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The growth of a magnetic field in a given random flow of a well-conducting liquid is considered.
The known Lagrange solution for the transport of a frozen-in magnetic field is utilized. Magnetic
diffusion is taken into account by averaging the result of this transport over a set of random
trajectories. This permits a derivation of the equations for the mean magnetic field and its mo-
ments, as well as an investigation of the true (random) magnetic field. The field and its moments
increase exponentially in the limit of large magnetic Reynolds numbers, and the field distribution
becomes intermittent. The analysis is devoted mainly to streams that are restored after a definite
time interval, but stationary flows with stochastic properties are also discussed.
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1. INTRODUCTION

The idea of a hydromagnetic dynamo, advanced by Lar-
mor,' stemmed from attempts to understand the nature of
the earth's and sun's magnetism. Its gist is that motions of a
conducting liquid enhance an initially weak magnetic field
in the absence of external electromotive forces.

The dynamo idea met first with skepticism. First, consi-
deration of symmetric situations (the usual simplification
device) led to negative results. It turned out that neither
spherically symmetric nor planar flows produce growing
magnetic field.2'3 Second, it was found that in a well-con-
ducting medium, when the role of motion is particularly sig-
nificant, the magnetic field is frozen into the medium and no
increase in the number of magnetic lines is possible.4

Later, however, individual counter examples were de-
vised, which demonstrated that neither of the two objections
are general in character. Herzenberg5 was the first to obtain
an undamped solution for flows concentrated on two
spheres. Dynamos for axisymmetric flow on cylindrical sur-
faces were constructed in Refs. 6 and 7. (The known Cowling

theorem,4 that a dynamo for axisymmetric solution is impos-
sible, means only that a growing magnetic field has no axial
symmetry.) There are well known examples that generalize
these solutions to the case of several rotors8'9 and toroidal
vortices.10''' Braginskii12 constructed a theory for a dynamo
based on small deviations from cylindrical symmetry. For a
development of this theory see Refs. 13 and 14.

The answer to the second objection to the dynamo con-
cept, concerning the possibility of multiplication of magnet-
ic force lines in a medium with high conductivity, was first
given by Alfven.15 Figure 1, taken from this paper, shows
clearly how this can happen. The initial magnetic-field loop
is stretched to double its size. Two oppositely directed sec-
tions of the field are then pinched together and the initial
loop is split into two by the action of the molecular magnetic
diffusivity vm. After superimposing the two loops obtained,
say by a simple shift, we obtain a doubled loop with a diame-
ter equal to the initial one and with double the initial flux
through its cross section. Of course, magnetic diffusivity
plays the principal role in this mechanism. The characteris-
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FIG. 1. Magnetic-line multiplication method proposed by Alfven. The
division of the loop into two (the transition from b to c) is due to the action
of magnetic diffusivity.

tic loop separation time is of the order of (A L )2/vm, where
A L is the range of approach of the oppositely directed field
sections. Clearly, in the limit as vm-*0 (at A L determined
only by the flow and thus independent of vm) the effective-
ness of the process tends to zero.

At the 1971 symposium on liquid dynamics in Krakow,
Ya. B. Zel'dovich disclosed another perspicuous mechanism
(first published in Ref. 16) of amplifying a magnetic field
(Fig. 2). While somewhat similar to Alfven's mechanism, it is
qualitatively different in character. The similarity lies in the
first step — doubling the length of the loop. The twisting into
a figure-of-eight and the subsequent combination constitutes
qualitatively a three-dimensional operation that leads to
doubling of the magnetic flux — this is fundamentally a new
aspect. The rate of field increase in no longer dependent on
magnetic diffusivity: H = H0-2", where n is the number of
doubling-up operations.

In the limit of small vm, the first mechanism (Fig. 1) can
be naturally called a slow dynamo, and the second (Fig. 2) a
fast one. We note that in the second mechanism the magnetic
diffusivity should play a role in the formation of the spatial
form (in the topology-changing loop breaking) but not in the
field growth rate. The concepts of slow and fast dynamo

FIG. 2. Ya. B. Zel'dovich's figure-of-eight — the fast-dynamo mecha-
nism. The magnetic-flux growth rate is independent of magnetic diffusi-
vity.

were formulated in Ref. 17, although the effectiveness of a
dynamo such as in Fig. 2 was noted back in Ref. 16. An
exponentially growing solution in a specified conducting
flow is called a fast dynamo if the field growth rate y does not
decrease as vm—^O,1' and slow if y—*0 as vm—»-0. It became
subsequently clear that solutions of one more intermediate
type are possible, whereby the growth rate of an individual
mode of the field is positive only in a finite range of variation
of vm and becomes negative as vm —>-0.

A concrete solution of this type was constructed for a
periodic three-dimensional flow.18 The distinguishing fea-
ture of this flow is that besides the "laminar" sections it
contains regions, each of which is filled everywhere densely
(stochastically) by an individual stream line.

The solutions noted above, of the type given in Refs. 5-
11, belong to the slow-dynamo class. Their common feature
is they represent stationary v = v(x) flows over surfaces (of
spheres, a cylinder, a torus, etc.). Solutions of this type are
possible also for periodic velocity fields (vx,vy,vz) that de-
pend on two coordinates.19 Incidentally, such flows are to-
pologically equivalent to flows over surfaces.

A rapid dynamo is realized by a nonstationary velocity
field v(/, x). This can be intuitively perceived with the figure-
of-eight (Fig. 2) as the example, although the question of the
feasibility of a fast dynamo in a stationary flow is still moot.
We emphasize that a nonstationary flow can produce also a
slow dynamo. This is Backus's known example21 with the
velocity field turned off, inasmuch as the duration of inter-
vals with v = 0 is determined in it by the magnetic diffusivity
vm (all but the first harmonic should attenuate).

A fast dynamo is naturally realized by random turbu-
lent velocity fields that are usually observed in nature. It is
customary to consider velocity fields with stationary statisti-
cal characteristics. In such flows it is possible to simplify the
dynamo problem considerably. This was first illustrated by
Parker22 as well as in the well-known papers of Steinbeck,
Krause, Radler and their followers (see, e.g., Ref. 23 and 24)
with the dynamo problem for the average magnetic field in a
reflectionally-asymmetric turbulent flow, and by Kazant-
sev25 with the problem of generation of the second moment
(correlation function) in a reflectionally-symmetric short-
correlated flow. According to contemporary notions both
are examples of a fast dynamo. In a fast dynamo the field
growth rate does not depend on the magnetic diffusivity in
the limit as vm —*0, so that one can start out with the explicit
Lagrangian solution of the induction equation. The Lagran-
gian approach to the description of large-scale magnetic
fields was developed by Kraichnan26 and applied in Refs. 27
and 28 to the problem of a turbulent dynamo in a reflection-
ally-invariant medium. The main problem in this approach
is the next step — correct allowance for the small magnetic
diffusivity. A naive approach consisting of adding a custom-
ary diffusivity term [such as vm A(H)] to the equations for the
average field or of the second moment, is not justified a priori
and is generally speaking incorrect if for no other reason
than that in the general case these equations are integral,
despite the fact that the initial induction equation is differen-
tial (cf. Ref. 28). A consistent account for the magnetic in-
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duction within the framework of the Lagrangian approach
can be given by considering not one Lagrangian trajectory
but a bundle of random Wiener trajectories, followed by
averaging over them, as is done in the theory of Brownian
motion.38'46 This approach to the problem of a kinematic
dynamo in random flow was developed by us recently and is
the main content of the present review. It includes naturally,
with some generalization, results concerning the average-
field and the mean-square dynamo. The important fact is
that conclusions can be drawn concerning the behavior of all
the moments and of the true magnetic field in random flow.
It became clear that in the limit of low magnetic diifusivity
the growth rate increases with increasing number of the mo-
ment. Therefore a study of the second moment (see, e.g.,
Refs. 27 and 28) was not enough to solve the problem posed
by Batchelor,29 that of generation of small-scale magnetic
fields.

The structure of the magnetic field generated in a ran-
dom stream is intermittent in the limit of small vm, i.e., the
field distribution has high and widely spaced peaks. This is
proved formally by the aforementioned behavior of the
growth rates of the field moments. Intermittency was first
observed in numerical experiments for two-dimensional
MHD turbulence30-31 and in direct integration of the three-
dimensional simultaneous induction and Navier-Stokes
equations for an incompressible conducting fluid driven by a
random short-correlated Gaussian force.32 Altogether, a
computer experiment is of great importance for the theory of
the hydromagnetic dynamo. It touches upon practically all
the applications of this theory to cosmic magnetic fields. We
shall not dwell in the present review on applications, which
are the subject of a recent monograph by Zel'dovich et a/.20

(see also the earlier monographs by Moffatt,23 Parker,33 and
Krause and Radler24). We note only new work on magnetic-
field generation, performed mainly via successful computer
experiments.

Ivanova and Ruzmaikin34 studied the excitation condi-
tions and found the oscillation periods of a three-dimension-
al mean magnetic field as applied to large-scale solar fields,
the three-dimensionality of which manifests itself in a num-
ber of observable phenomena (sector structure, coronal
holes, etc.). Numerical investigations of the behavior of the
correlation function of a field in an isotropic mirror-sym-
metric random stream are reported in Refs. 35 and 36. We
note also computer experiments on the behavior of magnetic
fields in stationary periodic (nonrandom) flows,18'27 using
the maximum capabilities of modern computers.

Another useful approach, besides computer methods,
in applications of dynamo theory is the use of asymptotic
methods of solving moment equations (see Sec. 5).

Speaking of applications, it must be emphasized that
the hydrodynamic dynamo is not the only mechanism of
magnetic-field generation under cosmic (and all the more so
under laboratory) conditions. Under certain conditions, for
example in peculiar A-stars and neutron stars, the principal
role may be played by thermal e.m.f.'s.39'42 On the role of
thermal e.m.f.'s and other mechanisms in the generation of
magnetic fields under laboratory conditions see, e.g., Ref.

43. Under consideration are also magnetic-field-generation
mechanisms that combine the actions of hydrodynamic mo-
tions and external electromotive forces.44

2. GENERAL SOLUTION OF THE CAUCHY PROBLEM FOR
THE INDUCTION EQUATION

a) Freezing-in. The most popular concept in magneto-
hydrodynamics of a highly conducting fluid is freezing-in. In
one sense it means, as in Kelvin's known hydrodynamic
theorem, conservation of the magnetic flux through any con-
tour that moves together with an ideally conducting fluid. In
another sense it is said that the magnetic field is deformed in
the same way as a linear element that joins two infinitesimal -
ly close particles of the fluid.

One other aspect of the freezing-in concept is of impor-
tance to us. The induction equation in an ideally conducting
incompressible fluid

^T = ff*V*i>,, TT=^- + ^Vft (i, &=1, 2, 3) (2.1)

is equivalent to field transport along the Lagrangian trajec-
tory of a liquid particle. In fact, we shall solve this equation
by successive approximations.33 Let g = *(t = 0) be the ini-
tial position of the fluid particle. After a time A / we have
then

At

Repetition of this procedure leads to the equation

dx, (|, 2Ai) dxm (g, At)
• • • dxm (I, At) ' d\,

(2.2,

Thus, to determine the magnetic field under freezing-in con-
ditions it suffices to know only the trajectory

i
Xi (I, t) = li -\- J vt (x, s) ds, (2.3)

which is determined completely by specifying the velocity
field. We have written the trajectory in the form x = x(£,r). It
can be written in inverted form:

=i = xi — \ Vi (E, t — s) dS.
0

(2.4)

To obtain this equation it suffices to carry out the procedure
of deriving (2.2) backward in time.

b) Multiplicative integral. From the second line of Eq.
(2.2) we see that the transport of the magnetic field along the
trajectory in a finite time interval can be represented as the
product of transports over innnitesimally small segments of
the trajectory. In the limit as A t—»0 we obtain an infinite
product or, in mathematical language, a multiplicative inte-
gral (see, e.g., Ref. 45 concerning this concept)
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dvi (#, s)
= -£7. <2-5)

which shows explicitly how the transport (Green's) function
is connected with the velocity field; here

Ht (x, t) = GtjHj (1). (2.6)

For greater clarity, we write down the differential equa-
tion obtained for Ga by substituting (2.6) into (2.1):

dGft ,-, ,, t i di>$ ((— s,
-gf =-^(*.*,x,S.) ^~ (2.7)

The solution of this equation can be formally written in the
form of a matrix exponential equivalent to the multiplicative
integral (2.5).

c) Wiener trajectories. The Lagrangian solution ob-
tained in subsection (a) is remarkable in that it can be gener-
alized to include the case when magnetic diffusivity takes
part in the transport of the magnetic field, i.e., when the field
satisfies the complete induction equation

d#; (2.8)

It is known from the theory of Brownian motion that the
diffusion process can be described as the average of the mo-
tion over a bundle of random trajectories (see, e.g., Refs. 38
and 46). The coordinates w, of a random trajectory are at
each instant of time Gaussian random quantities with a
mean square deviation proportional to /1/2 (under the condi-
tion w,_0

 = 0) an<i with independent increments in time.
Therefore the random trajectories that generalize (2.4) can
be defined by the equation

(2.9)

where w, is a random (Wiener) process having the properties

Mwt = 0, M = 8tit. (2.10)

The symbol M denotes averaging over the w, distribution.
Equation (2.9) describes an aggregate of random trajectories
that arrive at the point x under consideration by the instant
of time t (Fig. 3 ) . We emphasize that the initial coordinate g, ,
in contrast to x, is a random quantity. Therefore (2.9) does
not admit of an inversion x = x(£,f ) similar to (2.3). More-
over, the trajectory (2.9) is not differentiable, inasmuch as
A I" as t— *Q is proportional not to A t but to VA t. It is said
that the random trajectory has a derivative of order J.

The transport of the magnetic field along one random
trajectory is equivalent to the solution (2.6) of Eq. (2.1) with-
out the Laplacian. The true solution is obtained by averaging
over all the random trajectories that arrive at a given point x
at the instant t:

Hi (x, t) = MxGij (t, lt, xXtfo/d,). (2.11)

In the mathematical sense the symbol M* means integrating

FIG. 3. In an ideally conducting medium, the field is transported along a
Lagrangian trajectory (dashed line). Allowance for magnetic diffusivity is
equivalent to consideration of a set of random trajectories that reach the
point x at the instant t (one of them is shown by the sinuous line) followed
by averaging the result of the transport over all the trajectories.

over a Wiener measure, in which the integration is with re-
spect to w, and the trajectories converge to the point x. This
general solution of the Cauchy problem for the induction
equation (2.8) is verified by substitution in the equation and
by using (2.7) and (2.10).

To demonstrate more clearly that such a pseudo-La-
grangian solution satisfies an equation with a Laplacian, it is
convenient to digress from the vector properties of the field
and consider the heat-conduction equation in a moving me-
dium:

-^-4-(vV) r = xAT. (2.12)

The general solution of this scalar equation has the simple
form:

T(x, t) = (2.13)

We shall show that (2. 1 3) is indeed the solution of (2. 1 2). The
temperature at the instant / + A /, by virtue of the indepen-
dence of the increments of the Wiener process, is expressed
in terms of the temperature at the instant t by the same equa-
tion:

(2.14)

To retain the terms of order A / we had, by virtue of (2. 10) to
take into account the terms with the second derivatives in
the Taylor expansion of the right-hand side of the solution. It
is here that account is taken of the properties of the random
trajectory which is not differentiable, but has only a deriva-
tive of degree \. It suffices now to use the fact that
(£A — x)i = y, A t + T]2%w&ti, and the properties of (2.10),
and to take the limit as t— *0. A contribution in first order in t
is made to the second term of the expansion (2.14) only by
y, A t, and to the third term only by the terms
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Thus, the considered method of describing magnetic
diffusivity is mathematically corroborated; for details see
Refs. 38 and 46. It is similar to the known Feynman path-
integral method in quantum mechanics. Its advantage and
convenience when applied to the problem of the hydromag-
netic dynamo lie in the use of an explicit Lagrangian solution
of the induction equation. It remains to average this solution
over an aggregate of random trajectories with a known sta-
tistical weight. Of course, in the general case path integra-
tion is also a complicated task. However, in the case of small
vm, which is of greatest interest and closest to the Lagran-
gian approach, and when deriving the moment equations,
this method yields results that are difficult to obtain (at least
technically) by other methods.

It is appropriate to note that a random trajectory (un-
like a Lagrangian one) and transport of a field along it are a
fiction. Of physical meaning is the field averaged over the
entire aggregate of trajectories. The averaging makes the sit-
uation non-invariant to time reversal, as should be the case
when diffusion is taken into account.

3. PRELUDE TO DYNAMO. LINEAR VELOCITY FIELD

A conducting-fluid stream moving at constant velocity
cannot alter a magnetic field, by virtue of the Galilean in var-
iance of magnetohydrodynamics. The simplest velocity field
in which the kinetic energy can be converted into magnetic is
a linear field y, = cikxk, where /, k = 1,2,3 and cik(?) is a
coordinate-independent tensor. Such a velocity distribution
is well known in cosmology as Hubble's law, which con-
serves homogeneity in the sense that an observer moving
with the matter sees at any point an identical picture of the
departure (or approach) of surrounding particles.47

A linear velocity field is usually understood as a local
approximation to a smooth general-type velocity field. It is
used in hydrodynamics in this sense to describe small-scale
turbulence.48"50 This approximation seems even more at-
tractive in the kinematic-dynamo problem,51"53 since a mag-
netic field, unlike a vortex, is not connected by a definite
relation with the velocity. Consideration of magnetic-field
transport in a linear velocity field is useful in many respects.
First, this problem admits of an exact solution for a matrix
cik (t} of general form, particularly a random one.54 The re-
sults are obtained for the true (and not averaged) magnetic
field. It is easy to track the application of the concepts of the
multiplicative integral and of the product of a large number
of independent random matrices. Second, the result turns
out to be instructive from the physical viewpoint. Any mag-
netic field that decreases rapidly enough at infinity atten-
uates exponentially, and its magnetic energy increases ex-
ponentially because of the very rapid growth of the size of the
field-occupied region. (A similar effect was first indicated in
hydrodynamics by Pearson55.) This is evidence that the local
approximation cannot give the final answer to the question
of enhancement of a magnetic field as (—>• oo. It is necessary
in principle to know the form of the velocity field at large
scales.

We present below a qualitative analysis of the behavior

of a magnetic field in a linear velocity field. See Ref. 54 for a
more general and rigorous treatment.

The infinitesimally small vector &e, that connects two
close liquid particles obeys in a linear field the equation

»A;, t3-1)dt -<""-"•

Assume for simplicity that the matrix cik is constant and
diagonal, with elements ct > c2 > c3 =£ 0, and the liquid is in-
compressible, div v = 0, i.e.,

c, !- c, r c, = 0. (3.2)

Clearly, at least one of these three constants is positive, so
that the corresponding component of the vector &c,- grows
exponentially. Under freezing-in conditions the correspond-
ing magnetic-field component initially oriented along the
vector 8Xj will grow similarly. It turns out, however, that
allowance for even arbitrarily small but finite diffusion leads
to the opposite result. A field that decreases rapidly enough
at infinity (but more slowly than |x ~3) attenuates as /—>oo .2)

It is convenient to carry out the analysis in Fourier
space. A distinction must then be made between two clk ma-
trices:

a] cl > 0, 0 > c2 > c3 (stretching into a filament). In this
case the wave vectors k2 and &3 increase like &02exp(|c2|f3)
and A:03exp(|c|r), and the vector k1 decreases exponentially.
It follows hence that almost all the Fourier harmonics of the
magnetic field attenuate sharply like

/

— vm ( A-2(s) d s ) ,

i.e., like an exponential in the exponent. Exceptions are har-
monics with k0 = 0 and harmonics from an exponentially
narrow cone having an axis A:01 (Fig. 4a), for which

(
v r a J / e - & = 0(1).

o"
The cone has an elliptic cross section with semi-axes

proportional to exp ( — \c2\t) and exp ( — \c3\t). Since the
field is solenoidal (/7k-k = 0), the directions of the harmon-
ics with the wave vectors of the cone are almost perpendicu-
lar to the cone axis or, more accurately, form an "orthogonal

FIG. 4. Cone in Fourier space, within which the magnetic-field harmonics
increase exponentially, and outside of which they attenuate like an expo-
nential in the exponent, a) c2 < 0; b) c2 > 0.
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cone." The projection of the harmonics of the orthogonal
cone on the k01 axis is of the order of &01/&02 ~ exp ( — \c2 \t),
so that the harmonics increase like exp (c^)-exp( — \c2\t).
The first factor is due to the stretching of the field along the
k01 axis.

The magnetic field in x-space can be estimated as the
product of the amplitude of the growing harmonic and the
volume of the cone, the latter being proportional to
exp[ — (|c2| + |c3|)f ]. As a result, the field attenuates as

[kd3fc0 ~exp( — |c2 1 1 ) . (3.3)

The region occupied by the magnetic field, however,
increases exponentially because of the stretching along the
first axis. The total magnetic energy increases therefore:

J "H 2 d 3 ; r~exp[ ( C l -2 | c, |) t]

= exp[ ( | c 3 |- |c, I )* ] , (3.4)

since|c3|>|c2|.
It is curious that the magnetic diffusivity does not enter

in the answer. It played, however, a principal role, since it
eliminated practically all the field harmonics. The finite dif-
fusivity stabilizes the scale of the field along the axes 2 and 3
( oc vm2) and does not prevent stretching along the first axis,
making the field filamentlike. The reader can easily verify
that if we put initially vm = 0 we obtain an increasing field
HI oc exp (cvt ), i.e., that it is not allowed to reverse the se-
quence of the transitions t— *oo and vm— >0.

b } cl<c2> 0,0 > c3 (flattening into a pancake). In this
case the cone is made up of wave vectors close to the (kol, k02)
plane, see Fig. 4b. The cone is defined by the condition

W ds 0 (1).

Its aperture decreases therefore like exp ( — \c3\t ). The har-
monic having the maximum growth rate is directed along
the first axis ( ~ exp (c^t )), and its wave vector is close to the
third axis. The field decreases consequently like

H (t, x) ~ exp (c^t) exp (— | ca | t) = exp (— czt). (3.5)

Its distribution flattens into a pancake of thickness ~ vm .
To estimate the total magnetic energy it is necessary to
multiply H 2(t,x) by the volume occupied by the field. Since
the stretching is now in the (kol, k02) plane the volume
increases like exp [(c, + c2)t ], and the total energy like
exp[(|c3| - 2c2)t] = expKcj - c2)r].

We note the degenerate case c2 = 0, which corresponds
to planar flow (vx ,vz ),vy = 0. In this case the magnetic field
becomes stabilized at an exponential growth of its total ener-
gy. This result does not contradict the theorem that forbids
planar flow, 3'17-23 since it is implied in this theorem that the
velocity field does not increase at infinity. In the case consid-
ered by us the component Hy in view of the condition vy = 0,
is damped exponentially independently of the remaining
components. This damped field, however, serves as an un-
damped source for the two-dimensional field (Hx, Hz) in
view of the exponential growth of the region occupied by Hy .

We consider for simplicity a diagonal matrix cik. Let us
assess the role of the off-diagonal terms. The usual reasoning
is the following. A matrix of general form can be resolved
into antisymmetric and symmetric parts. The former is eli-
minated by transforming to a reference frame that rotates
with constant angular velocity elkl ckl /2(eikl is a unit pseudo-
tensor). The remaining symmetric matrix is reduced to diag-
onal form with time-independent eigenvalues. The principal
axes of this matrix, however, have a complicated, albeit peri-
odic, time dependence. The resultant problem therefore ap-
pears to be very difficult.

Actually, the off-diagonal terms are not so dangerous.
We illustrate this using the simple example of Couette flow,
where only cl2 differs from zero. Diagonalization of this ma-
trix by transforming to a rotating coordinate frame leads to a
matrix with two equal and opposite eigenvalues. Owing to
the periodic transformation of the axes into each other, the
exponential stretchings of the field will be periodically ac-
companied by exponential flattenings. In the absence of
magnetic diffusivity the field will increase with time linearly.
Therefore allowance for finite vm leads to an exponential
damping of the field. For a rigorous treatment see Ref. 54.

4. THE KINEMATIC DYNAMO PROBLEM

a) Statement of problem. We shall attempt to define the
kinematic dynamo and classify the possible dynamo solu-
tions. Without striving for formalized statements, we shall
describe the principal aspects and some fine points of this
problem.

In a liquid at rest with a magnetic diffusivity vm an
initial magnetic field H0(x) having a characteristic scale L is
dissipated after a time of the order of L 2/vm. The motion of
the liquid leads to an inductive effect v X H capable of ampli-
fying the magnetic field by converting kinetic energy into
magnetic. Roughly speaking, the kinematic-dynamo prob-
lem consists of answering the following question: for what
specified velocity fields does the inductive action prevail
over dissipation, or at least offsets its action? Formally this
involves obtaining for the induction equation (2.8), with ini-
tial condition H(0,x) = H0(x), solutions that are not damped
as t—»oo. We shall consider for simplicity the flow of an in-
compressible fluid and regard the magnetic diffusivity as a
constant scalar. The consequences of disregarding these as-
sumptions will be discussed in Sec. (c).

This formulation of the problem, however is incom-
plete. It is necessary first of all to formulate the boundary
conditions. When the stream is specified in a bounded re-
gion, say in a star surrounded by a medium having another
diffusivity coefficient (in particular, by a vacuum), it is natu-
ral that in the absence of permeability discontinuities the
magnetic field must be continuous on the boundary of the
region. For flow in an unbounded region, the boundary con-
ditions are imposed on the function H0(x). This field is usual-
ly specified by the distribution of currents concentrated in a
bounded region. Then

H0(x) = 0(|x|-3), |x |-^oo. (4.1)

Moreover, the distribution of the currents that produce the
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initial field must have a finite magnetic moment proportion-
al to the integral / H0 d

3 x, taken in the sense of the principal
value.

In the preceding section, with a linear velocity field as
the example, we pointed out the importance of this boundary
condition: if the magnetic field decreases more slowly than
in (4.1), the conclusions can be qualitatively different even if
the magnetic energy is finite. Consideration of the linear ve-
locity field has also taught us that it is not enough to formu-
late the dynamo problem merely in the form of the question
whether magnetic energy can increase without limit (cf. Ref.
23, §6.1). When the magnetic energy increases the magnetic
field can also decrease if the region occupied by the field
increases.

Inasmuch as in a liquid at rest the magnetic diffusivity
acts on the field "exponentially," interest attaches in the dy-
namo problem to solutions that grow with time exponential-
ly3' (or more rapidly).

In a stationary velocity field v(x) it is natural to speak of
an eigenvalue problem. When the velocity field is concen-
trated in a finite region surrounded by vacuum, the spectrum
is discrete. For an unbounded region, the spectrum of a
damped field is obviously continuous when v = 0. The pres-
ence of the flow, however, can make the spectrum discrete
(in analogy with the action of the potential in the Schro-
dinger equation).

In a nonstationary velocity field, one of course cannot
speak of an eigenvalue problem. If the field is periodic in
time, however, the quasienergy concept56 can be used, i.e.,
we can consider solutions whose shape repeats in every ve-
locity period, and whose spectrum is discrete. In another
case of practical importance, that of a stochastic flow with
stationary characteristics, one can pose an eigenvalue prob-
lem for the average magnetic moment and its higher mo-
ments.

One can consider also random flows whose statistical
characteristics are not stationary, but repeat after a finite
time. For the average field characteristics it is natural here,
too, to pose a quasi-eigenvalue problem. But one can raise
the question of the growth of the true field rather than the
averaged one, by considering the Cauchy problem with an
initial field. This formulation of the problem is meaningful,
inasmuch as for long times the magnetic field will vary, with
unity probability, at a rate determined by the leading Lya-
punov exponent.

It can thus be stated that in a large set of flows, the
magnetic field varies asymptotically as exp (Y t), where the
growth rate y can be, depending on the type of flow, an eigen-
value, a quasi-eigenvalue, or a Lyapunov exponent. General-
ly speaking, the growth rate is a complex number. An illus-
trative example of a periodic magnetic field corresponding to
imaginary y is the solar cycle.22"24'33'20

b) Classification of dynamos. The growth rate is a func-
tion of the magnetic diffusivity, or more accurately, when
expressed in units of v/l, it depends on the dimensionless
magnetic Reynolds number Rem = lv/vm, where / and v are
the characteristic scale and amplitude of the velocity field.
For simplicity we shall hereafter regard vm as the reciprocal

of the magnetic Reynolds number. Obviously, at large vm,
when magnetic diffusion prevails over the action of the ve-
locity field, we have Re y<0. If a dynamo is possible, then
Re y vanishes at a certain (vm )crit and becomes positive with
further decrease of the magnetic diffusivity. The behavior of
the magnetic-field growth rate in the vicinity (vm)crit de-
pends substantially on the actual form of the velocity field.23

As vm—>0, however, one can speak of certain general regu-
larities.17'20 Furthermore, the case of small vm is a feature of
most applications of the hydromagnetic-dynamo theory
(e.g., vm ~ 10~8 in the convective shells of the sun and of
stars similar to it, ~6 -10~3 in the liquid core of the earth,
and 1.2-10"2 in the "Superphoenix" power plant under con-
struction in a number of European countries).

Depending on the form of velocity field, Re y can tend
as vm—>•() to a positive value independent of vm (fast dyna-
mo); after going through a positive maximum, it can become
again negative (intermediate dynamo), and finally tend to
zero while remaining positive (slow dynamo). For clarity,
these three types of solution are qualitatively shown in Fig.
5.

This classification stems from the premises concerning
the possible character of the flow of the conducting fluid. A
fast dynamo is possible in a general nonstationary three-di-
mensional velocity field. A clear example is the Zel'dovich
figure-of-eight cited in the Introduction (Fig. 2). Included in
this type are the known turbulent flows with medium or zero
vorticity.23"28'20-36 It will be shown in Sec. 6 that a fast dyna-
mo is always realized at sufficiently low magnetic diffusivity
in a uniform random stream that becomes replenished with-
in a finite time. Of course, in a spatially bounded stream that
occupies too small a volume, Re y may possibly not become
positive. We have marked this case (fast dissipation) by the
dashed curves in Fig. 5. A flow that produces a fast dynamo
features a combination of topological complexity (stochasti-
city of instantaneous trajectories, i.e., the absence of integral
surfaces of the velocity field) with a nonstationary character
(e.g., in the case of a dynamo with medium vorticity we have
Re y oca2, where a~r(v-curl v), and T is the velocity field
correlation time). Our review is in fact devoted mainly to the
fast dynamo.

FIG. 5. Typical dependences of the field growth rate on the magnetic
Reynolds number for the cases of fast (a), intermediate (b) and slow (c)
dynamo. The dashed curves mark the situation when the moving fluid
occupies too small a volume for the field to become self-excited.
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An intermediate dynamo is possible in a stationary
three-dimensional stream in which exponentially running
off trajectories are present. An example of such a dynamo is
given in Ref. 38. A solution with the decrement shown in
Fig. 5b was obtained in Ref. 57 (superfast dissipation); see
Sec. 7. Actually the behavior of y (vm} for an intermediate
dynamo is more complicated. With increasing magnetic
Reynolds number the first mode attenuates rapidly, but is
replaced by the second, with smaller scale but with larger
amplitude and with a wider section in which Re y > 0. A
hypothesis can be advanced that alternating modes with
Re 7>0 appear and approach as vm-* 0 the growth rate
typical of a fast dynamo.

A slow dynamo can be produced by two-dimensional
flows. Alfven's illustrative example was shown in the Intro-
duction (see Fig. 1), although it is not so simple, in view of the
fact that it is nonstationary (the flows are shut off in one
plane and turned on in another). A large class of laminar
flows over stationary surfaces, which are of the slow-dyna-
mo type, is mentioned in the Introduction. The trajectories
of these flows, apart from special cases such as the Hubble
flow with v increasing towards infinity, can run off only in
power-law fashion, since they coincide with the level lines of
the stream function. The reason why the magnetic field can
grow exponentially is that the magnetic diffusivity of the
vector field is capable of interlinking different field compo-
nents. This is not the case for surfaces with isotropic normal
curvature, i.e., for a plane or a sphere.17 A dynamo is there-
fore impossible for planar and spherical flows (the exclusion
theorems); the corresponding Re y is shown in Fig. 5c.

The question of the character of the dynamo in nonsta-
tionary flows on two-dimensional surfaces other than a
plane and a sphere remains uninvestigated. A concrete ex-
ample of such a dynamo may be nonstationary (say, "turbu-
lent") flow of a conducting fluid over a cylindrical surface.

So far we have spoken of solutions that increase expon-
entially. Are there any solutions that grow more rapidly,
particularly such in which the magnetic field or the energy
becomes infinite after a finite time? Solutions of explosive
type H~(t — t0}~p,p>0, are usually associated with non-
linear effects, since they satisfy an equation of the type dH /
dt~H{1+p}/p .Under certain conditions, however, such solu-
tions are possible also for an induction equation linear in the
magnetic field. They stem from singularities of the velocity
field, for example from an unlimited decrease of its spatial
scale. When these singularities are eliminated the explosive
solutions no longer occur. In fact, multiplying the induction
equation by Hi and integrating over the entire volume we
obtain the inequality

where %? is the magnetic energy, and the maximum is taken
over all the points of space and over all the components of
the velocity deformation tensor. It is clear therefore that a
faster than exponential growth of the magnetic energy is pos-
sible only in the case when the tensor dvk /dx, is unbounded,
i.e., when the velocity is finite but its characteristic scale
decreases without limit. The last situation seems possible in

principle when the kinematic viscosity tends to zero. A se-
quence of skin-effect layers with thicknesses that decrease
without limit are produced then in the velocity field. The
construction of such a solution of the induction equation is
procedurally of interest, but is apparently technically com-
plicated. An explosive-type solution was constructed in Ref.
58 for a moderate-field equation with locally homogeneous
and isotropic, but specularly asymmetric turbulence. Such a
solution is obtained when the average helicity of the turbu-
lence increases at infinity, but the initial magnetic field is
present in the entire space and decreases at infinity like exp
( — x|2). Analogous solutions are known in quantum me-
chanics for some potentials, say those that lead to falling to
the center.

c) Remarks on inhomogeneous and anisotropic magnet-
ic diffusivity. Compressible-fluid flows. In media with inho-
mogeneous and (or) anisotropic magnetic diffusivity, the
conditions for generating a magnetic field may change in
favor of possible self-excitation of the field. In particular,
some of the exclusion theorems can be lifted. This is clear
even from the fact that inhomogeneous and anisotropic elec-
tric conductivities can simulate the windings of dynamo ma-
chines.

A characteristic and frequently encountered example of
inhomogeneous magnetic diffusivity is a bounded volume of
a conducting fluid (e.g., a star or the core of a planet) sur-
rounded by vacuum or by a medium having a different con-
ductivity. Allowance for the inhomogeneity of vm is known
to reduce in this case to formulation of boundary conditions
on the interface between the media. The question of the ex-
tent to which allowance for the inhomogeneities of the mag-
netic diffusivity weakens the exclusion theorems for plane
and spherical flows or allows generation of fields that are
independent of one of the coordinates, has not yet been re-
solved in general form for motion over surfaces. It is known
that a dependence of vm on only one coordinate is insuffi-
cient, but examples of a dynamo for vm that depends on two
coordinates have been proposed. An exclusion theorem was
proved in Ref. 60 for a stationary velocity field that satisfies
the condition V X [vm ~ 'v(x)] = 0, i.e., for a special Beltrami-
type flow, V X v = vVvm /vm.

The generation conditions are substantially altered by
the assumption of magnetic diffusivity.61 Ohm's law in an
isotropic medium at rest takes the form62

E,= v,, rot; H, (4.2)

where vjt is the magnetic diffusivity tensor (the reciprocal of
the conductivity tensor), which we shall assume to be con-
stant and independent of the magnetic field. If the anisotro-
py of the medium is determined by one polar vector qs, this
tensor is symmetric and can be represented in the form

(4.3)

Allowance for the regular motion reduces to addition of a
term — vX H/c to the right-hand side of Ohm's law. In the
equation for the mean field there appear in a random stream
additional contributions proportional to the symmetric part
of the tensor of the first derivatives,23'24 in the form
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ejhmqmqi (dHl/dxh + dffhfdxt).

In the case of molecular diflFusion such a term is excluded
because it does not guarantee a positive growth rate of the
entropy. In the hydrodynamic situation (kinematic dynamo)
these arguments are untenable because of the presence of
e.m.f.'s due to the interaction of the velocity and the magnet-
ic field and causing conversion of kinetic energy into mag-
netic.

It is shown in Ref. 61 that the induction equation with
an anisotropic magnetic-diffusivity tensor (4.2) has at v14v0

growing solutions that depend on one of two coordinates,
vy = flz in the simplest planar Couette flow. For example, a
magnetic field initially localized as exp ( — x2) when t—> oo,
spreading in accordance with the diflFusion law with a diflFu-
sivity coefficient v0, increases at a rate y = (v1/4v0) fl qyqz.
The condition that y be positive reduces to the requirement
that the vector qt not be parallel or perpendicular to the flow
direction, the latter coinciding with the symmetry axis>>, as
well as to the condition that the signs of V] and fl be the same.
Such a solution can be compared61 with the known unipolar
dynamo,23 although the presence of the winding and of the
edge of the disk makes the latter inhomogeneous.

The greater part of the present review is devoted to the
dynamo produced by flows of an incompressible conducting
fluid. For stationary flows in the absence of an external force
field, the incompressibility condition is formulated as small-
ness of the hydrodynamic velocities v compared with the
speed of sound cs. For a fluid in nonstationary flow to be
incompressible it suffices that the time l/cs needed by an
acoustic signal to travel a distance over which the velocity
changes noticeably be short compared with the characteris-
tic velocity-change time T. Under astronomical conditions
the influence of gravitational fields is important. For incom-
pressibility to obtain in the stationary situation it suffices to
have the characteristic velocity-change scale much smaller
than the scale of density change p/Vp (altitude scale). This
condition is usually not satisfied in convective shells of stars.
Compressibility must also be taken into account when non-
stationary astrophysical conditions are considered, such as
the compression of interstellar clouds in the course of star
creation.

The induction equation in compressible flow

dt
(vV)H = (HV)v - HVv + vm V2H (4.4)

contains an additional term — HVv. Clearly, this term in-
fluences the dynamo substantially when it is of constant sign,
i.e., under nonstationary compression and explosion condi-
tions, or in the presence of sources and sinks. There have
been few studies of dynamos under these conditions. We
note that in the case of practical interest, star creation, the
compression lasts a finite time and leads to enhancement of
the magnetic field (according to //ocp2'3 in the trivial
spherically symmetric case; a more detailed analysis and re-
ferences to work in this field can be found in Chap. 14 of Ref.
20), which can be regarded as an independent process that
supplements the dynamo action.

Equation (4.4) can also be studied by methods under

development in this paper. For application, interest attaches
to the problem of the magnetic field in the so-called acoustic
turbulence, 63-64-73 when terms of order of (u/cs)

2 cannot be
neglected.

5. SHORT-CORRELATED RANDOM FLOW

The construction of a fast dynamo in a nonstationary
three-dimensional laminar flow is a problem incredibly diffi-
cult to investigate even numerically. Fortunately, considera-
tion of nonstationary random flows of practical interest
greatly simplifies the problem, since even velocity fields with
simple statistical characteristics can operate as fast dyna-
mos. We consider in this section the simplest random flow
with short (6-like) time correlations, first applied to the dy-
namo problem by A. P. Kazantsev.25 It is convenient to con-
ceive of such a velocity field as the limit of velocities t>A(f,x)
that are constant in t over intervals of lengths A r:(0, A t ),
( A t , 2A t ), . . . and are independent in each different interval.
In the limit as A ?— »0 we have

(vi (t, x) v, (t', y)> = 2 .1 6 (t - 1') Vti (x, y),

where / and v are the characteristic scale and velocity, while
the angle brackets denote averaging over the velocity-field
distribution. At small A t, the velocity UA is thus of the order
of v(l/v A ?)1/2~( A t )~1/2. For the sake of simplicity we
shall assume everywhere in this Section, except in Subsec.
(b), that there is no average velocity, (u, (t,x)) = 0, and omit
the dimensional factor 21 /v.

Let us study the behavior of the average characteristics
of the magnetic field.

a) Equation for the average magnetic field. An equation
for the average magnetic field in a turbulized stream was first
proposed by Steinbeck, Krause, and Radler and then cor-
roborated by a number of workers who used, in the case of
large magnetic Reynolds numbers of interest to us, a number
of restrictive assumptions, e.g., that the velocity field is
Gaussian or two-scaled (see, e.g., Refs. 23, 24, 65 and the
references therein). The existence of growing solutions of
this equation is due to the fact that the flow is on the average
vortical.

The authors of Ref. 66 proposed a simple and rigorous
derivation of the equations for the average fields and for
other moments under the sole assumption that the velocity
field is <5-correlated. Of particular importance is the drop-
ping of the assumption of a two-scale velocity field. Al-
though a differential equation for (H) is indeed obtained in a
<5-correlated flow, allowance for the finite correlation time in
the case when the velocity field is not two-scale leads to an
integral equation; see Subsec. (d).

The idea underlying the derivation of an equation for
the mean field is the following. Specifying the magnetic field
at the instant t , we obtain the field after a short time interval
t + A t by using Eq. (2.1 1)

Ht (t+M, x) = MX [Gtl (At, |A(, x) Hj (t, (5.1)

We average it over the velocity field, and change the order of
the averaging in the right-hand side of (5. 1), {M* )—>-Mx ( ).
The ( Gy HJ ) correlation can be calculated by breaking up
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the operation of averaging over the velocity field into two
stages. We first average over the interval from 0 to t, when
only the field H} that depends on the prior history is aver-
aged. The averaged field is smooth and can, in analogy with
(2.14), be expanded in a Taylor series in which only terms of
order not higher than A t are retained, thereby retaining also
the term

J_
2

With the same accuracy we have from (2.9) and (2.5), recog-
nizing that i>A oc ( A t)~1/2,

Multiplying this equation by eikm and using the incompress-
ibility and homogeneity of the flow we can verify that qt = 0
and a,m is a symmetric tensor

=curl v,

,(*.

4^ (At)2,

-r l\t f \ X dfj (t, X) . ,
*u(At, SA() = °U a*}—At—I

, dt

At

We now average Gtj (Hj ) over the velocity field in the inter-
val from t to t + A t. Owing to the short memory time, corre-
lations of the type

are split oflF. Averaging finally over the Wiener trajectories
with allowance for Eqs. (2. 10), denoting the total average by
B, (r,x), and taking the limit as A t— >0, we obtain the sought
equation

dBi (t, x)

whose trace is equal to + au = — J^v-curl v). By virtue of
the symmetry, atk can always be reduced to diagonal form.
It can also be seen that generation of the mean field is possi-
ble also at zero average vorticity, when <y,w f c ) ^O.24'66

The polar vector q} does not vanish in the weakly inho-
mogeneous case, when one can still speak of the representa-
tion (5.4). It enters then in the mean-field equation in the
form curl [qX B], i.e., it describes transport of the field with
effective velocity qs (the diamagnetic effect3'16'24).

The most frequently used in astrophysical applications
is an isotropic weakly inhomogeneous approximation
wherein, when account is taken of the average velocity V, the
equation for the mean field takes the form

-^-= curl [VXB] f curl «B- curl'(pcurl — ) , (5.5)

(V i ~&^~ ~~~ Vh ~dT- i ' '̂  where a in dimensional form is equal to — (r/3)<v-curlv),jff
includes the molecular and turbulent magnetic diffusivity,
while^f is the turbulent magnetic permeability (whose gradi-
ent is equal to q^). Of course, the assumption of a <5-correlat-
ed random velocity-field component (or the assumption of a
two-scale velocity field, which leads to the same equation), is
not satisfied under real conditions. It will be shown in Sub-
section (d), however, that the solutions of Eq. (5.5) are close
to the solutions of the more rigorous integral equations that
take into account flow with a finite correlation time.

b) Asymptotic solutions. Assuming for simplicity that
fj, = 1 and 0 = const, we can rewrite (5.5) in the form

, At

dt

dt

where

[V X B] + #« curl aB + AB, (5.6)

(5.3)

where ( > denotes the spatial part of the velocity-field corre-
lator in coinciding points of space. When converting to di-
mensional units it must be multiplied by 27 /v.

It is interesting that in the approximation considered
there is no linkage of the different field components. Such a
linkage appears, however, when account is taken of the finite
correlation time.

Equation (5.3) is valid in the general inhomogeneous
anisotropic case, the only assumption of importance being
that the velocity-field correlations be instantaneous. In ho-
mogeneous turbulence we have d(vtvk)/dx, = 0 and the
equation takes the simpler form

D , t

Q0L*

are dimensionless numbers that characterize the field-gener-
ation sources. Equation (5.6) is much simpler than the initial
induction equation, since it admits of growing solutions with
high symmetry. In the simplest case when Rm = 0 and
a = const the solution takes the form

B = B0 exp (vi + ikx), f = ± RJt — (5.7)

dB< / dvt, \ dB,
-eT = V7' a£> a£

The constant three-index tensor preceding the first deriva-
tive is antisymmetric in the indices / and k. It can therefore
be represented in the form

(5.4)

The spatial part of the growing solution is represented in a
Cartesian coordinate frame by a certain combination of six
linearly independent helical vectors of the type (sin kz, cos
kz, 0), (cos kz, — sin kz, 0) etc., with cyclic permutation of x,
y, and z. The generated field is then of the form of a right-
hand (Ra > 0) or a left-hand (Ra < 0) standing helical wave.
The generation in unbounded space has no threshold, i.e., it
occurs at all vm , and with increasing vm only the scale of the
generated field increases.4' The fastest to grow is the mode
having the wave vector k0 = Ra/2 and 7max = R 2 /4.

It should be noted that in the approximation a = const
the quantity Ra has a Pickwickian sense, since there is no
characteristic scale L in the problem (it is better to speak
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simply of a and /3). Physically meaningful is the problem
with a weakly inhomogeneous function a (x), where L is the
characteristic scale of variation of the average vorticity. We
have then, in order of magnitude, Ra ~e L /I. Since a ~EV,
e 5; 1; @~lv (I is the characteristic energy-carrying scale of
the velocity field). The scale Lk 0~' = 2 L /Ra ~le~l of the
average magnetic field lies between / and L. The case of
maximum vorticity e~\ is not dangerous, see Sec. (a) (cf.
Moffatt,23 §9.2).

At large Ra one can construct, using V. P. Maslov's
elaboration of the WKB method, an asymptotic solution
similar to the solution with constant average vorticity67 and
having the form

B (x, i) = [<p0 (x) + ^a Vi (x)+ ...] exp | (x)],

(5.8)

The field configuration in the leading order is determined by
the functions q>0 and S. The maximum growth rate is deter-
mined by Y-2- To estimate the excitation threshold (Ra )crit at
which Re y = 0, we must know also yv To determine these
quantities (5.8) must be substituted into (5.6).

The maximum growth rate for the function a(x) with a
maximum at an isolated point is equal to

Ymax = — Rl — — 7?a + O(l) , (5.9)

where (Ra )crit = 10. With changing character of the extre-
mum (concentration of a on lines and planes) the excitation
threshold is lowered.67 An excitation threshold of the same
order of magnitude was obtained earlier in a number of nu-
merical computations with various «(x). 68>24

At R,,, /O the operator of the right-hand part of the
initial equation (6.6) is not self-conjugate (for R^ = 0 it was
self-conjugate in the leading orders of R 2 and Ra). The ei-
genfunctions will therefore be complex. In the approxima-
tion \Rm \>R 2

a (aa dynamo) it is customary to characterize
the problem by the dimensionless dynamo number

This approximation is usually valid in convective shells
of stars, particularly in the solar convective zone. In a thin
shell the solution takes the form of a dynamo wave

B • e.xp ( yZ + i'coi — ikx — iqz — ~

(the z axis is perpendicular to the shell). The mean-field exci-
tation threshold can be estimated from the condition
k0R £ 1. Where & 0 ~ l ~D ~1/3 is the characteristic scale of
the generated field and R is the radius of the star (such that
the field can fit into the star). We obtain69

where fl is the angular velocity of the star rotation. The
period of the dynamo wave is 5310Z) ~2/3 (adfl/dz) ~^/3.
These asymptotic relations are valid for sufficiently uniform
distributions of the sources a and d £1 /dz over the thickness
of the convective shell. For concentrated and nonoverlap-
ping sources, the period is proportional to ln~ 1D.70

The foregoing estimates demonstrate the capabilities of
the asymptotic methods. A detailed model-dependent and

numerical investigation of dynamo waves and their use to
explain solar and stellar activity can be found in a number of
papers and monographs.71'72'23'24'33

c) Study of second moment. The equation for the equal-
time correlator tensor ^,.,.(r,x,y)={//,(/,x)//,(?,y)) is not
as easy to derive in the general inhomogeneous anisotropic
case as the equation for the mean magnetic field.66 The non-
equal-time correlation can be obtained in this case if JT,-,-
and the Green's function of the mean-field problem are
known.

This tensor equation has been analyzed so far only in a
homogeneous isotropic mirror invariant velocity field whose
correlation tensor is of the form50

<vt (x) V] (y)> = -f [F (r) 6f, +1 Jjf (64, - I

i = Xi-Vi, i, 7 = 1, 2, 3, (5.10)

where we have separated the dimensional factor
oo

/= J F ( r ) d r
o

which is the correlation length. The longitudinal correlation
function F (r) is dimensionless, is equal to unity at zero, has a
positive Fourier transform, and decreases at infinity.

It is natural to assume that the fastest growing solution
has the same symmetry

although the question of growing solutions of lower symme-
try has remained uninvestigated.

The determination of the longitudinal correlation func-
tion W(r,t) reduces, as shown back in 1967 by A. P. Kazant-
sev,25 to solution of an equation similar to the Schrodinger
equation with variable mass, but without the imaginary uni-
ty in front of the derivative with respect to time

2 dt

where

(5.12)

t /M- _ / _U V>- 6r dr dr

The solution is sought in the form i/>(r,t ) = ^(r) exp (2/2V ),
after which the problem reduces to finding the eigenvalues
and the eigenfunctions i/>(r) in a potential U (r), with zero
boundary conditions at zero and at infinity. The existence of
growing solutions is indicated in Refs. 25, 27, and 28. The
problem was investigated in detail in Ref. 36 for a number of
typical forms of F(r).

The potential for the longitudinal velocity correlation
that depends exponentially on r2 is of the form shown in Fig.
6a. At large vm and as U (r)— >2vm /r1 there are also no grow-
ing solutions (bound states). With decreasing vm a well ap-
pears and is followed, after some critical (vm )crit ~ 1/50, by a
level, i.e., self-excitation of the field takes place. With further
decrease of vm the potential tends to a limiting shape of the
well, which is separated by barriers from zero and infinity.
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U(r) W(r)

FIG. 6. Typical forms of the potential and of the correlation function in
the problem of the evolution of the second moment of the field.

The first barrier becomes the molecular diffusion, and the
second the turbulent one.

In contrast to the problem of the mean field in a stream
that has no mirror symmetry and is unbounded in space, in
this case a threshold appears and is due to the requirement
that a potential well exist. From the qualitative viewpoint
this can be understood as follows. Field generation calls for
the nearby particles to run off in the turbulent stream up to a
certain scale, beyond which it gives way to turbulent diffu-
sion of the individual particles. Obviously, this scale should
exceed the scale in which the magnetic-field diffusivity due
to the molecular vm is substantial. A spatially bounded
stream must naturally satisfy another requirement, that the
dimensions of the region greatly exceed the characteristic
velocity-field scale. To our knowledge, however, no such
problem has been considered so far.

Since the Kazantsev equation27 (5. 12) is self-conjugate,
the growth rate of 7*2) is real and in the limit vm ->0 is inde-
pendent36 of vm , i.e., the flow in question is a fast dynamo.
The approach to the limit turns out to be very slow
7121 — 7o2)~(m vm)~2 (this formula was obtained by O. V.
Artamonova). The spatial dependence of the correlation
function < Jf, H, > = fir*)-^ W/dr is shown in Fig. 6b.
With decreasing vm it "presses" against the coordinate axis,
and always has a tail with a negative value of ( H( H, ), be-
ginning with r~vm

 in and going through a minimum at
r~vm

1/4. The last characteristic scale corresponds to the
position of the bottom of the potential well.

We have assumed so far that the magnetic-field distri-
bution is uniform. Let us discuss the evolution of an initially
nonuniform field distribution.36 Clearly, such a field will
grow via the described dynamo process and will be trans-
ported by turbulent (and molecular) diffusion. Ya. B. Zel'do-
vich called attention to the similarity of this problem to the
known problem of front propagation, first studied in biology
by Kolmogorov, Petrovskii and Piskunov, and widely used
in combustion theory.74

For a magnetic-energy distribution localized at the ini-
tial instant, the solution is obviously of the form

where D = l/2m( oo ) = vm + VT is the total diffusion coeffi-
cient, and f*2) is the growth rate obtained above. The argu-
ment of the exponential can be represented in the form

- -£r = — Z7JT ( I x I - 2 V ̂ V^ t)

from which it can be seen that the surface 18 = const propa-
gates with a velocity 2^2^2}D. We note that this result re-
mains in force also when account is taken of the nonlinearity
that limits the growth of the energy.

d) Allowance for finite correlation time. In real turbu-
lent flows, the correlation time is known to be of the order of
l/v. Nonetheless, the 5-correlated random flow considered
in the preceding section is in a certain sense a fair approxima-
tion, since the characteristic field growth time exceeds l/v.
Indeed, the reciprocal growth rates y~l of the mean field are
usually much larger than l/v [see (5.9)], since a<i>; in a mir-
ror-symmetry situation, (y(2))~' is somewhat larger than l/v
even in the limit as vm—»0.36

On the other hand, allowance for a finite correlation
time is undoubtedly important. First, it leads to quantitative
changes in the growth rate and in the form of the generated
field. Second, new physical effects appear. A. P. Kazantsev
pointed out that the<5-like approximation is patently unsuit-
able for the description, say, of acoustic turbulence, whose
frequency spectrum has a strong maximum at the sound fre-
quency and a weak tail at a> = 0 [see Subsec. (d)].

To generalize the mean-field equation (5.3) we can use
the same random velocity field with which we approximated
^-correlated flow (see the start of the section), but we shall
not let the characteristic time A t of the velocity-field resto-
ration tend to zero, but regard it as finite independent pa-
rameter, which we shall designate by T.

Assume thus that v,(x, t) is a random solenoidal velocity
field distributed and independent over the time intervals
(0,r), (T, 2r).... For simplicity we stipulate also homogene-
ity of the velocity field, i.e., that its statistical characteristics
in each restoration interval be invariant to a shift of the spa-
tial coordinates.

Such a velocity field is nonstationary in time. In parti-
cular, its temporal correlation function depends on two
times, but not on their difference. It is therefore possible to
reconcile the vanishing of the correlations after a finite time
with positiveness of the flow energy, something that might
be impossible for flow whose statistical characteristics are
constant in time, by virtue of the known Bochner-Khinchin
theorem that the Fourier transform of a correlation function
is positive. The flow considered by us is stationary only at
discrete times nr, n = 0, 1, 2, 3 . . . . Therefore, if we are
interested in processes that occur over times considerably
longer than T, such a flow can be regarded as stationary. The
restoration time has the meaning of memory time, and in this
sense it is similar to the correlation time. From the physical
viewpoint the restoration can be visualized as a periodic
shaking up of the fluid, say when energy is supplied. All the
points are shaken up here simultaneously, so that no spatial
discontinuities of v(x) occur. Time discontinuities are appar-
ently inessential, since the induction equation does not con-
tain dv/dt, although these discontinuities can, of course be
smoothed out without changing the result. To this end it is
necessary to shake up at random instants of time or ensure a
continuous energy supply. This gives rise to a temporal cor-
relation function that depends on the time difference and,
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say, decreases exponentially as a function of this difference.
An equation for the mean magnetic field in the model

with restoration was obtained in Ref. 75 by averaging over
the random trajectories. This equation relates the value of
the field at the instant (n + \}r with the field at the instant
nr. In the general case it turns out to be integral, inasmuch as
after a finite time r the bundle of random trajectories di-
verges over a finite distance. This equation takes in Fourier
space the form

B, ((n + 1) T, k) = II,, (T, k) B} (nr, k). (5.13)

The transfer function ny is expressed in terms of the La-
grangian coordinate as follows:

H,, (T, k) = ?,, (T, 1) exp (l£tk)». (5.14)

It can be shown75 that at small k (the two-scale ap-
proach) or small T (the <5-correlated approximation) the inte-
gral equation (5.13) is equivalent to the differential equation
(5.6) in the sense that on going from t = nr to t = (n + \)T the
latter has the very same transfer function.

Let us calculate the growth rate of a mean magnetic
field that satisfies Eq. (5.13), using a concrete example.

Let the coordinate gr and the matrix Gy (r,g) have a
joint Gaussian distribution with parameters a and a > 0, so
that

M <|T> = 0, M <Gi;.) = 8U,

M (It&i]) = 2TCT26i;., M <gr!- G}1) = et)iar.

This is equivalent to specifying on a time segment of length r
all the correlators of a certain (generally speaking, not Gaus-
sian) velocity field.

In this example the operator M ( ) in (5.14) denotes
simple averaging over a Gaussian distribution, so that

Hi} (T, k) = (6U -f ieinklaf:} exp (—ta2fc2).

The mean-field growth rate, as is clear from (5.13), is deter-
mined by the leading eigenvalue of the matrix T~ l Inll,-,:

"y~ — \n(i^-ark) — ozkz. (5.15)

Let us compare it with the growth rate % = ak — f ) k 2 ob-
tained from the differential equation (5.6). We see that yd

with /? = a2 + (a2r/2) is a good approximation in the region
of small k < (ar)~1 (recall that kmSL!i ~a /13). In the region
of larger k, but smaller than the dissipation scale, we have
y > Ya • Interestingly, the average vorticity contributes to the
turbulent diffusion. Therefore the customarily employed
representation of turbulent diffusion as a parameter inde-
pendent of vorticity leads at small k to some undervaluation
of P (= a2), and hence to an over-valued growth rate
yd = a k — Pk2. We note that we are dealing here with the
contribution of a homogeneous vorticity. If we regard
a = a(x,t) as a random function then, in Kraichnan's opin-
ion (see Refs. 23 and 33) the fluctuations of a make a negative
contribution to the coefficient of turbulent diffusion.

The use of a differential equation such as (5.6) is thus
perfectly valid for the description of the evolution of large-
scale magnetic fields. It is required here that the magnetic-

field scale k l exceed the characteristic scale / of the velocity
field. We have kl < 1 in the case a ~ v of maximum vorticity,
and kl<e~l at a~£v. Going outside the framework of the
two-scale approach in the case of small average vorticity
adds therefore only small corrections to the growth rates.
This justifies the application of Eq. (5.6) of the mean-field
dynamo theory to the solar cycle, even though the two-scale
approach is regarded as unsatisfactory in this case (see, e.g.,
Refs. 7 land 76).

The equations for the second and higher moments of the
magnetic field can also be generalized to include the case of
finite T (see Sec. 6). For an explicit calculation of the kernel of
this equation one must specify the form of the correlator
(l/'nV )> where |, and i|t. are two Wiener trajectories. We
note that equations for the second moment were derived ear-
lier in the direct-interaction approximation77 and in the
scheme used by U. Frisch to close a chain of moment equa-
tions (see, e.g., Ref. 35). The investigations of these equations
in the cited papers lead to results close to those of Subsec. (c).

e) Role of temporal spectrum of velocity field. The main
shortcoming of the short-correlated approximation is not
the shortness of the correlation time but the fact that it corre-
sponds to a continuous spectrum and consequently does not
reflect at all the singularities of the temporal spectrum of the
flow. This fact was first pointed out by A. P. Kazantsev. For
example, the so-called acoustic turbulence63-64 has a strong
peak at the sound frequency and a weak tail at zero frequen-
cy (acoustic flow; Fig. 7), which can be described only in the
short-correlated approximation. In the simplest quadratic
approximation it can be shown, with acoustic turbulence as
the example,86 that allowance for the character of the tempo-
ral spectrum of the flow leads to new physical effects, al-
though it does not influence the coefficient of turbulent dif-
fusion (which is determined as before by the zeroth point of
the spectrum) and does not change the conclusion that self-
excitation of the magnetic field is possible.

f) Transformation properties of the diffusivity coeffi-
cients. The question can be raised whether the initial mean
magnetic field can be determined from the field known at a
later instant. If the coefficients a and /# have definite signs
such a problem is ungrounded, since the evolution of the
field is accompanied by dissipation and by a change of the
smoothness of the solution. A similar situation, as is well
known, obtains already for the simplest scalar diffusion or
heat-conduction equation when considered going backward
in time.

FIG. 7. Temporal spectrum of acoustic turbulence. The spectrum has a
peak at acoustic frequency and differs from zero at a = 0.
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Ya. B. Zel'dovich85 points out that D is a scalar relative
to transformation of three-dimensional space, but reverses
sign when t is replaced by — t. He develops in this connec-
tion a new approach to finding the turbulent-diffusion coef-
ficient. An exact solution of the scalar diffusion problem is
obtained for a simple velocity field that has only one Fourier
component. The expression for the turbulent diffusion coef-
ficient contains as a factor the molecular-diffusion coeffi-
cient D, and this ensures a correct behavior of the result with
respect to time reversal. The paper cited considers, in the
spirit of cascade-renormalization ideas, the diffusion coeffi-
cient of a scalar in a velocity field with a wide spectrum that
presumably describes the turbulence. For isotropic turbu-
lence, a differential equation was derived for the turbulent-
diffusion coefficient. Its solution is obtained in the form

DT = D I/ const • -^ + O (1),

and not directly in the form DT = TTJV* in which the neces-
sary transformation properties with respect to time reversal
are lost.

One can write also in similar form an expression for the
average helicity tensor:

,,, ,

'

see §7.8 of Ref. 23, where <!>„, is the velocity-field spectral
tensor. We note that when <!>„, does not vanish at zero fre-
quency, the tensor a(j does not depend on vm in the limit of
small vm , since

,, to + vmfr vmfc
— oo

Thus, a is a pseudoscalar under coordinate transformation
and reverses sign following the substitution /—* — /.

6. THE DYNAMO THEOREM

The mean magnetic field and its second moment are
insufficient for a complete description of the behavior and
distribution of the field in a random flow. In particular, they
cannot be used to describe so important a phenomenon as
recurrence.

Actually the direct way of studying the true (random)
magnetic field in a random field with restoration turns out to
be simpler. The reason is that over long time-periods the
evolution of a random magnetic field as governed by the
induction equation is subject to the central limit theorem.
This theorem is known to ensure the existence of two deter-
mined quantities, mean value and variance. The first of these
quantities turns out in this case to be the growth rate, posi-
tive in the limit of low magnetic diffusivity, while the second
is responsible for the recurrence. The statement that a mag-
netic field grows exponentially in a three-dimensional ran-
dom stream with restoration, and that the field has'a recur-
rent structure, comprises the dynamo theorem presented in
the present Section.82

a) Magnetic-field transport function in a restorable
flow. We consider the unbounded random velocity field con-
sidered in Sees. 5 and 6, which is restored after a finite time T.

In the case of total freezing-in (vm = 0) the magnetic-field
transport along a Lagrangian trajectory of any fluid particle
on a segment [(/— \)T, IT] is fully described by the matrix
function G, (f ,£,1) (see Chap. 2), where £ defines the trajec-
tory in question. By virtue of the recurrence, each of the
matrices G, is unimodular, i.e., has a unit determinant. The
complete transport function at the instant t = nr is equal to
the product

Gt=[\G,. (6.1)
1=1

Thus, over long times (n—> oo) the problem reduces to
calculation of a product of a large number of independent
random matrices. Such an algebraic problem was first solved
by Furstenberg.83 Unfortunately, the mathematical formal-
ism used in the original paper is hardly comprehensible to a
physicist or even a mathematician who does not specialize in
algebra. We shall therefore attempt, in the context of the
problem of the behavior of a frozen-in field, to find a more
lucid and simpler form of the solution, as undertaken by V.
N. Tutbalin,84 who likewise used an extension of Fursten-
berg's theory. When magnetic diffusivity is taken into ac-
count the problem is no longer reducible to algebraic, and
products of random operators must be calculated. At small
vm, however, this problem can be solved by the technique of
averaging over random trajectories. It is important that the
growth rates of the field and of its moments coincide in the
limit as vm —>-0 with growth rates for the case of complete
freeze-in.82

To understand qualitatively the result of the action of
a large number of random matrices on a given vector H0, we
imagine a two-dimensional sphere with radius equal to the
length of this vector. Under the influence of one matrix G,
with unity determinant the sphere is transformed into an
ellipsoid having the same volume. Let the coefficient of
elongation along the x axis be /1>1. By virtue of area
conservation, contraction along the.y axis takes place, with a
coefficient A ~*. The length of the vector after the trans-
formation becomes (A 2H^X + A ~2H2

ay)
l/2 = H0(A

2 cos2<p
+ A~2 sin2tp )1/2, where q> is the polar angle. It exceeds the

length H0 = (H1^ + H2^)1'2 of the initial vector when cos <p
>(1 +A2}~112. We see hence that the set of directions 0> for
which H0 is stretched will exceed one-half. In other words,
an arbitrarily directed vector will be stretched with probabil-
ity greater than one-half. Therefore the action of a large
number of matrices G with independent elongation direc-
tions and with different elongation coefficients will result in
an increase of the length of the vector.

We proceed now to a rigorous treatment, from which it
follows that in the general situation the growth will be expo-
nential.

b) Lyapunov's exponents and random basis. The results
of the action of a large number of independent random ma-
trices GI on a given nonzero initial vector H0 is such that,
apart from certain degenerate cases, for each velocity-field
realization there exists, at long times compared with the re-
plenishment time, a basis (elt e2, e3) in which the magnetic
field varies exponentially with definite exponents
Yi > 72 > Ts that are independent, in contrast to the basis, of
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the velocity-field realization and are connected, by virtue of
incompressibility, by the relation

Yi + Yi + 0. (6.2)

It is clear even from (6.2) that if the 7,- are not identically
zero then at least the leading exponent y\ is always positive.

Let us determine the values of y, (called in mathematics
the Lyapunov exponents) and the basis e{ (i = I , 2, 3), and
prove their existence and that yv is always positive.34

The action of a sequence of matrices G,, G2 Gn on
a vector H0 changes its magnitude and rotates it during each
step. It is natural to separate the amplitudes and the phase
factors of the resultant vectors Rn= \Hn , xn =HM/|Hn|.

A sequence of random points formed on a sphere by
unit phase vectors

I H0

|Hn

(6.3)

is a Markov chain, since each successive step xn _ , —*xn is
connected only with the value xn _ , and with a matrix Gn

that is independent of the prior history.
Taking the norm of the last vector of (6.3) and recogniz-

ing that \xn | = 1, we find for the field amplitude

At large n the logarithm of the amplitude is thus a sum of a
large number of independent quantities. Consequently, by
virtue of the law of large numbers, there exists a limit

-Lin- Rn_ = — y. In (6.4)

(the leading Lyapunov exponent). This exponent determines
the growth rate of the frozen-in magnetic field, so that the
question of its sign is of fundamental importance. From Eq.
(6.2), as already noted, it is obvious that if all the Lyapunov
exponents are not identically zero, the leading exponent
7, > 0. Since the exponents 7, are determined by the eigen-
values Af of the matrix G,, it is clear that it is necessary to
have I/IJ > 1 at least at some individual points of space and
to stipulate that a fluid particle land at these points frequent-
ly enough, i.e., good miscibility of the flow is necessary. It is
required formally that the velocity field distribution not be
concentrated on a subset of matrices with |/l, = 1,5)i.e., that
it have a good (not 5-like) probability distribution density on
a set of unimodular matrices. The restoration ensures fur-
thermore that the particles will not "squat" on points with
|/l 11 = 1. It must be emphasized that generally speaking the
velocity field need not be three-dimensional in order to prove
that 7, is positive and hence that the transport function G, is
exponential. The condition that the magnetic field have zero
divergence, however, excludes a growth of the field in two-
dimensional flows.82 We shall prove below that y^ is positive
in the simple case of a constant distribution density of the

matrices G, on a group of unimodular matrices (isotropic
distribution). For a proof that 7, is positive under general
assumptions concerning the form of the velocity-field distri-
bution over the restoration interval see Refs. 54 and 82.

The limit (6.4) should be understood as a relation that is
satisfied with unity probability, i.e., it is valid for an over-
whelming majority of H, but not for all. In fact, let us sub-
ject H to the inverse transformation G,~' G 2~' .. .G ~',
where G ~' is the inverse of the matrix Gn. By the same
reasoning as above, the resultant vector varies like exp
(lys lOi where 73 is the "leading exponent backwards in
time," i.e., the lowest-order exponent, 73 < 0. There exists
thus a direction

(6.5)

along which the field decreases like exp ( — \y3\t). From the
relation \Gn + l Gn .. .(?1e

(
3'

I+1||~exp (- \y31) it follows
that the vector e3

(" + ", just as e^n), is a decreasing one, i.e., on
going from n to n + 1 the vector e3"' varies weakly. This
means that there exists a limit Cj"1—>-e3, n—>•«>, i.e., a basis
vector corresponding to 73: G,e3~e3exp (y3t).

To introduce the second Lyapunov exponent and the
corresponding vector 6I we examine the action of the matrix
product Gn.... Gv on a plane made up of a pair of orthogonal
unit vectors xn and Qn. This action generates a Markov
chain on a three-dimensional manifold of bivectors, which is
singled out by the relations \xn \ = Qn \ = 1 and (xn -9n) = 0
(it is called the Stiefel manifold). Indeed, let us form the vec-
tors Gn + ! xn and Gn +\ Qn, and let us then orthogonalize
and normalize them. As a result we have

Let there now be two arbitrary vectors H0 and H0

stretched by a product of independent random matrices G, .
We transform from Hn to the vector

which is orthogonal to Hn and introduce the amplitude and
phase factors of the vectors Hn and H'n : xn = Hn /
HJ, Ra = Hn |and9n =H'n/\H'a\,Pn = |H;|. The area

of the parallelogram stretched on the considered pair of vec-
tors is SH = |HB XH; | = |Hn XHn |. This quantity, just as
Rn , depends multiplicatively on the Markov chain (xn , Qn ).
Indeed,

'S'n+l = Pn+l-^n+1 == I ̂ n+l"-n X "n+l"n I

= Pn-fln I Gn + l*n X Gn+10n |

= Sn |C,,+1X,, X Gn + 1<Tn |.

As H— >•«> there exist therefore the limit «~'ln (pn Rn) and
the limit

i— l n p n -n ^ n n_fao n
i— In (HnHn)

" ( H n H n )
(6.6)
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by which we mean the second Lyapunov exponent. We shall
show that if the matrices Gn have an isotropic distribution
the exponent y2 is rigorously smaller than Y\- Indeed,

= - ln I T- S ln I

+ - - 2 ln sin

By virtue of the isotropy, the first sums are equal and yield
2y,, while the third is equal to the average over the distribu-
tion of the G matrices: On sin (G x G 6)) . Although the vec-
tors x and 9 are orthogonal, Gx and G 9 have unity probabil-
ity of not being orthogonal, since the matrix distribution is
not degenerate. Therefore (In sin (G x G 9)} < 0 and hence
Yi<Y\- I* follows therefore by virtue of (6.2) that the leading
exponent yl is strictly positive and the least exponent y3 is
strictly negative.

The exponent y2 can be of either sign. When the distri-
bution of the matrices Gn is symmetric with respect to sub-
stitution G,—*G,~l, i.e., when the flow is symmetric under
time reversal, we have yl = — y3 and y2 = 0.

To construct the second basis vector e2 we must consid-
er the action of the inverse matrices Gn ~ ' on the plane con-
taining the vector e3. This yields the maximum compression
plane. For e2 one can choose a vector lying in this plane and
orthogonal to e3.

Similarly, by considering the action of a matrix product
on the parallelepiped formed by the three vectors H0, H0,
H0, we can introduce also a third Lyapunov exponent

Y S = lim i ln |H n | , (6.7)

the projection of Hn on the (Hn , Hn ) plane, which we have
introduced by considering the action of inverse matrices on a
vector.

The third basis vector ̂  is constructed orthogonal to e2

and e3.
c) Evolution of a transport matrix along a random tra-

jectory. The existence of Lyapunov exponents and of a basis
means that as the matrix G, evolves along a random Wiener
trajectory it assumes asymptotically, as t—>-oa, a definite
form that contains exp (yt 1 } as factors. Knowledge of this
form makes it possible to express the Lyapunov exponents in
terms of elements of the matrix G, , i.e., in terms of the char-
acteristics of the velocity field.

To find the asymptotic behavior of the transport matrix
we expand it in terms of simpler components. Namely, we
represent G, as a product of an orthogonal matrix (rotation
matrix) i/by the upper-triangular matrix K:
Gi} (t, It, x, w) =-Utl (t, |t, x, w) Ku (t, It, x, w).

(6.8)
The expansion is technically implemented as follows (see,
e.g., Ref. 84). The rows glt g2, and g3 of the matrix G are
orthonormalized, starting with the upper one, and used to
form a new basis Elt E2, E3. The transition to this from the
initial Ev E2, E3 is via the matrix U. The diagonal elements

of the matrix K have the following meaning: K33 is the length
of the lower rowg3, K22 is the length of the component of the
middle row g2, which is orthogonal to the lower row, while
KI i is the length of the first-row component which is orthog-
onal to gj and g2.

We derive now equations for the evolution of the matri-
ces U and K along a Wiener trajectory. At the instant t + A t
we have

X,

Substituting here the expansion (6.8), using the fact that an
arbitrary matrix can be represented as a sum of an antisym-
metric and an upper-triangular matrix

and letting A t—>0, we obtain the differential equations

^L-UA ~~BKdt ~UA' ~^A' (6.9)

The first is a closed nonlinear equation for the orthogonal
matrix that determines the orientation of the matrix G,.
After solving this equation, we obtain directly from the sec-
ond equation of (6.9) the elements of the upper-triangular
matrix:

= J K- i i (0)exp[reTY J +y r wT ^(nr)], (6.10)

where
nt

V, = H m - l - J B l , ( f i ) d « = <B,l>, i = l , 2 , 3;
ri->oo «o

there is no summation over /, while

has according to the central limit theorem a normal distribu-
tion as H—*oo.

So far we have considered the behavior of a frozen-in
field. To take into account a finite magnetic-diffusivity it is
necessary (by virtue of the independence of the initial distri-
butions of the magnetic field and of the velocity) to average
the function G, = Gn ... Gt over all the random trajectories
that arrive by the instant t at the considered point x. If the
natural condition y2r>vm [see (2.9)], which is equivalent to
Rm>l, is satisfied each function G, deviates slightly from
the corresponding Lagrangian matrix that describes the evo-
lution during one restoration step. Since, however, it is nec-
essary to follow the correct order of the transitions to the
limits («->• oo and then vm —*0), we must prove that the subset
of random trajectories on which the growth rate deviates
considerably from yf has a small statistical weight. The cor-
responding proof is given in our earlier article,82 from which
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it follows that yt (vm)—^ as vm —>0, i.e., the Lagrangian ap-
proach is valid for flow with restoration in the limit of small
magnetic diffusivity.

d) Recurrence. In the absence of magnetic diffusivity
the Lyapunov exponents are not random and by virtue of
homogeneity are the same at all spatial points. The correc-
tions t ~l!zgi (t) to them, however, are random, the trajector-
ies also depend on the time (although the variances £,• do not
increase with time). This means that the field in the liquid
particle does not increase uniformly, and the deviations of
the growth rates are a t ~1/2. Examining the field at a given
point, we also observe this recurrence, inasmuch as different
trajectories arrive at this point at different instants.

Recurrence of the generated magnetic field follows also
from the behavior of the moments of the field. In fact, con-
sider the function

/ (P)=^^ln< |H n |»>, (6'11>

where the angle brackets denote averaging over the distribu-
tion of the matrices Gn. Obviously, y( = Yi) coincides with
the derivative df/dp at zero, and f{p]/p=y>^ determines
the growth rate of the p-ih moment of the modulus of the
field. The function (6.11) for the case of random flows with
restoration takes the form shown in Fig. 8 (Refs. 54 and 82).
It is seen from this that the growth rate is faster the higher is
the number of the moment

ftp]

V < v(2) < •y*4' < . . .. (6.12)

Let us prove that these inequalities remain in force also when
magnetic diffusivity is taken into account in the limit as

The equations that describe the evolution of the tensor
of the equal- time p-moment of the field, mp(t,xl, . . .,
xp )=<#, ( r.xj Hi( t,x2) ...Hip( t,xp )), are obtained by ex-
pressing the field at the instant t = (n + l)r in terms of the
field at the instant NT, in accordance with Eq. (2. 11):

)]

)] n [ x p + lt(xp, vm)]>, (6.13)
where ^(x,.,vm)=;|T(x/,0) + (2vm)1/2o;<:1 by virtue of the
condition y2r>vm , while u»J? are p independent versions of a
Wiener process. For even p, this integral equation has a
symmetric kernel that is expressed in terms of the joint prob-
ability density of the Lagrangian coordinates gr (xt ,0) and
the matrices Gn (x, + y, ), as well as in terms of the Gaussian

P
density exp(- Y yj/4vm ) X (2irTvm )3/2. In view of the

/= i
translational invariance of the flow, the kernel depends only
on the differences x2 — x,, . . ., xp — xv As vm— >0, owing to
the degeneracy of the joint densities, the kernel acquires 6-
like singularities on planes of the type
x,. = x, = . . . = x,-(, /, <,p (because / end points of random
trajectories coincide). The strongest singularity is obtained
when all the points coincide, x, = . . . = xp . Corresponding

p
to this singularity is an "eigenfunction" JJ <5(x,. — xt) and an

-3

FIG. 8. Concave function whose derivative at zero is equal to the field
growth rate, while /(/>)//> determines the growth rate of thepth moment
of the modulus of the field.

"eigenvalue"?4 p) (called the resolvent's singular point).
From the convergence of the integral-operator kernels

as vm— >0 follows also convergence of the eigenvalues

The exponents y*p) increase [see (6.12)] and accumulate
near 7^°°' , which is finite by virtue of the velocity limitation.
It appears that the inequalities y"1 (vm ) < ̂ ^ (vm ) and / <p
hold for all vm < (v^1)^ . We note that the excitation thresh-
olds (VnJcT;' for all the successive moments decrease with
increasing number of the moment (Fig. 9).

Let us explain why the inequalities (6.12) mean recur-
rence in the distribution of H(/,x). For the magnetic-energy
density as ?— »oo we have In <H2(f,0))/f->27(2). The probabil-
ity of finding at the point x a strong deviation from this back-
ground is, according to the Chebyshev inequality

P { I H | (t, x) | >exp exp [-2 (T) - T<2>) t],

whence it is seen that the fraction of the points in space at
which r\ > y (2) ("peaks") is exponentially small and decreases
exponentially with increasing t. Let at the same time vm be
such that /•> > 7(2) and 77 < /". The growth of the fourth
moment is then obviously determined precisely by these
widely spaced "peaks." The energy contained in them is very
high, but in view of the large spaces between the peaks they
make no noticeable contribution to the average energy den-
sity. At still smaller vm there appears an entire hierarchy of
peaks, with the more widely spaced and taller ones responsi-
ble for the growth of the higher moments.

We expect this hierarchy to be infinite for each vm ^0.
e) Remarks on the case of planar motion. It was explicit-

FIG. 9. Expected dependences of the growth rates of the field and of its
moments with decreasing magnetic diffusivity.
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ly assumed above that the motion is three-dimensional. The
statement, however, that the leading Lyapunov exponent is
positive at vm = 0, i.e., that the magnetic field increases
when frozen-in, does not depend on the dimensionality. In
particular, it is valid also in the case of planar flow. At first
glance this contradicts ZeFdovich's known3 antidynamo
theorem, which can be generalized to include the case when
the velocity depends on three coordinates17 and is valid even
if the initial requirement that the magnetic field have no
divergence is dispensed with (remark by U. Frisch).

The paradox is resolved by the fact that the Zel'dovich
theorem requires vm/0, while the limit y(vm )-*Y(0) as
vm—*0 can be taken only in the three-dimensional case. The
qualitative cause is a circumstance known from probability
theory, that two-dimensional trajectories are reflexive and
three-dimensional ones are not. As a result, at vm = 0, two
close trajectories coalesce on a plane and diverge in a 3 D
space. Let us consider the situation in more detail.

Let i\, = £ ('} — £ (,y) be the difference between two tra-
jectories (2.9) that emerge from the points x and y and are
constructed in accordance with two independent Brownian
processes w,(1) and wt

(2). We confine ourselves for simplicity
to the velocity field (5.10) which is <5-correlated in time. For
the mean value t/(f,x — y) = < Mg(i\,)) we then obtain by
the method indicated in Sec. 5 an equation of the diffusion
type with a variable diffusivity coefficient

•|f- = [vm + F(0)-F(r)]Aa, u,=0 = g(r) , r= |*-y | .

The behavior of this process in the two-dimensional case is
qualitatively different at vm = 0 and at vm /O. No such dif-
ference occurs in three dimensions. This difference is easiest
to note in the form of the invariant measure of the process t\,.
It is obtained from the equation A *ir = 0, where
A = \ym + F(0)—F (/•)] A is the generating operator of the
diffusion i\,. We have ir(r) = (vm = F(0) -F(r))~l. The in-
variant measure is bounded from above and from below
when vm > 0. When vm = 0 the function ir(r)~r~2 is inte-
grable as r—*0 in the 3 D case but not in the ID one. The
nonintegrability of ir(r) in the vicinity of zero in 2 D space
means that the process i\, lasts an anomalously long time in
the vicinity of zero, i.e., when vm = 0 two 2 D trajectories
£ <x| and g ̂  come infinitely close as t—> oo. For vm > 0, on the
other hand, as t—>-oo these trajectories have an overwhelm-
ing probability of being separated by a distance of the order
of t ~1/2 in both 2 D and 3 D space.

The difference between the two- and three-dimensional
cases can be explained in a different and a simpler manner.
Let us find the time required for the diffusion process t\, to
emerge from a finite region, a spherical layer S ̂  r < 1. The
quantity T (x) = M r(x), where r(x) is the time required to
leave this region, obeys the equation A T (x) = — 1 with the
condition T=0 on the boundary.46 Since F(0)—F(r)
zzc~ Ir2,c = const, we have in the 2 D case

A"-T , \ AT c

clr2 dr

and in the 3 D case

with identical boundary condition T (S) = T ( 1 ) = 0. The so-
lution of these equations is elementary:
in the two-dimensional case

i.e., the process lasts an infinitely long time in the vicinity of
zero;
in the three-dimensional case

-i

-Inr

A*-T
dr2 dr

Owing to the presence of a qualitative discontinuity
vm = 0, vm 7^0 for 2 D motion, neither the growth rates of
the moment equations nor the Lyapunov exponent y is a
continuous function at the point vm = 0. For the second mo-
ment this can be easily proved also directly.

For 3 D motion, all the probability characteristics of a
single, a pair, etc., of Lagrangian trajectories vary continu-
ously as vm —>0.

7. STATIONARY VELOCITY FIELDS WITH STOCHASTIC
PROPERTIES

The proof of the dynamo theorem was based essentially
on the nonstationarity (restoration) of the random flow. The
case of a stationary random three-dimensional flow as ap-
plied to the dynamo problem is practically uninvestigated.
The distinguishing feature of such flows is the presence of
stationary regions (traps) from which a fluid particle can es-
cape usually only via molecular diffusion.78'79 On the one
hand, in three-dimensional stochastic flows the nearby par-
ticles run off exponentially, i.e., an effect exists that causes
exponential growth of the magnetic field. On the other hand,
the presence of trapping regions that are everywhere densely
filled with individual stream lines decreases greatly the size
of the generated field and enhances the role of magnetic dif-
fusivity. The competition between these two effects can pro-
duce under certain conditions, as already noted in Sec. 4, a
dynamo of intermediate type.

Actually, the noted singularities of stochastic flows are
possessed by trajectories of velocity fields describable by
nonrandom smooth functions. A simple example of such a
flow was indicated by V. I. ArnoPd and was numerically
investigated in Ref. 80:

v = (A cos y + B sin z, B cos z

+ C sin x, C cos x -\- A sin y). (7.1)

When none of the constants A, B, and C is zero, for exam-
ple if A=B — C—\, the field streamline equations (7.1)
have no integrals (i.e., the velocity field is essentially three-
dimensional) and finite regions exist, each of which is filled
densely everywhere with an individual stream line. We note
that div v = 0 and that curl v = v, i.e., this field has maxi-
mum vorticity. This, however, is still not enough for a fast
dynamo.

Before we discuss the direct solution of the dynamo
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problem in the velocity field (7.1), we consider a simplified
modification of this flow57 which, albeit formally exotic, re-
veals clearly the main features of the evolution of the mag-
netic field.

a) Role of shift and of exponential stretching of fluid
particles. Let the flow region be a three-dimensional com-
pact manifold which is constructed in Cartesian coordinates
as a product of a two-dimensional torus (x,y^)—+(x + l,yj),
(x,y + l,z) by a segment 0<z< 1, with the end-point tori iden-
tified in accordance with the rule

(x, y, z) -+ (2x + y, x + y, z + 1), (7.2)

i.e., with some twist. We consider thus a flow that is periodic
in x and>>, and subjected when shifted along z to the transfor-
mation (7.2) that conserves area and has eigenvalues

2.11, X2=

If x and y are replaced by coordinates directed respec-
tively along the eigenvectors corresponding to/l2 and Aj, one
can define in the manifold under consideration a Rieman-
nian metric that is invariant to the transformations of x, y,
and z written out above:

= In 0.75. (7.3)

In this Riemannian space the flow takes the very simple
form y = (0,0,y), where v = const, i.e., div v = curl v = 0. It
is important, however, that owing to the non-Euclidean
character of the metric each liquid particle is stretched in the
q direction and compressed in the p direction. The shift of v
is specified explicitly, and the tension is produced by the
metric properties of the space.

The tension, obviously, does not act on the z-compo-
nent of the magnetic field, so that this component is damped.
An equation for the /7-component of the field is obtained
from the equation for the ^-component by letting//— »• — //. It
suffices therefore to consider the evolution of
H )=-ff in the Riemannian metric (7.3):

(7.4)

The solution, naturally, is periodic in x and y or in p and q,
wherein all but the zeroth harmonic should decrease with
increasing |z . The last requirement follows from the condi-
tion that H be analytic and from the property (7.2) accord-
ing to which a shift along z is equivalent to raising the
numbers of the harmonics.

Equation (7.4) has growing solutions that are periodic in
z only if the initial field is independent of x and y, i.e., it
corresponds to a zeroth harmonic unbounded in z.

From the viewpoint of the dynamo problem, however,
greater interest attaches to solutions that decrease with |z|.
It might seem at first glance that it is always possible to
choose vm or the number of the harmonic such as to obtain
an exponential growth because of the term /j,vH that de-
scribes the action of the exponential stretching of the parti-
cles on the field. The shift along z (the term vd /dz), however,
is equivalent to raising the numbers of the harmonics of the
expansion in x and y at fixed z. Therefore any harmonic (ex-
cept the zeroth) moves in the course of time into the region of

ever increasing wave numbers, where the dissipation
vm (V2 — fj2} H becomes substantial.

For a perspicuous illustration (see Ref. 57 for a more
rigorous treatment) of the pernicious action of a constant
shift we transform from H to the variable T
= H exp ( — fivt + fi2vm t ) and replace the dissipative term

in (7.4) by a one-dimensional one, i.e., we consider an equa-
tion of the heat-conduction type

and stipulate here T(0) = T(l)=l, which is equivalent to a
decrease with |z| . The solution of this problem, say by separ-
ating the variables, is trivial. As a result we have

T (z, J) = exp ( — -^ — t — ji2«2vra£ + 9—
V ^^ro "^m

71=1, 2, ...

We have thus for the variable H <x exp (yt )

4vn
— [i-vra.

The function y(vm) has the characteristic form shown in Fig.
5b of Sec. 4. As vm —>0 and y—>• — t>2/4vm, the maximum is
reached at vm = v/2^Jwi + fi2 and is equal to ym&^
= [fj, — (a2 + //2)1/2] v, i.e., a dynamo is impossible here. A

more detailed analysis of the problem (7.4) shows that by
virtue of the exponential decrease of the wave numbers,
k = kf, exp (ftvt), most harmonics of the magnetic field at-
tenuate very sharply, like exp ( — vmk2(t)t), i.e., likean expo-
nential in an exponent. The resultant exponential damping is
due to harmonics that have near-zero wave numbers. This is
similar to the situation in the problem of the linear velocity
field (see Sec. 3), except that there (vf = cikxk} the shift was
not constant but tended to zero as x—*Q and to infinity as
X—»-oo.

b) Intermediate dynamo in periodic flow. Numerical in-
tegration of the induction equation in a velocity field (9.1)
with A = B = C = 1 was carried out in Ref. 37. The eigen-
value with the largest real part was calculated for the opera-
tor (vV)H — (HV)v + vm V2. Disregarding for a while the
zero eigenvalue,81 the critical value of the Reynolds number
at which Re y becomes positive is approximately (Rem)
crit=;27. We consider in this case precisely Rem =/y/vm

rather than vm ~', because the velocity field (7.1) has a spe-
cial symmetry that makes the characteristic scale equal not
to the lattice period ITT but one-third as large. In addition, we
note that in/3. The maximum growth rate is reached when
Rem is of the order of 40, and at Rem ~ 60 Re y again be-
comes negative. We note that (Re y)max turned out to be very
small, of the order of 10"2. In addition, Im y exceeds Re y by
approximately two decades, i.e., the solution oscillates very
rapidly in time.

It is instructive to compare this result with the behavior
of the growth rate in the model example of the preceding
section, where y [see (7.5)] turned out always to be negative.
This is due to the fact that the exponent/u, which character-
izes the stretching of the stream, is real. For the velocity field
(7.1), the corresponding quantity is complex. It is easy to
verify with the aid of (7.5), by choosing/* complex, that Re y
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can have a positive maximum and in this case Im y must
without fail be large.

Simple dimensional estimates show that the same be-
havior of y(vm) as vm->0 as in (7.5) should also be expected
for the field (7.1). Indeed, during the first stage of the evolu-
tion of a smooth initial field it becomes enhanced because of
the exponential run-off of the fluid particles and the simulta-
neous reduction of its scale. This reduction of scale in the
presence of magnetic diffusion cannot continue infinitely
and must be stopped by the diffusion. For that eigenfunction
having the largest eigenvalue which describes the field be-
havior over long times, the contribution of the term vm V2//
should be one of the principal ones. It is easily seen, however,
that it can compete with the principal term (y-V) H only if the
characteristic scale of the field is of the order of vm (and not
of vjn as usual) and if y~vm ~l. Since the generator term is
small in this case ((HV)v/vm AH~vm), it drops out of the
induction equation and y turns out to be negative.

A hypothesis was advanced in Sec. 4 (Fig. 6b) that this
behavior of the growth rate for an individual mode can be
combined with a regime of change of modes. As a result,
even though y decreases for an individual mode, the values
of (Re 7)max for different types of modes approach asymp-
totically as vm—>0 a growth rate that is independent of vm

and is typical of the fast dynamo. We present some argu-
ments in favor of this hypothesis.

As shown in the model example of Subsec. (a), Re y
becomes negative ( — v2/4vm) because of the presence of the
shift term. In the real flow (7.1) this term cannot vanish at
nonzero A, B, and C because there are no velocity-field
integrals. It is natural to assume, however, that each suc-
ceeding mode with a smaller characteristic scale decreases
the contribution of this term, so that |(vV) H\~8nvkH,
when 5n are successively decreasing numbers. In the model
example given above Sn =1. We have then in place of (7.5)

rn — t*"— -n 4vm V""

Recognizing also that the exponent for the velocity field ex-
pansion is complex, // =// j + ifiz. We find that the maxi-
mum growth rate of the nth mode is reached at Rem

= 2aS ~', a E= ̂ n\ — fil + -n^n2. In this case (Re y)max

= //!« — Snva^fiiV, while (Im y)max = — /j,2v(Snfi1a~1

— 1) is large at small n and tends to/j,2v as «—>•<».

8. CONCLUSION

Let us formulate once more the main results reported in
this paper.

A magnetic field contained in a random statistically ho-
mogeneous stream with a finite correlation time increases
exponentially with time in the limit of large magnetic Reyn-
olds numbers. The distribution of the generated field is re-
current, i.e., inhomogeneous in space and time. This is mani-
fest in the fact that the higher moments of the field have
higher growth rates. In particular, the fraction of the volume
which contains practically all (say, 90%) of the generated
energy decreases exponentially with time.

The results were obtained not by solving directly the
induction equation in a specified velocity field, but by using

modern ergodic-theory methods to investigate the asympto-
tic behavior of the product of a random operator. We note
that similar methods were successfully used in quantum the-
ory of disordered systems (the theory of Anderson and
Mott). Similar effects can be expected in a large class of prob-
lems in which equations with random operators are used
(problems of heat conduction, separation of matter by gra-
vity, and others).

We thank Ya. B. Zel'dovich for a discussion of the work
and for helpful critical remarks.

"More accurately, one should speak of an increase of the dimensionless
magnetic Reynolds number Rem = lv/vm , by measuring y in units of v/
I, where / and v are the characteristic scale and velocity of the flow. Here
and below y and vm are expressed in these units.

2)Such an initial field is generated by current distribution in a finite vol-
ume. A slower decrease of the field may turn out to be insufficient. In the
trivial case (ff1)0 = ff0, ff2 = H3 = Q there always exists a solution

3>Naturally, solutions of the type f expfyf ) are possible, which in particu-
lar can be of a power type for y = 0. However, this latter case is degener-
ate since usually y can vanish only for a certain "critical" value of vm .

"'Generation by a stream concentrated in a bounded region requires a
sufficiently large region and a sufficiently small vm, and this imposes
restrictions on the two numbers Rem and Ra .

''Examples of such matrices are the rotation matrices Uot matrices of the
form Gn — A Un A ~ ', where A is a constant matrix. For such matrices
we have

6)If only the exponent ft 's of interest, it can be derived from Eq. (6.2)
alone.
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