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The Fermi surface and the p-space region adjacent to it shape the spectrum of the elementary
excitations of a metal, the fermions (electrons and holes), as well as the bosons (phonons). Elec-
tron-phonon interaction renormalizes the dispersion laws of the elementary excitations. Their
lifetime therefore becomes finite and the dependence of the energy on the quasimomentum has
singularities. The features of these singularities are intimately related to the local geometry of the
Fermi surface (to its shape, curvature, presence or absence of lines of parabolic points); this
distinguishes them from other singularities (e.g., those due to phonon-phonon interaction). A
unique role is played by the singularities, due to parabolic points on the Fermi surface, of the
sound velocity as a function of the propagation direction, since these singularities are produced by
electrons that have an infinite lifetime in a perfect crystal. The results cited formulate the general
premises concerning the elementary-excitation spectrum of a metal and continue in this sense the
semi-phenomenological approach developed by I. M. Lifshitz and his school.
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1. SIMPLEST MODEL .̂ _ /.£L)1/2 ̂  1 ^^l^
. , , . „ . _, , . , "F I M I ^ l' eF ( M

The simplest but quite productive model of a metal
combines the Drude-Lorentz-Sommerfeld approach with These estimates remain valid also in a more realistic study of
the Debye approach. The metal electrons are characterized electrons and phonons, and corroborate the adiabatic ap-
in this model by their density n, i.e., the number of electrons proximation that permits the use of perturbation theory
per unit volume (for monatomic metals it is usually assumed when the electron-phonon interaction is taken into account.
equal to Z /a3 = Zni , , where Z is the valence of the metallic Figure 1 shows the described single-particle spectrum of the
atom, a3 is the volume per atom of the crystal cell, and nt is model "metal."
the ion density). The phonons are characterized by the De-
bye temperature 6 (or frequency a>D , with 6 = ̂ D , or by 2- CONDUCTION ELECTRONS-QUASIPARTICLES
the speed of sound s). Assuming the metal-electron mass to According to the contemporary representation of a
be equal to the mass m of the free electron, we can calculate metal21 (see Ref. 1 § 61), the conduction electrons form a
the Fermi energy £F of the conduction electrons and their Fermi liquid, while the individual carriers are quasiparticles
velocity vp, as well as the Fermi momentum pF (it is deter- that obey Fermi statistics (fermions). Their states are de-
mined by the density n ): scribedin terms oftheband theory by the quasimomentum p

pp = (3n2w) !/3 H = (3xi2Z) </3 a/ a t and by the band number a, and are frequently designated by
Pp P| \a, p); we denote the number of electrons in a state a, p) by

VF = ~HT ' EF = ~2^T • «»„ . with «Po = 0 or 1 . The ground state of the electron sub-
The maximum wave vector in the Debye model is km system of a metal is similar to the ground state of a Fermi
= (67r2)1/3/a. Therefore gas: the Fermi surface

(2) ea(p) = ep (4)

Owing to the substantial differences between the electron
vand ion masses (A/>m) we have11 separates the occupied states from the free ones (nv = 1 at
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FIG. 1. Electron and phonon spectra of a model in the Drude-Lorentz-
Sommerfeld-Debye model (schematic), a) Dependence of electron (E) and
phonon (fey) energies on the momentum at fikm >/>F; b) dependence of
electron (hole) and phonon energy under the same conditions. The letters /
and t mark the phonon polarization.

£a (p) < £F and nVa = 0 at £a (p) > EF ). If the energy bands
overlap, the Fermi surface can have cavities in certain bands.
The local minima of the dispersion law £a = ea (p) can cause
several cavities to the present in one band (with the same
number a). The total volume TF of the Fermi surface obeys
the Luttinger theorem2:

ZTP -~ (5)
(2nh)3 e'

where «e is the number of electrons in the partially filled
bands (ne = 2a na, na is the number of electrons in band a,
and the summation is over only the partially filled bands).

It must be emphasized that the existence of a Fermi sur-
face does not mean neglect of the interaction between the elec-
trons. The quasiparticle energy ea (p) takes into account not
only electron-ion interaction but also interaction of elec-
trons with one another. The most important feature of the
ground state of a metal can be the fact of partial filling of its
quasimomentum space (of the periodic p space). Excitation
of the electron system of a metal means "creation" of elec-
trons and holes,3' and their energies of p — p£ 14fi/a are

S(P) =
a (P) —f 6a (P)

\eF — e . (P) :

(p-p«)v«
: (Pp — P)v£

(for electrons) ,
(for holes) (6)

and are linear functions of the quasimomentum; p£ is a point
on the ath cavity of the Fermi surface, and

,.a_. d£g(p)
F ~~ SP n n«v P=Pp

(7)

is the electron velocity and coincides with the normal to the
Fermi surface (we note that ga (p) > 0).

In the case of degeneracy, the Fermi surface has self-
intersection points that are as a rule conical (see Ref. 3, § 2).
Near these points, the electron and hole dispersion law is
quadratic (an example is graphite, whose Fermi surface has
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conical points; see Ref. 3, § 11, as well as Ref. 4). The charac-
teristic interval over which the electron or hole energy J"a (p)
varies is determined by the band structure. In good metals
the width of each band is of the order of the atom energy
ea ~h 2/ma2~e2/a. The interaction between the electrons
complicates not only the actual calculations but also the
principles underlying the description of the electron system
(in the sense of transforming from particles to antiparticles),
but does not change the order-of-magnitude estimates; the
average electron-electron interaction energy involved in the
Fermi-liquid description is approximately equal to the aver-
age energy of the interaction of the electrons with the ion
core. The spectrum structure is made much more complicat-
ed by the periodicity of the space in which the electrons
move. The Fermi surface is a periodic structure with a period
specified by the crystal geometry:

where b is an arbitrary reciprocal-lattice vector. The mini-
mum length of the reciprocal-lattice vector is ~ I/a. There-
fore H/a is the characteristic dimension of the Fermi surface.
For open surfaces it is the period, and for closed ones it is the
size of each cavity that repeats periodically in each unit cell
of p space. (Depending on their geometric properties,3 we
can have open or closed Fermi surfaces and electron or hole
Fermi surfaces.41 Metals whose hole and electron parts of the
Fermi surface are equal are called compensated.) Crossing or
near-crossing of the bands can change these estimates some-
what: most metals have besides "large" cavities also some
whose sizes are considerably smaller than those of the reci-
procal-space cell.5 Investigation of magnetic breakdown6

has shown that Fermi-surface cavities of different bands
(a 7^a') very frequently come close to one another and the
barriers between them are small. As a rule, however, the
smallness referred to here does not alter greatly the estimates
based on the gas model (see above); viz., even on a small
Fermi-surface cavity the electron velocity exceeds greatly
that of sound, and the electron effective mass m* is of the
other of the free-electron mass m51 and is considerably less
than the ion mass M. Naturally, the condition (m*/M)' /2< 1
under which the adiabatic approximation holds remains val-
id.

The remark concerning small cavities of Fermi surface
does not apply to metals of the first group of the periodic
table (1A: Li, Na, K, Rb, Cs and IB: Cu, Ag, Au)—their
Fermi surfaces simply have no cavities. This well established
fact is explained by band calculations based on the electron
structure of metallic atoms.7

3. PHONONS

The oscillations of metal ions can of course not be de-
scribed quantitatively by the Debye theory. One must start
from the real periodic arrangement of the ions in the crystal
lattice. The vibrational spectrum of a crystal is determined
by the dependence of the oscillation frequencies on the
quasiwave vector61 k (^k is the quasimomentum):

wv = o)v(k), v= l , 2, ..., 3r, (9)
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where r is the number of ions in the unit cell. For three of
these branches (the acoustic ones) the frequencies vanish at
k = 0 and are linear in k at ak< 1:

wa = sa(n)A:, a=l , 2, 3; n = -^; (10)

sa (n) is the sound velocity of the ath branch. The choice of
the origin in periodic k space is arbitrary (the periods, natu-
rally, are equal to 2-Trb). It would therefore be more accurate
to say that the k-space cell contains a point at which the
frequencies of three out of the 3r vibration branches vanish
in accord with Eq. (9) (if the quasiwave vector is reckoned
from this point). This point coincides with the center of the
first Brillouin zone of the crystal. With the origin so chosen
in k space, the quasiwave vector k is fully equivalent to the
wave vector of a macroscopic sound wave if ka-41. This cor-
respondence allows us to derive the elasticity-theory equa-
tions from the dynamic equations for crystal-lattice vibra-
tions (see, e.g., Ref. 9).

Quantization of the ion-displacement waves introduces
phonons, which are particles that obey Bose-Einstein statis-
tics (bosons), and whose occupation numbers JVkiV deter-
mine the degree of excitation of the crystal lattice (N^ v

= 0, 1, 2 , . . . are integers). In the ground state there are no
phonons at all: JVk> v = 0—the space of the quasiwave vectors
is empty. Of course, this does not mean that the ions do not
execute zero point oscillations.

The conduction electrons must be taken into account in
the calculation of the dynamic matrix of a crystal, if for no
other reason than that the electrons compensate for the Cou-
lomb repulsion of the ions and a stable system of positively
charged ions could not exist without electrons. The electron
and phonon spectra must be calculated in a self-consistent
manner. The basis of such calculations is the adiabatic ap-
proximation, which makes possible the use of some variant
of perturbation theory (see, e.g., Ref. 9). In the simplest but
physically quite lucid approach, the role of the electrons (in
the calculation of the phonon spectrum) reduces to screening
of the field produced by a vibrating ion.10

4. ELECTRONS, PHONONS, AND ELECTRON-PHONON
INTERACTION

An established tradition completes the self-consistent
calculation of the energy spectrum of a metal by formulating
the Hamiltonian of the quasiparticles [of the fermions (elec-
trons and holes) and of the bosons (phonons)]

a, p

where a^f and aaf are the fermion operators for creation and
annihilation of an electron in a state \a, p) [or of a hole,
depending on the value of p; see Eq. (6)], the spin index being
included in a; £ £, 6^ are the boson operators for creation
and annihilation of a phonon in a state | v, p). When compar-
ing (9) with (10) it must be recognized that p = #k for phon-
ons. The Hamiltonian ^in, describes the interaction
between the quasiparticles. Expression (11) is somewhat ar-
bitrary. To make it more specific it is possibly necessary to
use different expressions for ^int in the electron and
phonon Hamiltonians (cf. Refs. 44 and 45). ̂ "int has terms

that contain more than two creation or annihilation opera-
tors (anharmonicities). It is natural to distinguish between
the phonon-phonon interaction

It 2. 3 ' ' 2

the electron-electron interaction

1, 2; 3. 4

and the electron-phonon interaction, the one in which we are
mainly interested:

The terms with the smallest number of creation and annihil-
ation operators have been written out. The subscripts 1, 2,
3 , . . . designate at,pl etc. or v\ p j etc. The summation over
the PJ is within the limits of one unit cell. The amplitudes
3>. . . ,*. . . , A . .. must each contain a factor that ensures
the quasimomentum conservation; for example, for phonon-
phonon interaction

where b, as always, is the reciprocal-lattice vector, such that
all the vectors of the initial and final states are in one unit cell
of p space.

We have already noted that a detailed treatment of the
electron and phonon spectra of the metal does not change
the results based on the simplest estimates [see Ftn. 1)].
Therefore

h
(15)

am ' a /Mm ' "•

Since a ~ 1f/e2m, the last estimates can be recast in the quite
simple form

i
TsT

e~

c . /~ mc' s ~ w K ~M '
me* -./~~m~ _J e>_

(137)2 V M ' 137 ~ he (15')

For order-of-magnitude estimates of the lattice anharmoni-
cities [of the coefficients in (12) and (14)] we note that the
operator of the (v, k)th Fourier component of the displace-
ment vector is proportional to (b £ + b^/2, and the pro-
portionality coefficient is of the order of

/:MN (Bv(k) '

./Vis the number of crystal cells. Using this, we obtain11

(16)

We have left out the factor N~112, which is cancelled out in
the calculation of an actual process on account of the sum-
mation over the quasimomenta. In addition, the estimate
(16) does not contain any dependence on the quasimomen-
tum; such a dependence can decrease substantially the am-
plitudes (for example, when dealing with emission of a long-
wave acoustic phonon, the amplitude A ... contains an
additional factor ak; see Ref. 12, § 79).

The electron-electron interaction amplitude ^ . . . is
determined by the Coulomb interaction between two elec-
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FIG. 2. Schematic representation of electron and phonon spectra of met-
als, a) The electron Fermi surface encloses the origin; b) origin outside the
electron Fermi surface (the electron and hole branches change places in
the case of a hole Fermi surface). Insets—Fermi surfaces. The dashed lines
show the direction in which there are no holes and the electron energy
differs substantially from the Fermi energy. The region of states occupied
by electrons (e < eF) is shown shaded in the insets.

trons; to be sure, some part of the interaction "entered" in
the dispersion law of the quasiparticles (electrons and holes).
In addition, at large electron-electron distances the interac-
tion is certain to be neutralized (screened) by redistribution
of other electrons7' (all the remaining ones, except the two
considered131.

It might seem that a characteristic feature of the Hamil-
tonian (11) with the interaction specified by Eqs. (12)-(14) is
that the electron-phonon and electron-electron interactions
are large,8' thereby casting doubts on the possibility of using
the concept of almost-independent quasiparticles (electrons
and phonons). Actually, however, in all but exceptional
cases (on some of which we shall dwell below) the substantial
difference between the electron and ion masses makes the
interaction effectively small, and in the treatment of elec-
trons the small parameter is not *, but the degree of excita-
tion of the electron subsystem, T/Ep andg/Ep respectively
when macroscopic or microscopic problems are solved (7"is
the temperature). In other words, an important role is played
by the degeneracy of the metal electrons, which makes the
number of quasiparticles (electrons, holes) small and their
interaction therefore not too large.

In nature there are no ideal defect-free metals, infinite
crystals, absolute zero temperature and other objects simpli-
fied at the will of the theoretical physicist. In the study of the
spectrum of elementary excitations of a macroscopic body,
however, it is natural to start out with just a scheme that is
simplified to the limit. We shall assume therefore that the
metal is at zero temperature and has no defects whatever.
This simplification enables us to investigate just those intrin-
sic dissipation mechanisms that are possessed by even an

ideal body and limit the lifetime r of the quasiparticles.9'
Comparison of the time governed by the intrinsic dissipation
mechanism with that governed by defects makes it possible
to ascribe a quantitative meaning to the concept of a "defect-
free crystal." The assumption T = 0 is not only convenient
but also natural for the investigation of the properties of
individual quasiparticles.

5. LOW-ENERGY STATES

Figure 2a shows the dependence of the metal-quasipar-
ticle energy on the quasimomenta, neglecting the anharmon-
icities, in a "good" crystallographic direction. Although the
figure is reminiscent of Fig. Ib, there are substantial differ-
ences, principal among which is the anisotropy: at another
direction the dependence can differ not only quantitatively
(in the values of all the parameters) but also qualitatively.
For example, if the cavity of the Fermi surface does not con-
tain the origin (we recall that the latter is set by the phonon
branches), there may be no electrons (or holes) at all in some
direction, while in another direction the number of electron-
hole branches is doubled (Fig. 2b).

We confine ourselves to a discussion of only the metal
states with the lowest energies (e ̂  0). If the metal has several
atoms per unit cell, it is necessary to add the optical branches
to the acoustic branches of the phonon spectrum (see Figs. 1
and 2).

Phonons are quanta of matched oscillation of the ions
and electrons that maintain the local neutrality of the metal
(see below). An electron liquid can contain also oscillations
of another type, relative to practically immobile ions. These
oscillations, which are typical of any two-component plas-
ma, have as a result of violation of the local neutrality high
frequencies co~(oi = (4ir«eVm)1/2. The energy of the plas-
mons (of the quasiparticles corresponding to these oscilla-
tions) is of the order of the Fermi energy:

-— ~eF,

since

(see above). The plasmons are therefore not shown in Figs. 1
and 2.

Under certain conditions,14 quasiacoustic electron-hole
oscillations with a linear dispersion law might apparently be
observed in compensated metals (the amplitude of the
charge-density oscillations in these modes is zero). To our
knowledge, however, these oscillation branches have not yet
been observed.

By placing the metal in a magnetic field we change the
character of the electron motion in it. The electron rotation
at the cyclotron frequency coc =eH /m*c makes possible the
existence of a variety of undamped waves in the conductors,
and quantization gives rise to unusual boson quasiparticles
(helicons, dopplerons, and others) with energies consider-
ably lower than EP and feoL. Were we to investigage the
influence of the magnetic field, these quasiparticles would
occupy "important" positions in the figures and in the expo-
sition. We note only, however, that both the plasmons and
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the quasiparticles brought about by the magnetic field are
modified photons—electromagnetic-field quanta101 (an ex-
ception is the longitudinal plasmon, whose motion is not
accompanied by oscillations of the magnetic field).

The Bose modes are not confined to phonons, even in
the absence of a magnetic field. If the metal has a spin struc-
ture, the oscillations of the average magnetic moments (spin
waves) generate distinctive quasiparticles, magnons, which
obey Bose-Einstein statistics. The characteristic magnon en-
ergy (the analog of the Debye energy) is determined by the
Curie temperature Oc (for ferromagnets) or the Neel tem-
perature 0 N (for antiferromagnets. As a rule 0 c, # N <£F, and
in this sense magnons are similar to phonons. Assuming that
the investigated metals are paramagnets, we shall not deal
with the magnon branches of the spectrum.11'

A unique place among the low-energy oscillations of the
electron subsystem of a metal is occupied by oscillations of
the conduction-electron distribution function; these oscilla-
tions can be called "quasiwaves." Let/k (p, t} be the kth com-
ponent of the nonequilibrium part of the electron distribu-
tion function. In the collisionless limit it can oscillate at a
frequency that depends both on the wave vector k and on the
quasimomentum p (see Ref. 19):

co = kv (p). (17)

This relation can be treated as the dispersion law of the
"quasiwaves." If the electron system is taken out of the equi-
librium position and left "to its own resources," it oscillates,
after the magnetic fields have decayed (in a time determined
by the Landau damping19', at frequencies given by Eq. (17).

If the initial perturbation is weak enough and the oscil-
lations are linear, the degeneracy of the electron liquid sin-
gles out the Fermi velocities from among all the others, i.e.,

co = kv(PF) (17')

(pF belongs to the Fermi surface). Although electron density
does not fluctuate when "quasiwaves" propagate, the
"quasiwaves" are quite real. Thus, second absorption by
metal electrons is in the collisionless limit (see below) is in
essence a resonance between the sound wave and the
"quasiwave." We shall return below to the role of
"quasiwaves" in the high-frequency properties of metals.

6. INTERACTION: RENORMALIZATIONS AND
SINGULARITIES

Strictly speaking, ga (p) and &uv(p) are not the energies
of the quasiparticles (of the electrons, holes, and phonons,
respectively). The interaction described by <%"int renormal-
izes the quantities ga (p) and fuav (p), and is in addition the
cause of the quasiparticle finite lifetime. The most striking
example of renormalization is the appearance of the gap A in
the hole or electron spectrum, due to production of Cooper
pairs, and hence to the transition to the superconducting
state (see, e.g., Ref. 1, Chap. V). Although this phenomenon
is the consequence of electron-electron interaction via ex-
change of virtual phonons, its description is outside the
scope of the present article. We confine ourselves to describ-
ing the electron and hole spectrum in the superconducting

FIG. 3. The superconducting gas A is many
times smaller than the Debye energy.

state (Fig. 3) and emphasize that we are mainly interested in
electrons and holes having energies substantially higher
than the gap A, the latter being of the order of one or several
degrees. From among the characteristic energies encoun-
tered in this context, the lowest is ms2~ 10 K, and in the
overwhelming majority of cases larger than A. Failure to
take the Cooper pairing into account calls for no justification
at all if we confine ourselves to metals that do not become
superconducting even at absolute zero—there are quite a few
of them.

Before we report the results of a number of specific in-
vestigations of electron and phonon interactions, we make
two essential remarks.

First. Special attention will be paid to long-wave phon-
ons. They can be treated classically, for at ak^l the
quasiwave vector k = p/# coincides with the true wave vec-
tor (see below), and a second wave with definite values of k
and co can regarded as a coherent state of a large number of
phonons (M>1).

The second remark pertains to the quasimomentum de-
pendences of the quantities ga (p) and &yv(p). To analyze the
analytic properties of the excitation spectrum it can be as-
sumed that the periodic functions ga =£a(p) and fuav

= &yv(p) have no singularities,121 or if the latter are un-
avoidable, they are weaker than those resulting from the re-
normalization due to Jfint (see below).

The functions ga (p) and &av(p) can apparently acquire
singularities either because of the approximate calculation
method (these will be simply disregarded, assuming that the
calculation is consistent enough13', or because the momen-
tum space of the electrons in the ground state is not uniform-
ly filled (a dynamic calculation of the metal characteristics,
with account taken of the interaction between all the crystal
particles, can include integration over the p space whose in-
homogeneous filling—the existence of a discontinuous Fer-
mi step—can in principle be the cause of the singularities.14'
We shall verify, however, that the singularities referred to
below are connected as a rule with integration over the Fer-
mi surface; their character and position in the p space of the
phonons and electrons are determined by the local structure
of the Fermi surface and by its dimensions. It is assumed that
the functions J"0 (p) and fitov (p) do not have these singulari-
ties.

We repeat: the quasiparticle interaction described by
the Hamiltonian 3f-mi renormalizes the dispersion laws of
the electrons (holes) and of the phonons, and also limits the
quasiparticle lifetime. We shall write down the standard
equations for the imaginary parts of the electron and phonon
energies, for owing to the presence of the <5 functions corre-
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spending to the energy conservation law their analysis is
more lucid than the analysis of the expressions for the renor-
malization of the energies themselves (of the real parts), and
the singularities of the energies can be investigated by using
the integral relation between the real and imaginary parts
that generalize the Kramers-Kronig relations.151 We shall
use perturbation theory, since an additional complication
does not change the qualitative picture, and in most cases
there is simply no need to go beyond perturbation theory.

Thus

X6 (e (p)-e (p')-foov (p-p«)) (1 -rap-),

(18)

(q) = — n

where

and A^p, tends to the deformation potential as p'—>• p and is
of the order of £F (see Refs. 20 and 21), and/? is the density of
the metal [by comparing (18) and (19) with (14) we easily
establish the connection between the amplitude AI ...,
A11 ..., and M...; we have confined ourselves to the one-
band approximation only to simplify matters, and have
therefore left out the band-number index a]; just as before,
np is the Fermi step; the phonon quasimomentum is desig-
nated by q. Expressions (18) are written not in terms of elec-
trons and holes. The notation used here is more convenient
for geometric interpretation. It is clear that by adding and
subtracting the energy £F in the argument of the S function
we can easily transform from f(p) to § (p) [cf. Eq. (6)].

Of course, the electron-electron and electron-phonon
interactions (12) and (13) also contribute to Imf(p) and to
Im fuov (q). They have been left out, since we wish to focus on
the electron-phonon interaction. To be sure, it must be borne
in mind here that the electron-phonon damping mechanism
is the basic one only at |f(p) — £F \ > ms2, and that at lower
energies the principal role is assumed by the electron-elec-
tron interactions, particularly via phonons,22'21—this inter-
action leads to a quadratic relation for Im £(p):

(20)

7. ELECTRON-SPECTRUM RENORMALIZATION DUE TO THE
ELECTRON-PHONON INTERACTION

The influence of the electron-phonon interaction on the
electron spectrum was investigated by Migdal,22 who as-
sumed a quadratic and isotropic electron spectrum and De-
bye phonons. The renormalization was reduced, naturally,
to renormalization of the effective mass. The equations ob-
tained by A. B. Migdal were generalized in Ref. 21 to include
the case of arbitrary electron and phonon dispersion.

At first glance, the concepts "renormalization" and
"arbitrary dispersion law" are incompatible. What sense is

FIG. 4. Illustrating expression (18): integration region in p' space as
|f(p) - £f \-f 0 (shaded). 1) e(p') - e(f) surface; 2) surface (23); 3) Fermi
surface.

there in renormalization of the function E = £(p) if it is only
assumed known, even though in fact very little is known of
it? (We refer not so much to the approximate numerical val-
ue of s(p) as to the functional dependence of £ on p.)

The point is that the renormalization covers a small p-
space region directly adjacent to the Fermi surface A/>
~fkt>D/vf, and in this interval the renormalization Se(p)
changes by an amount ~fuoD. This leads to a finite (in the
m/M scale) change of the electron velocity: only if A/>>m.s
does the velocity "take on" its value v = d£/dp which is not
perturbed by the phonons (see Refs. 22 and 21). In addition,
the smallness of the interval A/> affected by the renormaliza-
tion allows us to obtain for Re SE an expression in the form of
an integral over the Fermi surface22:

.P,!PF I Inm
e(p) — pp)

from which it follows that

Re Se(p)~{
e(p) — sf

(e (p) — ep)
at
at

|e(p) — 8F

| & (p) — ep | > TJCQD.

(21)

(22)

As shown in Ref. 21, the transformation from one relation to
the other must be accompanied by a singularity, possibly by
more than one (see Sec. 8).

8. ELECTRON LIFETIME AND ITS SINGULARITIES

Let us return to Eq. (18). The presence under the inte-
gral sign of a S function and of a factor (1 — np,) that is non-
zero at f(p') > £F shows that the integration is carried out (in
p' space) over that part of the surface

6 (p') + fta (p - P') = 6 (p), (23)

which lies outside the Fermi surface. Since -fuaD <£F, the
surface (23) is close to the equal-energy surface

e (p') = e (p), (24)

and if the interaction is with acoustic phonons,16' the two
surfaces are tangent at one point. As |f(p') — e(p)|—>• 0, the
surface (23) near the tangency point is the cone

Apn= -^fpj I P-Pe |, Apn = p;-pn; (24')

p'n and />„ are the projections of the vectors p' and p on the
normal to the surface (34) at the point p, while p£ is a point on
the surface (24). According to (18) we have (Fig. 4)
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Im6e(p)«MPF) | e (P ) -eF l 3 , I e (p) -eF |

A. (PF) = -- Q /

TABLE I.

Im Se(f)

Re 5e(p)

Jump to derivative

Aln(eF/|A|)

Aln(£F/ |Aj)

Jump to derivative

? = v (PF);

here pF is the quasimomentum corresponding to the Fermi-
surface point closest to p (p and pF lie on the same normal to
the Fermi surface; SB = s^/(\F/vF) is the sound velocity in
the direction of the normal, and the summation is over the
three acoustic branches). Equation (25) generalizes Migdal's
result (see Ref. 22) and shows that the cubic dependence of
Im <5e(p) on |f (p) — ef \ is not connected with any simplifying
assumptions concerning the conduction-electron spectrum.
It can be seen that the local properties of the Fermi surface
manifest themselves via the factor A (pF ), which of course
change as p "moves" around the Fermi surface, but if the
Fermi surface is smooth there are no grounds for expecting
A (pF ) to have any singularities at all. If, however, the Fermi
surface has a conical point pF at which the velocity vanishes,
Eq. (25) no longer holds for quasimomenta p that are close to
pp . It can be shown that in a small p-space region around the
conical point the imaginary part of 8e(p), which is due to
electron-phonon interaction, is zero and is determined by
the interaction of the electrons with one another [see (20)].
The reason why the electron-phonon interaction is "turned
off' is that an electron with a velocity lower than that of the
sound cannot emit (absorb) a phonon.

At |f (p) — £F the entire surface (23) is outside
the Fermi surface, and Im 8e(j>) depends little on the ener-
gy — it "saturates":

Im 6e (p) « — n
"(Pp)

MD I 2 (26)

The word "saturates" is in quotes, since Mfr p depends on p
but varies in the interval ~H/a. The dynamic character of
the expressions obtained (Im &:(p)— >• 0 as M—> oo ) can be seen
from the order-of-magnitude estimate

| Im6e(p) |
6,

| e (p )-8F l«e,
|e(p)-eP |>6,

(27)

and e~M~112. Comparison of (20) and (27) shows that the
second of these equations is valid at |f(p) — £F | >0 2/£F.

The transition from the cubic dependence to saturation
is accompanied by singularities. These include an obligatory
one, which appears at those values p = pc at which the entire
surface (23) is outside the Fermi surface17 (Fig. 5). At pxfc

FIG. 5. Locations in p' space of the surfaces en-
countered in the text at p = pc. 1) f(p') = e(p), 2)
surface (23), 3) Fermi surface.

and e £ec = f(pc) the line of intersection of the Fermi sur-
face with the surface (23) in an ellipse. This enables us to
calculate the singular part (SP) of Im Se(p) (see Ref. 21):

SP Im 6e (P)={ 0,

e(p)<ec,

e (p) > ee,
(28)

Kc = ir\Mc \
2m*/vc, while m* = A/Af,Af2 ~^mM is a pa-

rameter with dimension of mass, and appears when the argu-
ment of the 8 function is expanded in the terns of the devi-
ation from the tangency point; the qualities contained in the
coefficients are taken at the tangency point.

If the Fermi surface has dents and necks, intermediate
singularities are practically always possible (their geometric
locus is located between the Fermi surface and the geometric
locus of the points pc). The singularities of particular interest
are those due to a change in the topology of the line of inter-
section of the surface (23) with the Fermi surface. According
to Ref. 21, the singular point has the following structure:

= K'0k In-r^-p , A = e(p) —e(pc) ; (29)

K'c differs from the factor in (28)jnjhat (M1M2}
1'2 is re-

placed by \M1M2
 1/2 (in this case M,M2 < 0) and in that the

factor does not contain IT.
As already mentioned, it is easy to establish a corre-

spondence between the singularities of Im 8e(p) and Re 8e(p)
(Table I). It can be seen that the interaction of the electrons
with the phonons must produce a singularity of the type
Aln A in the electron dispersion law of a normal metal. But
this means (formally!) that the electron velocity v = de/dp
becomes infinite at p = pc. This circumstance calls for a
deeper insight into the "cutoff" mechanism. In this case
there is no need to take the retardation into account [see Ftn.
13], since the natural "cutoff" mechanism is the finite life-
time of the electron with energy £(p) > eF. Therefore the di-
verging logarithm is replaced by In (eF/0)~ln (M/m}, a
characteristic factor most frequently encountered in those
cases when the standard perturbation theory (the adiabatic
approximation) fails.

The last equations can claim only a qualitative descrip-
tion of the electron spectrum, for in this case perturbation
theory is not useful for revealing the singularities. The coeffi-
cients in (28) and in (29) are close to unity, and even after the
substitution In (ep / \ A | )-»ln M /m is made the change of the
velocity at p s; pc exceeds the velocity de/dp at p = pc. Judg-
ing from Migdal's paper,22 a rigorous treatment does not
change the qualitative picture of the spectrum renormaliza-
tion. Migdal, however, did not investigate the singularities
of Im 8e and Re 8e. It is furthermore possible that an analy-
sis that goes outside the framework of perturbation theory
will necessitate a review of the formulas listed in the table. It
happens frequently that the exact formulas differ from the
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approximate ones in that the diverging term is transferred
from the numerator to the denominator ! At any rate, the
results presented here (see also Ref. 21) mean that something
"interesting" occurs at psspc, and they undoubtedly retain
the same form, which draws attention to the immediate vi-
cinity of the Fermi surface, in the rigorous theory.

9. PHONON LIFETIME AND ITS SINGULARITIES

Actively interacting with the phonons are the electrons
from a thin layer (thickness ~ms) of the quasimomentum
space around the Fermi surface. But all the phonons take
part in this interaction. This manifests itself in the fact that
phonon-spectrum singularities due to electron-phonon in-
teraction can be produced over a large range of quasimomen-
tum values.23

In order not to clutter up the exposition with "minuti-
ae" (see Refs. 23 and 24), we simplify Eq. (18) for Im <5«v(q),
using the smallness of the phonon energy compared with the
Fermi energy:

Im 8o)v (q) = -nftcov (q) j | M\ p+q |
2 6 (e (p) -ep)

(30)

(we made the substitution — dnv /de—> 8(e — ef ). So long as
the Fermi energy and its analog shifted by — q intersect,
with q < 2pF , the integral in (30) differs from zero, and it is
well known that25'26

Imfco (31)

When q reaches the value 2pf, the integral vanishes jump-
wise, and a singularity of the type Aln| A| (the Migdal-Kohn
singularity) appears in the spectrum, with q — 2pp = A in
this case; 2pF is here arbitrary—the critical values qc of the
phonon quasimomentum q are equal to the diameters (inner
and outer) in a specified direction of the unit vector q/V8).

Of course, the phonon velocity does not become infinite
at q = qc; allowance for the finite lifetime of the electron
leads to replacement of ln(9c/A) by ln(£F/feyD), since the
electrons that take part in the formation of the Migdal-Kohn
singularity have an energy higher by ~fe*>D than the Fermi
energy (cf. the preceding section).

The Migdal-Kohn singularities are not the only ones in
the phonon spectrum. If the Fermi surface has dents, necks
(or, in other words, if the Fermi surface has lines of parabolic
points), the phonon spectrum has, besides the Migdal-Kohn
singularities, the so-called Taylor singularities30 at those val-
ues of q = q£ at which the line of intersection of the
£(P + <l) = £p surface with the Fermi surface changes its to-
pology, and the vector q£ connects those points on the Fermi
surface at which the velocities (normals) are parallel (at the
end points of the diameters that determine the value of q,.,
the velocities are antiparallel). The geometric locus of the
Taylor singularities and their character were investigated in
detail in Ref. 23. We call attention here only to the following:
whereas the Migdal-Kohn singularities occur only at large
values of the phonon quasimomentum (qc ~H/a\ the lengths
of the critical quasimomenta of the Taylor singularities, if
they exist, must vanish at definite directions x = q/q (Fig. 6).

Pz

FIG. 6. Geometric locus of the
phonon-spectrum Taylor singu-
larities due to a "dumbbell" type
Fermi-surface cavity (one of the
possibilities, see Ref. 23).

Let us dwell on this question in somewhat greater detail. We
can retain fuo in the argument of the 8 function [cf. (30) and
(18)] without going outside the framework of the approxima-
tion made (the transition from Fermi-step differences to a
derivative, and replacement of the latter by a 8 function are
corroborated by the inequalities r<£F and fut)4.e?). We put

)-»ffl(q)—eF, (32)
where g and 77 are dimensionless orthogonal coordinates on
the Fermi surface over which the integration is carried out in
(30); the area element is dSf = p2 (|, 77) d£ drj (the coefficient
of dgdrj is written in this form to emphasize that it is of the
order of p\ ~tf/a2}, and the volume element is d3p
= [p2(g, rj)/v (£, 77)] dgdrj de. Singularities of the integral

(30) as functions of the phonon quasimomentum q appear
when the argument of the 8 function has a multiple zero, i.e.,

\. (33)• • q v B . •</ — ", ag — ar) — ~«

Three equations in five variables (the two coordinates £ and
77 and the three components of the vector q) have in the gen-
eral case a two-dimensional set of solutions. Thus, by speci-
fying the direction of the vector q we can find the values of qc

and q^ (Taylor singularities may be absent if the surface has
no parabolic-point lines, see above). Another procedure is
also possible. We let the length of the phonon quasimomen-
tum q in (3) and in (32) tend to zero.19' Equation (32) then
takes the form

(34)
The function Wx (g, rj) differs from W^ (g, 77) by a factor qv.
As shown in Ref. 31 (see also Ref. 32), each point of any
parabolic-points line on the Fermi surface (if such points
exist) produces a singularity of the integral (30) as a function
of the v. direction. The critical direction xc is uniquely deter-
mined by the local geometry of the Fermi surface at the point
(£c > VQ )tnat giyes rise to the singularity (it is called critical).
Singularities can be of two types, a finite jump or a logarith-
mic divergence. As always, a correspondence exists between
the singularities of Im <5feyv(q) and of Re 5&ov(q) (Table II).
If the critical point is located at the intersection of two lines
of parabolic points, the singularity is enhanced and becomes
of fractional-power type (as a rule32 the power is low, 1/6 or
1/4).
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TABLE II. Type of singularity.

ImSe

Re<fe

Jump

Logarithmic
divergence

Logarithmic
divergence

Jump

(A.Rva) (i>q
U,.

In this case (as <?—»• 0 and x—»xc), elimination of the
divergence calls for a more thorough analysis than in the
cases considered before, since the electrons that produce the
singularity have Fermi energy and therefore (in the absence
of defects) have infinite lifetime. We shall discuss this ques-
tion in the next section.

10. LONG-WAVE PHONONS

The propagation and absorption of sound in metals is
described by a system consisting of the elasticity-theory
equations and the electrodynamics equations20' (Maxwell
equations). The current density in the Maxwell equations
and the electron-governed density of the force fin the elasti-
city equations are expressed in terms of the displacement
vector u and the electrostatic-field strength E with the aid of
the solution of the Boltzmann equation for the electron dis-
tribution function. We shall write down an expression only
for f, without going beyond the collisionless limit:

(35)
Here A is a vector with components A,-/ xt, K = k/&, Aik

= Aik — (Aik)/(\) is the deformation-potential tensor re-
normalized by the electroneutrality condition;

(35')
(2nH)3

with the integration carried out over the Fermi surface. The
tensor Aik is of the same origin as the matrices M . . . and
A . . . in Eqs. (14) and (18), differing only by inessential fac-
tors and, of course, by the limiting transition p'— » p [in the
expression for Av , ; see Eq. (19)].

In investigations of the propagation of a sound wave,
the electric field intensity should be determined from the
Maxwell equations and substituted in the expression for the
force; this leads to a renormalization of the tensor of the
moduli that relate the vectors f and u. The renormalization is
usually32 carried out in two stages: first to be eliminated is
the longitudinal field and

the subscript / numbers three projections, and a numbers
two (in a plane perpendicular to the vector k). Equation (36)
is in essence necessary to show that exclusion of the longitu-
dinal field is not essential: the terms (in the curly brackets)
that result from the renormalization are smaller by an ap-
proximate factor VF /s than the principal terms2 ll (vp /s ~ EF /
0~(M/m)l/2). Elimination of the transverse components^
is much more important. According to Ref. 32

(37)
This formula shows that allowance for the renormalization
is necessary in actual calculations of the sound velocity in a
metal and of the sound absorption coefficient. With increas-
ing wave vector, however, the second and third terms in the
curly brackets become continuously smaller, and at <5L A>(,s/
vp)

in, where 5L = c/«L ~ 10~5 cm, they can be neglected.
It must be emphasized that the "exclusion" of those terms
which are due to renormalization takes place long before the
condition that the sound waves be macroscopic (ak^l) is
violated. This justifies at the same time the possibility of
disregarding the role of the magnetic field when electron-
phonon interaction is considered at arbitrary value of the
phonon quasimomentum q, with exception of the immediate
vicinity of the origin (q/fi<8{:l (s/vF)1/2~ 103 cm"1).

If the Fermi surface has parabolic-point lines, the mod-
uli contained in Eqs. (35)-(37), as functions of the direction
of x, have singularities [compare the expression for R in (35)
with Eq. (34)]. It can be easily shown, however, that in those
cases when the singularity is produced by one point on the
Fermi surfaces, the infinites are cancelled out. Thus, strictly
speaking, the coefficient of proportionality of the force/ to
the displacement vector u can become infinite only when no
transverse electric field is excited at all221 (for example, from
symmetry considerations, when longitudinal sound propa-
gates in a "good" direction).

Equations (35)-(37) do not take into account the Fermi-
liquid interaction of the electrons. Since the sound frequen-
cies are relatively low (ca/kvF ~ s/vf •< 1) the Fermi-liquid in-
teraction, which is always important in the investigation of
electromagnetic properties of metals,24 plays no essential
role in this case.

To conclude this section we consider a case, albeit rare,
when no transverse field is excited and we can therefore not
eliminate the divergence. Does a collisionless limit exist in
this case and must scattering be taken into account? We note
that in an ideal crystal (without impurities or periodicity
disturbances) the electrons that participate in the interaction
with the sound have infinite mean free paths, since their en-
ergy is equal to the Fermi energy (see the end of the preced-
ing section).

It can be shown33'32 that there exists a resonant self-
limitation mechanism. To consider it we must forego pertur-
bation theory, meaning the following: in expression (35) for
the force at E = 0 co must be taken to mean the sought renor-
malized freuquency, i.e., the root of the dispersion equation
obtained by solving the elasticity-theory expressions in
which account is taken of the sound-wave interaction with
the conduction electrons. The dispersion equation deter-
mines the finite value of the complex sound velocity, whose
imaginary part describes the damping. Thus, if the damping
coefficient F has a logarithmic divergence in perturbation
theory, allowance for the resonant self-limitation mecha-
nism leads to the finite value

J±
CO

(38)
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FIG. 7. Positions of critical points on the Fermi surface at a specified
direction of x. a) The Fermi surface is a sphere, one critical point; b)
dumbbell-shaped Fermi surface, three critical points.

The self-limitation mechanism was named resonant,
since a resonant interaction is indeed realized between the
sound wave and those conduction electrons on the Fermi
surface for which xc • vc =s [in other words, the sound wave
is at resonance with a quasiwave having a dispersion law
(o = k (xc • TC ); see the next section].

11. QUASIWAVES OR NONEXPONENTIALLY DAMPED
WAVES IN A METAL

An electromagnetic wave incident on the surface of a
metal excites in it electromagnetic oscillations that attenuate
over the skin-layer depth. In the collisionless limit the metal
can be regarded as an electron plasma whose dielectric func-
tion is expressed in the classical approximation (fuu<£F,
T = 0) in the form of an integral over the Fermi surface:

. . 4nj«a . p /.JQI
e«*=-6|k+-5—<"«*"ii ' (39>

[see Eqs. (35) and (35')]. As already stated, at relatively low
frequencies there are no undamped oscillations in the spec-
trum of the electron plasma of a metal. This means that the
solution of the dispersion equation

D (ca, k) = 0, (40)
obtained with the aid of (39) has only complex solutions. The
asymptotic form of the field in the interior of a sample is not
always determined by the zeros of the dispersion function
D (ft), k). Let D ((a, k) have at kz = k c

z a singularity (as a func-
tion of fcz; kx = ky = 0); the asymptotic form of the field
then has the following structure34-32:

The exponent a is determined by the structure of the singu-
larity. The formulation of the problem and its solution (41)
presuppose normal incidence of the electromagnetic wave
on the surface of a metal that occupies the half-space z > 0. It
can be seen from (39) and (35) that the singularities of the
dispersion function/) (<a, &z) are produced by multiple zeros
of the denominator R, i.e.,

(xvr)extr
x||0z, xvp>0, (42)

and the extremum of (x • VF ) is taken with respect to the
variables £ and 77 [see (33) and (34)]. If the Fermi surface is
spherical, there is only one value of k I equal to <W/VF . It
corresponds to a limiting point (Fig. 7a). If the Fermi surface
is more complicated (the general case), there are several val-
ues of k I (Fig. 7b). When the vector K has a critical direction
(meaning that the line x • VF (£, 77) = 0 changes at x = xc its

topology14'31; Fig. 8), (x • yF)extr vanishes. Analysis shows24

that in this case account must be taken of the quantum cor-
rections [of the terms ~f?k 2/m*; cf. (32) and (34)], and ak c

z

~(&)/yF) (£F/fe)1/2—a curious example in which the finite
phonon momentum must be taken into account when the
distribution of a macroscopic electromagnetic field in a metal
is considered (ak I ~ (&)/£f )1/2< 1).

We named the described asymptotic values of the elec-
tromagnetic field, as well as the residual oscillations of the
electron distribution function [see (17) ff ], quasiwaves to em-
phasize thereby that these are forced, rather than natural,
solutions.

When speaking of the dielectric function of the electron
plasma of a metal, we cannot disregard the Fermi-liquid in-
teraction of the electrons. Allowance for this interaction al-
ters expression (39) (see Ref. 25):

^=^ + ̂ L(vtR(vh-^Jh}). (43)

The vector J satisfies an integral equation that contains the
Landau matrix36/(p, p') that describes the Fermi-liquid in-
teraction (at/(p, p') = 0 and J = 0). Allowance for the Fer-
mi-liquid interaction results in a substantial restructuring of
the singularities of the dielectric tensor £JJ.L. According to the
integral equation given here,37-24 the values of the vector J at
those Fermi-surface points (£c, t)c) at which the denomina-

xv

FIG. 8. The strips x • v = 0 (thick lines on a dumbbell-type Fermi surface
(a-c) and dependence of x • v on the angle 0 (d-f). a, d) x • Y^ < 0,
x • VB > 0; b, e) xc • yA B > 0, x • Vg < 0. Points A and B—parabolic
points, d— angle measured from the dumbbell axis (0«?<2ir).
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tor R has a multiple zero are equal to vc /a (vc = v(£c, t}c)) so
that the integral over the Fermi surface does not diverge (na-
ture adhors inifinities !). It must be stated that the change of
the analytic properties231 of e£L (compared with eik) does not
alter excessively the structure of the field in the quasiwave,
and affects as a rule only the cofficient in expressions of the
type (41).

12. CONCLUDING REMARKS

The Fermi surface forms in the p-space region adjacent
to it, as we have attempted to describe, a spectrum of elemen-
tary excitations of a metal, and furthermore not only of fer-
mions (electrons and holes) but also of bosons (phonons).
Electron-phonon interaction leads to renormalization of the
elementary-excitation dispersion laws. The lifetimes of the
elementary excitations are therefore finite, and singularities
appear in the dependence of the energy on the quasimomen-
tum. The characteristics of these singularities are closely re-
lated to the local geometry of the Fermi surfaces and this is
what distinguishes them from other singularities (due, e.g.,
to phonon-phonon interaction24'.

The anisotropy of the Fermi surfaces, especially the
presence of parabolic-point lines on them, expands greatly
the spectrum of the phonon singularities in metals. A promi-
nent place is occupied by singularities of the acoustic-
phonon velocities (along the propagation direction), since
these singularities are formed by electrons located directly
on the Fermi surface and have an infinite lifetime. These
singularities are therefore not smeared out and the diverging
quantities, if perturbation theory is used, turn out to be finite
if a consistent account of the resonant interaction of a sound
wave with electrons whose velocity projections on the sound
wave vector is equal to the sound velocity.

The results reported here formulate general ideas con-
cerning the spectrum of the elementary excitations of a met-
al, and continue in this sense the semiphenomenological ap-
proach developed by I. M. Lifshitz and his school (see Refs. 3
and 39; a brief history of this trend in the electron theory of
metals can be found in Ref. 39). Our notions concerning met-
als are at present such that we can describe with relatively
high accuracy their Fermi surfaces, and be assured that
parabolic-point lines and their intersections (flattened sec-
tions) exist on the Fermi surface.

Some experiments have revealed anomalies (singulari-
ties) due to flattened sections: a logarithmic increase of the
sound absorption coefficient in Cu with increasing kl was
observed in Ref. 40 (these results are explained in Ref. 41); it
was shown in Ref. 42 that the existence of a flattened section
on the Fermi surface of Ga makes the absorption coefficient
temperature-dependent at &/>!; an anomaly of the phonon
dispersion law, due to local geometry of the Fermi surface of
Cu, was revealed in Ref. 43 by inelastic scattering of neu-
trons. All these experimental results agree with the theoreti-
cal premises reported here and in the cited papers. It must
nevertheless be stated that the number of experimental stud-
ies aimed at revealing the qualitative singularities of the phe-
nomena due to the complicated shape of the Fermi surface is
very small25*.

I am of the impression that the theory of metals, having
accumulated much experimental data on the "geography"
of the Fermi surface, is about to experience a new resurgence
of interest in the dramatic events that take place between the
quasiparticles that live on the Fermi surface. The theory has
advanced many predictions, thereby hurling a challenge to
the experiments.

I take the opportunity to thank L. P. Pitaevskii and H.
Eschrig for several important (to me) conversations that
prompted me to reason out and write what turned out to be
the present article. In addition, I thank T. Yu Lisovskaya
and A. G. Plyavenek with whom many of the results report-
ed here were obtained. The ideas expressed by us all in the
preparation of original papers have found reflection in the
text.

"The chain of order-of-magnitude relations given below explains the ori-
gin of the estimates exhibited here and emphasizes their approximate
character:

v. U 1WD TuT ! " ~ —y! U ~EF< —5— p|/^2, s ~ (ODO,u HI ' aa ) r > a2 ^i" > " >

x is the lattice rigidity and U the energy of interaction between neigh-
boring atoms; the virial theorem can be used to justify the relation
U~ef.

2lWe refer here, first, to single crystals, and second, to normal (nonsuper-
conducting) metals (superconductivity is discussed later).

3)The term "hole" is used here to denote a free state with energy lower
than the Fermi energy.

""The term "hole" does not have here the same meaning as above, but
stands for a free state with negative effective mass; the energy corre-
sponding to this state exceeds the Fermi energy!

5'Even though the effective mass can be differently defined, there is no
need to refine the definition of m*, since we are dealing here with a
qualitative picture.

6)To describe the properties of a metal it is, of course, not enough to know
the quasiparticle dispersion laws. One must know the wave functions of
the quasiparticle stationary states (the Bloch waves for electrons and
holes, and the vibration-polarization vectors for phonons). We confine
ourselves to a description of the energy spectrum.

7)Remember that the redistribution takes place against a background of
positively charged ions.

8'The phonon-phonon interaction is small according to the parameter
, _ 9 \ l / 2 /JMl/2 lm_}-
\ Ms2 I ~ ( EF / ~ \ M I

9)The lifetime T = fi/T, where T = ImE and E, the complex "energy" of
the quasiparticle, is a pole of the single-particle Green's function (Ref.
11, §§8 and 65).

10)SeeRefs. 15, 16, and 17.
1' 'The spin waves predicted by Silin' * can and do propagate in a magnetic

field in normal (nonmagnetic) metals, owing to the Fermi-liquid interac-
tion.

12VBy "singularities" we mean here and hereafter that the functions and/
or (!) their derivatives become infinite.

13'For example, if it turns out in the calculation of the dispersion law of
some quasiparticle that its velocity at some point of p space becomes
infinite, then it is obvious that this cannot happen if the retardation has
been consistently taken into account).

14)In a number of papers9 a singularity is defined as a substantial difference
between the dispersion law of a real phonon from the law obtained on
the basis of a model more primitive than the one used in the cited papers
(e.g., without allowance for the contribution of the electrons or without
allowance for the interaction between the electron and the ion core). We
emphasize that we start out with good wave functions ga (p) and fuav (p),
which comprise, together with the lattice geometry, the Fermi surface,
and the amplitudes < ! > . . . , * . . . , and A . . . the model of the metal in
the normal state.

'''Furthermore, calculation of the singularities of the quasiparticle life-
times eliminates the <^im ambiguity due to virtual processes [see the
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text following Eq. (11)].
'6>This is the only case (a monatomic atom) considered here. It is shown in

Ref. 21 that interaction with optical phonons, without changing the
8e(p) dependence as \e(f) — ef —»• 0, introduces in this relation an addi-
tional singularity, viz., a jump of the derivative at that value of e(p) — ef
at which the surface (23) is tangent to the Fermi surface.

17)The electron and phonon spectra specify the geometric locus of the
singular points pc around each cavity of the Fermi surface; in the gen-
eral case the "distance" from the point pc and the Fermi surface is of the
order of ms.

18lThe singularity described was observed by Migdal22 and Kohn.27 En-
hancement of the singularity in the case of cylindrical and/or planar
Fermi surfaces was predicted by A. M. Afanas'ev and Yu. Kagan,28

while M. I. Kaganov and A. I. Semenenko29 associated the character of
the singularity with the local geometry of the Fermi surface.

19)This procedure corresponds to study of the section of the geometric
locus at small q (Fig. 6).

20)In a review "Dynamic Equations of Elasticity Theory of Metals," re-
cently published in Uspekhi Fizicheskikh Nauk (Sov. Phys. Uspekhi)20

(and already referred to here), V. M. Kontorovich considered the entire
aggregate of questions connected with propagation and absorption of
sound in metals (in particular, the history of the question can be learned
from the references cited). The availability of this review allows us to
restrict ourselves here to a concise exposition.
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