v, is the initial velocity of the bunch. Equation (5.12) is the
initial condition for the slow stage and defines E as a func-
tion of M. It is identical with (4.9) to within E, for a cloud of
weakly ionized plasma in the two-layer model. The electric
field does not depend on z during the slow stage. Since B is
not perturbed at the boundaries z =0, L,, the total current
in the x,y plane is zero:

(5.12)

(ait+v'v)v=0’ (5.13)
where
v=cEXB/B?2 (5.14)
The continuity equation for the bunch ions is
oN, (5.15)

5 +(v-V)N, =0,

These equations describe the isothermal motion of an incom-
pressible fluid. The flows described by (5.13) and (5.14) con-
stitute a special case of plane MHD flows*** corresponding
to a constant magnetic field. The set of equations (5.13)-
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FIG. 11. Evolution of a moving plasma bunch with an initial Gaussian
profile ANY exp(x~2/a%). A =3; l—initial profile; 2—r = 4a/v,; 3—
t = 10a/v,.

(5.15) have the solution
Nyt 8) =Ny (s — |V (V) | 0), (5.16)

where s is the path traversed by the particle of the fluid (plas-
ma) in a time ¢, and the velocity ¥ (¥,) = v is determined by
(5.12)and (5.14). When theinhomogeneity is elongated along
the x axis, we have at the end of the fast stage

N
Ey =5t Eo (5.17)
so that, for small y, the solution(5.16) describes breaking of
the wave with a shock on the frontside as shown in Fig. 11.
In the presence of external fields, or a magnetic field
inhomogeneity, instead of (5.13) we have

9 N
S+ V) v=g F, (5.18)
where gis the corresponding acceleration. For an inhomoge-
neity elongated along the x axis, the displacement of points
on the profile &, for small y with g = const during the slow
state is

x=v0t+_g‘2’NL:° (5.19)

The appearance of steep profiles in this situation was ob-
served in Ref. 45, where the acceleration was produced by
toroidal drift of the plasma. When the particle density was
small in comparison with the background density, the pro-
file was practically immobile. The center of the dense bunch

was moving in accordance with (5.18), the acceleration being
independent of density (Fig. 12).

6. DIFFUSION SHOCKS IN SEMICONDUCTION PLASMA

A. Evolution of the profile as carriers heat up in a
semiconductor with fully lonized donors

In strong fields, the mobility of carriers depends on the
field E. In the case of simple plasma ( p = n, where p, n, are
the densities of holes and electrons, respectively), the rate of
ambipolar drift is then nonzero.'> We shall confine our at-
tention to a model of n-type semiconductor with b, » b,
when only the heating of electrons is important and*’
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FIG. 12. Motion of a dense plasma bunch injected with zero initial veloc-
ity into a bent toroidal Q-machine in the presence of background plas-
ma.*’ The displacement of the bunch center corresponds to (5.18) with
g ~cT/eBR.

buo for
bo (E) = —
" bno l/% for

The current of holes in the drift approximation is given by

E<Eh7

(6.1)
E>Ey.

T
P, (5) p+01$D for 7<<pn (6.2)
R PO > pu: ¢
0 in (P+ND)2 for p Dn; ( 3)

where 'y = jb, /ebnosjn = €EybyoNp,pn =Np(J/jn — 1),
Np is the density of donors, and the density regionp < p,,
J > Jn corresponds to hot electrons.

When j > 2j,, the graph of I',( p) has a descending
segment on which ¥V (p) < O (Fig. 13). In this situation, we
can have stationary shocks and shocks moving to the left or
right. In the shock‘“‘under the hump,” the diffusion current
is negative, so that the density increases in the direction of

¥
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FIG. 13. Drift flux of holes in an n-type semiconductor with appreciable
heating of electrons.
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FIG. 14. Evolution of a Gaussian profile for p® = 0, AN > pu -

the field E. Contrariwise, the shock “above the well” is pos-
sible only if the density decreases.

Suppose that the equilibrium concentration corre-
spondstop® <« N and that the maximum initial density in
the Gaussian profile p (see Fig. 1a) exceeds p,, (Ref. 31). In
the course of time, sections of the profilewith N, < p < p,
shift to the left (against the field), the remaining sections shift
to the right. The points where p = N p;, remain where they
were. As a result a region of increased plasma density is
formed bounded by two diffusion shocks {Fig. 14). In the
process of evolution the shocks coalesce (B coincides with
A’), and the single 4 — B " shock is produced. Subsequently,
the wave decreasing in amplitude moves to the right, and
asymptotically approaches a triangular wave.

B. Stationary profiles with shocks

Stationary shocks are also possible in this situation.
They were observed in Refs. 23 and 24 when hot carriers
were injected and accumulated in n-InSb. Injection into a
semi-infinite specimen is described by the drift equation

— p(o)
L ro(p) = 2=~ —R(p, p¥) (6.4)

with the boundary condition p(0) + o (Ref. 9), where 7is the
lifetime of the excess carriers. When E < E,,, this describes
the smooth reduction in density down to the equilibrium
value p®, with a scale of the order of the drift length
lg = b Er. However, the situation changes as the current
increases. The drift solution forj > 2j,, p® < p, becomes
impossible. Actually, the hole current should decrease as a
result of recombination, whereas according to (6.3) the drift
current should increase in the interval ( py, , N p ). This results
in a stationary diffusion shock.”” When p® < Ny, the con-
centrations on its boundaries are Ny, p;, where T,
(p)=T,(Np)(l —2inFig. 13%). The drift solution is valid
between p = « and p=p,;, and betweeen p =N and
p=p% Whenj > 4j,, wehave ', (N) > Ty, so that the
shock reaches the anode and the injection level is low
throughout the specimen (p < Np). When p® > Ny, the
density in the shock decreases from p, to p'®, where
I'(p®) = I'( p,). Hence, injection with a large scale / is gen-
erally impossible for T'(p*¥) > Ty).

The collecting contact (cathode) in the n-type specimen
corresponds to the boundary condition I'};(0) = O (Ref. 26).
When an excess density of pairs, p®, is produced in a semi-
infinite specimen (for example, by illumination or ionization
by collision?®), the density throughout the interior of the
specimen is p in the absence of heating. There is, however, a
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FIG. 15. Current-voltage characteristics for anomalous collection, re-
corded between a pair of probes separated by 0.44 mm from one another
near the cathode. The material was n-InSb at 77 K. The plasma was pro-
duced by collisional ionization (Ep is the threshold field). 1—Calcula-
tion?”; 2—experiment.?* The descending branch of the characteristic is
the result of the increase in the plasma density between the probes due to
anomalous collection.

narrow region near the cathode (of the order of the diffusion
length /, = D7), where T falls to zero and the density
rises sharply. In the presence of heating, along (~ /¢ ) region
of high plasma density may appear near the cathode.?® This
phenomenon is called anomalous collection and was ob-
served in Ref. 23. The current-voltage characteristics are
then of the S-shaped form (Fig. 15). When p©® < N and
L p'%) > T,(py), the plasma density rises discontinuously
from p'” to p, as the cathode is approached (the region 3 — 4
in Fig. 13), and then smoothly increases from p, to p,, with
the scale ~/ . Thus, p(0) = p;, in the drift approximation.
Immediately next to the cathode, there is a narrow diffusion
region in which the plasma density is high and the flux falls
to zero. For Ny < p@ < p,, the density rises smoothly
from p® to p, over a length of the order of /¢, and the shock
is absent from the interior of the specimen.

The injection of holes into a finite n-InSb specimen was
investigated in Ref. 24 at 77 K with p'” = 0 and a collecting
back contact. The boundary conditions were p'@ = o,
I“'p”(L ) = 0, where L is the length of the specimen. Depend-
ing on the current and length (or, more precisely, on the ratio
L/L,, where L, = b, E, 7}, very different density profiles
can occur in the interior of the specimen,”” consisting of seg-
ments of drift solutions and diffusion shocks (Fig. 16). Since
the thickness of the latter is negligible, it follows from (6.4)
that

dp
b SV(p)W:L, (6.5)

where the sum is evaluated over segments corresponding to
drift solutions. This equation, together with the evolution
condition, enables us to construct unambiguously the den-
sity distribution in the specimen. The value of L /L ,, under
the conditions of the experiment reported in Ref, 24 was 1.3.

The current-voltage characteristic is shown in Fig. 17
for this case. The S-shaped curve is due to anomalous collec-
tion.

Direct determination of the density profile with the si-
multaneous inclusion of drift, diffusion, and recombination
is an exceedingly difficult problem. It is solved in Refs. 46
and 47 for a number of cases. It then turns out that the den-

Dmitriev et al. 479



= =,
{ !
7] Z=L 0 =L
I ——= T —a
! /F
a o
0 ZT=h 0 T=L

Q.p =
h %
/——: l 1+
[/} =L z=L
T —— - T =i

FIG. 16. Plasma density profiles in a specimen of finite length. The con-
centration p is in units of N, .

sity profiles consist of steep and smooth segments corre-
sponding to diffusion shocks (in the contact region) and drift
solutions. The basic results reported in Refs. 46 and 47 can
therefore be readily obtained by the method described above.

The authors of Refs. 46 and 47 investigated the phe-
nomena in a finite n-type specimen, using the weak carrier
heating approximation. A short (L € L) n-type specimen
(p'® < Np)with an injecting anode and a collecting cathode
was examined in Ref. 46. It was found that the density of

./

/5

0 UJLE,

FIG. 17. Current-voltage characteristic of an n-InSb specimen of finite
length. Solid line—calculated: L /L, = 1 for the left-hand line and L /
L, = 1.5for the right-hand line. Broken curve is experimental®*; E,, = 15
V/em; L /L, = 1.3.
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holes on the boundary of the diffusion region near the cath-
ode, given by

dpV (j, '
| ot (65)
p(ji L)

was greater than N, at all points. The injection shock was
not therefore formed, and cold injection occurred every-
where for high currrents (p > p,). For currents
Jj=Jj > 2j,determined by p(J', L ) = p;,, a shock appeared
at the cathode “above the well.” It moved into the specimen
as the current increased, and separated the region of cold
injection from the region of anomalous collection. When
j=Jj" > 4j,,theshock reached the anode, and the injection
segment vanished. The magnitude ofj” was determined from

Pp
| Fesmdr=L, (", O)=T,
(i, 0)
The authors of Ref. 47 examined a specimen with
@ > n® — p® = N, and perfect ohmic contact (S is a con-
tact with infinite recombination rate). On injection, it was
the cathode and, on collection, the anode. In the case of in-
jection (into the p*-n-S-structure), the length /; into which
the carriers were injected increased with increasing current,
and the dependence of the current on voltage was j ~ U?2
(Ref. 9). When the current is high enough, the graph of ', ( p)
shows the presence of a “well.” For example, when L is less
than the length corresponding to the injection drift region
(c0, pi), where p, satisfies the equation ', (p, ) = T, (p*%),
the density decreases smoothly from p = w0 top=p (j,L)
(6.5°), and falls rapidly at the cathode to p®. As the current
increases, I',(p'”) increases more rapidly than I',(p,).
Hence, the length of the segment (o, p, ) decreases and be-
comes smaller than L. At the same time, the injection drift
segment continues to p = p, , and thereafter the density falls
discontinuously to p'®. Elsewhere in the specimen, p = p©
right up to the cathode. As the current increases further, the
shock p, — p'® reaches the anode. At this point, p = p©
throughout the specimen, as for low currents; the current-
voltage characteristic reaches the sublinear law (Fig. 18).
In the case of the collecting cathode (S-n-n*-structure),
the density in a sufficiently long specimen is determined for
J > 2j, by anomalous collection, and changes from

p=p{ji0)top = p, wherep (j, 0)is given by
P

S" v (5)

®p, o0y 4P =1
0)

p(i,

As the current increases, p (/,0) approaches p, , and the field
approaches E ;,, so that the voltage across the specimen tends
toE, L.

C. Shocks in a semiconductor with carrlers captured by
traps3?!

Real semiconductors frequently contain impurities that
produce deep levels in the forbidden band. They act as car-
rier traps. In general, the situation is quite complicated.
However, if the trapping times are very different, and the
current is high enough, the profile again consists of drift
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FIG. 18. Current-voltage characteristic of a p*-n-S-structure for low val-
uesof L (Ref. 47). Segments I, I1I correspond to p = p}; segment II corre-
sponds to injection; j ~ U2

segments and sharp shocks. Suppose, for example, that the
specimen contains not only shallow fully ionized donors, but
also N, traps. The hole trapping time and the interband re-
combination time will be assumed to be long in comparison
with all the characteristic times of the problem, and the elec-
tron trapping time 7, will be assumed to be small. In the drift
approximation we then have the following equation for the
holes:

dp -, dlp _ ap a _ .
S0t o =50 Tz o) =0 (6.6)
and for the electrons:
+0Fn an a bonk) — 1 6.7
6_t _a_;_a—t'_az(nn )*[(n"‘ni)f—n]Tn» ( . )

where f'is the degree of filling of the traps and the remaining
notation is standard.*®

When the density profile is sufficiently smooth
(L » b, Er,), the electrons are in equilibrium with traps, so
that it follows from (6.7) that

f=F=ata (6.8)
Substituting (6.8) into the quasistationarity condition

n—p+ N (o= fa=1+32, (6.9)
we obtain the relation between p and n:

p=n—N(fy—75)- (6.10)

Eliminating the electric field from the system (6.6)—(6.7), we
obtain
jbnbp (n—pdn/dp)  dIp
"r‘V(P) aI _0 V(p) exzbnn—f*bpp)a d_
(6.11)

According to (6.10), dT", /d, > 0, dzl"p/d‘,,2 < 0 (Fig. 19).
Evolution and breaking of the density profile occur, in this
case, essentially as described in Section 2A. The structure of
the shock is, however, more complicated.
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7

FIG. 19. Drift flux of holes in a semiconductor containing traps. Broken
curve—drift flux at constant level of filling of traps corresponding to point
1.

D. Structure of a shock In a specimen containing traps.
Relaxation zone

The degree of filling of traps undergoes a change in a
shock. The characteristic time for this process is ~7,. When
I, + Wr, » I, the problem is analogous to that of a shock
wave propagating in a medium with relaxation (see Section
4C13_15).

For a moderate density gradient, the quantities within
the shock vary relatively slowly on a scale ~/, . This type of
shock is illustrated by the segment 1 — 2 in Fig. 19. Accord-
ing to the evolution condition, the density must increase in
the shock. Let us now transform to X =x — W? in (6.6)-
(6.7). Neglecting diffusion, we obtain

a

x5 (—Wp+bypE) =0, (6.12)
e (— Wn—bynE) = [(n+n,) f —n] . (6.13)

Eliminating the electric field from the last two equations and
then integrating (6.12), we obtain the relation between » and
p in the shock:

bppi _
~Wpt o =K (614
w— Tpp)=Tp () g=Ip)p* —Fp(p+)p (6.15)
pr—pr } pr—p-

where p*, p~ are the hole densities on the boundaries of the
shock. Since, according to (6.12), dI',/dX +dI',/
d X = Wd,/d X, we have instead of (6.13)

W (1—5=) & =l(n+ny) f—nl 1t <O (6.16)
where n and p are related by (6.14) and (6.15). When dn/
dp > 1, equation (6.16) defines a monotonic density profile
in a shock with a scale ~ /. The trap filling function is given
by (6.9).

If the density gradient in the shock is high enough, the
quantity (1 —dn/dp)=N,d f/dp, obtained by solving
(6.16), changes sign. This means that a smooth profile with a
scale /, is impossible. In fact, the profile consists of the diffu-
sion shock 1 — 3 of Fig. 19 and the segment 3 — 4 of the
solution (6.16) with the scale /,, (Ref. 31). This region is anal-
ogous to the relaxation zone in a shock wave.

There is a large number of practically important situa-
tions that can be described in terms of the model in which, in
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addition to shallow donors and traps, there is an acceptor
level (compensator).'®*® The dependence of the drift current
on density may then be nonmonotonic because both mobile
and stationary shocks are possible. The situation is, how-
ever, complicated by the fact that recombination instability
setsin even for relatively low currents, when/y ~ I ~ I,
and beginning with which it is meaningful to introduce the
subdivision into diffusion shocks and drift profiles. Recom-
bination instability occurs.*®

The development of instability must, of course, modify
the nature of the profile. However, a sharp subdivision of the
specimen into two regions with different plasma densities
must remain. Experiments to observe recombination insta-
bility>® have, in fact, shown the presence of well-defined sep-
aration of the specimen into two regions with high and low
electric fields. Large-amplitude oscillations were observed
in the high-field region in accordance with the criterion giv-
en in Ref. 49, It seems likely, therefore, that the position of
the boundary between the regions did not coincide with the
position of the shock predicted by the stationary theory.

7. CONCLUSION

The breaking of smooth profiles and the formation of
shock waves (discontinuities in solutions of the truncated
equations) are concepts that are widely used in the analysis
of fast processes in plasmas. These include shock waves,!>?
collisionless shock waves,>**? and formation of double lay-
erS.53'54

It is clear from the examples considered in this review
that the steepening of drift profiles and the formation of
sharp density shocks are also relatively general features of
slow (as compared with acoustic and Alfven velocities) pro-
cesses in inhomogeneous current-carrying collisional plas-
mas. The approach based on the reduction of the order of the
original set of equations (1.1)-(1.3), and on the reduction of
these equations to the equations for simple nonlinear waves,
turns out to be very effective and leads to a physically clear
picture of the phenomena. In many cases, it enables us to
obtain simple analytic solutions.

Such phenomena must play an important role in the
physics of space and laboratory plasmas, as well as in the
physics and technology of gas discharges, semiconductors,
and electrolytes. There has been relatively little experimen-
tal work in which such shocks have been unambiguously
recorded, and there are practically no studies of their struc-
ture. It is therefore desirable to initiate detailed experimen-
tal studies of both shock formation and shock structure. In
particular, since the density gradient in shocks is high, a
variety of instabilities can develop in such shocks in the first
instance. It is therefore essential to identify the conditions
under which the shock structure is determined by classical
processes and those under which it is governed by turbu-
lence.

The authors are indebted to V. I. Perel’ for stimulating
discussions.

YWhen k = 3 and one of the mobilities is zero, the velocity of the corre-
sponding signals is referred to in semiconductor physics as the velocity of

ambipolar drift.'® Its measurements are widely used to investigate trans-
port in semiconductors.'"'?
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YWhen the current j flowing through the plasma depends on time, we can,
by replacing the time with the variable i.e., the charge passing through
the plasma,'®!” reduces the equation to (2.3).

A
g= 5 j(ydr
0

IThis case occurs, for example, in an n-type semiconductor with fully
ionized donors of density n{.,

“A rigorous mathematical analysis of this type of quasilinear equation
with a small parameter in front of the highest-order derivative is given in
Ref. 33.

*'The width of this shock is ~ /.. Its structure is relatively difficult to
determine because /1 is the electron energy relaxation length. On this
scale, there is no local relationship between b, and E (6.1) (Ref. 26). Even
when it is possible to introduce the electron temperature, thermal diffu-
sion and electron thermal conductivity must be taken into account over
such lengths. On the other hand, in materials with inelastic scattering
mechanisms (in particular, InSb), the length /. is comparable with the
mean free path, and a transport analysis is essential. However, the posi-
tion and velocity of the shocks do not depend on the structure details.

'W. Schottky, Phys. Z. 25, 342 (1924).

2H. Sabadil, Beitr. Plasmaphys. 13, 235 (1973).

M. Scholer and G. Haerendel, Planet. Space Sci. 19, 915 ( 1971).

*A.P. Zhilinskii and L. D. Tsendin, Usp. Fiz. Nauk 131, 343 (1980) [Sov.
Phys. Usp. 23, 331 (1980)).

3A. V. Nedospasov and V. D. Khait, Kolebaniya i neustoichivosti nizko-
temperaturnoi plazmy (Oscillations and Instabilities of Low-Tempera-
ture Plasmas), Nauka, Moscow, 1979.

°L. Pekarek, Usp. Fiz. Nauk 94, 463 (1968) [Sov. Phys. Usp. 11, 188
(1968]].

"A. V. Eletskii and A. T. Rakhimov, V kn. Khimiya plazmy (in: Plasma
Chemistry), ed. by B. M. Smirnov, Atomizdat, Moscow, 1977, No. 4, p.
123.

®A.P. Napartovich and A. N. Starostin, V kn. Khimiya Plazmy (in: Plas-
ma Chemistry), ed. by B. M. Smirnov, Atomizdat, Moscow, 1979, No. 6,
153.

°M. A. Lampert and P. Mark, Current Injections in Solids, Academic
Press, 1970 (Russ. Transl., Mir, M., 1973).

'°V. L. Bonch-Bruevich and S. G. Kalashnikov, Fizika poluprovodnikov
{Physics of Semiconductors), Nauka, M., 1977, Chap. 7.

'"'W. Shockley and J. Haynes, Phys. Rev. 81, 835 (1951).

127 C. Prior, Proc. Phys. Soc. London 76, 465 (1960).

3G. B. Whitham, Linear and Nonlinear Waves, Wiley, 1974 [Russ.
Transl., Mir, Moscow, 1977].

L. D. Landau and E. M. Lifshitz, Mekhanika sploshnykh sred, Fizmat-
giz, M., 1954, [Engl. Transl. Fluid Mechanics, Pergamon Press, Oxford,
1959].

5Ya. B. Zel’dovich and Yu. P. Raizer, Fizika udarnykh voln i vysokotem-
peraturnykh gazodinamicheskikh yavlenii (Physics of Shock Waves and
High-Temperature Gas-Dynamic Phenomena), Nauka, M., 1966,
[Engl. Transl. of Ch. I only, elements of Gas Dynamics and the Classical
Theory of Shock Waves, Academic Press, N. Y. 1968].

1SF. Kolrausch, Ann. Phys. Chem. 62, 209 (1897).

'7H. Weber, Sitz. Akad. Wiss. Berlin 44, 936 (1897).

'®M. von Laue, Z. Anorg. Chem. 93, 329 (1915).

'°E. R. Smith, Bureau Stand. J. Res. 6, 917 {1931).

2%A. G. Longsworth, J. Am. Chem. Soc. 65, 1755 (1943).

1A. M. Stefanovskii, Author’s Abstract of Thesis for Candidate’s Degree,
Leningrad Physicotechnical Institute, 1950.

A. V. Gurevich, Pis’ma Zh. Eksp. Teor. Fiz. 8, 193 (1968) [JETP Lett. 8,
115 (1968)).

238, Tosima, J. Phys. Soc. Jpn. 20, 1814 (1965).

248, Tosima and K. Ando, ibid. 23, 812 (1967).

2A. P. Dmitriev, A. E. Stefanovich, and L. D. Tsendin, Fiz. Tekh. Polu-
provodn. 9, 1358 (1975) [Sov. Phys. Semicond. 9, 894 (1975)].

2A. E. Stefanovich and L. D. Tsendin, Fiz. Tekh. Poluprovodn. 10, 682
(1976) [Sov. Phys. Semicond. 10, 406 (1976)].

*A. P. Dmitriev, A. E. Stephanovich, and L. D. Tsendin, Phys. Status
Solidi A 46, 45 (1978).

28A. J. Scannapieco, S. L. Ossakow, D. L. Book, B. E. McDonald, and S.
R. Goldman, J. Geophys. Res. 79, 2913 (1974).

V. A. Rozhanskif and L. D. Tsendin, Geomagn. Aeronom. 24, 414
(1984).

30V, A. Rozhanskif and L. D. Tsendin, ibid. 598.

Dmitriev et a/, 482




31A. P. Dmitriev and L. D. Tsendin, Fiz. Tekh. Poluprovodn. 19, 2025
(1985) [sic].

32E]ektrodinamika plazmy (Plasma Electrodynamics), ed. by A. I. Ak-
hiezer, Nauka, Moscow, 1974, p. 107.

331, M. Gel’fand and Z. Ya. Shapiro, Usp. Mat. Nauk 14, 87 (1959).

3y, L. Granovskii, Elektricheskii tok v gaze. Ustanovivshiisya tok (Elec-
trical Current in Gases. Steady-State Current), Nauka, Moscow, 1971,

. 450.

351‘,Yu. S. Akishev, S. V. Dvurechenskii, A. P. Napartovich, 8. V. Pashkin,
and N. L. Trushkin, Teplofiz. Vys. Temp. 20, 30 (1982).

36Yu. S. Akishev, F. L. Vysikailo, A. P. Napartovich, and V. V. Ponomar-
enko, Teplofiz. Vys. Temp. 18, 266 (1980).

37K. H. Lloyd and G. Haerendel, J. Geophys. Res. 78, 7389 (1973).

38N. I. Dzubenko ef al., Planet. Space Sci. 31, 849 (1983).

391 S. Ivchenko, V. A. Rozhanskil, Yu. Ya. Ruzhin, V. S. Skomarovski,
and L. D. Tsendin, Preprint IZMIRAN, No. 6{417), Troitsk, 1983.

40N . 1. Zabusky, J. H. Doles II1, and F. W. Perkins, J. Geophys. Res. 78,
711 (1973).

41y A. Rozhanskii, Fiz, Plazmy 7, 745 (1981) {Sov. J. Plasma Phys. 7, 406
(1981)].

42A. V. Gurevich and E. E. Tsedilina, Usp. Fiz. Nauk 91, 609 (1967) {Sov.
Phys. Usp. 10, 214 (1967)].

43@G. Veittsner, V. kn. Osnovy fiziki plazmy (in: Fundamentals of Plasma
Physics), ed. by A. A. Galeevand R. Sudan, Energoatomizdat, Moscow,
1983, Vol. 1, p. 201.

483 Sov. Phys. Usp. 28 (6), June 1985

“‘H. Grad. Rev. Mod. Phys. 32, 830 (1960).

43S. Fornaca, Phys. Fluids 26, 797 (1983).

“6A. A. Akopyan and Z. S. Gribnikov, Solid-State Electron. 19, 41 (1976).

“7A. A. Akopyan and Z. S. Gribnikov, Fiz. Tekh. Poluprovodn. 9, 1485
(1975) [Sov. Phys. Semicond. 9, 981 (1975)].

4J. S. Blakemore, Semiconductor Statistics, Pergamon, Oxford, 1962
[Russ. Transl., Mir, M., 1964].

4°0. V. Konstantinov and V. I. Perel’, Fiz. Tverd. Tela {Leningrad) 6, 3364
(1964) [Sov. Phys. Solid State 6, 2691 (1965)].

L. V. Karpova, S. G. Kalashnikov, O. V. Constantinov, V. I. Perel, and
G. V. Tsarenkov, Phys. Status Solidi 33, 863 {1969).

5'A. C. Kolb and R. H. Griem, in: Atomic and Molecular Processes, ed.
by D. Bates, Academic Press, New York, 1962 [Russ. Transl. in Usp.
Fiz. Nauk 82, 83 (1964)].

32R. Z. Sagdeev, V. kn. Voprosy teorii plazmy (in: Problems in Plasma
Theory), ed. by M. A. Leontovich, Atomizdat, M. 1964, No. 4, p. 20,
[Engl. Transl. Reviews of Plasma Physics, Consultants Bureau, N. Y.,
1966].

33H. Alfven, Cosmic Plasma, Reidel, 1981 {Russ. Transl., Mir, M., 1983].

V. A. Liperovskii and M. 1. Pudovkin, Anomal’noe soprotivlenie i
dvoinye sloi v magnitosfernoi plazme (Anomalous Resistance and Dou-
ble Layers in Magnetospheric Plasma), Nauka, M., 1983.

%F. I. Vysikailo, Fiz. Plazmy 11, 2215 (1985) {sic].

Translated by S. Chomet

Dmitriev et al. 483



