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The basic ideas and results of the theory of self-trapped electron and hole states are reviewed. The
basic features of self-trapping as an important and quite general phenomenon as well as the basic
types of self-trapped states (polarons, fluctuons, and electron pairs with a negative correlation
energy) are studied. The characteristic features of self-trapping on defects in a crystal lattice, in
disordered systems, and in amorphous structures are compared with self-trapping in regular
crystals. Some pressing problems in the modern theory of self-trapped electron and hole states in
solids are noted or briefly discussed.
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1. INTRODUCTION some liquids, and even dense gases) now comprises a quite
important part of the theory of solids and other condensed

The interaction of a charge carrier (electron or hole) systems. The purpose of this paper is to review the basic
with a medium is often strong and substantially changes its ideas and results of this theory. In fact, self-trapped states of
"bare," for example, Bloch, state in the undeformed medi- current carriers can be important in nonmetallic systems,
um. Thus the local deformation of the medium induced by primarily in semiconductors, and we shall be concerned with
the field of an electron can create a potential well, in which them below.
the electron is trapped; at the same time the electron follows The phenomenon of self-trapping was predicted by
adiabatically the slow changes in the deformation and, Landau over 50 years ago (1933).' In his pioneering work he
therefore, "feels" the instantaneous potential well, main- showed that an electron, strongly deforming the crystal lat-
taining the stationary nature of the well and of the corre- tice surrounding it, acquires in the instantaneous, local, po-
sponding deformation of the medium with its field. Such a tential well that is formed a discrete energy level below the
self-consistent, in the sense indicated, state of the electron is bottom of the Bloch conduction band, and this level corre-
said to be self-trapped (ST)1'; it can be substantially more spends to the self-trapped state. Actually, the case of a short-
favorable energetically than the "bare" state. In an external range "local" potential of the deformed (three-dimensional)
electric field the self-trapped electron is subject to a force, lattice was discussed, and it was shown qualitatively that the
which is transmitted to the medium and causes the transla- electron makes a transition into the self-trapped state by
tional motion of the electron, accompanied by a matched overcoming an energy barrier with a corresponding activa-
motion of the deformation of the medium. Such self-trapped tion energy. Landau's concept was qualitatively extended to
electrons can be current carriers, determining the conductiv- the case of a long-range local potential of the deformed lat-
hy and other kinetic effects. The study of self-trapping phe- tice of an ionic crystal by Mott (1937) and others.2'3 Pekar
nomena, self-trapped quasiparticle states, and concomitant (1946) first developed a systematic theory of self-trapped
effects in condensed media (crystals, amorphous materials, states—polarons with a large radius, arising as a result of the
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strong long-range interaction of the electron with the polar-
ization phonons in an ionic crystal.4'5 In this case the transi-
tion into the self-trapped state occurs without overcoming a
barrier, and the polarons must be the main current carriers.5

On the other hand, Frenkel' (1936)6 predicted the possi-
bility of a different type of self-trapping, which occurs with-
out the overcoming of an energy barrier and in which the
local deformation of the vibrating lattice follows the position
of the quasiparticle, identified as an exciton with a small
radius in the crystal (see also Ref. 7). It was first noted in Ref.
6 that in a regular crystal a self-trapped quasiparticle under-
goes translational motion "as if it pulled a heavy load of
atomic displacements," i.e., because of the inertia of the ac-
companying deformation of the lattice its effective mass is
much larger than that of a free quasiparticle.

The general theoretical approach developed in Ref. 8
allowed the interpretation of both possible types of self-
trapped states, predicted by Landau1 and Frenkel',2 as limit-
ing cases of self-trapping for "light" wide-band (£>>&oph)
and "heavy" narrow-band (Z)5/Kyph) quasiparticles in the
crystal; D is the width of the bare Bloch band in a perfect
crystal and feph is the characteristic energy of the phonons
interacting with the electron (quasiparticle).

The formulation of the theory of the polaron as the
problem of determining the spectrum of a nonrelativistic
particle interacting with a boson (phonon) field led to the
development of a number of general methods in the theory of
self-trapped states (see Refs. 9-13). In this connection the
term "polaron" became a synonym for the self-trapped state
of an electron in a harmonic crystal lattice with a linear re-
sponse of the medium (see Sec. 2 and, in part, Sec. 3). The
characteristic features of self-trapped states on defects in a
crystal lattice are discussed in Sec. 3 (see, for example, Ref.
14). Self-trapped states with large radius—fluctuons, arising
in a disordered medium accompanying the nonlinear re-
sponse of the medium, are studied in Sec. 4.15'16 Another
type of self-trapped, predominantly two-electron, state in
amorphous systems is discussed in Sec. 5.17>18 In all these
sections and, as a rule, in the theory of self-trapped states in
general, multielectronic correlations are assumed to be un-
important and are not explicitly taken into account; this ap-
parently gives an adequate description of the real situation in
the nonmetallic systems studied. Finally, some results, un-
solved problems, and further possibilities for the theory of
self-trapped states are discussed in the concluding section.

The theory of polarons in crystals is reviewed in Refs. 5,
13, and 19-22 and the theory of fluctuons is reviewed in Ref.
23 and 24-28. In this paper we review the present status of
the theory of the basic models and types of self-trapped elec-
tron and hole states in solids—their common features and
differences. The main attention is devoted to the general
aspects of the theory of self-trapped current carriers, their
conductivity, and related effects.21 In this connection, in
comparing theory with experiment for the main types of self-
trapped states only those experimental data which indicate
more or less reliably the realizability of such states in solids
are briefly noted in the corresponding sections. The list of
references is unavoidably not exhaustive and is only repre-
sentative.

2. SELF-TRAPPED STATES IN A REGULAR CRYSTAL

Self-trapped polaron states in a crystal, which are pri-
marily discussed in this section, are actually determined by
the linear response of the medium (linear coupling between
the deformation and the field of the electron) in a harmonic
lattice. On the other hand, self-trapped states in an antiferro-
magnetic crystal can be determined by the nonlinear re-
sponse of the medium (see Sec. 2g).

a) Hamiltonian of the electron-phonon system

The simplest model is usually used to analyze the gen-
eral properties of self-trapped polaron states in crystals: 1)
the bare Bloch band of the current carrier is not degenerate
and is isotropic with the dispersion law e (k) ~k 2/2m in the
effective-mass (m) approximation, or

with D~2zJ'm the nearest-neighbor approximation (z) with
a tunneling amplitude J(g)=J, \g\sza (the bottom of the
band (e (k))min = 0 is the zero reference point of the energy
and a is the interatomic distance); 2) the interaction (elec-
tronic transitions) between the Bloch states of the conduc-
tion electrons and holes are not important for a sufficiently
large energy gap Et between the true, or effective, band
edges; 3) the electron-phonon coupling is linear with respect
to atomic displacements (q). (The effects of degeneracy and
anisotropy of the bands are discussed in Sec. 2d and the in-
terband interaction is discussed in Sec. 5a.) For the model
under study the Hamiltonian of the electron-phonon system
includes the kinetic energy operator of the electrons Ke the
interelectronic interaction operator Ue, the phonon-energy
operator JPph, and the electron-phonon interaction opera-
tor ̂ int (see, for example, Refs. 5, 13, 21, and 24)3):

where &ph = 2AoAA\, A\ =b / b^(A =f,j), f is the quasi-
momentum, and./ = 1, 2, 3,... is the number of the phonon
branch. For typical semiconductors (Ge, A3B5, etc.) and ion-
ic crystals (NaCl, etc.) with sufficiently large D (> 1 eV) the
single-electron approximation, in which5-9'13>19'2!

-£- for | k | a < n , e(k)<Z?,

(2.2)

S (ifR) for R •• {r or I},

(2.3)

is usually applicable, in the isotropic-continuum approxima-
tion (for |k|fl<7T, |f|fl<57)

t= j d r ' Z ( r , r ' )A,(r ' ) ,

=#Ph + 4-So j d r A ' ( r ) ;

(2.4)

(2.5)

where N is the number of cells in the normalizing volume
V0=Nv0, yo=|^|3~a3 (or v0~ad, d = 3, 2, 1). £ph is the
kinetic energy operator for the vibrations, A0(r) is the defor-
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mation field, S0 is the deformation constant, and Z (r, r') de-
scribes the coupling between the electrons (r) and the contin-
uum (r'). In (2.3), as usual, we assume that the
electron-phonon coupling constants WA are independent of
the quasimomentum of the electron (k), i.e., in the site (1,
R=l — 1' ~g) or coordinate (r, R=r — r') representations
WA (r)^wAS(r) or WA (l)^w^Sif0. This approximation is
adequate for evaluating the integrals appearing in the the-
ory, containing, aside from w^ (r — r'), the smooth functions
/(r, r'), because WA (r — r'), just as / (r — r'), decays exponen-
tially with increasing r — r' (see Refs. 21 and 22).

The single-band Hamiltonian ffi is invariant under
combined translation Q of electrons and centers of vibration,
so that the spectrum has a band structure [&v (K)) , deter-
mined by the quantum numbers v(..., NA, ...) and the total
quasimomentum K(A^ is the number of phonons, A^ =0,1,
2, ...). The group velocity in such a band is given by
Vu(K) = d&v(K)/dK = 0 with suitable K = KOE=K£>
(K0 = 0 for an isotropic band^u (K)).

The type of interaction J?"int is determined by the spe-
cific dependences of a>A and WA on f (see, for example, Refs.
5, 21, 22, and 24). Thus for the case of polarization (p) phon-
ons (at least in three-dimensional systems) and |

tronic band:

or cophTt (2.10)

where rt is the electron tunneling time; <aph = {<yp, a>0 or
co0 } . In the limiting case of very narrow bands the ground
self-trapped state is similar to a strongly localized Wannier
state, both with weak and, primarily, with strong electron-
phonon coupling (see Sec. 2e).

In the most important, for electrons (holes) in semicon-
ductors, case with «phr, •<!, primarily discussed below and
studied in most works on the theory of polarons,1"5' 9~13 the
"immobile" self-trapped state with velocity V (K) = 0 and
finite radius pp is the ground state of the system, as soon as
the corresponding energies of the system (2.4) El and of the
self-localized electron e1 satisfy

El < (e (k) )mln = 0, e1<0, |81 |»(op h. (2.11)

The latter inequality, corresponding to a strong electron-
phonon coupling, means that the motion of the electron in
the local potential well, created in the lattice deformed by
the electron, adiabatically follows the changes in the defor-
mation in the state with the discrete level el ( < 0), maintain-
ing the existence of this deformation with its field in accor-
dance with Landau's concept. The magnitude of the energy
I E J ! , characterizing such a self-consistent self-trapped
ground state, and the energy <5(,0) of the deformation of the
lattice by the self-trapped electron are of the same order of

where the dimensionless coupling constant a=e2/2xAp(ap, magnitude, \EI ~S(°} [see (2.16)]. The structure of polaron

, = const, i4P>« ]/4ncdp ojp (| f | V0)~
l,

r, r') « £(
L

P) | r-r' r2, £(!P) = const,
(2.6)

=(2mcop)
 l/2,x '=*„ ' - x0 '; x0 and x^ are the stat-

ic and high-frequency dielectric permittivities. For the case
of nonpolarization optical (o) phonons, acoustical longitudi-
nal (ac) or piezoacoustical (pac) phonons with |f |a<7r respec-
tively,

self-consistent self-trapped states with

| El |
Q>i» coph (2.12)

const, tve = const,

(ac) = s | f |

£s
0)6(r-r'),

wf = s | | « G)D,

4ac) = c | f | (2Mao4ac))~i/2,
Z(ac)(r, r')«.4ac)6(r-r'), (2.8)

(2-7) fc=,

can be studied using the approach developed by Pekar4'5 and
others (see Ref. 22). This approach is based on the adiabatic
approximation with £,|>a>ph and the quasiclassical descrip-
tion of the vibrations with <5i,01>«ph (bA ,b£, and

+ b 1 A are c numbers). The problem reduces to
finding the minimum energy of the system with a given qua-
simomentum K, i.e., minimizing the functional

=jf\ (2.13)

Z(pac) (r, r') « £(
L

pac) | r— r' r2, (2.9)

where Es = const, E ^ac) = const, Ma =p0v0, p0 is the den-
sity, s is the velocity of sound, and C is the constant in the
deformation potential; usually C^D.

Thus the interactions (2.6) and (2.9) are long range (L)
while (2.7) and (2.8) are short range (S) with respect to the
length scale a.

Everywhere below, unless otherwise stated (see Sees. 2f,
3c, and 5), we have in mind single-electron self-trapped
states, including polarization self-trapped states of the sin-
gle-electron system (2.4).

b) Limiting cases. Self-consistent states

There are two limiting cases of polaron self-trapped
states, corresponding to a wide or very narrow Bloch elec-

or

with ^ = <e> and ^=^AM=^[4K ) ]=??'; here
J[if>] =min(?J J[i/>,qA]; {...)0 is the zeroth order approxima-
tion with respect to the small perturbation £ph (in the adia-
batic approximation), and i/> and qA are the varied electronic
wave function and the normal coordinates of the lattice vi-
brations; /{,K) is the lowest energy of the system in the state
(^OK), qf]] with fixed K. In particular, El = J [$°>] =/<°> is
the energy of the ground state (^°\ q(^} with V (K) = 0.

Consistent variations of / [̂ , <?A ] with respect to rf> and
qA also correspond to Pekar's condition for a self-consistent
self-localized state \ffi\ Schrodinger's equation for the latter
is nonlinear. This follows from the relations describing the
energy of the system / [i/>] and of the electron £e [t//] as well as
the change in the energy of the system S[i/i] and the displace-
ment of the centers of vibration qA [i/>] = b* [if>\ + b ̂  [̂ ]
in the deformed lattice with a linear response of the medium
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Q f [</>]= (i/>\w A exp(tfr) |^» for a given electron
state if>:

J [$] = Ke ty] - 6 ft] = Ee ty] + 6 ty], (2.14)

(2.15)

A systematic, actually equivalent, approach in the the-
ory of polaron self-trapped states was proposed by Bogolyu-
bov,9 Tyablikov,10 and others (see Ref. 13) within the frame-
work of the adiabatic perturbation theory which they
developed, in which the kinetic energy of the lattice vibra-
tions plays the role of a small perturbation. This method, as
also Pekar's approach, is adequate for the analysis of polaron
self-trapped states, at least for low velocities | V(K)| <j.

It is convenient to analyze the self-trapped states with
large ( pp >a) or small ( pp < a) radius in (2. 1 3)-(2. 1 5) in the r
or 1 representations, respectively. In the general case, the
following relations characteristically hold for a polaron
ground self-trapped state:

m (2.16)

i.e., the energy of the optical Franck-Condon transition eopt

of the electron from the self-trapped state into the Bloch
state (photodissociation of the polaron) exceeds the energy of
the thermal transition £th; £R is the corresponding relaxa-
tion energy of the lattice. The structure of the polaron self-
trapped states is determined by the nature of the interaction
(2.3)—long-range (2.6), (2.9) or short-range (2.7), (2.8), and in
the latter case also by the dimensionality d of the electronic
subsystem (d = 3,2, and 1), usually with a three-dimensional
phonon spectrum (in this sense, below, d is usually called the
dimensionality of the system). As a rule, under the condi-
tions (2.12) we have in mind self-trapped states correspond-
ing to low electron energies £(k)<D.

We note that the electron-phonon system under study
can be approximated by a single-band [in the sense of (2.1)-
(2.4)] model, at least if

6J°'«;£g, (2-17)

which usually holds in crystals in which the self-trapped
states of the charge carriers are the determining ones (see
Sec. 2d).

The energy of the system (2.1)-(2.3) with low velocities
of the self-trapped state

K0)a(K-K0)fl, a, p«x, y, z,

(2.18)
is determined by the effective mass tensor Map of the trans-
lational motion of the polaron (electron and accompanying
deformation), i.e., by a scalar M in the case of an isotropic
band, which for simplicity we shall primarily have in mind in
what follows.

c) Long-range interactions. The polaron

In the simplest model (2.2)-(2.5) in the r representation,
which is useful for the analysis of self-trapped states with a
large radius p>a, in three-dimensional (3D) as well as 2D
and ID systems, in accordance with (2.14)-(2.15),4-5

^
J [i|>] s= JL [i]>] = Ke [i|>] -

*.N>]« J d r |ViKr)

'6[^]s6L[tH=—1 J d r q > L ( r ) | i | > ( r ) | » , (2.19)

<PL(r) = —'- J dr' | ,|>(p') |» | r-r' |-i GO 1-1

for |r |s=r>p.
^

In the ground self-trapped state (if> = i$\p = pp) the energy
of the system4-5 and the effective mass of the polaron (with
K 2<2Ma>p )

29 are described by the relations

[1
0
I; = — 0.109a2cop, ). (2.20)

A change in the state ($,0) —>• ifi) unavoidably increases the
energy J [j/>] of the system. As a result, under the scale trans-
formation r-^-yt and $,0) (r)=y~ti/2i/>(g} (yr) —>^(r)=$j0)

(yr)(d = 3,2or 1) the functional/ [i/>]=JL(y) in general must
have an absolute minimum at y = 1, if the continuum model
is adequate. Thus with (2.19)5'25

/L[t|>] = /L (v) = Y2^e0) — Y*OL. (2.21)

where y = 2K^/8$£ = 1, has a unique and finite mini-
mum. The corresponding state ^o0>« which has a finite radius
in the continuum model (in which the distance a is identified
with a point), actually corresponds to a smooth wave func-
tion (~exp( — r/p)) with the radiusp=a/3 ~', in addition,
the radius of the ground polaron state ^o°' (of the polaron)
pp is large,pp >a (see Refs. 5 and 25):

-1 (ma2cop)pp

where D =\/ma2, /3=/30^

-i/2 (2.22)

and 8=

It is evident that already with arbitrarily small P (i.e.,
also small deformations) EA (/?) </L (P) <0, and there-
fore, the Bloch state (0— * 0) is unstable with respect to a
transition into the polaron state, and the transition does not
involve overcoming an energy barrier. The reason evidently
lies in the fact that the polaron (spherically symmetrical)
potential well ̂ L ( r ) for the electron is, for r Zp ( >pp ) , Cou-
lombic; for the same reason such a self-trapped electron — a
polaron with a large radius — is characterized, aside from the
ground state ($,0)> n = 0), also by a series of excited, hydro-
gen-like self-trapped states i/>(

n
n with a large radius

p^>pp^
m>.a (n = 1, 2, ...).4-5-13-21 Based on (2.21) and

(2.22), the self-trapped state $j0), which is energetically
more favorable than the Bloch states, is characterized by the
relations4-5
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t-(0> _ _£_ «(0) ̂  r,
— -"e ;puoL'>u!

into the Hamiltonian Of = + U («1<r are the

eth = - ̂  = -(e,
(2.23)

£th : AT '"'SS.'if^lfFrH 1:1=2:3:4. It follows from the
formulas (2.20), (2.22), and (2.23), in accordance with
(2.12) and (2.16), that for a polaron with a large radius
adiabatic strong coupling is characteristic, in the sense that

OL » $&=2\El I > Wp and Da>~ ' > a2 > a? 10.

(2.24)

Therefore, such polarons (Pekar polarons) can exist only in a
limited range of values of a,5'21'22 i.e., their abundance in real
materials is limited; apparently, the presence of large polar-
ons in ionic crystals (see (2.6)) has in reality not been estab-
lished unequivocally.19'21'22 The effective mass M of the po-
laron is large, M^-m, and it is actually a measure of the
inertia of the lattice polarization accompanying the motion
of the self-trapped electron.12-29 The characteristic values of
pp, S

(ol and M with the typical values a2=;30, x~ 10, m,/
m ~ 1 and ap $ 0.1 eV are/9,, ~ 10a, <5£> 5 0.3 eV, M~ 102 m
(see Ref. 5). For large polarons created by the piezoacousti-
cal interaction (2.9), the functional J[if>] coincides with
(2.19).30

On the other hand, as soon as

there exists a polaron with a small radius (small po-
laron),31-32'19'21 for which the quantity

(2-26)OJ>«J»1, with

plays the role of the electron-phonon coupling constant;
typically 8p£L 50.3 eV and 4>J 5 10, in agreement with the
condition (2.17) of single-bandedness of the model (with
£g £ 1 eV).

The simplest and most characteristic case here is the
case of a nonadiabatic small polaron,19'21'31'32 for which, by
definition, the electron tunneling time rl is appreciably long-
er than the time rad of mutual adjustment of the electron
state and the lattice deformation: rad ~ (<5*L0)~1/2, with
characteristic energy #=max{:r; T0^-^coph} (see Ref.

21). (In Ref. 31 O-T^T/S^ <rfor T0ST48$.) Actu-
ally, for large 4>0> 1 r^ 1 >«ph [=cap for the model (2.19)],
in accordance with (2.12); T is the temperature. In this case,
when wph<Z)/2<ra^

1, obviously ppa~l4l and, therefore,
^o°' is approximated well by a Wannier electron state,
^0°' ( 1 ) = <5u0 • Here the electron kinetic energy operator ATe

is a small perturbation in the Hamiltonian^of the system. The
basic^ second-quantized Hamiltonian ^0 = ̂ ph + 3if-m.
, + Uc in the 1 representation is transformed, by means of
the well-known canonical^ transformation exp-
( -S)=exp(S +

(2.27)

electron occupation number operators). The operator
J^ph = 3.^0) iN A describes phonons with displaced centers
(JTA = - < 1 = 0| exp(tfrK |1 = 0)W/T ') and Zfv

= 2,CT£,M1<7, corresponds to small polarons with site energy
EI (measured from the electron level) and self-trapping ener-
gy Wl characterizing the gain in energy accompanying self-
trapping, El = W1<0 [in the model (2.6), | W^ ~<5gU- The
interpolaron interaction Up = Uc + UB includes, aside
from the Hubbard repulsion Uc, an attraction C/a due to
phonon exchange (see Refs. 19 and 21). ^

The polaron kinetic energy operator ATp = exp(5)
ATe exp( — S) and the polaron^tunneling amplitude operator
(in the phonon number space N^) between nearest neighbors
g, Ag = J exp(S0 — S g ) , describe two substantially different
types of tunneling of a small polaron: coherent and nonco-
herent (see Refs. 19, 21, 31, and 32). The coherent tunneling
(without a change in the phonon numbers) is described by the
macroscopically finite (as N —* oo) amplitude

A =/exp ( — cD),

(r = 0), (2.28)

determining the small-polaron band with width
Dp ~2zA<D~2z J with the large values of the coupling pa-
rameter <!>0>l(<J>0~<t)*>l) occurring here; 4> increases and
A decreases as T increases, and in addition <f>~4>07Y7'0 and
A decay exponentially for T'Z T0. Actually, Dp <<uph and
Dp < T for not very low T, and the effective mass of such a
small polaron M~ l/Dpa

2 is exponentially large (compared
with m) due to the high inertia of the strong circumelectron
deformation of the lattice accompanying translation.

Noncoherent tunneling (hopping) occurs together with
the emission and/or absorption of a phonon and is described
by the average probability (per 1 s) Wh, which increases with
T (Wh —>• 0 as T—>0). In this sense, hopping is thermally acti-
vated; in particular, at sufficiently high temperatures T> T,
hopping corresponds to a multiphonon process; 7\ < T0

when 4>0> 1, in particular, T, ~ ro/ln(4<l>0) in the case (2.6).
Thus when T^T0

_

sin" - - co, =-

1; V i= l with l = co.

(2.29)

(2.30)

As is evident from (2.28)-(2.29), the motion of a nonadiabatic
small polaron is determined by hopping for T>Tr or by
coherent tunneling for T< Tr, so that the dynamic and ki-
netic characteristics vary nonmonotonically as a function of
T, having a minimum (or maximum) at T~ Tr; the general
order of magnitude of the temperatures Tr characteristic for
specific phenomena is Tr ~ Tl (see Ref. 21).

The situation for an adiabatic small polaron was inves-
tigated in a number of studies (see, for example, Refs. 33 and
34). Such a polaron is described by the self-consistent state
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if/§', whose structure and properties are determined by the
specific structure of the electron-phonon coupling in a dis-
crete lattice. From a qualitative viewpoint, the properties of
such polarons fall between those of the nonadiabatic small
polaron and a large polaron.

The characteristic effects produced by large polarons
are determined by the fact that the effective mass of such
polarons is large (M*>m ) , the discrete spectrum includes the
excited states ^0)>1 with energies J(°y>J^°\ and the po-
laron potential £>L (r) ^r"1 for r^pp>a. Thus in a strong
static uniform electric field F the polaron autoionizes with
probability pM ~exp( — Fl/F) (and is thermally ionized
with probability />TI ~exp( — el/T), deI/dF<0) for
F^F<F2~S^/\e\ppt F^FM'mp*)-1'2^ and
obviously transforms into a Bloch electron with a much
higher mobility for FZ, F2 ( see Refs. 3 5 and 2 1 ). At the same
time the conductivity can increase markedly with F when
F^FCT, Fl <FCT $F2; typically F,~O.LF2 and F2Z 106 V/
cm for typical values, 8$ 5 0. 1 eV. These and other features
of the kinetics of large polarons,12'19"22 in particular, a reso-
nant infrared absorption band accompanying the transitions
^o°' — *• *t>n (n = 1.2,.-), £>><a2i~ 0-14 a2o)f, have apparent-
ly not yet been observed.

For small polarons the main features of the conductiv-
ity a'((o, T) = Re a(co, T) and other kinetic coefficients are
determined by the exponential smallness of the tunneling
amplitude and the competition between the coherent tunnel-
ing (<rc) and hopping (o-h), a'(<a);=a-c(«) + a-h(«). Here (see
Refs. 17 and 21)

(co) ~ ac (1 + wH2)-1 for w < T,

= a c o = 0)~./V - min

crh (<o) oc or' exp [ - (<° 2r"
m) J ;

(2.31)

(2.32)

where /z0 = (~ 1 cm2/v • s); com =
Npa

3 is the equilibrium polaron density; r is the transport
relaxation time, which does not increase with r(the formula
ac ~Npe

2T&/MT is valid for A <tf = min{ T; T 0 ] , n?>l,
i.e., not just for weak scattering, rA>l, since for A < T the
scattering is determined by conservation of the energy of the
phonons). It follows from (2.31) and analogous formulas that
the dependences cr'((o, T } are nonmonotonic and have mini-
ma at T = Tmin and ea = wmin and maxima at T = rmax ,
o> = 6>max . in addition rmjn ~ Tr < T0, «min < «ph , and also
rmax~^>«ph, "'ma* = ft>m>«ph (thUS <r'(«)~ac(«) when

T<Tmm, a<eamin, but a'(a)~ah(ta) when T>Tmin or
a > «min ). Such nonmonotonic dependences, in particular,
the wide Gaussian absorption peak at a> =; am in the presence
of a Franck-Condon transition into the Bloch state, and the
analogous dependences a(F; T}^a'((o-P, T) with eaF = \e
Fa > Tin a strong field F, characteristic for small polarons
and partially observed experimentally, are discussed in
greater detail, for example, in Refs. 17 and 21.

On the whole, the many unusual properties of self-
trapped polaron states are determined by multiphonon tran-
sitions, due to the significant difference between the local

deformations of the lattice in the initial and final states of the
system for <J>0>1 (see Refs. 5, 13, 19, 22).

The theory of self-trapped polaron states in crystals is
studied in many works, including a number of reviews (see,
for example, Refs. 5,13,19-22). Thus the method of adiaba-
tic perturbation theory9'10 for a large polaron is substantially
developed in Refs. 38 and 39, while the theory of a small
polaron is further developed in Ref. 40.

d) Short-range and "mixed" Interactions in 30 systems. Small
polarons

The functionals 7S [iff] and £eS [ifi] in the simplest model
(2.5) of an isotropic continuum, taking into account (2.7) or
(2.8) and (2.14), (2.15), have the same form as (2.14),
but41'8'25'42'22

«ps(r)= J dr'Zs(r, r')|

The scale transformation r -
studied here to the relation

(r)p.
(2.33)

• yr leads for the 3D systems

(2.34)

instead of (2.21), so that J^(Y) does not have a lower bound.
This function has two minima, Js(y) = Q at y = 0, i.e.,
p = oo, and Js (y) —»• — oo as y —>• oo, i.e., p —»• 0, which in
the continuum model corresponds to Bloch states at the bot-
tom of the conduction band and a self-trapped state with a
small radius (pp <a).41 The latter essentially has the same
properties and is characterized by the same relations, in par-
ticular, (2.25)-(2.32), as a small polaron, which was dis-
cussed in Sec. 2c. In this connection, in general, the self-
trapped state with a small radius in the electron-phonon
system (2. l)-(2.5) is called a polaron with a small radius or a
small polaron, in particular, a nonadiabatic small polaron
(pp < a). Such a self-trapped state is realized when

A>A c t A= (2.35)

where the critical value Ac lies, roughly speaking, between 1
and 10 (see Ref. 25). Nevertheless, unlike the case (2.21), in
the case (2.34), generally speaking, the self-trapped state
with a finite radius, i.e., actually a self-trapped polaron state
with a large radius ( pp >a), is not realized in the continuum
model.

The long-range interaction (2.6) [or (2.9)], existing in
ionic crystals together with the short-range interaction, can
appreciably change the nature and conditions of formation
of the self-trapped state of the electron.25 Thus when both
types of interactions are associated with the same phonon
branch (for example (2.8) and (2.9) for acoustical phonons),
aside from the contribution 5L [i/>] + Ss [ij>] to S[i/>], there also
arises a mixed term25'22:

(2.36)

which under a scale transformation contributes an addi-
tional term — y2Smix [i/>{£]] in (2.34). For As < 1, when a
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small polaron with short-range coupling would not exist, the
contributions <5L [r/>] and £mix [if)] to 8[t/>] can lead to the for-
mation of a self-trapped polaron state with a large radius in
the region of quite large a2 > a\, including also smaller val-
ues of a2 than in the case (2.21) (with Es =0), since
a2 < a2, ;=; 10 (see Ref. 25).

In the situation under study, corresponding to wide
electron bands (/>>«ph) and described, in particular, by the
relations (2.27), the inequality 1^1^'>! must obviously
be satisfied for A > Ac, so that a small polaron corresponds
to very strong electron-phonon coupling, 4>0> 1. An expres-
sion analogous to (2.33) in the 1 representation permits evalu-
ating Sgj =clEsa-\ c,~l with 2, \^(l)\4~a'\ so that
A<?=> = c2CVMas

2A c2~l and A(£pt]~w2
0/D(o0 with

D = \/ma2; if C = c3D, D = c4£at s/a = ,, EM with
= m0e*/tf, assuming that c3~c4~cs ~ 1, then A^ac| ~ 1 H0 — c' ( Es )

* D nf 1T \ Tt m rt»r Vx^a ncicinvn n l̂ ]~i£*f£* tV* ot 1« (fkf\-tr\-»V\ otolllt~*\ * '

tion from the stable self-trapped state to the stable Bloch
state accompanying a decrease in As is discontinuous at the
critical value As = Ac, as expected from physical consider-
ations (see Refs. 22, 25, 42 and also Ref. 47).

On the whole, the situation described above corre-
sponds to the existence of an energy barrier in q space
between the minima *0(0) and ^0(q0) of the adiabatic poten-
tial *0(g)—the self-trapping barrier, in accordance with
Landau's initial idea (see Ref. 22). This barrier is significant
when its height is Hb >«b/2, where (ab is the characteristic
frequency of the phonons determining the barrier, for exam-
ple, ea(

b
pt} ~co0 or co(

b
c} ~s/rb, where rb is the spatial size of the

barrier. The estimates of Hb and rb from dimensional con-
siderations have the following form in the continuum mod-
e|8,48.22.

Es \ ~2

(see Ref. 22). It may be assumed here that in (nonmetallic)
crystals it is precisely the short-range coupling with acoustic
phonons which determines the appearance of self-trapped
states differing qualitatively from the Bloch states in the
band and that the ground state of the electron is mainly a
small polaron with its characteristic properties. Some of
these effects have indeed been observed for holes in wide-gap
crystals—alkali-halide crystals (AHC)43—and in cryogenic
crystals44 as well as in some transition-metal compounds
(see, for example, Refs. 19-21, 45). The effects of the self-
trapped states of the current carriers, however, have not
been observed in diamond-like semiconductors (Ge, A3B5,
etc.), in which the value of A|jac| lies between roughly 0.1 and
1. This fact, in accordance with Refs. 46 and 22, can be
linked to the smallness of the energy gap Eg in such materi-
als, Eg <D (actually, Eg 5 1 eV), since for As > Ac, i.e.,
\Wi\ >Eg, the crystal would become unstable with respect
to spontaneous creation of electron-hole pairs and a phase
transition into the wide-gap dielectric phase.

In the case (2.34) an analysis of the critical points (mini-
ma, saddle points, etc.) of the adiabatic local potential ^0(q)
in the configuration space (q) in the ground self-trapped
state,

+ J j dr dr 'm>;M(r ') | 2Zs(r, r») A0 (r'), (2.37)

yields more accurate properties of the electron states noted
above than in the case (2.21) (see Refs. 22 and 25). Namely,
small polarons correspond to a local (As < 1) or absolute
( A S > 1 ) minimum of ^0(q) with a finite deformation
(q = q0^), i.e., to a metastable or stable (ground) state of
the system, and is characterized by 4>0~ | Wt ca^ ">AS, i.e.,
by a very strong coupling, <J>0>1 for As > 1. On the other
hand, the Bloch states near the bottom of the band are also
self-consistent, corresponding to the local (for As > 1) or
absolute (for As < 1) minimum of ̂ 0(q) at q = 0, and are
characterized by the coupling constant a^ ~Asac)^/m/Ma

and by the lifetime T(E) of an electron with energy e,
(ET(E))~I ~aac, in addition, aac^As

ac) and aac is small
(aac < 1) for actual, not very large A£ac) ( 5 10). The transi-

• mEs ~ a AS, 1 (2.38)

(more precisely cj = 1.1149'22). These estimates are valid, at
least, for rb >a, i.e., As > 1, and the last condition, according
to Refs. 50 and 48, holds in light cryogenic crystals, for ex-
ample, Ne. When this condition does not hold, the estimates
of Hb depend on the specific structure of the lattice and are
therefore difficult to obtain. In the general case, however, it
may be assumed that Hb increases with m and decreases as
As increases, so that the self-trapping barrier is determined
not solely by purely lattice properties, but also by the nature
of the formation (decay) of the site wave packet—the self-
trapped state at a site. We note that the long-range <5L [*]
and the "mixed" <5mix [*] interactions lower the self-trap-
ping barrier as E L increases right to the point at which the
barrier vanishes.22'25'42

The presence of a self-trapping barrier can lead, for
A!jac)> 1, to the coexistence of the ground self-trapped and
metastable Bloch states, since the latter can still decay slow-
ly, (T(E)E)~' ~aac < 1 for aac < A^ac) (see, for example, Refs. 8,
22,45, 50). This phenomenon, as also the presence of the self-
trapping barrier in general, can lead to significant features in
the kinetic phenomena (for example, conductivity, since the
mobility of the Bloch electron is much greater than the mo-
bility of a small polaron) and optical effects (see, above, Refs.
22, 48, 51). The self-trapping time rST in the presence of a
self-trapping barrier has been investigated theoretically in a
number of studies,22'48'5'~54 in particular, a systematic the-
ory at low temperatures was developed in Ref. 53. (The theo-
retical analysis has something in common with the analysis
of the quantum diffusion time TD ; see, for example, Refs. 17
and 55.) The theory of the coexistence of Bloch and self-
trapped states in crystals has also been discussed in other
studies (see, for example, Ref. 56). On the other hand, the
existence of small polarons and their characteristic effects,
in particular, the coexistence effects, in crystals with a signif-
icant relative fraction of short-range electron-phonon inter-
actions has been experimentally observed in a number of
compounds of transition and rare-earth metals (LaCoO3,
V2O5, SrTiO3, etc.), in which Z>/250.1 eV and
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%} S 0.3 eV (see Ref. 45 and 20) and, most reliably, for holes
in AHC43 and cryogenic Ar crystals.44

e) 10 and 20 systems. Band-structure effects in 3D systems.
Extremely narrow bands

The properties and conditions of existence of self-
trapped electron states in ID systems with a dominant short-
range electron-phonon coupling can differ substantially
from those in 3D systems. For such systems the scale trans-
formation r —>• yr in the isotropic continuum model leads to
the formula

(2.40)

instead of (2.34). Thus when d = 2 (in layered, strongly an-
isotropic 3D crystals or on their surfaces, etc.) the ratio of
both terms 8(^/K(°] is independent ofy and, according to
(2.33) is determined by the value of the parameter mEs/2,
whose critical value is (mEs/2)cr = 2.88.49'48'22When«j£'s/
2 < 2.88 the self-trapped state does not exist, while for mE s /
2 > 2.88 a small self-trapped state does exist ( p p ^ a) and the
self-trapping barrier is absent (the anisotropy of the phonon
spectrum was studied in Ref. 57). The absence of a self-trap-
ping barrier in 2D and ID systems follows from (2.38) with
the substitution m3 —>• m1m2m3, m3 —»• oo (2D) or m2 —> oo,
m3 —»• oo (ID) (wli2?3 are the effective masses of the aniso-
tropic band).48 In a ID system the ground self-trapped state
is a small (pp 5 a) or even a large (pp ><z) polaron, since Js [ifi\
is similar to /L M in a 3D system [see (2.21)]. The theory of
self-trapped states in ID systems (at dislocations or polymer
chains, etc.) is developed in detail in a number of stud-
ies 8,31,58-60

Specific electron self-trapped states with radius pf £a,
similar to the strong-coupling polaron with a coupling con-
stant a\ ~^Ma/m0~ 10 and effective mass Af~a4 m, can
exist in ID Peierls-Frohlich dielectrics: the main self-
trapped excitation is a soliton, which can have a charge
e* = e with zero spin or can be neutral (e* = 0) with spin I/
2, and self-trapping occurs without a barrier within a time
of~10~13s.61-62 Such remarkable self-trapped states have
been observed in polyacetylene chains.61'62 The interaction
between the chains can distort or destroy such states.61

The degeneracy of the electron band, which is usually
taken into account by replacing the operators Ke from (2.2)
and <^int from (2.3) by matrix expressions whose rank is
equal to the degeneracy factor (see, for example, Ref. 63),
can qualitatively change some characteristics of polaron
self-trapped states and lead to the appearance of new types of
such states. As shown in Ref. 64, band degeneracy leads to
spontaneous symmetry breaking of the self-trapping barrier,
which acquires an elongated or flattened shape and, there-
fore, plays a substantial role in the kinetics of self-trapping.
In this connection band degeneracy can lead to low-symme-
try (accompanying symmetry breaking of the lattice) small
polaron states, in particular, a two-center (quasimolecular)
state, for example a VK center in AHC43 or a R 2

+ center in
the cryogenic crystal Ar.44 Such low-symmetry self-trapped
states can play an important role in the formation and trans-
formation of defects (see Refs. 42—44, 22, 51). Band degen-

eracy also lowers the symmetry of the large Pekar polaron
(2.19)-(2.24), for which rotational degrees of freedom ap-
pear also.64 The spherical symmetry of the large polaron is
also lost in the case of a multi-ellipsoidal anisotropic (nonde-
generate) band.65

A small (pp > a) self-trapped state can be the ground
state of a wide-band electron (D > <yph) even in cases of elec-
tron-phonon coupling stronger than required by the criteria
(2.24) and (2.34). This can occur, in particular, for a high-
energy Bloch electron in certain regions of k space, for exam-
ple, in the region where the effective mass is negative (or
large and positive); such self-trapped states and their coexis-
tence with Bloch states can be manifested in nonequilibrium
electron phenomena.28

In the case of extremely narrow electron bands
(D/2ct)ph < 1) the ground state of the electron is similar to a
small polaron (ifl§\\) = <5,>lo) with arbitrary coupling with
phonons, while the self-trapping barrier is actually absent
(see Refs. 21 and 22). The dependence of the tunneling prob-
ability A(T), Wh(T) on T, however, can differ significantly
from that for small polarons. This difference arises when the
electron tunneling amplitude J(q) depends strongly on the
atomic displacements q. In this case, the tunneling actually
occurs in the presence of atomic configurations close to the
extremal configuration [q = q*(T]\, arising due to the com-
petition between the strong increase in / (q) and the decrease
in the probability P(q] of atomic displacements as the
displacements increase.66 This "fluctuation formation" of
lowered barriers leads to a growth of A(!T) with T'in contrast
to the drop for small polarons.

A at J (q*) exp [-$ (T) - <p (T)}, q> (0) > {# (0), 1},

(2.42)

since <p(T] decreases with T. On the other hand, ffh/A2

grows with T, and the region of Tin which hopping predomi-
nates can become much larger than the characteristic region
for a small polaron. For an electron, the extremal configura-
tion can correspond to an adjacent pair of atoms67'17 (com-
pare the motion of R 2

+ centers in Ar).44

f) Two-electron self-trapped state. Bipolarons

The polaron two-electron self-trapped state with energy
E2 can become energetically more favorable than the single-
electron state with energy El when the effective correlation
energy of the pair is negative68:

U = E2 — 2El

= Uc + W3 - 2P7j < 0,; Wn < 0 (re = 1, 2)

(2.43)

(W2 is the self-trapping energy of the pair). In this case, an
effective attraction exists in this pair, since the attraction due
to the exchange of phonons predominates over the interelec-
tron repulsion with characteristic energy Uc > 0. The prop-
erties and physical conditions for the existence of such self-
trapped pairs, whose singlet a = cr, + a2 = 0 ground state is
usually considered and is often called a bipolaron state, are
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studied in a number of works (see, for example, Refs. 13 and
68-72).

The properties and criteria for the realization of a bipo-
laron with a large radiusp2p (~p p > a), and an effective mass
M2~M in a 3D system—an ionic crystal—due to the long-
range interaction (2.6) was studied in Ref. 69, and it was
assumed that aside from (2.24) the very strong restriction
x«,x* ' <0.05 (i.e., KO^ 102forp£oo S 5) must be satisfied. In
this case both Uc(~e*/x0pp) and U (ifU<0), U SO.l £,
( S 0.01 eV with £\ 5 0.1 eV) would have been small. How-
ever, it can by no means be assumed that the existence of a
self-consistent ground state of a singlet bipolaron with a
large radius in a 3D system has been unequivocally estab-
lished. There is also apparently no experimental evidence for
the existence of large bipolarons in 3D systems (see, for ex-
ample, Ref. 13). As was actually pointed out (see Ref. 42b),
the long-range interaction (2.6) [or (2.9)], which screens the
interelectron repulsion, can lead in 3D systems to the forma-
tion of "weak-coupling" bipolarons (bipolarons with a large
radius, etc.), U \ < Wt\, only because of the quantum prop-
erties of the interacting particles; short-range interactions of
the type (2.7) or (2.8), which lead to the existence of stable
bipolarons with a small radius (small bipolarons), are more
likely to be significant here.

For small bipolarons and polarons in the system (2.27),
it is evident that W2 = 4W„ so that U< 0 with Uc < 2\ Wl\
(see Refs. 67-72). Typical estimates fF,|-O.ICVM^2

< 0.1-0.3 eV19-21 and C/C50.3 eV73 suggest that both
U< 0 and U> 0 with Uc 5 0.1-0.3 eV can occur. In this con-
nection, it may be expected that small bipolarons will exist in
transition metal compounds with large JC0(> K M ) and/or
coDcaph

l > 1. Accordingly, it was found experimentally in
Ref. 74 that the current carriers in WO3 are single-center
bipolarons, and in Refs. 70-71 it is conjectured that two-
center polarons (Ti3+-Ti3 + ) determine the ground state of
the Ti4O7 crystal. The mobility of such a bipolaron must be
significantly lower than the mobility of a small polaron (see
Refs. 70-72); small bipolarons and polarons can coexist in
the system.4'

It is not difficult to see from the foregoing that for small
enough Uc (< 2 \ W1 \) small bipolarons can exist, even when
the electron-phonon coupling is not strong enough for a
small polaron to form [see (2.35)]. Moreover, two-electron
states with £/<0, reminiscent of a Cooper pair,75 can also
form in the presence of weak electron-phonon coupling: 1) in
regions of k space where the effective mass of the band elec-
tron m(k)( > 0) is large or wz(k) < 0 (see, for example, Refs. 28,
60, 76 and 2) in ID and partly in 2D systems with electron-
phonon interaction (2.3).77 Spinless charged pairs of coupled
solitons can exist in Peierls-Frohlich dielectrics.61'62

g) Self-trapped electrons in an antiferromagnet

In an antiferromagnetic wide-gap semiconductor the
ground state of the conduction electron can be a self-trapped
state with a large radius ( p M > a); this state is often called a
spin polaron.26'27 The spin polaron appears as a result of the
s-d (s-f) exchange coupling of the electron with the spins 5a

of the surrounding magnetic atoms, when D > A0\S^ > 3"N;

A0 is the coupling parameter and TN is the Neel point. In the
process of self-trapping, in a definite region with large radius
pM > a around the electron the spins of the atoms (SJ are
oriented along the spin (^0>°) or opposite to the spin
(A0 < 0) of the electron (CT); far from the boundary inside this
region the angle 60 between the spins (Sa ,a] is virtually inde-
pendent of the electron field. In this sense there exists a non-
linear response of the medium, in contrast to the linear re-
sponse for polaron self-trapped states. As also in (2.13), the
energy EIM and radius pM of the spin polaron is determined
by minimizing the energy of the system J($[if>] (in the con-
tinuum model):

(2.44)

where Ke(p)~\/2mp2;
~l (d= 3,2,1). Here, for d= 3

PM:
1/5

= .GIM » • (2.45)

with r^c^oS;]572/)-372; cl~\, c2~0.1. The spin po-
laron is a self-consistent self-trapped state with a large radius
for an electron in the region of the other almost ferromagne-
tic phase which the electron creates; as T increases, this self-
trapped state is destroyed.26'27'78'79'5' Such self-trapped
states can also arise in the antiferromagnetic phase of a Hub-
bard semiconductor (see Refs. 80, 78). The interaction of the
electron with the phonons increases the stability of the spin
polaron (see, for example, Ref. 79). But for very strong elec-
tron-phonon coupling the current carrier is most likely a
small polaron in the antiferromagnetic crystal, whose mo-
tion has singularities. Thus, according to Ref. 83, the hop-
ping of a small polaron at temperatures T<TN between dif-
ferent magnetic sublattices is accompanied by a change in
the surrounding spin configuration, and the activation ener-
gy of hopping conductivity fj,h —p^W^/T [see (2.32)] in-
creases by an amount ~ TN; this effect has apparently been
observed in NiO.6'

3. SELF-TRAPPED STATES ON DEFECTS IN A CRYSTAL
LATTICE

A defect in a crystal lattice, including an impurity cen-
ter, which attracts an electron can facilitate the formation of
the ground self-trapped state of the electron when such a
state does not exist in the regular crystal. This phenomenon
is called extrinsic self-trapping. It is desirable to distinguish
the situation in which the defect is a trapping center, in the
sense that in the absence of self-trapping it corresponds to at
least one bound state and a discrete level of the electron in
the interband gap, from the alternative situation in which
the defect does not have such a discrete level in the gap.
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a) One-electron self-trapped state on a trapping center

The simplest situation is a trapping center with a long-
range attractive field <pt(r} = — edaBr~l with ed

= Z0 e
2/x0 aB. The radius of the ground electronic state of

such a center, in the absence of self-trapping, is aB = Xg/me2

and here is a discrete level EB = — me4Z % /2x2 in the gap; in
semiconductors <ZB > a and \eB \ •< Eg (shallow level) for
typical values of x\ > 1 and m < m0. For a system with long-
range electron-phonon coupling (2.6) or (2.9), within the
framework of Pekar's approach, the ground self-trapped
state of the trapping center corresponds to a unique, finite
minimum of the functional of the system (analog of the func-
tional (2.21) in the continuum model)

/if'fip] =?,%>) = Y2#(
e
0>-v6(<S, I3-1)

where y = 2K fVS^ = 1, 8{& = $ol + <P <T(L)- The polaron
binding energy at a trapping center for a bound polaron with
a large radius (pjf1 > a)84-25 is given by

mi(3.2)

with yd=- Jdr^d (r)|<(r)|2 > 0,E,=J «" [$»] .
The criterion for extrinsic self-trapping, 0.109a2

X ( 1+ <pd/0. 109a26>p ) > 1, can be satisfied for smaller val-
ues of a2 than in (2.24), so that a bound polaron can exist
when a polaron state is not realized in the regular lattice ( for
example, when a2 < 10 and cpA > cop ) . The polaron self-trap-
ping can appreciably increase (by ~<pA) the width of the
impurity gap and convert a center with a shallow electronic
level in the gap ( \EB \ < Eg ) into a deep center. As also for
polaron self-trapped states in a crystal [see (2.23) and
(2.31)] £opt - £th ̂ OL' >«ph, and the absorption spec-
trum contains wide bands and at least one no-phonon line
corresponding to a resonant transition between the ^o°' state
and the first excited self-consistent state (see Refs. 5 and
85).

The situation is qualitatively different in a 3D system
with short-range electron-phonon coupling (2.7) or (2.8).
The corresponding functional

4d) w (Y) = v240) - (3.3)

aside from minima corresponding to the starting shallow
electron level £B and (in the limit y —> oo) a bound small
polaron, may or may not have a minimum (for finite y) for a
bound polaron with a larg radius, when (K(°})2^3S(^f. In
this case, in contrast to the case (3.2), states with shallow and
deep (polaron) levels coexist (they are separated by barriers
in q space), and the transition from one type of stable state to
another with increasing A (with A = Aj.d)~ 1) is discontin-
uous, as in the case <pA = 0 (see Sec. 2d). For ID systems in
the limit j^5jg ->• ytfjg in (3.3) the situation is similar to the
situation described in the case of (3.2).

The structure of a self-trapped polaron state on a short-
range trapping center depends on the specific configurations
of the defect and the type of electron-phonon coupling. In

the cases (2.7) and (2.8) the quantity \W(?} =
plays the role of the binding energy of the self-trapped state,
instead of | W^\, and the ground state on the defect is self-
trapped when | W(f]\ >D_/2, even when the criterion (2.35)
does not hold, as soon as <pA is large enough. This apparently
happens for some donors in InSb crystals, in whose regular
lattice self-trapping does not occur (see Ref. 86). The situa-
tion is analogous in the cases (2.6) and (2.9) with the substitu-
tion 8§l -> SgH. in (2.24) or Wl -* W(f] in (2.25) (see Refs. 25,
51, 87).

A self-trapped state can form on a changing center
(short-range defect with a changing configuration) even in
the absence of electron-phonon coupling. The role of such a
defect is played by a Jahn-Teller defect88'90-93 or an off-cen-
ter (a noncentral ion, see Refs. 17, 91). Thus the interaction
of an electron with the local mode of the displacements q of
atoms in a Jahn-Teller defect, which partially or completely
removes the degeneracy of the populated term,89 can lead to
a self-trapped state with a small radius with energy El < 0,
when the interaction energy Fe_JT = e^q) — e^O) is high
enough; e^q) is the electron term of the defect. In the sim-
plest model,89 in which the significant displacements are
harmonic, E0(q)^(\/2]kq2 and Pe-jrte)~—^JT<?> the one-
electron state with small radius corresponds to the term

min E, (q) m min e4 (q) + - .El =

0), (3.4)

where q = #!~ AJTk ~l < a and, for the trapping center,
£,(0) = £° < 0. The binding energy | W\T and the equilibri-
um displacement ql can be significant, COD •< | W(IT>| 50.3
eV, q0 •< ql S 0.1 A ( < a) for typical values of the quasielas-
tic constant k^k(m~10 - 30 eV/A2 and of the, in this
sense, strong coupling parameter a/4JT (~3 eV) (q0 is a typi-
cal value of the amplitude of zero-point vibrations, q0 -< 0.1
A). Such a self-trapped state is stable (ground state), being
populated under equilibrium conditions when El < £, as
soon as the correlation energy for the two-electron state of
the defect U> 0 (£ is the electron chemical potential).

An example of such Jahn-Teller defects, on which self-
trapped states form, is the V vacancy in the p-Si crystal,90 for
which according to Ref. 89 the starting state is V2+, and also
Fo p- ^o -JT eV A. fl~2 25 eV a ~0 15 A &~15 eV/£. i -*-J\ -—-"••'*' C T j XVj'pU -^-- ^-~* C T j \£ j —^L\J. 1 _< /A.j A-_^l 1 J C Y /

(A)2, and at the same time | W(^\ =;0.17 - 0.19 eV < Eg

~1.2 eV (and pp^a). However, the one-electron self-
trapped state on a V+ vacancy is only metastable; the stable
state is either the V2+ state or the two-electron self-trapped
V° state, for which U< 0 (see Sec. 3c).89-90

For an off-center with z0 (>2) close (Ar < a) equilibrium
positions of the atom (ion) in the crystal, small k < k(0), i.e.,
significant anharmonicity of the vibrations (Li+ ion instead
of K+ in KC1, etc.; see Ref. 91) is characteristic. For such a
changing defect (see Refs. 92, 17, 93) the one-electron self-
trapped state corresponds to the term

Ei = Ei (qt) == min El (q) ~ min [e4 (q) + -i- kqz + C0g*]

(3.5)
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with El(q) -£° = Fe_off(<7)~ -^ + ^2<?2 + ^4<74, A, >o,
C0>0, A 2 <0 and /L4>0, where Ca2

0Skm, Ca%ZA.4a*
~/l1a0~|A2|flo with characteristic atomic (ionic) radius
a0 ~ 1 A. The one-electron self-trapped state, arising in the
presence of quite strong coupling between the electron and
the displacement q of the ion in the off-center, the state is
qualitatively similar to the state on a Jahn-Teller defect, but
the quantitative characteristics can, of course, differ sub-
stantially. Thus #, and the binding energy | W^ can be
much larger, for example, 0,1 eV 5 | W(^\ $ 1 eV (| W(^
<Eg/2) and a0S9l>0.1 A with /l,a~3 eV, 0.01
k(0) < k < 0.1 k(0) (see Sec. 5b and also Refs. 17 and 18 for a
more detailed discussion). An example of such a defect is an
impurity In3 + ion replacing the Cd2 + ion in the CdF2 crys-
tal—a one-electron stable self-trapped state with a small ra-
dius in the model (3.5) could correspond to the substitution
In2+ ion in CdF2 with U> 0 which has been studied in detail
(see, for example, Ref. 87).

As also for a conduction electron, for an electron at a
trapping center in a 3D system a self-trapping barrier, gener-
ally speaking, exists so that a self-trapped state with a small
radius and a weakly bound state with a large radius can coex-
ist. In models of a trapping center, similar to the models
(2.33)-(2.38), in which ql is not very large, q0 << ql < a0, as a
rule, the curves of the adiabatic potentials ^0(9) for the
ground self-trapped state and %(<?) for the metastable weak-
ly bound state have the form of the curves shown schemati-
cally in Fig. la with the characteristic optical and nonradia-
tive transitions, including luminescence (radiative,
"vertical" transition / —>• 0). On the other hand, in the model
(3.5) and similar models, in which g, is large, 9, Sa0, and the
schematic form of *„(?) and *i(?) is more likely similar to
the curves in Fig. Ib. In this case, the luminescence is actual-
ly suppressed, and the lifetime of the populated metastable
"weakly bound" (rjj) and band (rf£T) states can be large,
TEL > <UD '» i -e - , they can give rise to delayed photocurrents
and other similar effects at low temperatures T (see Refs. 14,
87, 93-95).

b) One-electron self-trapped states on changing defects

One-electron self-trapped states in imperfect crystals
can also form in systems which do not have filled local levels
in the undeformed lattice as a result of the restructuring of

the electron spectrum accompanying a corresponding defor-
mation of the local atomic configuration. In this case, as
shown in the theory developed in Ref. 14, self-trapped states
can arise not only in the form of discrete levels in the gap in
the spectrum, but also in the form of resonance levels with
virtually zero width in the allowed bands. The potential of
the defect in Ref. 14 is approximated, for simplicity, by a
rectangular well (Fd) with a level £,(q) , lying above the Fermi
level in the absence of deformation, el(0)>g. This level
moves deeper into the gap as the deformation, actually the
amplitude q (> 0) of the "breathing" mode of the displace-
ments accompanying the symmetrical expansion of the co-
ordination sphere around the defect, increases. In this case,
as soon as the level e^q) is, for all practical purposes, not
repelled from the edge of the valence band, it can move into
the band as q increases further (compare Sec. 5c).

A real localized state appears when the energy £i(q)< £,
i.e., the level is occupied by an electron. This effect was
called in Ref. 14 impurity self-trapping. The corresponding
self-trapped state arises with a finite deformation of the lat-
tice (q = q\>qc}< for which the minimum energy of the sys-
tem is given by

i
Ei(q) ~ 6) (q) -\--^-kq2 (3.6)

)-£ -A0Vd8
2(q) + A2

0VdS
3(q), E = const>f

S(q)=(d(q)-da)d = const,
with £
=£,(qc

d(q) = d0 + Yoq, YD = const, A0 = ir2/4. The energy of the
stable self-trapped state of the electron Et = El (qt ) = min
Ei(q) and the height of the self-trapping barrier H J, corre-
sponding to the minimum (q = q^) and maximum (q = q2)
of the energy change &E(q) accompanying the deformation
of the lattice, were obtained in the form

(3.7)

where £ =k/4r2
0m/V2

d, k = M^co2
Q and<50 = |<5(0)|. In this

case both £, > 0 and E, < 0 relative to the other minimum

FIG. 1. Typical examples of possible dependences of the adiabatic potential of the ground (0)
and excited (1), (1 *) states on the configuration of the variable (q or x).

401 Sov. Phys. Usp. 28 (5), May 1985 M. I. Klinger 401



the bottom of the conduction band, A£ (q) = 0 at
q = 0 can occur. The conditions for the existence of the self-
trapped state, J"~(Afa/mj^)(6Jo/Fd) << 1 and S0 < 1, can be
satisfied in the presence of a soft mode with frequency
A£ (q) = 0 in the phonon spectrum of the crystal.

When El > 0 the level of the metastable quasilocal self-
trapped state of the electron stabilizes f, f = £, if the num-
ber of electrons Ne is less than the number of defects Nd

under study (and the number of other defects is small). Vio-
lation of the condition of equilibrium f = .En with Ne

= const leads to transitions of electrons from metastable
self-trapped states into Bloch states when f < £, (or, conver-
sely, when f >El) with overcoming of a barrier (the self-
trapping barrier for f > El). On the other hand, when El < 0
the localized ground self-trapped state has a thermal activa-
tion energy \El and is separated from the metastable Bloch
states by the self-trapping barrier with a height Hb*=H*
+ I/?,|. The situation for such a changing defect most likely
corresponds to the schematic diagram in Fig. Ib (in the ab-
sence of a "weakly bound" electron state). The times of tun-
neling transitions for low T < <y0, r0 = T( T = 0) and ther-
mally activated transitions r oc exp ( — Hb/T), Hb = {fff
or H'b*} are exponentially large T > a > 0 ~ ~ ' ( ^ca^1). The
threshold energy of optical transitions from the self-trapped
state into the Bloch state is £opt = g — e1(q1) when £, > 0 or
£opt = \£\ (^i) I when El < 0. In this case, long-time nonequi-
librium effects (photocurrents, etc.), which can vanish ra-
pidly as T increases, are expected. It is assumed in Ref. 14
that this model (3.6)-(3.7) adequately describes the unu-
sual picture of nonequilibrium processes at low tempera-
tures T( $20 K) and the stabilization off observed in the
narrow-gap (£g~0.32 eV) semiconductor Pb,_ESn5Te
(In) (c50.2). Here the In3+ ion, which replaces the main
Pb4+ ion,94-95 apparently corresponds to the changing defect
which self-traps the electron.

The theory of self-trapped states of an electron on a
changing defect, presented in Ref. 93, is developed in appli-
cation to the model proposed there, associated most likely
with the Jahn-Teller effect or some other in a certain sense
similar effect. In this model the rearrangement of the local
atomic configuration of the defect is accompanied by the
appearance of a discrete level of the electron e ,(9) and its
displacement into the gap; in addition, the energy of the de-
fect with the trapped electron A, = const, A,>0, A2^0,
A4 > 0, Cl = const > 0) is given by

(3.8)

where the linear term — Atq can characterize (for A2>0)
the coupling with the Jahn-Teller displacement, while the
term A2q

2 (for A2 < 0) can correspond to coupling with the
soft phonon mode. For typical AiC0~l eV and small
a0 ^ o)D for the case of a single populated term £l(q)< £, the
energy of the system E^q) here also has two minima, corre-
sponding to the Bloch (at the bottom of the band) and self-
trapped states of an electron with finite q = q\- These states
are separated by a maximum (barrier), while the energy of

the system E0(q) = (\/2)kq2 + Ctf4 with an unpopulated
term has a single minimum corresponding to the Bloch state
at the bottom of the band (with q = 0). Such a model can
describe a defect with a self-trapping barrier and a metasta-
ble state of the electron, a Bloch (with a self- trapped ground
state) or a self-trapped state (Fig. Ic). In the model (3.8),
which can be used, in particular, to interpret the electron
properties of Pb,_5SncTe(In) (550.2) at low temperatures
T, the changing defect in this crystal can be, in accordance
with Refs. 94 and 95, a vacancy or a substitution In3+ ion.

A common feature of the models (3.6), (3.8), and (3.5),
which can describe the appearance of a stable bound self-
trapped state on a changing defect, is the presence of nonlin-
ear electron-atom interactions and/or anharmonicities of
the local atomic configuration. This determines the self-
trapping barriers characteristic for changing defects, metas-
table bound electron states, and therefore specific long-last-
ing nonequilibrium effects. Finally, in all the models
examined above (3.1), (3.3)-(3-6), and (3.8) we are talking
about bound, self-trapped, one-electron states with spin
a = 1/2.

c) Two-electron bound self-trapped states

When the inequalities (2.43) hold, the ground state
of a changing defect can only be a two-electron singlet
self-trapped state with a negative correlation energy U<0.
Thus in the model (3.4) the energy of the two-electron
self-trapped state E2( q) ~ ( l/2)kq2 + 2£,( q) + Uc ( q)
is minimum,

E2 = E2( q2) = min E2( <?)~ Uc

with

and such a state is the ground state when E2 < 2El < 0, i.e.,

U = E2—2Ei~Uc — -%-<0. <3-9)

(\U < 0.3 eV for typical values | W(™] S 0.3 eV and Uc $ 0.3
eyj 89,90 jjje groun£j bound two-electron state of a defect is
spinless (at least when the populated term is orbitally nonde-
generate) and, generally speaking, is separated by a self-trap-
ping barrier from metastable one-electron bound and Bloch
states; such different states and the long-lasting nonequilib-
rium effects can therefore exist even here, especially at low
temperatures T. Under equilibrium conditions the two-elec-
tron self-trapped states are stable only when E2 < 2f, while
when E2 > 2£ such states are not populated.

An example of a defect with a singlet two-electron
ground state (V°) with E2/2 <£ora.V2+ state with JE"2/2 > g
is a vacancy in p-Si (see above). For this defect U<0 and
\U\ ~0.1eVwithJ7c ~ 0.25 eV and q2 ~ 2ql ~0.3A.89>9°
In this case, the single-electron state V+ is metastable, as
demonstrated in experiments on photo-induced EPR.90

These experiments and investigations of the electron struc-
ture of a vacancy in p-Si showed, within the framework of
the method of dielectric capacitive spectroscopy, for all
practical purposes unequivocally that such a defect is a cen-
ter with U< 0, described by the model (3.4) and (3.9).
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Similar singlet two-electron self-localized states with
U<0 can also be characteristic for the models (3.5), (3.6),
and (see Ref. 93b) (3.8), with realistic | U \ 5 0.3 eV or even (in
the same models) 21U \ S£g 5 1 - 2 eV (see Sec. 5). From this
viewpoint, such a state can be a ground state for a changing
diamagnetic defect in Pb,_ESnETe (In.Ga) also, in agree-
ment with a recent hypothesis.95

We also assume that the interstitial boron atom B, in
the p-Si crystal, which has, depending on the position of £,
one of two stable states, B,~ or B,+ ,90 i.e., it is a center with
U< 0, can be described as a changing defect of the off-center
type in the model (3.5), whose stable state B,~ corresponds to
a filled singlet two-electron ground state (on the reference
B,+ ion) with U< 0 (see Sec. 5).

4. SELF-TRAPPED ELECTRON STATES IN A DISORDERED
SYSTEM

In disordered systems both polaron self-trapped states
and new types of self-trapped states, which do not occur in
regular systems and are determined by the nonlinear re-
sponse of the medium, can exist. The latter includes fluc-
tuons, which we shall study in this section, and two-electron
states with a negative correlation energy, which are studied
in Sec. 5.

a) Characteristic features of polaron self-trapped states

These features are determined by the characteristic fea-
tures of the "bare" (in the absence of electron-induced de-
formation of the structure) one-electron energy spectrum
£ 96-100 Thug in 1D and 20 (in the absence of magnetic
fields) systems all states are trapped in the sense that the
conductivity a = 0 with T=ca = Q.96-97-103 In a 3D system
near the mobility threshold £ f =E*(Ef =E*), separat-
ing the mobility gap (region of trapped states) from the con-
duction (valence) "band", the amplitudes of the untrapped
states when E*<E<E *V(E*V <E<E*) and weakly local-
ized states when E% <E<E*(E*<E<Efv) are substan-
tially inhomogeneous, fluctuating over distances p of the or-
der of Pl(E)^Pl(E*)~a, p2(E)>p2(Ef)^a (they are
almost homogeneous when p>a for E > E *c or E< E *v, or
have a radius ~afor E<Efc or E>Efv).

It was recently shown101 that in a 3D system even a
weak electron-phonon (short-range) coupling (A<1)
transforms the inhomogeneous (metastable) states men-
tioned above into stable polaron self-trapped states. The lat-
ter have a large radius pp, pa(E)$. pp~p^~aA~~l$-a
when A < 1 (a = 1,2), sincepa (E) ^p0(A)~3aA'\160 In
this case the mobility threshold is displaced, £f
= EC(A = 0)^EC=EC(A) foTPl(Ec)=p0(A) and E*
<EC<E*C, while the conductivity <r(E)
= 0(E'\T= (o = 0) as E —>EC +0 undergoes a jump A<7
= AC As with Ac = O.OSeV^/KZ and 5 = 2/3. As A in-

creases, pp continuously decreases and ACT increases. In the
presence of strong coupling, A S Ac (1 < Ac < 10; see Sec.
2d), all such self-trapped states are small polarons and
Ec ^E*,. (compare the phenomenological model,102 in ac-
cordance with which the important current carriers in a
glassy semiconductor are small polarons), while ACT is close

to the Mott minimum metallic conductivity crM

~0.25e2/V%z (see Refs. 96 and 97). This situation differs
significantly from that described in Sec. 2d for self-trapping
in a crystal (for a discussion of Anderson localization of
small polarons in a 3D system see, for example, Refs. 103,
21,96). According to Ref. 101, the effects under study occur
at least as soon as the interelectron correlations are no longer
important and for very low T (and these effects are negligi-
ble for very small A< 1).

The motion of localized polarons (in the gap) is deter-
mined by thermally activated hopping. The effective activa-
tion energy of such hopping &a(T, A) is virtually indepen-
dent of T, &,(T, A) ~ ifa(A)>i?a(0), for high T> T0, but
i?a(r, A)oo T " for lower temperatures T. In the latter region
x=x(A) ~ x(G] for very low T (—»• 0) or A<1 (for example,
^(0) = 4~! 96 or x(0) = 1/2 with d = 398), but x <«(0) for
A> 1 and intermediate values of T (x = 1/7 instead of
K = 1/4 with d = 3orx<\/2 instead ofx = 1/2), due to the
contribution of the polaron effect and multiphonon pro-

21,104cesses.

b) Fluctuons. Basic relations

In a system in which the important interaction with the
medium is short-ranged, self-trapped states with large radi-
us (/?f>a)—fluctuons—appear.15>16-23 Unlike polarons, they
are determined by the nonlinear response of the medium and
can exist in a system with any dimensionality, including 3D
systems. In the latter, fluctuon states can be both untrapped
and trapped (in the mobility gap), while in 2D (in the absence
of magnetic fields, see above) and ID systems they are
trapped in the sense indicated above.

Let a spatial fluctuation—a deviation Srj = 77 — 77 of
the macroscopic parameter 7;(r) from the average value T/,
which in the absence of an electron decays over a character-
istic time TR —appear in the system. Such a fluctuation with
appropriate sign and magnitude of Srj can lead to the forma-
tion of a quite wide and deep potential well for the electron,
which is required (at least, in 3D systems) for the existence of
a bound state of the electron with a radius pf >a with quite a
low-lying discrete energy El <0, \e{ >T. The field of such a
bound electron maintains the stationary nature of the fluctu-
ations. The self-consistent self-trapped state—the fluc-
tuon—which appears can be viewed as a thermodynamically
stable bound state of the electron and the fluctuations. Ex-
amples of such systems are solid and liquid solutions of the
type^Tg Yl _5 (0<c< 1) and magnetic materials, in which the
spins T and i play the role of the AT and F atoms: in the former
rj(r) = c(r) = c(< 1)—is the local concentration of X atoms,
and in the latter i/(r) = Mz (r)/M °, \ rj(r) \ < 1 (Mz (r) is the local
magnetization and M° = M0(Q),M0(T) is its equilibrium val-
ue). Unlike polarons, fluctuons exist in a bounded range of
temperatures, which need not include low temperatures T,
and must correspond to a minimum of the thermodynamic
potential of the system 4>.

There are two approaches to the study of such electron
states. In one approach the states of an electron in a random
field of fixed, randomly distributed atoms is studied.16 Actu-
ally, the fluctuation levels E of the electron—the ground
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states in potential wells created by suitable, optimal, local
fluctuations of the atomic (spin) configuration—are impor-
tant (at least, below the mobility threshold Ec in the mobility
gap). Such an optimal fluctuation with radius R {(E} is mac-
roscopic, Rf(E)^a, in the often encountered case of wide-
band electrons with

T, (4.1)

in which electron trapping on a separate atom (spin) is not
realized in a 3D system; A0(^0) is the electron-atom (spin)
coupling constant. In the case (4.1), which we shall have in
mind primarily below, in the macroscopic approximation
the level E corresponds to the probability pf(E) =
exp { — AS" [R f (E)]} for the realization of the optimal fluctu-
ation; its radius R ( ( E ) , in its turn, is determined by the radius
pf(E) of the ground state of the electron in the fluctuation
potential well (o< pf(E)$R((E },p{ (E )< 1). For a fixed tem-
perature T it is possible to find the energy E for which the
quantity

^F (E) = — Tlnp (E) = E — T In pt (E) (4.2)

is maximum, as soon as the distribution of the electrons over
the fluctuation levels is determined by the function p(E)
= p( (E )exp( — E/T). The state i/>{?(£) with the energy E, at a

given temperature, is most probable, as is the corresponding
stationary fluctuation of the composition Sc(°\E )(8rj^(E)),
and in this sense it is a self-consistent stable self-trapped
state. According to this model, the required condition for
realizing the self-trapped states

TR > xe (4.3)

means that the electron in the fluctuation potential well over
its lifetime re does not have enough time to cause a corre-
sponding rearrangement of the atoms.

Another approach,15-23 which is widely used to study
fluctuations in the same case (4.1), consists of a significant
generalization of Pekar's approach (2.13)-(2.14). In this ap-
proach the problem of finding the thermodynamically stable
fluctuons of the self-trapped states $°} reduces to the solu-
tion of the problem of finding the minimum thermodynamic
potential of a system containing a "stationary" self-trapped
electron (with a fixed center of inertia), i.e., of the corre-
sponding functional <

with i|5 = ipi?> and T) = T]J.0)= 11 (y'T° },

rfle < D M > , n] = E,N, Tj]

Fht, TI]=

cp [i|3] = min(t|)<D [i(j, T]]. (4.4)

where ,ij] =Ee [^,77] +R(tj), Ee[i/>,rj] =Ke[t/>]

The expression for V(T,TJ], the potential energy of the
electron in the region of the fluctuation IJ(T), is usually ap-
proximated in the form23

AO i; o,V (r, (r) = -A0(i\ (r) -

(4.5)

and the relation for the minimum work required for a rever-
sible creation of the fluctuation rj(t) has the form

i
fl (n) = J dr [<p(Ti (r)) - CD (tfe - P0 = ff ,

or

•0,

(4.6)

(4.7)

where <p (17) is the density of the thermodynamic potential,
while R2 takes into account the conservation of the total
number of atoms. The fluctuon exists when

The condition that ^[^,77] has a minimum with respect to rj,
with the state i(> fixed, determines the distribution rj \ijj\ in the
effective field ( — A0\i/>\2) of the self-trapped electron. Ulti-
mately, the functional 4>[$|, which determines the ground
fluctuation state t/>^, has the form

<4-9)

- A0 dr |T|J (r) |a 8r) [\f (r)]

In the approach under discussion,15 the self-consistent self-
trapped state is formed with the self-trapped electron adia-
batically following the slow changes of the fluctuations,
while over its lifetime re the self-trapped electron has time to
cause a corresponding redistribution of the atoms (spins)

T R < T e . (4.10)

However, Euler's equations for the extremal problem for the
functionals (4.2) and (4.9), determining the self-trapped
state, the energy of the electron £•„ and correspondingly the
thermodynamic potential of the system, coincide in both ap-
proaches, because the stationary characteristics of the self-
trapped state should not depend on the kinetics of its forma-
tion, i.e., on the value of rR/re. The ground state of the
fluctuon (as also of a large polaron) corresponds to a spheri-
cally symmetrical wave function (the s state) I/>(T(T)-

In the case (4.10) the motion of the fluctuon, at least,
corresponding to the untrapped "bare" one-electron state in
the 3D system, is essentially linked to a specific mechanism,
determined by the diffusion of atoms (spins) and the dis-
placement of the electron and the accompanying stationary
fluctuation corresponding to the diffusion.23 This mecha-
nism (instead of the direct electron hops) could be important
also for fluctuons, corresponding to the trapped states of the
3D system, and also to states of 2D and ID systems. At the
same time, the mobility of the fluctuon, associated with ther-
mally activated transitions of atoms (spins) during their dif-
fusion, can be estimated as15'105

404 Sov. Phys. Usp. 28 (5), May 1 985 M. I. Klinger 404



|e|Dr(7'«f)-i<r

for n, = for

(4.11)

where n{ is the number of atoms (spins) in a macroscopic
fluctuation, accompanying the electron; Dr is the coeffi-
cient of atomic (D(f) or spin (D(£>) diffusion (Dr-»0 as r—0);
Pd = const ~ 1. In any case, the displacement in an elemen-
tary act is small, L f S L D «f~

 1/2 < pf , where the characteris-
tic diffusion length is L D <p{ . In addition, since the contri-
bution of the translational motion of Nt fluctuons to the
thermodynamic potential &(N{) of a degenerate gas is deter-
mined by the number of permutations over N0 possible posi-
tions, a relation exists between N{ and the number Ne of non-
self-trapped (band) electrons in Ref. 15:

for T, a, 1. (4.12)

On the other hand, in the case (4.3), which most likely
corresponds to the trapped electron states of a system with
arbitrary dimensionality, the formula (4. 12) is adequate only
for Ne -/V0~ ' <p0 (PO is the concentration of entrained opti-
mal fluctuations), while the motion of the fluctuon is most
likely determined by electron hops, not necessarily associat-
ed with the diffusion of atoms (spins), /*f — >0 as 71— -0.

The formation of fluctuons must be more efficient in a
system in which the fluctuations Srj lead to a relatively small
value of R (77). This occurs primarily near second-order phase
transitions and critical points of the system.15-106 In the gen-
eral case a fluctuon forms in the presence of a nonlinear
response of the medium — the stationary distribution ij[°\r)
in the region of the fluctuation self-trapped state is related
nonlinearly to the field of the electron — A0\i/>\2. This is ob-
served most clearly for a fluctuon in an ideal system, in
which, by definition, there are no direct couplings between
atoms (spins), so that only indirect couplings, determined by
the self-trapped electron, exist near the fluctuon.

c) A fluctuon in an ideal system

For an ideal solution X7 Y , _ c- with A0 > 0 the substan-
tially nonlinear relationship between 77'°' and | ̂ (r) | 2 has the
form15

(4.13)

where

cp ( n ) = cp (c) = (T.'i-0) [c In c -|- (1 — c) In (1 - c)]

and ax = i] == c,

while for A0<0 it is necessary to make the substitution
c ?± 1 — c in (4.13). The same relation is also valid for ideal

paramagnets with an atomic spin Sa =1/2 with the substi-
tution

and with TI = - (4.14)

(and for estimates in the general case of an ideal paramag-
net— with c-*Sa > 1 /2 and A „ — A yS ~ ! .

The analysis of the extremal problem for the functional
^[rjj,rj] in a 3D system showed that the fluctuon in an ideal
system exists at all sufficiently low temperatures
0 < T< 6 *.15-23 In this case, according to Ref. 23,

for

0* - v.

(4.15)

3/2

(4.16)

where y, = const (more precisely, y^l/S, y2~l/20 and
73~3). In the ideal system studied £,~ — 0.12|v40| and
T = & *,c~ 1/2, so that for (4. 1 ) and T<0 * the inequalities
Z)>|/40|>20r, £,|>r, and also \^\>T hold automatical-
ly, in accordance with the criterion (4.8). A characteristic
feature of a fluctuon in an ideal system is the sharp change in
c^"(r) in the region of the self-trapped electron (see
(4. 14) ) : At the center when A0 < Oc^-0) (0) <c, while the po-
tential energy has the smallest possible value (A<f) , to which
EI and <I>^0) tend.15 It is precisely the nonlinear response of
the medium, i.e., the nonlinear dependence of the quantity
«540> (r)=4?> (r) -con the field of the electron -A0\i{>\2,
leading to its saturation, with Sc(^ ^ — c for r< pf , that pro-
duces for ( 4. 1 ) the macroscopic dimensions of the fluctuon.
It is this that strongly distinguishes a fluctuon from a small
polaron, which in the presence of short-range electron-
phonon coupling arises in the case of a linear response of the
medium only as a result of an increase in the depth (but not
width ) of the potential well in the case of quite strong cou-
pling. Like a small polaron, however, in a 3D system the
fluctuon is separated from the Bloch states of the electron in
the band by a self-trapping barrier, whose height
H^~5\D/A0\^

I2T2\A0 (r«9*andc~l/2)canbesignin-
cantforZ)>|^40|>20r decreasing as T decreases. Forafluc-
tuon in ID and 2D systems the presence of a self-trapping
barrier is not characteristic. This follows explicitly from the
results of Ref. 16, where the electron states, similar to the
states of the fluctuon type in the solution X7 Y , _ ^ with c < 1
(or 1 — c<l) both in 3D and in ID and 2D systems, were
studied in detail.

Fluctuons exist in a ferromagnet only at quite high tem-
peratures T> 6 f , and in addition 0 < 6 f < Tc (Tc is the Cu-
rie point, see Ref. 23 and below). Fluctuon self-trapped states
can also exist as stable states of an electron in an antiferro-
magnetic crystal not only at temperatures T^TN but also at
temperatures T< TN , when the system is ordered, in this case
the self-trapped state of the electron is identical to the spin
polaron (2.44) discussed in Sec. 2g.26>27
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The transition of the electrons into the fluctuon state
occurs at r= 0J;s0*inanarrow rangeST^20*nf~

l^&*,
reminiscent of a diffuse first-order phase transition.15>16>23

At the same time the electron properties of the system must
change substantially; in particular, the electron heat capac-
ity must have a peak at T^.9 *, C(Nf~

l ~n2> l(see Ref. 23).
The effect of the fluctuons formed on the properties of a
semiconductor was studied in a number of works (see, for
example, Refs. 15, 23, and 107). Thus the magnetic proper-
ties (magnetic susceptibility, etc.) of a semiconductor in the
region of existence of stable fluctuons differ substantially
from the properties in the alternative region, since the mo-
ment of the fluctuon is anomalously large m( x n{ /LIB >//B.

The mobility/if and the effective mass M ( of a fluctuon
in 3D system were studied in Ref. 105 and it was shown that
Mf is large, Mf >m, and fj,{ is small, //f -</z0 ~ 1 cmVV-s, and
there is no direct coupling between them; in addition,/zf —»• 0
as r—>-0(/if ooexp( — Ea/T)) in the solutions ^F,_ E or
fifOoT1110 when T S 0 * in paramagnetic materials. The coex-
istence of stable fluctuons and metastable band electrons
with,ue >/xf could be manifested in the strong growth of the
mobility accompanying an increase in T( 5 6 *).

d) Other fluctuon effects

Self-trapped electron states, reminiscent of fluctuons,
also appear in the paramagentic phase of a Hubbard semi-
conductor. In this case, an effective exchange coupling
between a conduction electron and the core electrons arises
due to the Hubbard interelectron interactions and the well-
known symmetry properties of multielectron states. Such
self-trapped states (in particular, for magnetic 3He atoms in
an 4He crystal110) and their properties have been studied in a
number of works (see, for example, Refs. 17, 110-113). The
effect of a direct interaction between atoms (spins) on the
properties of fluctuons leads primarily to the appearance of a
finite lower boundary 0 f of the region of their existence (see,
for example, Refs. 114-116). Thus in a paramagnetic materi-
al this region encompasses the point Tc of the magnetic
phase transition, 9 f < T< 0 * for 0 * > Tc and 0 «9 f < Tc.
(In the fluctuon group the indirect interaction between
atoms or spins, caused by the self-trapped electron, is usually
greater than their direct interaction; see, for example, Refs.
23 and 114.) Fluctuon states can also form on defects and
impurity centers.117 The characteristic features of self-
trapped states with an arbitrary value of D / \ ^A 01, the proper-
ties of fluctuons with a multiellipsoidal anisotropic (nonde-
generate) electronic band, and other problems in the theory
of fluctuon self-trapped states were studied in a number of
recent works (see, for example, Ref. 118).

As the number N{a
3 of current carriers increases, ther-

modynamically stable complexes consisting of v electrons
(v>2) in a common fluctuon potential well15'23 and, for not
very large values o f N t , an equilibrium heterogeneous struc-
ture, containing small (~102-103A) metallic particles
(v£ 102 — 103) and having specific properties, appear.119'23

A heterogeneous equilibrium structure of a ferroelectric
crystal can appear near the point of a phase-transition.120

Such a structure can also exist in magnetic semiconduc-
tors.121-122

5. SELF-TRAPPED STATES IN AMORPHOUS SYSTEMS—
TWO-ELECTRON CENTERS WITH NEGATIVE CORRELATION
ENERGY

The specific features of electron states in a mobility gap
(not very close to the electron mobility threshold, see Sec. 4a)
in 3D amorphous, actually glassy semiconductors (GS) are
manifested in the coexistence of different properties, such as
the stabilization (pinning) of the electronic Fermi level £ near
the center of the gap and, on the other hand, the virtual
absence of paramagnetism, which within the framework of
the theory of one-electron trapped states are actually incom-
patible.96 In this connection, it was postulated in Ref. 68 that
states in the gap are two-electron states with total spin a = 0
and negative correlation energy U<0 with very large
| U | zzEg /2 ~ 1 eV (Eg is the gap width). In two very different
models such states were actually apparently associated with
anomalously weak intrinsic valence bonds of an "ideal"
(ideal, continuous, random network of atoms) covalent
glass68-123 or the ground state of pairs of oppositely charged
defects in the structure of the glass.96'124 Chalcogenide
glasses—the amorphous alloys a — A s j C i — g ,
a — Ge E Ci_ 5 with 0<c<l/2, etc. (C is the chalcogen
atom: S, Se, Te), in which the energy gap is small, Eg~2— 1
eV, are typical examples of GS, amorphous systems with
predominantly covalent bonds and low average coordina-
tion number z, 2<z < 3 (see Ref. 96).

a) Self-trapped states in the mobility gap. General relations

According to a recently developed theory,17'125'126 im-
portant electron states in the mobility gap in a GS are self-
trapped states of charge carriers ("excess" electrons, holes)
with anomalously large self-trapping energy | W \ of the order
of the atomic energy £Q=ff-/1m<fl2 (~1 eV); in addition,
self-trapping occurs primarily in the starting, ideal, contin-
uous, random network of atoms with the intrinsic structure
of such an amorphous system (i.e., it is not necessarily asso-
ciated with any defect in the structure, when such a defect
can be uniquely identified). Another feature of this self-trap-
ping is that the two-electron and/or two-hole singlet self-
trapped states with a negative correlation energy U< 0 with
anomalously large U ~e0 and with a charge (relative to the
center) e^ = + 2\e\, characterizing a pair of identical
charge carriers, are actually stable; the single-particle self-
trapped states can only be metastable. In the theory under
study such large values of | W \ and | U \ appear because of the
following factors.

In an amorphous system fluctuations of the "short-
range order" generate a finite concentration ca<l of
"atoms" (separate atoms and/or groups consisting of a large
number of atoms) in relatively easily movable, "soft" local
atomic configurations, on which the electron self-trapping
under study is realizable.17'126 The local potential of such an
"atom," along at least one of the modes of motion ( x ) , is
substantially anharmonic: large displacements of the
"atom" 8u^u — «<0)=a0(jc — x(0)) give rise to anomalously
small changes in the potential energy of the system.
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\V (x) | < A »

for

10 - 30 eV

In(5.1) F(jc<0))=0=x(0);3fa is the mass of the "atom"; a0 is a
typical atomic radius (a0~ 1 L);A and & (0) are the usual scales
of the atomic (elastic) binding energy and of the quasielastic
constants k in solids, excluding, apparently, molecular crys-
tals, etc. Such anharmonic atomic potentials with anoma-
lously small quasielastic constants &<£ <0) (large local suscep-
tibility of the "soft" configuration with respect to
deformation, ;^~/c ~l>(km)~l), called in this connection
critical, can in the general case be approximated for signifi-
cant x\ 5 1, by a unimodal potential of the type17-126

V (x) w A (r\x2 + tx3 + (5.2)

where \7)\^l,t2^landdV/dx = Owithx =x(0) = 0.Indeed,
according to Ref. 127, typical (i.e., most probable) critical
potentials are precisely unimodal. The obvious meaning of
the mode x and of the parameters of the fluctuations of
"short-range order" and asymmetry of the environment (rj,t)
(in this theory, in this sense microscopic) is determined by
the specific structure of the amorphous system. Thus it
could be that f]=(flc — fl)a0~3 or, in the simplest model
(Fig. 2a) 77=/"c — r with a one-dimensional displacement of
the "atom"; H is the volume per atom and R =a0r is the
distance between atoms ( — 1) and (1), while ftc and Rc are
their critical values, characteristic for the system.17-127 In the
(ir),t) plane the potential (5.2) has one or two wells with
T7^T7(0)=9f 2/32; in addition k^k(0) with 1771 < 1 and r)(w^ 1 *
(Fig. 2b).7) The existence of critical potentials is linked at
least to the fact that for very large fl>flc the atomic poten-
tials must not be single-well potentials (see Ref. 17). Since the
main parameter of the theory ca < 1, it is plausible to assume
that the form of the density distribution determining it
F(rj,t) = F(rj, — t)=N(ij)g(t \rj) corresponds to N(rj) and
g(t )=g(f |0) shown schematically in Fig. 3. In this case the
potentials (5.2) correspond to a small region of the rapidly
decreasing tail of N (17), while the usual single-well potentials
(k~ k(0)) for most of the atoms correspond to a peak with a
width A?7< 1 near 77 = 77~1 and F(r],t)~const for \ij\ $?7C

and \t Src and typical decay scales 77,. SO.l, tc 50.1.17

From this point of view, glasses are distinguished from
amorphous materials by the fact that in glasses ca is highest,
ca 5 0.1, making them in this sense systems with a large an-
harmonicity.17 This fact already determines the fundamen-

tal difference between glasses and the corresponding crys-
tals, which is manifested in the universal anomalies of the
heat capacity CT and other properties for T^a)0 (see Refs.
130-131). The latter are determined by specific low-energy
excitations with energy % <«D, corresponding in this theory
to excited states of anharmonic oscillators (5.2) (see Ref. 17).
They include two-level systems in double-well atomic poten-
tials (the tunneling states in the potentials with small asym-
metry, etc.) with almost uniform density of states
p(f)~const (with ^<w50.lo>D -10-30 K),17'127 whose
existence was previously postulated in Ref. 130 and which
determine the anomalies in the properties of glasses (CT <x T,
etc.) for very low TS IKXtu. Another branch of the excita-
tions of the system of oscillators (5.2) corresponds to atomic
quasilocal vibrations with characteristic energy

and a narrow band—a "peak"—and a state density pC&],
determined by the logarithmic singularity at if ~w (see
Refs. 17 and 132, and also Ref. 133). According to Refs. 17
and 132, such vibrational excitations can determine the
anomalies in the properties of glasses ("hump" in CT (T), pla-
teau in the thermal conductivity, etc.) at moderately low
temperatures T,5K 5 TS 20-30K.

The self-trapped state under study appears as a result of
the interaction of electrons, having a "bare" (in the absence
of deformation of the medium, at x = 0) one-electron
trapped state i/>g primarily of a small sizep? ~a and the term
E =Eq =£? (x = 0), with an "atom" in the starting critical
potential (5.2) in the region of localization of $q; in a three-
dimensional system Eq must not lie too close to the mobility
threshold, for example, at Eq 5 Efc<E*; see Sec. 4a. In oth-
er words, self-trapping is realized on a bare "soft" atomic
configuration primarily of a small size (s:a), and we shall
assume this in what follows. At the same time the electron-
atom interaction constant Qq ~Q0^Qq(a), as usual, is sig-
nificant, Q0~£0 (Q0~ 1-3 eV, etc.). With an n-fold (n = 1,2)
population of the term Eq this interaction can cause large
displacements of the "atom" (deformation of the medium)
x\ 5 1 and a strong lowering of the term, \8Eq(x}\^ Eq

— Eq\-> Q0. At the same time a self-trapped state with sig-
nificant equilibrium displacement xn and self-trapping ener-
gy Wn < 0 can appear. The total change in the energy of the
system is described by a relation of the form (see Refs. 17 and
126)

FIG. 2. Simplest model of an atomic subsystem with a critical potential:
single-well with 77 > 9t 2/32 (I) or double-well with 17 < 9t 2/32 (II).
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FIG. 3. Characteristic form of the density distributions N(tj) and
g(t) = g( — t) [two possible types of g(t)].

en = min en (x) = en (xn) = Wn (xn) (5.3)

with £„ (x) = V(x) + nSEq (x) + Uc (x)Sna = Wn (x)
+ Uc (x)8n<1; V(x) = W0(x). In (5.3) en (x) is the energy
functional of the system being minimized (analog of (2.13)
in Pekar's problem), Uc (x) is the energy of the effective
Hubbard interelectron repulsion and Wn (x) is the adiabatic
potential of the system. Here the adiabatic approximation is
indeed applicable for states i/>q in the gap, when the following
inequalities actually hold:

( o D < ^ 0 < ^ - (5-4)

The two-electron self-trapped state (n = 2) with charge e*_
= — 21 e is stable (ground state), as soon as the correlation

energy of the electron pair is negative8

U = e2 - 2et = W,, — + UK < 0, (5.5)

i.e., interelectron attraction occurs (at the same time, evi-
dently, there is a repulsion between the electron and the
hole).

As is evident from what follows, for typical C/c 5 0.3 eV
(see Ref. 73) and Q0 ̂  1-3 eV in semiconductors the inequa-
lity (5.5) is satisfied in GS, and in addition U is large,
| U | ~ EO ~ 1 eV.9> Such a strong interelectron attraction actu-
ally occurs due to the strong rearrangement of the "soft"
local configuration with the largest possible (for fixed
Qq ~Qo) values \x2\ =:xmax =max\x2\~l,\W2\zz Wmax

=max| W2\~C0 and |U\ =;f7max=max|U\~Q0. It is also
evident from what was said above that in GS a relationship
must exist between the manifestations of such self-trapped
states and the universal low-temperature anomalies in the
properties (Cr, etc.); some aspects of this relationship are
noted below.

For such large ffmax the interband interaction, i.e., and
mixing of the states ifip of the "foreign" band (valence band
for the electron) to the given state i/>q of the tail of its "own"
band becomes significant here, in contrast to the usual situa-
tion for polarons and fluctuons (see Sees. 2-4).17 The
change in the term Eq (x) and the state if>q (x) accompany-
ing deformation of the medium (x=0) is determined by the
Schrodinger equation usual in such a two-band system (see
Ref. 134)

{Eg (x) - [Eg + Jqq (x)}} qg (x) = A|j, (x) -2-p

Here Jqq (x) determines the displacement of the term in the
absence of other states, Jgg(x)\^Ql,xQ0,Iqp(0)
=Iqq (*)=/,, (0)=0; the transition matrix elements I^x]
between ifiq and the "foreign" states if>p describe the perturb-
ing interband interactions, \IW (x)\ 4Q0- The contribution of
the latter, as usual, is important only when Eq (x) approaches
the terms Eq, \Eq(x) — Eq 5 \Iqp(x}\. Perturbation theory
for close-lying levels, describing their repulsion, leads to the
resulting terms Eq (x) (and Ep (x}}, corresponding to "two-
band" states — superpositions of the form

) = cq(x}il>q + W with |C?p(;c)|2< 1 (seeRefs. 134
and 135). This general quantum phenomenon of repulsion of
interacting close-lying levels, which are displaced toward
one another as an external parameter x varies and could in-
tersect (Eq (x)=Ep (x) at x = x0), has been studied for many
systems, in particular, for molecular terms and for a discrete
term in the interband gap (see Refs. 1 36 and 137). The pheno-
menon is significant here, because in an amorphous system
with a significant probability the quantity

£p ft (£„)!/,„ (a:0)p,

(5.7)

determining the splitting of the terms in the case of their
repulsion, is finite (not exponentially small), as is the largest
part of the matrix elements 1^, (x) and A, (x), due to the
contribution of random fields.10' In (5.7) g0(E) is the one-
electron density of "bare" states of the two-band spectrum of
the system. Actually the energy splitting, characterizing the
repulsion of the Eq (x) term, is determined by the contribu-
tion of weakly localized (pp>a) states i[>p near the mobility
threshold of the "foreign" band £"|; their overlapping with
i/>q, like g0(Ep ) in the gap, is significant, while the terms
satisfy Ep (x) ^E J. (A quantitative theory of this effect in
an amorphous system, taking into account the appropriate
manifestation of the probability distribution of the random
fields and analytically describing the behavior of the term
Eq (x) in the region of the splitting, is still not available.)

b) Two-electron self-trapped states. Structural
rearrangements

The energy of the system En , containing n ( = 1,2) self-
trapped electrons, obtained by minimizing en (x) from (5.3),
is described by the expression

En = + Wn + £/c6n,2 + const; (5.8)

taking into account the effect (5.7) leads to an upper limit on
| Wn | and on the equilibrium displacement \xn \ [see (5.13)].
Here Wn = Wn (xn), and the expression for Wn (x) can be
represented in the form (5.2) with a renormalization of rj and
t:

!!-+ T|B = (T) + nqM) [1 + S^1 (x£ + 2xB)],

(5.6)

in addition, generally speaking, Wn (0) = Pn (rj,t) ^0 for
n = 1,2, with W0(0) = F(0) = 0. Here \q(J> \=A~l

\djJqq (x)/dxj \x = 0 ^QfA ~l < 1, and xn is the root
(which vanishes at « = 0) of the equation x3 + 3x2 +Anx
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+ pn=0; /ln
X(t + nqm) ~3. As a result, Wn (x) is the critical potential
also when n = 1 and 2 also (i.e., |i/n | < 1 and 12

n •< 1).
The self-trapped states studied have the following fea-

tures (in particular, compared with the small polarons and
bipolarons in crystals)17: (1) the self-trapped states are deter-
mined, generally speaking, by the nonlinear coupling of the
electron with the "critical" mode (x) of atomic displace-
ments(not with phonons, tunneling states, or other excita-
tions of the medium); (2) the spectrum

(5.10)

corresponds to almost harmonic atomic displacements with

while with \K <K* the quantities "saturate" taking on the
largest (with the given value of Q0) moduli, corresponding to
anharmonic displacements, which can be significant when

W =
i/(AH),
V 2

= -max|WB|«W«(X*),

= 2/70 /-^l"3
— ^<vo (, ^ J ,

U = t/(AD = _ max , v | = _
(5.11)

Such "saturation" is characteristic for self- trapping accom-
panying a nonlinear response of the medium (compare Sec.
4b).

The general combined criteria for the stability of the
two-electron state (as the ground state, when U< 0) have the
form17-18'134:

2£/0<eg(C0), |AT|<A-**:

for |, t), (5.12)

where K = A (ij - 3t 2/8) for example, fe \t\\K . For GS,
with typical values Uc S 0.3 eV, Q0~ 1-3 eV, A ~ 10-30 eV,
the criteria (5.12) are, of course, satisfied (in the correspond-
ing region of the (77, t} plane). Moreover, for values of E%

which are typical for GS, 2 eV £ E% > 1 eV, and g0, most
likely, Eg(Q0) ZEg.In this case, the effect (5.7) is significant;
it determines the characteristic (largest for given Q0) value of
the self-trapping energy WmM, so that in the theory under
study, for U<0, the relation17

W2 I ~ E .e. ~£g (5.13)

(up to terms 5 0.1 Eg), characteristic for GS with Wmax /
2~C/max > Uc [the effect (5.7) is not significant and
Eg > Wmax ^2(7max when Eg > £g(Q0), as most likely hap-
pens in oxide and other glasses of the type a-SiO2 with
Eg sS-10 eV > Q0~ 1-3 eV] must hold. The relation (5.13)
characterizes self-trapping in the intrinsic structure of the
glass, since Et is an important parameter of the glass.11'

The stable self-trapped pair states correspond to the
ground state of the system, and a significant fraction of them
(~ 1) has large binding energies of the order of the atomic
energy e0, £/max<£'g/2. These self-trapped pair states, de-
scribed by the formulas (5.8)-(5.13), are singlet states; the
orbital states of both electrons in the pair are the same,
*u (1.2) = if>q(lW,(2){<p T(lfe4(2) - <p T (2fo>i ( l ) ) (analogous
to a Cooper pair75 and a weak covalent bond—an electron
pair with U<0 in the mobility gap in the model68). The cor-
responding correlation effect (with given Q0, Uc, and A ) is
characterized by the largest gain in energy | W2(U)| sr Wmax

<£"g (this occurs in GS as a result of the fact that ffmax

> 2UC and that the "bare" term localized in the given small
region is most likely orbitally nondegenerate). In this case,
the triplet self-trapped pair states correspond to excitations
with a large creation energy per particle eex ^ f/max /2.

In this connection, we note one of the most important
features of the system under study. Generally speaking,
high-energy (eex £ t/max /2) excited states of self-trapped
pairs in a gap are metastable, with lifetimes T > &>D \ in the
sense that they substantially include significant metastable
structural changes (large atomic displacements, A* 5 1, in
the critical potential) compared with the configuration of the
ground state, which is unstable in the presence of such exci-
tations. Such structural changes are realized when the local
relaxation corresponds to the appearance of the appropriate
barriers of the adiabatic potential, separating the configura-
tion of the ground and excited states (see below; compare the
model in Ref. 68). Thus the form of the adiabatic potential
Wn (x) can change substantially, while remaining critical (see
(5.9)), together with the number vn of potential wells and the
potential can acquire or lose the barrier as a result of a
change in the number of electrons n ( = 2,1,0), depending on
the value and sign of q(1](j = 1,2,3), in other words, on the
type of electron orbital if>(^—nonbinding, antibinding, etc.
(or ^'—binding, nonbinding, etc., for holes), i.e., on the
type of "bare" local chemical bond. For example, the single-
well potential Wn = 2 (x) can transform into a double-well po-
tential Wn = 0 (x) = V(x] [see (5.2)] accompanying the remo-
val of an electron pair, with the possible appearance of
tunneling states (with a seemingly stretched bond) as soon as
in (5.9) ?72 is large enough, (9/32)? \ < r/2 < 1 for rj < 9t 2/32.

c) Basic effects of self-trapped electron pairs

For the main self-trapped pairs in the intrinsic structure
of the glass—electron (a = 1) and hole (a = 2)—in the
mobility gap the density of states g2(£2/2) = ~La= !>2g2

a)

(E2/2) (per carrier), formally defined in Refs. 17 and 134
by a convolution of the density distributions g(

0
a) {(!/

2)(E2+ ( - )a(Wf} (rj,t) + U^]} with/-(if.*), can be
approximated by a structure consisting of two almost flat
bands with widths SEg/2 (and, generally speaking, two
possible narrower "peaks") with largeg2(E2/2) 5 1020/cm3

eV and a power-law drop-off to the region of overlapping
around the Fermi level (per particle) f. Actually, a redis-
tribution of charge occurs with charge flowing from the
band created in the gap by the valence band over into an-
other band, arising from the conduction band, with the for-
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mation of real electron (2e)0 (and hole) pairs in the ground
state of the system below and above £, respectively; for such
real pairs a high concentration c2S 10~3 — 10~2 and effec-
tive "peaks" in the density of states of large magnitude
5 1019-1020cm3 eV and widths ~w0<Eg/4 are characteris-
tic; w0 is the scale of the drop-off in g0(E). (This is what was
contemplated in Refs. 17 and 134). This behavior of g2(E2/
2) on the whole determines, together with the characteristic
(for GS), "symmetry" of the electron and hole self-trapped
pairs (U ̂  ~ U ̂ ), the electron structure of the mobility
gap with almost symmetrical "peaks" in the density of states
of real singlet pairs and the stabilization off by these states
around the center of the gap,17

£-£:^*-E«4- (5.H)
At the same time the concentration cl of single-particle
charge carriers ("excess" electrons, holes), corresponding to
singly filled states with U> 0, is very low, cl •< c2. In practice
such systems (GS) are diamagnetic and are transparent to
light with fuo < Eg, since the spectrum of single-particle ex-
citations (lex, for example , (le)ex) has two gaps: a thermal
gap with width fth ~Eg /2, determining the corresponding
conduction activation energy, and an optical gap eopt ~Eg

for thermal and Franck-Condon decay of self-trapped pairs,
respectively. The spectrum of two-particle excitations (2ex,
for example, (2e)ex) does not have gaps (as in the BCS mod-
el75 and in the model of the electron spectrum of GS in Ref.
68). It is possible to separate in it, at least, excitations with
high (£<2> Z C/max/2) and low (£<2) < Um/2) energies; the lat-
ter could contribute to the anomalies in the heat capacity
and other properties of GS for T^ IK (see, however, Refs. 17
and 68 and Sec. 6).

The high-energy two-particle and single-particle exci-
tations, including metastable structural changes (see above)
and characterized by wide, not necessarily monotonic, spec-
tra of lifetimes T, play, from this point of view, the role of
intrinsic metastable centers of nonequilibrium (photoin-
duced, etc.) phenomena,17'134 such as luminescence ((2ex),
with an adiabatic potential of the type illustrated by curves
(0) and (1) in Figs, la and b, nonradiative processes—recom-
bination (( l e x) etc.) and capture of current carriers (lex, 2ex,
and, for example, (2e)0), and long-lived structural changes
(with adiabatic potentials, similar to curves (0) and (1) in
Figs. Ic and d).

For amorphous systems, for which (5.13) holds, in the
theory under study the following relations have been ob-
tained17:

~ eopt ~ ~ 2gth ~ ^ £x (L) ~ Eg, (5.14)

and, in addition, Ex(L)$Eg,2Wa ~£x (PC)~£g ; these rela-
tions have indeed been found experimentally for GS. In
(5.14) Eopt and Wa are the width of the main optical gap and
the conduction activation energy (taking into account the
decay of the self-trapped pairs and generation of ordinary
electron-hole pairs), ejpt and EL are the characteristic ener-
gies of the weak photoinduced absorption and luminescence,
and Ex (L ) and Ex (PC) are the threshold energies for excita-
tion of luminescence and photoconductivity (for oxide and

similar glasses with Eg > {Q0, WmM }, the relations (5.14),
generally speaking, do not hold and the role of self-trapped
pairs is much less significant than in GS). Several new elec-
tron effects and their correlation with the low-temperature
anomalies in the properties of the glasses, determined by the
existence of a common factor—the critical atomic poten-
tials, can be interpreted and predicted within the framework
of this theory. They include (see Refs. 17, 134, and 138-142)
the following effects observed in GS: narrowing of the opti-
cal gap accompanying photostructural changes, as a result
of new electron transitions with lower energy ( < E g ) ; enor-
mous Stokes shift (zzEg/2); long-time relaxations of elec-
tron distributions, manifested, in particular, in the photo-
conductivity; "fatigue" (attenuation) of luminescence in the
case of continuous prolonged illumination, due to compet-
ing nonradiative processes involved in structural changes;
and, an anomalous dependence of the parameter of the lumi-
nescence intensity on T, 7L (T)ocexp ( — T/TA) with
7\ xwzz 10-30 K for TA ^ T<a>D/2. It can also be expect-
ed that d I^/dT^O for T < w and that a contribution can
occur to the Urbach absorption tail—with adiabatic poten-
tials of the type illustrated by curves (0) and (1) in Fig. Id, in
accordance with the models in Refs. 143 and 144. Here it
should also be expected17-34 that the anomalies in the proper-
ties of GS (at temperatures T^ IK) should be attenuated (or
amplified) in the case of photoexcitation of self-trapped pairs
(compare the experimental results in Ref. 145), and also the
effects of self-trapped pairs and anomalies in the properties
should be suppressed in GS and a-Si:H or amplified in a-Si,
respectively, when the density of the material increases or
decreases (compare the experiment in Ref. 146).

6. CONCLUSIONS

The review presented here indicates that the pheno-
menon of self-trapping of electrons and holes is quite general
and important, at least, in nonmetallic (especially amor-
phous) solids (and in some liquids, see Refs. 147 and 148).
This phenomenon determines many types of real current
carriers and is linked to the electron-induced metastable
states and instabilities of atomic configurations, including
those which destroy the symmetry and lead to the formation
of defects (structural changes).12'

There are a number of important problems in the theory
of self-trapped electron and hole states. These concern, in
particular, the characteristic features of Anderson trapping
and Mott conductivity, the role of multielectron effects and
nonlinear couplings between the electrons and the medium,
the structure of the excited states of electron self-trapped
pairs, and self-trapping in metals. It is of interest to analyze
further the problems involving the general correlation
between the excitation of self-trapped electron and hole pairs
and restructuring of the chemical bonds (in accordance with
the idea of commonality between the covalent bond and the
self-trapped electron pairs68) and the role of self-trapped
pairs in the anomalies in the properties of GS at low tempera-
tures Tund low co (see Ref. 149).

One can hope that the investigations of these and other
problems in the theory of self-trapped states, confronted
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with experimental studies of kinetic, optical, and other ef-
fects induced by light and other forms of radiation, will lead
to new results in the physics of semiconductors and ionic
crystals (and, possibly, narrow-band metals).13'

The author had the invaluable opportunity to discuss a
number of problems in the theory of self-trapping with I. M.
Lifshitz. These discussions stimulated the writing of this re-
view. The author also thanks Yu. M. Kagan, M. I. Kaganov,
M. A. Krivoglaz, L. P. Pitaevskii, and V. Ya. Frenkel' for
very useful discussions.

"The following discussion of self-trapped electron states under the corre-
sponding equivalent conditions is equally applicable to self-trapped hole
states and in some respects to self-trapped states of other quasiparticles
(excitons, etc.).

2)Important specific aspects of the theory of self-trapped excitons (struc-
ture of the spectrum, coexistence of free and self-trapped excitons, etc.)
are in many respects different; together with the general aspects of the
theory of self-trapped states in crystals, they are studied in an excellent
review22 and are not discussed here.

3)The notation ft = 1 is mainly used here and below.
4lThe finite mobility of a small bipolaron in a crystal is determined by the

small effective tunneling amplitude, which for low-temperature coher-
ent transport is characterized by the quantity ~ A21 £71 ~] < A with A < U
[see (2.28)]; see Refs. 72 and 150 as well as Ref. 71. The possibility of
such bipolar transport within the framework of the phenomenological
Hubbard Hamiltonian with a negative correlation energy £/<0 was
pointed out previously in Ref. 151. In Ref. 151 and even earlier in Ref.
152a (see also Ref. 152b) it was concluded that charge ordering of elec-
tron pairs with U< 0 trapped on lattice sites is possible in crystals (see
also Refs. 70-72). A theory of superconductivity in narrow-band super-
conductors, which is determined by the condensate of small bipolarons
and is similar to the superconductivity in a system with spatially nono-
verlapping electron "quasimolecules" studied a long time ago,155 was
developed inanumber of recent works (see Refs. 72a, 150,153,154).We
also note that for sufficiently strong electron-phonon coupling a system
of many small polarons is capable of passing into a dielectric state (see
Refs. 72, 150-154).

"ForZ)< A0\Sa and TN4\A0\Sa such a self-trapped state does not appear
either at T= O,27-81 or at finite T.i2

6lThis effect was not previously taken into account and does not occur in
ferro or paramagnetic materials, in which the change in the mobility due
to the presence of the magnetic structure is determined only by the weak-
ly r-dependent average equilibrium value (cos2 (#0/2) >, where 60 is the
angle between the electron spin and the spin of the magnetic atoms (see,
for example, Ref. 21).

7)The formula (5.2) is similar to the expression for the thermodynamic
potential in Landau's theory of critical phenomena.128 The relationship
between the breakdown of long-range order in the crystal and the in-
crease in the volume (with T= const) and the appearance of non-single-
well (double-well, etc.) atomic potentials in it was pointed out by Fren-
kel' in a discussion of the nature of melting.129

8)In what follows, the discussion of electron self-trapped states is also
applicable, with obvious modifications, to self-trapped hole states (for
the latter, evidently, U=2ei—£2).

''Generally speaking, within the framework of the theory of mobility-gap
states studied here it is possible to obtain in an analogous manner the
main characteristics and relations for electron (hole) pairs whose charge
\e^ { differs from that studied above e^. =2\e , corresponding to self-
trapping on a neutral (with charge q* = 0),bare, "soft" atomic configu-
ration of an ideal glass (see Refs. 17 and 126). Thus, if it is assumed that
q* = 2 e\ ("depleted covalent bond") or q* = — \e ("charged broken
bond"), then the self-trapped pair of electrons or holes can correspond to
e*_ = 0 (possibly, an intrinsic weak covalent bond; compare Ref. 68) or
q*+ = \e\ (possibly, a center, similar to the defect 0+ in the Street-Mott-
Kastner-Adler-Fritsche model; see Ref. 96). The experimental data ap-
parently play a decisive role in the determination of the type of dominat-
ing self-trapped pairs and their charge (see below).

10)For a discrete term Eq of a defect in a crystal, evidently, it can happen
that Iqp (x) =0 with an appropriate symmetry of the states i/>9 and
band if>p.

'"The relation (5.13) and the relations (5.14) and (5.15) following from
it, which adequately describe the experimental data for OS, are obtained

in an obvious manner in the theory under study for self-trapped states of
pairs of the same types of charge carriers—both "excess" electrons and
holes with charge e* = :p 2\e\ (in the starting, ideal, continuous, ran-
dom, network of atoms; see above). In this connection it may be as-
sumed that such self-trapped states are significant, if not determining,
for the mobility gap in GS; see footnote 9) (the concentration of self-
trapped pairs with charge :p \e\, c, from the point of view studied here,
is relatively low, since the concentration of broken bonds c .̂ <ca

 l7).
12>The relationship between self-trapping of charge carriers (and exci-

tons) and appearance of instabilities of atomic configurations which
lead to the creation and transformation of structural defects of solids,
was recently discussed in Refs. 22, 42b, 43, 44, 156, and 157 for dielec-
trics, in Refs. 141,157, and 158 for crystalline semiconductors, and (see
Sec. 5c above) in Refs. 134, 141, and 157 for glassy semiconductors.

13)New papers appeared after this paper was submitted for publication.
The conditions for the existence of small bipolarons in crystals are ana-
lyzed in a recent work159 within the framework of a theory of polarons
based on the use of scale transformations [ see (2.21) ] ,5'25'22 A similar
analysis is given for disordered systems in Ref. 160, which generalizes
Ref. 101.

The superconducting properties of systems whose ground state is a
Bose condensate of small strongly-coupled bipolarons ( |£/ |>A, f/<0)
were studied in a recently published paper.161 It was shown that the
magnetic and critical properties of such a model differ radically from
those of the usual superconductors described by the BCS model. The
possibilities of the realization of a bipolaron model of superconductivity
are discussed (see Refs. 71, 72 and the remarks in footnote41).

A series of papers continuing the experimental and theoretical study
ofthepropertiesofthealloys/>6,_c — Snc — Te(ln) (see Sees. 3b and
c), in which electron self-trapping and metastable electron states (see
Ref. 37 and the references cited therein) play an important role, also
appeared recently.
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