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Analysis of astrophysical restrictions on the spectrum of primordial black holes (PBH) makes it
possible to obtain indirect information about the physical conditions in the very early universe.
These restrictions are compared with the probability of PBH production in early dust stages as
predicted on the basis of modern models of quantum field theory. As a result of such comparison,
restrictions are obtained on the parameters of various models corresponding to different values of
the parameters of the spectrum of initial small-scale inhomogeneities.
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INTRODUCTION

The fundamental connection between elementary-par-
ticle physics and the evolution of the early universe attracts
more and more attention from both elementary-particle
physicists as well as astrophysicists interested in problems of
cosmology. Comprehensive analysis of this connection
makes it possible to construct a physically justified cosmol-
ogy of the early universe. On the other hand, analysis of the
cosmological consequences of elementary-particle theories
provides a possibility to obtain the unique information about
the properties of elementary particles and their interactions
that contemporary laboratory methods are incapable of giv-
ing.' Indeed, taken together, the observational data on the
expansion dynamics of the universe, the isotropy and spec-
trum of the background radiation, data on the abundance of
light elements, and the observed large-scale inhomogeneity
structure of the universe have made it possible to construct a
quite definite qualitative picture of the evolution of the uni-
verse after the first second from the beginning of expan-
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sion.?? This picture is based on physical laws reliably tested
under laboratory conditions. The construction of a picture
of the earlier evolution necessarily requires the modern the-
ory of elementary particles. In the framework of such theor-
ies, which unify different types of interaction of the elemen-
tary particles (see, for example, Ref. 4), it has proved possible
to develop (as yet only qualitatively) a number of nontrivial
scenarios for the evolution of the early universe, these mak-
ing it possible to explain the observed entropy and baryon
asymmetry of the universe.! The mechanisms of spontane-
ous symmetry breaking in such theories give rise to phase
transitions® accompanied by the production of supermassive
magnetic monopoles,® and, in a number of variants of the
theory, superdense walls”!° or strings.” Besides magnetic
monopoles, the theories predict numerous new particles.
Some of the particles are stable, and in the framework of the
scenarios of the early universe one can estimate their residu-
al concentration. Analysis of the effect of these particles on
processes occurring in the universe after 1 sec such as nu-
cleosynthesis, the formation of the spectrum of the micro-
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wave background, the formation of the observed large-scale
structure, and the overall dynamics of the universe has made
it possible to obtain restrictions on the numbers of species of
particles,'' their masses,""!>?> and residual concentra-
tions,'>-?2 and this has, in its turn, made it possible to ob-
tain restrictions on the parameters of the theories them-
selves, i.e., the theories that predict these particles. We
mention here particularly the possible connection revealed
by the analysis of nonrelativistic stable particles with the
development of inhomogeneities in the universe. The effects
of stable particles in the development of the contemporary
large-scale structure have been widely discussed'®'7?3-% in
connection with the possibility that the neutrino has a rest
mass.?! Theoretical investigation of the spatial distribution
of such particles in the observed inhomogeneities of the uni-
verse at the present epoch has made it possible to obtain
restrictions’*>? on the parameters of these particles that are
stronger than those obtained by analyzing their possible ef-
fect on the evolution of the universe as a whole.'®2°

However, most of the new particles predicted by the
theory are unstable, and their lifetimes are appreciably less
than 1 sec. Moreover, for many of these particles the masses
are predicted to be so large that their production in the late
universe, i.e., later than 1 sec from the beginning of the ex-
pansion, is effectively impossible for energy reasons, and
therefore they could have existed only in the very early uni-
verse.

In the epoch when the thermal energy &7 of the parti-
cles appreciably exceeded their rest energy mc?, these parti-
cles in no way differed from other species of relativistic parti-
cles as regards their effect on the dynamics of the early
universe as a whole and the development of inhomogeneities
in that epoch. If the lifetime of the particles appreciably ex-
ceeded the cosmological time at the period when k7~ mc?,
then the role of such “long-lived” particles in the develop-
ment of the inhomogeneity of the early universe could have
been similar to the part played by stable particles in the de-
velopment of inhomogeneities in the late universe. It is natu-
ral to consider whether, using all the astrophysical data, one
can obtain information about the small-scale inhomogene-
ities and about the influence of the long-lived particles on the
development of these inhomogeneities and, thus, make an
indirect test of the theories that predict the existence of parti-
cles with given parameters (such a theory could be any of the
unified gauge theories or a theory based on some as yet un-
known principles). To answer this question, we consider the
following scenario for the evolution of the early universe.

Suppose that in the early stages in the expansion of the
universe there existed supermassive particles whose residual
concentration is fairly high, so that these particles, having
become nonrelativistic, begin to be dominant in the early
universe. This means that in the course of its evolution the
universe could have entered an early dust stage of expansion
(Sec. 1). In addition, a dust stage could have been realized at
the end of the inflationary stage in the course of oscillations
of the classical scalar field.**-3>?? In the early dust stages,
there could be growth of initial inhomogeneities, this leading
in the nonlinear stage of the development of inhomogeneity
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to the formation of configurations detached from the general
expansion of the universe. In the course of the subsequent
contraction, a small fraction of the configurations could be
transformed into primordial black holes (PBH), the possible
production of which in the early stages of expansion was first
pointed out in Ref. 36 in connection with an analysis of the
possibility of collapse of low-mass bodies.>” A key aspect of
this scenario is that the spectrum of such primordial black
holes preserves a certain information about the spectrum of
the initial small-scale inhomogeneities and about the proper-
ties of the supermassive metastable particles for a long time
after these particles have themselves ceased to exist.
Specifying the spectrum of initial inhomogeneities, we
can estimate the minimal probability of PBH production
(Sec. 2). In Sec. 3, this minimal probability is compared with
the observed astrophysical upper bounds on the PBH spec-
trum, and this leads to a number of nontrivial restrictions on
the properties of the supermassive metastable particles cor-
responding to the choices for the initial perturbation spec-
trum. In particular (Sec. 4), it is possible to restrict the pa-
rameters of definite variants of unified gauge theories.

1. SUPERMASSIVE METASTABLE PARTICLES AND EARLY
DUST STAGES

a) Metastable particles

As noted in the Introduction, we are interested in only
the long-lived particles, i.e., the metastable particles. Metas-
table particles (or even particles absolutely stable with re-
spect to decay) can appear in theories by virtue of a new
approximately or strictly conserved quantum number. Mag-
netic monopoles provide one of the best examples.®” Their
absolute stability against decay follows from the strict con-
servation of magnetic charge. The appearance in the theory
of this conserved quantum number is due to the topological
structure of the gauge group that unifies electromagnetism
with the remaining interactions.®”*% The existence of a con-
served quantum number (a generalized charge") must lead to
absolute stability of the lightest of the supermassive particles
which possess such a charge, as also occurs in the case of the
magnetic monopoles. However, theories of such kind neces-
sarily predict the existence of the corresponding antiparti-
cles. Pair annihilation of the particles and antiparticles leads
to a “freezing” (or “quenching”) of their concentration (con-
sidered for the first time for antiprotons in Ref. 40 and for
quarks in Ref. 41) and can subsequently lead to a strong
decrease in the concentration of the absolutely stable parti-
cles in the inhomogeneities (see below).

Approximate conservation of a quantum number has
the consequence that the supermassive particles possessing
the corresponding charge are metastable with respect to de-
cays into lighter particles that do not possess the charge. An
analogous situation, albeit on different time and energy
scales, arises in the framework of the proposal that the pro-
ton is unstable (or rather, metastable) due to nonrigorous
conservation of baryon number.
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b) Residual concentration of metastable supermassive
particles

Depending on the particular properties of the particles,
they could be produced under both equilibrium and non-
equilibrium conditions. However, at later times, when
kT < mc? the concentration of the metastable particles in
the expanding universe necessarily exceeds the equilibrium
concentration (corresponding to the given temperature T').
In other words, sooner or later there is a freezing of the con-
centration of the supermassive metastable particles.

The frozen concentration #,,, of the metastable particles
can be conveniently characterized by the relative concentra-
tion v, which is equal to

v=lmo (1.1)

ne Kny

where n, and x are the total concentration and number of
species of relativistic particles, and #,, is the photon concen-
tration. The concentration v is determined by the number x
of species of relativistic particles, by the cross section of pair
annihilation of the metastable particles with their antiparti-
cles, by the nature of their interaction with the remaining
particles, and by the nature of their production, if the metas-
table particles are produced in a nonequilibrium manner.

If in the course of the production of the particles there
were effects of symmetry breaking between the particles and
antiparticles, v can be determined by the excess of the parti-
cles over the antiparticles (or vice versa). According to mod-
ern ideas about the generation of baryon charge (see the re-
view of Ref. 1), an analog of such an excess of particles over
antiparticles is the baryon concentration in the contempo-
rary universe.

c) Stages of dominance of the supermassive particles

After the freezing of the supermassive particles with
mass m, the ratio of the density ¢,, = mc®va, of such parti-
cles to the density &, ~kT - n, of the relativistic particles
increases during the subsequent expansion of the universe as
mc?/kT. Indeed, the particle number density of both relativ-
istic and nonrelativistic particles decreases during the ex-
pansion asa 3, where a is the scale factor. At the same time,
the mass of a nonrelativistic particle does not change, so that
their mass density decreases as @™ 3. But the energy of each
ultrarelativistic particle decreases as a ~* due to the red shift
associated with the expansion of the universe. Therefore, the
relative contribution of the nonrelativistic particles to the
mean density of the universe increases as a, i.e., in inverse
proportion to the temperature. At the time

m 2
o~ () b

(where tp, = VG#/c> and mp, = \#ic/G are the Planck time
and Planck mass), when the temperature has fallen to

(1.2)

vmc?
To="2,

the stage in which the supermassive particles are dominant
commences. In this stage, the effective equation of state of
the universe becomes close to p = 0. Thus, we conclude that
one of the cosmological consequences of models that predict

(1.3)
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the existence of metastable, sufficiently long-lived particles
is that they have early dust stages of expansion of the uni-
verse. Posing the problem of clarifying the basic connection
between these elementary-particle models and the cosmol-
ogy of the early universe, we restrict ourselves to the consi-
deration of a very approximate but simple scenario.

For simplicity, we assume that there is just one species
of supermassive metastable particles of mass m with frozen
concentration v. When ¢ < ¢,, their contribution to the cos-
mological density is small, and the expansion dynamics is
determined by the relativistic particles, which make the
main contribution to the cosmological density. It is well
known? that in this case the equation of state of the matter
(i-e., the connection between the pressure and the density)
hastheform p = £/3. At¢~t,, the contribution of the nonre-
lativistic particles to the cosmological density becomes com-
parable to the contribution of the relativistic particles, and
the transition to the dust stage of expansion begins. The anal-
ogous transition to the stage in which massive neutrinos are
dominant, at a much later epoch in the expansion, was inves-
tigated in detail in Ref. 24. In the process of such a transition,
the pressure of the relativistic particles has less and less in-
fluence on the expansion dynamics, and to an ever greater
accuracy the equation of state of the matter approaches that
of a dust medium: p = 0. Finally, at z ~ ¢, the early dust stage
terminates, either because of decays of the metastable parti-
cles or because of pair annihilation of such particles in inho-
mogeneities formed during the p = 0 stage. In either case,
the termination of the p = 0 stage is accompanied by the
gradual transition of the rest energy density of the nonrelati-
vistic supermassive particles into much lighter ultrarelati-
vistic particles. Therefore, for 7> 7, the matter equation of
state again takes the form p = £/3. Although neither the be-
ginning nor the end of the early dust stage is instantaneous,
for subsequent order-of-magnitude estimates we adopt the
following simple dependence of the matter equation of state
on the time:

ry for t<<t,,
p=1 0 for f,<<t<t,, (1.4)
% for t>t,.

We note that if the termination of the dust stage is due to
the annihilation of supermassive particles formed in the
» = Ostage in gravitationally bound structures, alternations
of dust stages can be expected. The point is that a certain
fraction of the particles does not enter such configurations
and persists in the universe at the termination of the early
dust stage. Despite the fact that these particles initially form
a small fraction of the annihilated particles, they can again
begin to be dominant in the cosmological density in the sub-
sequent expansion of the universe. An alternation of dust
stages is also possible in the case of several species of super-
massive metastable particles with different vm.

A very important consequence of the existence of suffi-
ciently long early dust stages is the growth of small initial
perturbations, as a result of which primordial black holes
can be formed. Their properties and the conditions of their
formation from small initial perturbations are discussed in
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the following section.

2. PRIMORDIAL BLACK HOLES AND INHOMOGENEITY OF
THE EARLY UNIVERSE

a) PBH properties

As long ago as 1794, Laplace*? pointed out the possible
existence in the universe of objects with such a strong gravi-
tational field that the parabolic velocity at the surface of
such objects exceeds the velocity of light, so that even light
cannot overcome their gravitational attraction. However,
prior to the creation by Einstein of the general theory of
relativity this prediction of Laplace remained only an in-
spired guess. The present history of the theoretical investiga-
tion of black holes begins with the work of Schwarzschild,*®
who, immediately after the publication by Einstein of the
gravitational field equations in 1916, obtained the first exact
solutions of these equations in the spherically symmetric
case. The solution contained a free parameter, subsequently
interpreted as the mass of a “black hole.” We shall not dwell
here on the properties of the Schwarzschild solution, nor its
generalizations to the cases of charged** and rotating** black
holes but recommend to the interested reader the books and
the detailed review of Ref. 46. We merely mention that in all
the solutions that describe the gravitational field of a black
hole the mass of the hole itself is arbitrary, i.e., it is, as we
have already said, a free parameter of the solution. An im-
portant stage in the development of the theory of black holes
was the paper of Oppenheimer and Volkoff*” and also Op-
penheimer and Snyder,*® who obtained a theoretical bound
on the masses of black holes formed in the final stage of
stellar evolution. It was found that black holes can be formed
only from stars whose masses exceed (2.5-3)M;,. However,
in 1962 Zel’dovich®” pointed out that a gravitationally
bound configuration of arbitrary mass is metastable with
respect to the formation of a black hole, i.e., in principle
black holes can be formed from objects of any mass. For this,
it is necessary to overcome the energy barrier due to the
matter pressure gradients. The height of this barrier for an
object of a given mass depends strongly on its initial density.
The limiting mass obtained in Refs. 47 and 48 corresponded
to the disappearance of this barrier at the nuclear densities
attained during stellar evolution.

If a black hole is to be formed from a less massive body,
it must be compressed to a higher density by applying an
external pressure. To each preassigned mass there corre-
sponds a characteristic radius

26M

¢z ?

(2.1)

rg=

the mass contracting spontaneously under the influence of
self-gravitation forces once this is reached. In principle, if a
fluctuation were to occur resulting in a body of mass M con-
tracting to density

M
0 (M) ~ 45,

this would result in the subsequent formation of a black hole.
However, in the contemporary universe the probability of
such a fluctuation is exponentially small.

(2.2)
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In 1966, Zel’dovich and Novikov®® (and then, in 1971,
Hawking*®) pointed out the possible formation of so-called
primordial black holes of arbitrary mass in the early uni-
verse.

The process of PBH formation in the early universe can
be represented as follows. Taking as the zero-order approxi-
mation a homogeneous and isotropic Friedmann model,”
one can describe the space-time of the universe by the metric
tensor g, = g'% + h,,, where g9 is the unperturbed tensor
corresponding to the Friedmann model, and A, are the per-
turbations of the metric. Suppose that in some region of
space a perturbation of the metric is initially of order 1. At
sufficiently early times, this region is not causally connected;
for only a region whose diameter is less than cf can be causal-
ly connected at the time ¢ after the beginning of the expan-
sion of the universe. The region with such a characteristic
diameter is called an horizon in cosmology. At a certain time
ty, a perturbation is within the horizon, and, beginning at
this time, we are justified in regarding the region encom-
passed by the perturbation as an object with respect to an
external observer (it is only when #> ¢, that a signal can
reach an observer outside this region). The perturbation of
the metric in the region under consideration means essential-
ly that the rate of the expansion of the region differs from the
expansion rate of the remaining universe. If the amplitude of
the perturbation of the metric is of order 1, then during time
t~t, the expansion of the matter in the perturbed region is
replaced by contraction. Can pressure forces prevent this
contraction? To answer this question, it is necessary to com-
pare the density in the given configuration at the time ¢ ~¢,
with the characteristic density of gravitational self-closure
of an object, which is given by (2.2). In the course of the
expansion of the universe, the matter density varies in accor-
dance with the law?

p (f) oc (GE7)1 (2.3)

(only the numerical factor, which we do not give here expli-
citly,> depends on the equation of state). The mass of the
matter enclosed in the considered region at the time ¢, is

3
M=p (1) (et =52 (2.4)
Then the gravitational radius r, in the region is
rg ~ ==~ cty (2.5)

and it follows from (2.3)(2.5) that p(t, )~ M /r}. This means
that no pressure gradients can halt the contraction. In other
words, the region comes within the horizon already in the
form of a black hole. But if the perturbations of the metric
are much less than 1, then the replacement of expansion by
contraction cannot occur earlier than a time #»¢,,. During
this time, the pressure gradients could prevent contraction.

As is well known from Lifshitz’s paper’° on the evolu-
tion of small perturbations of the metric in a homogeneous
isotropic universe, perturbations of the metric remain con-
stant in a stage of expansion with matter equation of state
p = &/3. Therefore, in this stage the formation of a black
hole, which presupposes large perturbations 2~1 of the
metric, is possible only if the perturbations of the metric on
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this scale were initially large. The situation is different in a
p = Ostage, in which, as was shown in the same Ref. 50, it is
possible for there to be growth of perturbations of the metric
and the density which has the consequence that the density
needed for the formation of a black hole of mass M is at-
tained appreciably later than the time ¢,,,°'~** in fact, already
in the nonlinear stage of the growth of the perturbations. We
shall consider in detail the possible formation of black holes
in the dust stage of expansion in Sec. 2. Here, we already
consider two important aspects of the subsequent fate of the
primordial black holes formed in the p = £/3 stage. First, the
mass of an already formed black hole can increase through
accretion, i.e., through surrounding matter and radiation
falling into it. Since at the time of its formation (in the p = ¢/
3 stage) the characteristic diameter of the black hole is com-
parable with the scale of the cosmological horizon, the ques-
tion naturally arises of whether it is possible to have an ac-
cretion regime (a regime of catastrophic accretion) in which
the mass of the black hole is always of the order of the mass
within the cosmological horizon. As is noted in the book of
Ref. 55, to answer this question it is not sufficient to use
order-of-magnitude estimates, since the answer to this ques-
tion depends critically on how close the mass of the black
hole that is formed is to the mass enclosed within the cosmo-
logical horizon at this time. Therefore, to clarify the possibil-
ity of catastrophic accretion, attempts were made,>® on the
one hand, to find an exact self-preserving solution to the
problem and, on the other, to make numerical calculations®’
of the formation and subsequent evolution of the primordial
black holes in the p = £/3 stage with allowance for the pres-
sure gradients that then occur. Both approaches led to the
conclusion that there is no catastrophic accretion, and this
means that the PBH mass cannot increase significantly dur-
ing the expansion of the universe. We mention in passing
that the problem of catastrophic accretion does not arise in
the case of PBH formation in a dust stage,*” since the mass of
such black holes is from the beginning, i.e., from the time of
their formation, much less than the mass within the cosmo-
logical horizon.”

However, even if the accretion of matter to the PBH is
slight, their relative contribution to the cosmological density
increases during the expansion of the universe. Indeed, as for
all nonrelativistic particles (see above), the PBH number
density decreases during the expansion as 1/a°, where a is
the scale factor. Their contribution to the cosmological den-
sity decreases in accordance with the same law, since the
mass of each primordial black hole remains unchanged. At
the same time, the number density of the ultrarelativistic
particles, which are dominant in the p = £/3 stage, also de-
creases as 1/a3, but because of the red shift the energy of each
particle decreases as a~'. Therefore, the relative contribu-
tion of the primordial black holes to the cosmological den-
sity increases with the time as a. This makes it possible to put
strong restrictions on the fraction 5 (M ) of matter in the pri-
mordial black holes in the early stages of the expansion of the
universe by using the fact that in the contemporary universe
there are no direct astrophysical manifestations of such
black holes. Indeed, regarding them as one of the forms of
the so-called hidden mass, one can use a simple universal
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restriction on the contemporary density of the hidden mass,
this restriction being independent of its physical nature. The
obvious physical argument given in Ref. 12 leads to the fol-
lowing: The cosmological density depends on the time that
has elapsed since the beginning of the expansion in accor-
dance with the law (2.3). The age of the universe certainly
exceeds the age of the Earth. And this means that we have a
restriction on the total contemporary density of the universe
and, therefore, on the density of the hidden mass. It is found
that this density cannot exceed by more than 100 times the
density of the visible matter. And since as we have already
said, the relative PBH contribution to the cosmological den-
sity in the p = &/3 stage increased, this restriction bounds
more strongly the fracion S of matter than went into the
primordial black holes at the time of their formation the
earlier this occurred. It is clear that the PBH are formed
earlier, the lower their mass. Therefore, the restrictions on
(M) are stronger the lower the PBH mass.

In 1974, Hawking®' discovered theoretically the pro-
cess of black hole evaporation, the essence of which is that in
the strong gravitational field of a black hole there is creation
from the vacuum of particles which carry away the mass of
the black hole to infinity (for more details, see the review of
Ref. 46 ).

We should here mention two important circumstances
that make it possible to understand the Hawking effect.®’
First, it follows from the energy conservation law that for the
production of particles with energy ¢ from the vacuum in a
gravitational field it is necessary to have the existence of two
points in space for which the difference of the gravitational
potentials between them satisfies the inequality

[
T Ag >e

(2.6)

(this should be compared with the analogous condition for
particle production in an electric field: eAg, >¢). It follows
from (2.6) that Ap >c?. But this condition, in its turn, presup-
poses the presence of an horizon: either an event horizon in
the field of a black hole or a cosmological horizon. (For pro-
cesses of particle production by the gravitational field in cos-
mology, see Ref. 62 and for “horizon evaporation” see Ref.
63.)

On the other hand, the gravitational field within the
event horizon of a black hole is essentially nonstationary.®*
Because of the nonstationarity of the gravitational field be-
low the event horizon and the fact that the particle produc-
tion process is not localized, a consequence of the uncertain-
ty principle, particles are produced near the black hole
horizon to which wavelengths of order , correspond. One of
the particles escapes to infinity, carrying the energy of the
black hole. The rate of energy loss due to particles escaping
to infinity is determined by the gravitational radius of the
black hole and corresponds to the radiation of a black body
with a temperature 7'« 1/r, . The characteristic time of total
mass loss by the black hole, i.e., its evaporation time, is in
accordance with Ref. 61

M )3 ¢
mpj Pl

tev ~ (2.7)
It can be seen from (2.7) that for black holes formed during
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stellar evolution the characteristic time of evaporation is ap-

preciably greater than the age of the universe, and it is only .

for primordial black holes of very low masses that this evap-
oration process is important. During the lifetime of the uni-
verse, a PBH with mass M < 10" g has sufficient time to
evaporate. Such low-mass black holes cannot contribute to
the hidden mass, and we cannot use the above restriction on
the fraction of matter that went into these PBH at the time of
their formation. However, restrictions on the PBH spectrum
(and this is the fraction of matter that went into the PBH at
the time of their formation) can be obtained by taking into
account the influence of the evaporation products of these
PBH on various astrophysical processes (see the reviews of
Refs. 65 and 66). Restrictions on the PBH spectrum give
important information about the spectrum of the initial per-
turbations of the metric and density in the early universe. If,
as is generally assumed, the rms perturbations of the metric
are small in the p = £/3 stage (radiation-dominated stage),
primordial black holes arise from metric perturbations ~ 1,
which correspond to the exponential tails of the Gaussian
amplitude distribution.’*%%%%57 If one assumes, which is
very natural,?®5® that the spectrum of the initial perturba-
tions of the metric is flat, i.e., the perturbations of the metric
are the same in all mass scales, then from the restrictions
obtained from the observed isotropy of the microwave back-
ground (see, for example, Refs. 30, 69, and 70), the perturba-
tions of the metric and the density perturbations §p/p asso-
ciated with them are small at all scales (A ~8p/p S 107%). At
the same time, as was noted above, the time of formation of a
primordial black hole is uniquely determined?® by its mass
M:

tpi. 2.8)

Lior ~ ty~

mp]
From the time ¢, and to the time of evaporation t., [see (2.7)
and (2.8)],

tfor \2
tey =t ( __)
ev for tpl ’

(2.9)
if the PBH of mass M is evaporated during the p = £/3 stage,
or to the end ¢. of the radiation-dominated stage, the PBH
contribution to the cosmological density increases as
a«t Y22 Therefore, the connection between the fraction
B (M) of the matter that went into primordial black holes of
mass M at the time of their formation and the contribution
a(M ) of such PBH to the total density of the universe at their
evaporation, if M < 10'° g, or to the contemporary cosmolo-
gical density if M > 10'° g, has the form

% =V min {tev , Ly} bgy- (2.10)

Hence, taking into account (2.7)-(2.9), we obtain an explicit
dependence of the ratioa/f5 on the PBH mass M (see curve A
in Fig. 1):
M 3 Mew \3/2
a (M) :{ Tnp—lmm {1, (_M—) } for M<M*,
B D 1 for M > M,,
(2.11)

where M. = mp,(t./tp)~10"°M, and M .. is the mass of
the primordial black holes that evaporate at the time ¢ . of the
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FIG. 1. Connection between a(M ) and B (M ) (in a logarithmic scale). The
line A4 is without allowance for early dust stages; the lines B and C are with
allowance for such stages, B corresponding to a stage with t, < 10sec, C to
astage witht, > 1072 sec. M. ~10'* M, is the mass below the horizon at
the time ¢. at which the radiation-dominated stage ends; M .. ~ 10" g,
which is equal to the mass within the cosmological horizon at the time
t~ 1072 sec, the mass of a primordial black hole that evaporates at the
time ¢.; M_y and M, are the masses below the horizon at the time at
which the early dust stage ends in cases B and C; M, ; and M, . are the
masses of PBH evaporate by the time 7, in cases B and C, respectively.

end of the radiation-dominated stage:

t 1/3
Moy~ mo (22)"° ~ 109,

= (2.12)

It is obvious that for M > M ., i.e., for primordial black holes
formed at the end of the radiation-dominated stage, the rela-
tive contribution to the total density does not increase, i.e.,
a/B=1.

The relation (2.11) must be modified in the presence of
early dust stages. Such stages [see (1.3)] can arise because
metastable supermassive particles are dominant in the uni-
verse. In principle, dust stages could also arise through
dominance of previously formed low-mass primordial black
holes,”*72 for example, through large-amplitude random de-
viations®”"2 in a spatial distribution of inhomogeneities with
low dispersion.

b) PBH production and early dust stages

We now consider the qualitative Fig. 2, which illus-
trates the connection between ¢, and the PBH mass M in
the presence of a dust stage. We recall that to each mass M
there corresponds a time ¢, at which the mass M, within the
cosmological horizon is equal to M (line 1 in Fig. 2). This
timet,, isalowerboundfor ¢, : ¢, >, since theconcept of
a black hole is meaningless when M > M. On the other
hand, the PBH mass at the time of formation of the PBH
must exceed the so-called Jeans mass M ; ~plc, .t )’, where
C.. is the speed of sound; M; is the mass contained within the
region through which a sound wave can pass during the cos-
mological time, and therefore the physical meaning of the
Jeans mass is that it is the minimal mass for which pressure
forces do not yet prevent the development of gravitational
instability. In a p = £/3 stage, M, is somewhat less (since
., =c¢/+3) but of the same order as M, (line 2 in Fig. 2):
M, =3-3%2M,, and PBH production is possible only in the
small region I bounded by lines 1 and 2, so that in this case
the relation (2.8) can be used for order-of-magnitude esti-
mates.
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FIG. 2. Relationship between the time of formation of a primordial black
hole and its mass: 1) relation between the mass M of a configuration and
the time ¢, (M) at which it comes within the horizon; 2), 2') and 2”) the
relationship between the Jeans mass M ; and the cosmological time: 2, in
the absence of an early dust stage; 2’, with allowance for an early dust stage
in which supermassive particles that do not interact with ultrarelativistic
matter are dominant; and 2", with allowance for an early dust stage of
dominance of supermassive particles that interact effectively (are coupled)
to the ultrarelativistic particles. 3) The beginning of the nonlinear stage in
the evolution of inhomogeneities of mass M. Region I corresponds to
formation of PBH from metric perturbations & ~ 1; regions II and II' cor-
respond to the formation of PBH with & < 1 (see the text).

We recall that the formation of a black hole automati-
cally presupposes that the perturbation 4 of the metric in the
configuration from which the PBH is formed is of order 1. It
is also known that for ¢ < ¢, a metric perturbation on the
scale M remains constant.® It is from this that one can con-
clude that PBH production in the p = £/3 stage (region 1 in
Fig. 2) takes place in the exponential tail of the Gaussian
distribution of the metric perturbations with respect to the
amplitude 4.5 If the dispersion of the metric perturbations
satisfies §(M ) < 1, then the probability of realization of a con-
figuration with #~1is

P (k) ~ &7 (M) exp —ﬁ) . (2.13)

For a detailed discussion, see Refs. 59, 60, 67, and 72. (For
the hydrodynamics of PBH formation with A~1 in the
p = &/3 stage, see Ref. 57.)

The situation is quite different in the p = 0 stage.
Beginning from the time ¢, and until ¢, the Jeans mass M is
much less than the mass within the cosmological horizon
(curves 2’ and 2” in Fig. 2). For ¢t > t,, M is determined by
the properties of the particles dominant in the p = Ostage. If
the supermassive particles dominant when ¢ > ¢, do not inter-
act with the matter, then the variation of M ; is shown sche-
matically by curve 2’. But if the supermassive particles inter-
act with the relativistic particles and the radiation, then in
the stage p = 0 the dependence of M; on the time is repre-
sented by curve 2”. Because M ; <M, , PBH formation from
configurations with 4 < 1 is possible when p = 0 (regions II
and IT' in Fig. 2). Indeed, a configuration with initial metric
perturbation 4 < 1 at the time when its diameter is compara-
ble with the horizon has, as in the case p = £/3, density con-
trast Sp/p ~h. But 8p/p increases in accordance with the

51-54
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law 8p/p « (t /t,)*'>. At the time

ty ~th % (2.14)

when 8p/p~1, such a configuration enters the nonlinear
stage in the development of perturbations, and the configu-
ration becomes detached from the cosmological expansion.
In the course of the subsequent contraction, such a configu-
ration becomes with a certain probability a PBH at a time
oo (M, ).

Following Refs. 51-54, we estimate the minimal prob-
ability of PBH formation in the nonlinear stage in the devel-
opment of inhomogeneities in the epoch in which the super-
massive particles are dominant.

At the time ¢, of the beginning of the contraction, the
density distribution of the configuration and its shape are
characterized by the following quantities: a) the mean den-
sity p,, equal in order of magnitude to the mean density of
the universe at the time #,; b) the characteristic radius 7, of
the configuration: M = (47/3)p,r;; c) the degree of devi-
ation of the configuration from spherical symmetry s:
s=max{|y, — ¥2|, [¥1 — ¥al, [¥2 — 73|}, where 7,, ¥,, and
75 correspond to the principal values of the deformation ten-
sor of the configuration; d) the inhomogeneity # of the den-
sity distribution within the configuration itself:
u=(p., —p1)/p1, where p_, is the density in the center of
the configuration at the time ¢,.

The formation of a PBH means that in the course of the
nonlinear stage the configuration has contracted at the time
l ¢ tOo ~7,, wherer, is the gravitational radius of the config-
uration. The mean density ppgy Of the configuration at the
time ¢, must be

M
OPBH ~ m— ~ 0,73, (2.15)
where
gt (2.16)

ry
On the other hand, the maximal density attained in contrac-
tion in which the configuration remains nearly spherical in
shape is

(2.17)

-3
Pmax ~ 0157

The estimate (2.17) follows from the fact that the mini-
mal configuration radius is 7,;, >min{z.,,, Av, Ar}, where
t... is the characteristic contraction time of the configura-
tion,” Av Ssr,/t.,. is the characteristic difference between
the initial contraction velocities along different axes, and
Ar & sry is the characteristic initial oblateness of the configu-
ration.

It can be concluded from (2.16) and (2.17) that for PBH
formation the configuration must be almost spherically sym-
metric:

s<z . (2.18)

Fors X x,i.e., for the absolute majority of the configura-
tions, primordial black holes are not formed but instead
structures with small gravitational potentials (for example,
strongly nonspherical “pancakes”?°).
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At the time when the density ppyp is reached, the equa-
tion of state in the configuration may again become p = £/3.
But if the inhomogeneity in the configuration at the time ¢,
is sufficiently small,

80 ppu

f pBH
then the pressure forces acting on unit volume of the matter,
S, ~gradp S (8p/r,)c*, do not exceed the corresponding gra-
vitational forces, f;, ~(GM /r2) p ~pc*/r, and certainly can-
not prevent PBH formation.

If the particles do not interact with one another and the
radiation, then a change in the equation of state need not
occur on the contraction to the density ppgy . In this case, a
primordial black hole is certainly formed if the configura-
tion can contract to 7, earlier than the density at the center
formally becomes infinite due to the self-intersection of the
layers of radially freely falling particles (formation of a so-
called causticj:

<1, (2.19)

tfor < t‘cau" (220)

Otherwise, passing through the center, the particles may
again fly apart from the central region, thus preventing PBH
formation.

If by the time ¢, the configuration has succeeded in
fragmenting into weakly interacting “clumps”’ with charac-
teristic mass AM <& - M, then even with allowance for the
velocity dispersion of such clumps the condition certainly
sufficient for PBH formation again reduces to the relation
(2.20).

The contraction of an almost spherical dust (p = 0)
configuration can be described approximately by the Tol-
man solution (see, for example, Ref. 73). It is shown in the
Appendix that the conditions (2.19) and (2.20) reduce to one
and the same restriction on the inhomogeneity of the config-
uration at the time of commencement ¢, of contraction:

u<g ;1:3/2, (2.21)

We estimate the probability W, that the configuration
has a degree of inhomogeneity u corresponding to the ine-
quality (2.21). In accordance with Ref. 2, the quantity 7.,
which characterizes in Eq. (A5) of the Appendix the inhomo-
geneity of the density distribution within the configuration,
is uniquely determined by the actual spectrum of the initial
perturbations.

We suppose that up to a numerical coefficient of order
unity /{r% ) ~r,. Then for practically any law of distribu-
tion with respect to u the probability of formation of configu-
rations with anomalously small u satisfying (2.21) is in order
of magnitude

W, ~ %2,

(2.22)

(For example, for the normal distribution law with disper-
sion o~1, which follows from the normalization of u,
W, ~55"% ¥ du~x>'2)

The assumption that /(r2 ) ~r, is entirely natural for
configurations on the average (after averaging over scales
r<r;). In other words, the influence of the effects of the
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“clumpiness” of the configuration are not analyzed explicit-
ly. But configurations satisfying the condition (2.21) evident-
ly cannot contain clumps. The question of the connection
between the criterion (2.21) and the nature of the small-scale
inhomogeneity within a configuration is of independent in-
terest and requires the use of rigorous mathematical meth-
ods.

We now estimate the probability W ¢ that a configura-
tion has a high degree of sphericity, satisfying the inequality
(2.18). This rather subtle question was investigated by Dor-
oshkevich.”* Although the random components of the defor-
mation tensor are distributed in accordance with a random
law, the actual procedure of reducing the deformation tensor
to principal axes is an essentially nonlinear procedure.
Therefore, the law of distribution of the principal values y,,
¥2» V3 introduced previously differs from a normal law by the
factor (y, — 72)(¥2 — 73)(¥1 — ¥5)- With allowance for all the
numerical factors, taken from Ref. 74, we find that {see Refs.
52-54)

Ws =~ 2.107%z5. (2.23)

Thus, it follows from (2.22) and (2.23) that a primordial
black hole is certainly formed with probability not less than

Ween = WeW, > 2-10-2z152, (2.24)

Equation (2.21) determines the minimal fraction of matter
that passes into PBH of mass M at the time of PBH forma-
tion.
In (2.24), the quantity x can be readily related to 4:
GM | p; \1/3 G 2/8 4, tg \2/3
s~ (G )~ e ()
But in accordance with (2.14),
6M5Ppi? M \2/3
X ~ _—_.—52 h (Ta’ ) P

where

My = pg (cty)® (2.25)

is the mass within the cosmological horizon at the time ¢,
Since po~ 1/Gt ], we finally have

M \2/3
z (M) ~ k(M) (To ) ) (2.26)
The (2.24) can be rewritten as
M 13/3
Wepn =W (M, h) =~ 2-10-2r*%2 (M—o) . (227

With allowance for (2.13), (2.26), and (2.27), the fraction of
matter that goes into a PBH formed from configurations of
mass M > M, is

M )13/3

B (M) ~ 2- 10281372 ( - (2.28)

If t,(M, 5(M)) (curve 3 in Fig. 2) is less than ¢, , then the
overwhelming majority of configurations with mass M enter
the nonlinear stage (region II' in Fig. 2). Therefore, the main
contribution to B (M ) is made by 4 ~§, so that the exponen-
tial smallness in the probability of PBH formation charac-
teristic of the radiation-dominated stage is absent. The re-
gion II' is bounded on the side of small masses, M < M,, by
curve 4, which takes into account the partial or complete
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damping of low-mass configurations that come through the
cosmological horizon before the radiation-dominated stage.

Note also that in the p = 0 stage primordial black holes
can be formed as a result of the nonlinear evolution of more
massive configurations (for example, as a result of fragmen-
tation), or during clustering of less massive isolated configu-
rations (or already formed PBH of lesser mass).

¢) Influence of the dust stages on the connection between
a(M) and (M)

Ifin the early universe when? < ¢. (i.e., before the end of
the radiation-dominated stage in the standard hot model)
there is realized a dust stage, which begins at ¢, and ends at
t., therelative PBH contribution to the cosmological density
does not increase during the period t, < ¢ <¢,. In the pres-
ence of such a stage, the dependence of 7, on M is no longer
so simple as (2.8). However, in the case of an arbitrary but
single-valued connection between ¢, and M the relation
(2.10} can be generalized as follows>>:

a(M) i
o=V e

% { 1 fOI' tcv << tev
Vmin {tCV‘ ? t*}/max {te7 tfor} for tev >te.
(2.29)

The relation (2.29) shows that for PBH with ¢, <z, early
dust stages, p = 0, have a strong influence on the ratio of & to
B. For ty, >1., the relation (2.29) goes over into (2.10).

For PBH formed in an early dust stage and evaporating
after its end (and it is only such PBH that are of particular
interest to us), i.e., for t, <4, <. and t,, >t., we find that
Le . (2.30)

— /
B(M)=a(M) l/ min {tey , ts)
Taking into account (2.10), which expresses the analogous
connection between S (M ) and a(M ) in the absence of early
dust stages, and also (2.8), we can rewrite (2.30) in the follow-

ing form, which is convenient for discussion:

B =80 () (52) " (375r) "

where 5,(M ) is the fraction of the matter that goes over into
PBH of mass M for givena(M ) in the absence of an early dust
stage.

In Sec. 2b we saw that 3 (M ), defined earlier as the frac-
tion of matter that goes into PBH with mass M at the time of
their formation, loses its meaning in the presence of an early
dust stage, since, in contrast to the case of a continuous radi-
ation-dominated stage, 3 (M ) depends now not only on the
PBH mass but also on the initial characteristics of the con-
figurations from which the PBH were formed, and also on
the actual mechanism of their formation. However, as fol-
lows from (2.29), for PBH formed in the early dust stage the
time ¢, does not occur explicitly in the relationship between
a(M)and S (1). Therefore, it is expedient to redefine 3 (M }as
follows: For M <M., i.e., the horizon mass at the time ¢,,
(M) is the fraction of matter in PBH with mass M at the
time ¢, of the ending of the early dust stage, while for M > M,
the quantity 8 (M ) has its previous meaning, i.e., 8 (M } is the

(2.31)
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fraction of the matter that goes into the PBH with mass M at
the time of their formation.

We can now express explicitly the ratio of a(M) to the
redefined B (M ) as a function of M and a unique parameter
M, of the dust stage (curve B or C in Fig. 1). We note right
away that a(M /B (M)~ 1 for PBH with ¢,, <t., i.e., with
M <M..=my(t,/tp)"> since even if such PBH existed at
time #, they would evaporate so rapidly that their relative
contribution to the density of the universe when ¢ > ¢, would
not be able to increase appreciably. For more massive PBH,
as follows from (2.29),

o (M)
(M)

for M << Mey,
min {1, (=) pmin {1, (57-)")
for Meoa <M< M,,

1 for M>M,.
(2.32)

|
|

It is obvious that for M > M ., as before, a(M )/B (M) =1.

d) Astrophysical restrictions on the PBH spectrum

The PBH formed in the very early universe persist to
later stages of the expansion; moreover, their contribution to
the cosmological density in the subsequent p = £/3 stage in-
creases, and their effect on the physical processes in the uni-
verse is accordingly strengthened. As noted earlier, PBH
with masses less than 10'®g will have evaporated by the pres-
ent epoch through quantum processes in accordance with
Hawking’s results.®! A correct treatment of PBH evapora-
tion is possible only for PBH masses exceeding the Planck
mass of 10> g, since for PBH with smaller masses the width
with respect to evaporation is comparable to the magnitude
of their mass (for the possibility of stable maximons, i.e.,
PBH with mass of 1075 g, see Ref. 75; for PBH with mass
less than 107> g, see Ref. 76). Primordial black holes with
M < 10° g evaporate before 1 sec, and restrictions on such
PBH can be obtained by analyzing the effect of their evapo-
ration on the entropy of the universe.® In such an analysis, it
is necessary to take into account not only the generation of
baryon charge’” but also the generation of additional en-
tropy in PBH evaporation processes.5® The evaporation of
PBH with M > 10° g takes place in the period after 1 sec. If
the PBH masses are in the range 10°~10'° g, which corre-
sponds to evaporation time in the interval 1-10° sec, the
evaporation products of such black holes influence the rela-
tionship between the frozen concentrations of the protons
and neutrons and, therefore, the abundance of primordial
helium, so that from the observed helium abundance one can
put restrictions’®’® on the admissible value of a(M) in this
interval of masses. And, using the observed deuterium abun-
dance, one can restrict’>® the value of a(M ) for PBH with
masses 10'°-10'? g, which evaporate in the period 10°>-10'2
sec. Analysis of recombination dynamics makes it possible
torestrict a(M ) for M ~10"3-10"* g, %' i.e., for PBH evaporat-
ing in the epoch of the decoupling of radiation from matter.
The strongest restrictions on a(M) are obtained for PBH
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FIG. 3. Restriction on the value of (M ): 1) with allowance for the possi-
bility of a dust stage with . <1 sec, 2) under the assumption that there are
no early dust stages.

with masses 10'-10" g®%3 from observations of the y back-
ground and y bursts, see Refs. 8284, and also from analysis
of synchrotron radio radiation.?’

Primordial black holes with M > 10'® g persist to the
present time, and restrictions on their contemporary con-
centration can be obtained from their contribution to the
cosmological density>® or from their effect on the dynamics
of superclusters®® {for M > 10'°M_,) and on the large-scale
structure of the universe.

The astrophysical restrictions on a(M ) make it possible
to obtain an upper bound for B (M ). In the case of a contin-
uous radiation-dominated stage from the Planck time to the
epoch near hydrogen recombination the relationship
betweena(M )and B (M )is expressed by (2.10), and the obser-
vational restrictions on a(M )lead to the restrictionson 8 (M )
shown in Fig. 3 {curve 2). In the presence of early dust stages,
the restrictions on 3 (M ) determined in the previous section
depend strongly on the time ¢, at which the early dust stage
terminates. The value of f, may depend not only on the pa-
rameters of the specific grand unification models but also on
many details in the evolution of the nonlinear structures
formed in the early dust stage. However, as was shown in
Refs. 15 and 53, one can give an admittedly crude but quite
reliable upper bound on ¢, :

te << 1 Sec. (2.33)
This restriction is obtained from the condition that the early
dust stages must end earlier than 1 sec after the beginning of
the expansion of the universe in order to avoid a contradic-
tion with the observed abundances of the light elements and
the spectrum of the microwave background.

Although the restrictions on the PBH spectrum {curve
1in Fig. 3) obtained on the basis of (2.32) and (2.33) are much
weaker than the ones obtained earlier (see, for example, Refs.
66 and curve 2 in Fig. 3), they are more reliable, since they do
not use the implicit assumption that early dust stages are
absent.”

In addition, we do not rule out the possibility that at the
termination of an early p = O dust stage a baryon charge
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excess is generated in the universe together with additional
entropy. In this case, the initial entropy and the contribution
to it of the low-mass PBH that evaporate before 1 sec are
“forgotten.” This in fact lifts any astrophysical restrictions
on a{M ) and, therefore, on 8 (M ) for M < 10° g.

Thus, in the presence of early dust stages it is no longer
possible in principle to eliminate a to any extent inhomogen-
eous expansion of the universe on scales M < 10° g.

In the framework of specific grand unification models
that predict the parameters of early dust stages with ¢, 1
sec, the restrictions on the PBH spectrum are greatly
strengthened compared with those given by curve 1in Fig. 3,
though they remain weaker than those corresponding to
curve 2 in Fig. 3. Such models establish a connection
between the parameters of the violation of CP invariance,
the possible magnitude of the baryon charge excess generat-
ed in nonequilibrium processes in the early universe, and the
parameters of the supermassive particles. This imposes addi-
tional restrictions on the duration of the dust stages. Indeed,
if such a stage was determined by the dominance of particles
of mass m with frozen relative concentration v = (n,,/n,, ),
and lasted from the time ¢, to the time ¢,, and at its end the
initial baryon charge excess (ng /1, ), = v(ng /ny, ), was aug-
mented by the further baryon charge excess Ang /n,, = AB,
then the final ratio of the number of baryons to the number of
photons is

().~ () ae) ) E.

To obtain (2.34), it is sufficient to note that

(2.34)

(ny)
(ny)e = (ny)o -+ 27:& ’

re=r,1/ %,

The quantities that occur on the right-hand side of (2.34) are
determined by the parameters of the specific models. It can
be seen from this that if specific models are not specified it is
impossible to obtain restrictions on the dust stages solely on
the basis of the observed entropy of the universe.

In the framework of the specific model of asymptotical-
iy free SU(5) theory,® analysis of the cosmological conse-
quences of the existence of metastable supermassive G fer-
mions (including their effect on the entropy of the universe)
makes it possible to give stringent restrictions®” on the free
parameter k , of the theory, as we shall discuss in Sec. 4b.

In the presence of several early dust stages, we shall,
since we do not have a detailed picture of their alternation
with the radiation-dominated stages, understand by 7, in the
relationship (2.32) gbtained earlier between a(M ) and 5 (M)
the time at which the final p = O stage ends.

We note also that allowance for the possibility of early
dust stages can lead to a weakening of the restrictions ob-
tained without allowance for such stages on the concentra-
tions of not only the PBH but also of a number of parti-
cles'*'* (for example, gravitinos™).

{(np)e == (np)y 1 Ang,

Ty~ vm,
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3. RESTRICTIONS ON THE PARAMETERS OF
SUPERMASSIVE PARTICLES AND INHOMOGENEITY OF THE
EARLY UNIVERSE

a) Connection between the PBH spectrum and the
parameters of supermassive particles

In the previous chapter, we estimated the minimal
probability W gy (M) of formation of PBH of mass M in an
early dust stage. This probability depends strongly on the
initial perturbation spectrum §(M ) of the metric. Suppose
the perturbation spectrum of the metric has the form

a(M)=-ao(M£0)‘", (3.1)

where M, is taken to be the mass within the cosmological
horizon at the time at which the early dust stage commences.
The corresponding perturbations of the density at the begin-
ning of the dust stage have the form (see, for example, Ref. 2)

1, Mpa <<M << M,,

(4-)"0 M= wm,,

L, 1) =6(M){ (3.2)

where M, is the characteristic scale of the damping of the
density perturbations. To make the results of the following
restrictions on the parameters of the supermassive particles
independent of the specific perturbation damping mecha-
nisms in the p = £/3 stage when ¢ < ¢, (in particular, indepen-
dent of the quantity M, itself, which, however, is certainly
less than M), we restrict the consideration to scales exceed-
ing M. Then from (2.27), we have®'->*

M \-13n/2
W s (M) > 240726 ( 57 )

. (3.3)
This minimal estimate is valid for not too large masses
M,<M<M,,, where M _, isthemaximal mass ofthecon-
figurations that succeed in detaching themselves from the
general cosmological expansion before the termination of
the early dust stage, i.e., for which the characteristic time ¢,
of the commencement of the nonlinear stage, determined by
the condition

Op H\¥8
'p_(Mmaxv tO) (t_o) 17

is in order of magnitude equal to the time of termination of
the early dust stage: f, ~7. From (3.1), (3.2), (3.4), (2.25), and
(1.2) we obtain

(3.4)

_t;_l)Z,(Z-(—Iin) ( 7:7;,’1;1 )6n/(2+371) 63/(24—"). (3‘5)

Thus, the interval of PBH masses (M, M, ., ) in which
the minimal probability of their formation in the early dust
stages is estimated depends strongly on the parameters r and
vm of the supermassive particles, and also on the amplitude
&, of the spectrum and the exponent # in the spectrum of the
initial perturbations of the metric.

Mmax = Mmp (

b) Comparison of minimal probability of PBH production with
astrophysical restrictions

The essence of the restrictions on 7 and vm, whose val-
ues depend on the specific elementary-particle model and
are parameters of the supermassive particles, is as follows: A
concrete variant of the model certainly contradicts the astro-
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FIG. 4. Comparison of the observational upper bounds on 5, the fraction
of matter that passes into primordial black holes, and the minimal prob-
ability of PBH formation in early dust stages. The figure shows schemati-
cally four possible relationships between £ and W. The existence of an
early dust stage does not contradict the observational data if the metric
perturbations are sufficiently small (case a). In this case, the beginning and
end of the stage can be arbitrary. In the case of large initial perturbations
of the metric, the early dust stage must either end early (so that M, is
sufficiently small—case b), or begin sufficiently late (so that M, is suffi-
ciently large—case c). Thus, the restriction on the parameters of the the-
ory of elementary particles is dictated by the condition that the situation
shown in Fig. 4d, when for a certain interval (M, M,) of PBH masses
W > B3, should not arise.

physical restrictions on the PBH spectrum, S (M), if

Wesn (M) > B (M), (3.6)

for at least one value of M in the interval (M,, M, ., ) (see the
schematic Fig. 4).

We illustrate what was said above in more detail for the
case of a flat spectrum of the initial metric perturbations, i.e.,
by setting n = 0.

With allowance for (2.25), the condition M, <M re-
duces to an inequality for the parameter vm of the supermas-
sive particle:

vm M \-1/2
mp) ( “me1 ) .

The condition M < M, as follows from (3.5) if we set
n = 0, can be rewritten in the form of an inequality for the
other parameter 7, which characterizes the duration of the
dust stage (1~1,):

(3.7)

T M -
- - 6 372
Pl mp]

. (3.8)

As follows from (2.31), the inequality (3.6) can itself be re-

written in the form of a restriction on the parameter r itself:
T M [ Wepn (M) 72

o < ] - 3.9

Thus, if the theory predicts values of the parameters vm and

7 of the supermassive particles for which there exists an in-

terval of masses (M,, M,) (M,>M,, M,<M,) in which the
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FIG. 5. Restrictions on the parameters of supermassive metastable parti-
cles (r, vm) with allowance for the influence of early dust stages on the
connection between & and S8 under the assumption of a flat spectrum of
the initial metric perturbations. The hatched region is forbidden by the
observational restrictions on the PBH spectrum.>*

inequalities (3.7)-(3.9) are simultaneously satisfied, then
such a theory contradicts the observational astrophysical re-
strictions on the PBH spectrum under the assumptionn = 0.

The obtained restrictions on 7 and vm are given in Fig.
5.53

Note that for sufficiently small §, there are no restric-
tions on 7 and vm (a corresponding mass interval does not
exist, since the inequalities (3.8) and (3.9) are incompatible).
As can be seen from (3.8), (3.9), and curve 2 in Fig. 3, this
occurs when

i . min M
63/ < max WE;; (}tl) !

(3.10)
i.e., when
8, < 6-1074. (3.11)

For 6 X 10 * <8, < 1.5 X 1073, the interval (M, M,) re-
duces to a narrow region near M~ 10'* g (M, ~M,~ 10" g)
and the forbidden (7, vm) region is shown in Fig. 5a.

For 14x1073568,<8x107%, M,~10" g, and
M,~ 10" g (see Fig. 5b).

Finally, for 8107358, < 1, M; ~10° g and M, ~ 10"
g(8,> 7.8 - 1073).2>2 The corresponding forbidden region of
the parameters (7, vm) is shown in Fig. 5c.

The restrictions on vm and 7 shown in Fig. 5 have a
completely general nature and must be satisfied by all ele-
mentary-particle theories, in particular various forms of uni-
fied gauge theories. Therefore, the obtained restrictions not
only demonstrate the basic possibility of establishing con-
nections between the parameters of the supermassive parti-
cles and the astrophysical restrictions on the PBH spectrum
but also serve as a kind of prescription for comparing ele-
mentary-particle models with astrophysical observations.
Indeed, for all types of metastable particles it is in principle
possible to estimate 7 and v in the framework of the corre-
sponding unified gauge theory model, as will be demonstrat-
ed in the following section for the case of magnetic mono-
poles, heavy quarks, and leptons. The direct comparison of
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such estimates of 7 and vm with the restrictions shown in
Fig. 5 makes it possible to obtain nontrivial restrictions on
the properties of such particles, for example, their mass.

4. RESTRICTIONS ON THE PARAMETERS OF UNIFIED
GAUGE THEORIES

The principles of local gauge invariance have made it
possible to describe within the framework of a unified theory
the weak and electromagnetic interaction of elementary par-
ticles.*#%-8% Such an approach has also proved fruitful for the
construction of a theory of the strong interaction—quantum
chromodynamics (QCD).**° The theory that combines the
electromagnetic and weak interaction predicts a weak loga-
rithmic growth of the electromagnetic coupling “‘constant”
with increasing energy, and also of the parameter sin? 6, of
the theory (see Ref. 4). Quantum chromodynamics predicts a
logarithmic decrease, in agreement with accelerator experi-
ments, of the fundamental strong coupling *“constant” with
the energy. Extrapolation of these dependences to high ener-
gies, inaccessible under contemporary laboratory condi-
tions, identifies a characteristic energy of order A ~10"-
10'6 GeV, at which the “constants” of QCD and the electro-
magnetic interaction become equal. It was this circumstance
that laid the foundation of the present models that unify the
strong, weak, and electromagnetic interactions.**! Such
models are in complete agreement with the experiments as
regards the measurement of the parameter sin? & of the
electroweak theory (see, for example, Ref. 4). Experiments
are being made to test other predictions of such models. Such
experiments are the search for instability of the proton®?-*
and neutron-antineutron oscillations.®>-*¢ It must be em-
phasized that all these effects, which occur in the region of
energies low compared with the unification scale, have a
very low probability, being due to virtual transitions with the
participation of supermassive particles with masses m ~ A.¥
The characteristic lifetime 7, of such particles predicted by
the theory is determined by the probability W, of direct de-
cay of a boson into two light fermions or of a fermion into a
boson and a fermion and is very small. In a system of units
with# = ¢ = 1, in which the probability is measured in units
of mass, W, has the form

1
Wiz?l—:k’m, (4.1)

where the numerical factor &, depends on the properties of
the specific particles. However, besides short-lived particles,
for which k,~a-a?, the theories predict several possible
families of metastable particles, whose lifetimes appreciably
exceed the above lifetimes of the ‘“‘normal” short-lived parti-
cles (i.e., k, <a?). All the currently existing models are based
on simple group symmetries of unified interaction and ines-
capably predict the existence of absolutely stable magnetic
monopoles.”

In addition, in a theory there may be particles for which
two-particle transitions to lighter particles are forbidden for
some reason. Decays of such particles can take place only
through intermediate (virtual) bosons with masses m ~A.
Using dimensional arguments, it is easy to estimate the prob-
ability (characteristic time) of such three-particle decay:
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(4.2)
where &, is a numerical factor that depends on the particular
parameters of the model, for example, the statistical weight
of the particles, the magnitudes of the corresponding mixing
factors, the number of possible decay channels, etc. Of this
kind are the following particles: a) supermassive neutral fer-
mions, in particular the right-handed neutrinos in the O(10)
models®”%; b) supermassive quarks, of the so-called B multi-
plet in the SU(5) model with asymptotic freedom. These
quarks have the color properties of gluons, and for this rea-
son their direct transitions into ordinary quarks are forbid-
den.

Supergravity models predict massive fermions with
spin 3/2—partners of the graviton in a supersymmetric mul-
tiplet; they are called gravitinos.>® The gravitino mass m is
determined by the scale of the supersymmetry breaking. Es-
timates®® of the gravitino decay probability lead to the value

(4.3)

3

1 G
Wy=——=ky—
Ty mpy

with numerical factor k; = 1. An analogous dependence can
also hold for stages in which a scalar field is dominant; for
example, in the case of scalarons'®® one must take mg to be
the scalaron mass.

We now turn to an analysis of the cosmological conse-
quences of the existence of these metastable particles, using
the restrictions given in Sec. 3 and particularizing them for
each of the particle species. For this, we take into account the
interaction of such particles with one another (pair annihila-
tion) and with ultrarelativistic, much less massive particles,
and estimate in each particular case the residual concentra-
tion of the supermassive particles. This, in its turn, makes it
possible to relate the parameters of the early dust stage in the
expansion of the universe {¢, and ¢, ) to the mass of the parti-
cles and, thus, to impose on it restrictions that depend on the
amplitude of the initial perturbations of the metric.

a) Restrictions on the mass of magnetic monopoles

Unified gauge theories predict®>® the existence of mon-
opoles and antimonopoles with magnetic chargesg = + #ic/
2e. An estimate of the residual concentration of the mono-
poles and their lifetime with respect to annihilation can be
obtained®® on the basis of the following physical consider-
ations:

1) In a relativistic plasma with temperature kT < mc?,
the main mechanism of interaction of the monopoles with
the ambient medium is multiple scattering of a monopole by
particles with effective cross section (in units for which
fi=c=k=1)

1

O ~ =—

T (4.4)

2) The annihilation of monopoles and antimonopoles is
determined by their magnetic “Coulomb’ attraction to each
other.

3) In a rarefied plasma, in which the effective decelera-
tion of the monopoles by scattering by light charged parti-
cles is unimportant, the rate of annihilation is determined by
the capture of a monopole by an antimonopole with the
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Ll

emission of dipole radiation®:

g, (4.5)

~ “9/5
(ov) ~ v =

4}In a dense plasma, the annihilation rate is determined
by the rate of diffusion of a monopole to an antimonopole in
the course of multiple scattering of monopoles by particles of
the medium.

5) For the calculation of monopole annihilation, the dif-
fusion approximation is valid provided the stopping length
for the monopoles (antimonopoles) due to multiple scatter-
ing, A = 1/n_.0,, is much less than the characteristic “Cou-
lomb” radius of the monopole (antimonopole) 7o = g*/T.

6) In the early universe, monopoles (and antimonopoles)
are produced in the course of the phase transition from the
symmetric vacuum of the unified theory to the antisymme-
tric vacuum with electromagnetism separated from the re-
maining interactions. The concentration of the produced
monopoles depends strongly on the duration and nature of
the phase transition.

It should be said immediately that in inflationary mod-
els such a low monopole concentration at the end of the
phase transition is predicted, in accordance with Refs. 101-
103, that a stage in which they are dominant is ruled out.
However, in Ref. 104 there is a discussion of the possible
production of an appreciable number of monopoles after the
inflationary phase as well. In addition attempts have been
made to solve the monopole problem without recourse to the
inflationary scenario, according to which the monopole con-
centration is suppressed from the very beginning. For exam-
ple, in Ref. 105 there is a discussion of the possibility of
annihilation of monopoles in the stage of their confinement
in a comparatively late epoch in the expansion of the uni-
verse corresponding to 10'*2 T2 10*> GeV. According to
Ref. 105, the monopole annihilation in this period must take
place in two stages, an appreciable fraction of the monopoles
being annihilated only in the second stage, at T~ 10% GeV,
after the phase transition with the breaking of the Weinberg-
Salam symmetry. Thus, this mechanism'®® ensures the ab-
sence of an appreciable number of monopoles in the universe
when T < 10” GeV but does not rule out a high concentration
of them in the period corresponding to T> 10*> GeV. It is
therefore of interest to obtain an independent restriction on
the mass of the monopoles under the assumption that their
initial concentration is fairly high and the mechanism of dif-
fusion annihilation fairly effective. In this case, the frozen
concentration does not depend on the magnitude of the ini-
tial concentration and is determined solely by the mass and
charge of the monopole.

With allowance for all that was said above under points
1)-6), the residual concentration is in order of magnitude®®

— m 137 5
~ e~ A0 e (_g_) , (4.6)
so that
v ~A0 () Gev. (4.7)

The monopoles are absolutely stable with respect to decay,
and the ending of the early dust stage of their dominance can
be due solely to their annihilation with antimonopoles in
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FIG. 6. Restrictions on the mass of magnetic monopoles for different
values of §,.

configurations that become isolated in this stage. The char-
acteristic time of such annihilation is

T & (nm (00))7,

(4.8)

where n,, is the characteristic density of the monopoles in
such configurations, and {ov) is the mean rate of annihila-
tion. In order of magnitude, n,, corresponds to the cosmolo-
gical density at the time ¢, of commencement of the nonlin-
ear stage for configurations of mass M,. With allowance for
(4.6) and (4.7) we have

n NLI
m m |t=t,
F 7
~ 87.1078 (——w”‘Gev-) X (4.9)

We assume that the characteristic velocity of the mono-
poles in a configuration is of the order of the virial velocity,
v~+vGM /r,. Then with allowance for (2.26) with M = M,

and s = §, we have
v~ cdi2. (4.10)

With allowance for (4.10), the monopole annihilation rate
(4.5) is in order of magnitude

(ov) ~ L5 8710, (4.11)
From (4.9)—{4.11), we obtain
T~ 10-5sec{ 2o )° 877110, (4.12)

The restrictions on the monopole mass obtained from
Fig. 5 with allowance for (4.7) and (4.12) for different values
of 8§, rule out the possibility of existence of monopoles with
m>10"7 GeV for 8,> 2.5 102 (Fig. 6). This restriction is
weaker than the one obtained in Refs. 51 and 52 without
allowance for the weakening of the restrictions on 8 (M) in
the presence of early dust stages. It should however be noted
that in principle one could strengthen this restriction by ad-
ditionally taking into account PBH production during the
subsequent evolution of the isolated configurations that do
not belong to the considered class of specially spherically
symmetric and homogeneous configurations. A quantitative
analysis of such formation of primordial black holes has not
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as yet been made; for a qualitative discussion, see Refs, 106
and 87.

b) Restrictions on the parameters of asymptotically free
SU(5) theory

When one speaks of asymptotic freedom in quantum
field theory, one has in mind logarithmic decrease of the
coupling constants at high energies. In models of unified
gauge theories, asymptotic freedom is realized only if one
requires a definite symmetry between the fermion and bo-
som multiplets, and also the fulfillment of numerous alge-
braic relations between the constants of the interactions that
ensure the spontaneous breaking of the gauge symmetry of
the unified gauge theory. Thus, the condition of asymptotic
freedom restricts the arbitrariness in the choice of the pa-
rameters of the spontaneous symmetry breaking of the uni-
fied gauge theories. The conditions of asymptotic freedom in
the simplest unified gauge theory, which possesses SU(5)
gauge symmetry, require the introduction into the theory of
a fermion 24-plet (the so-called B multiplet®), which besides
other particles necessarily contains neutral G fermions, su-
permassive metastable quarks with the color properties of
gluons. Such supermassive G quarks of mass m can interact
with the light quarks q and the gluons g and be annihilated
with their antiparticles G. The thermodynamic equilibrium
of the supermassive quarks with the remaining particles is
realized by reactions of the type GG = qg, gg. In QCD cal-
culations, wide use is made of the analogy with quantum
electrodynamics. In this sense, the considered color interac-
tion reactions are analogous to the annihilation processes
ete”™ —u*u~, yy, whose rate is known.'”” This analogy
makes it possible to give a rough estimate of the rate of color
interaction reactions when 7<m:

al
<UV> ~ FNC’

(4.13)

where N, ~ 10 is the number of possible channels of such
reactions, and a ~ 1/50.
A detailed analysis of the kinetics of the freezing of the
G and G concentrations (see the review of Ref. 1) gives, the
rate of their pair annihilation being taken to be (4.13), the
frozen concentration of the supermassive quarks,
m_ 4 (4.14)

mpy  aiNg 7’

v AR

where in the system of units with % = ¢ = 1 the numerical
coefficient A is given by

1.

I

m,, is the proton mass, and {(ov) is determined by (4.13).

In the theory®® there is predicted to be a very small val-
ue of the parameter k,, which characterizes the decay of the
supermassive quarks and determines their lifetime 7 in ac-
cordance with (4.2), k, < 10725, so that the lifetime of the
supermassive quarks is fairly large, and already when
8,> 1077 the duration of the dust stage of their dominance is
determined by annihilation in configurations that have be-
come detached from the cosmological expansion. An esti-
mate of the characteristic annihilation time, made in the
same way as in the monopole case, for the annihilation rate

A= [42+In (ov) mpm) — 5 In %]~
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FIG. 7. Supermassive quark restrictions on the parameter kK, in an as-
ymptotically free SU(5) theory for different values of §,. The right-hand
boundary of the hatched region arises because for sufficiently large &
supermassive quarks are unstable and decay before they begin to be domi-
nant in the density of the universe.

{4.13) gives

( 11»15mGeV )5 50,

T 3.10725 sec (4.15)

The mass m of the supermassive quarks, in terms of which
we have expressed 7 and v, can be expressed in terms of the
mass of the X boson, mx ~ 10'® GeV, which is related to the
proton lifetime and the free parameter k , of the theory:

(4.16)

m = 2kpmx.

In the framework of our approach, there is a unique
possibility for restricting the parameter k1, . This parameter
does not occur in the predictions of the theories in the region
of lower energies. At the same time, it is very important for
the theory itself, since it is this parameter that determines the
masses of all particles of the B multiplet, both unstable and
metastable. In addition, depending on the particular value of
k 1, different particles in the B multiplet will be the metasta-
ble ones. Thus, in our view, astrophysical restrictions on the
parameter k , have a more general nature than restrictions
on the mass of the supermassive quarks alone.

Using (4.14)(4.16), we express 7 and vin in terms of K  :

(4.17)
(4.18)

T & 10727 sec_kp?d,?,
vm &~ 101 GeV k.

From Fig. 5 and the relations (4.17) and (4.18) we obtain
restrictions on k, for different values of §,; these are shown
in Fig. 7. The restrictions in Fig. 7 on the parameter X , make
it possible to restrict considerably the class of asymptotically
free SU(5) models.

¢) Restrictions on the parameters of supermassive neutral
fermions

In unified theory models that assume a higher gauge
symmetry than SU(5), there are supermassive neutral lep-
tons, which can be regarded as right-handed neutrinos. As
several models predict,””®® the interaction of these particles
with one another and with the remaining particles takes
place only through exchange of the X bosons, whose mass
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FIG. 8. Restrictions on the mass of the supermassive neutrino for different
values of §,.

has the order of magnitude A and appreciably exceeds the
mass of the particles under consideration. In this case, the
characteristic time of such interaction becomes greater than
the cosmological time shortly after the temperature T be-
comes comparable with A (T~ A>»m). This means that the
right-handed neutrinos come out of thermodynamic equilib-
rium with the remaining particles, and they remain relativis-
tic. Therefore, their relative residual concentration is
1 1

Vo~ —

% 100°

(4.19)

where x is the number of species of all the relativistic parti-
cles in thermodynamic equilibrium when T~ A.

In contrast to the monopoles and supermassive quarks,
the lifetime of the heavy neutrinos and, thus, the duration of
the corresponding dust stage are determined by their decay.

If we regard the mass m of these particles as a free pa-
rameter of the theory, then the restrictions on m for different
&, obtained in Fig. 5 and the relations (4.2) are given in Fig. 8.

A number of models predict a relationship®”*® between
the mass m of the heavy neutrinos and the mass m,, of the
light neutrinos:

my =22 (4.20)
where A ~ 100 GeV is the characteristic scale of the energies
of the unification of the electromagnetic and weak interac-
tion. Our method enables us in principle to obtain as well
restrictions on the mass of the light neutrino for different
values of the initial inhomogeneity ;. It should however be
noted that the interaction of the supermassive neutrinos
with the comparatively light Higgs bosons (with mass of or-
der A €m) may lead to a too rapid (i.e., occurring before an
early dust stage can commence) decay of the heavy neutrinos
into light fermions and Higgs bosons.'®® This is just the situ-
ation in the currently existing models, and this makes it im-
possible to obtain nontrivial restrictions on m,. However,
the actual idea of obtaining restrictions on the mass of the
light particles from restrictions associated with the dust
stages of dominance of the corresponding supermassive par-
ticles can be of interest in the analysis of models in which a
relationship of the type (4.20) is not associated with rapid
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decays of supermassive particles. A relationship analogous
to (4.20) is realized in supergravity models,*® in which the

gravitino mass is related to the Planck mass by**-%°
d
m=—, (4.21)

where d, the scale of the supersymmetry breaking, is a free
parameter of the theory (with dimensions of m? in units for
whichfi=c=1).

If the amplitude of the initial perturbations of the met-
ric is specified, then for large d our method makes it possible
to obtain restrictions on the gravitino mass for different val-
ues of the free parameter d. These restrictions are shown for
different &, in Fig. 9.

In locally supersymmetric models with N = 1 apprecia-
bly smaller gravitino masses are predicted, ~ 100 GeV, and
the method we have described does not make it possible to
obtain restrictions on their concentration directly. However,
to suppress the residual concentration of such “light gravi-
tinos” one usually requires that at the termination of the
inflationary stage there be a sufficiently long dust stage of
oscillations of the scalar field.?> Our method makes it possi-
ble to give restrictions on the admissible inhomogeneity in
this stage. Therefore, in this case too the method does in
principle make it possible, albeit indirectly, to obtain restric-
tions on the parameters of supergravity models.

d) Origin of the spectrum of initial perturbations in the
expanding universe; dust stages

Hitherto, we have regarded the amplitude §, of the ini-
tial perturbations as a free parameter of the cosmological
model.

Recently, ways have been suggested by which the spec-
trum of the initial perturbations can be related to quantum
density fluctuations in the very early universe (near the sin-
gularity) through the existence of a de Sitter stage of expo-
nential expansion of the universe—the so-called inflation
stage (the stage in which the “false” vacuum is dominant).
Such a stage may arise because of vacuum polarization near
the singularity'” or because of the vacuum phase transitions
predicted by unified gauge theories'®'~1%* (for a detailed re-
view, see Ref. 109). The existence of a stage of exponential
expansion of the universe—exponential growth of the per-
turbation scale—relates the global structure of the universe
today to physical processes near the singularity. On the tran-
sition from the de Sitter to the Friedmann stage of expansion
there arise perturbations of the metric and density due to
nonsimultaneity of the phase transition in different re-
gions. 1112 In addition, a spectrum of initial perturbations
can be formed as a result of so-called parametric enhance-
ment of small initial fluctuations, regarded as phonons in a
hydrodynamic medium!**-!1¢ (see also Refs. 117 and 118).
This mechanism is analogous to the parametric amplifica-
tion of gravitational waves.'!® For an analysis of the evolu-
tion of quantum fluctuations that does not treat them as
phonons in a hydrodynamic medium in the de Sitter stage,
see Ref. 120. In one way or another, when the exponential
stage ends theory predicts some perturbation spectrum,
which, in particular, must explain the large-scale structure
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FIG. 9. Restrictions on the mass of supermassive gravitinos for different
values of §,.

of the universe.

It is here important to emphasize that the parameters of
this spectrum of initial perturbations depends strongly, first,
on the parameters of the de Sitter stage (its commencement
and duration) and, second, on the manner in which the
“false”” vacuum decays on the transition to the subsequent
Friedmann stage of expansion.

In thelight of all that we have said above, a program for
constructing a self-consistent picture of the evolution of the
very early universe in the framework of some unified gauge
theory model is of particular interest. Such a scenario must
include the beginning and end of the de Sitter stage and, in
particular, must relate the parameters of the metric pertur-
bations at the end of this stage to the parameters of the corre-
sponding unified gauge model. Although such a program
has not yet been completed, certain successes have already
been achieved in this direction. Thus, calculations!'®-!!3
show that the perturbation spectrum is almost flat (n = 0). A
flat spectrum is also generated by the supermassive strings
predicted by certain unified gauge models.!?!-1%?

On the other hand, we have already said more than once
in this review that the parameters of the same unified gauge
models also determine the parameters of the early dust
stages.

It is very important to emphasize that such dust stages,
in which the supermassive metastable particles are domi-
nant, are realized much later than the stages of exponential
expansion, so that the nature of the physical processes in the
exponential stage does not influence the frozen concentra-
tion of the supermassive particles, but fairly early, so that the
formation of primordial black holes is determined by the
small-scale part of the spectrum that subsequently under-
goes complete damping, i.e., the only information about this
part of the spectrum is the PBH spectrum in the correspond-
ing mass scales. (For various aspects of PBH formation dur-
ing the phase transition, see Refs. 123-125 and, directly after
it, Refs. 126 and 127.)

Besides the early dust stages in which the supermassive
particles are dominant, certain variants of the inflationary
models predict “superearly”’ dust stages of oscillations of a
classical scalar field (see, for example, Refs. 22 and 100) and
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subsequent dominance of nonrelativistic scalar particles.
Such superearly stages follow directly after the inflationary
stages and can be fairly long, so that in these stages the
growth of the perturbations can reach the nonlinear stage.
The comparison made above between the probability of
PBH formation and the existing observational restrictions
on the PBH spectrum make it possible to draw the following
important conclusion: Irrespective of the duration, the su-
perearly dust stages do not contradict the restrictions on the
primordial black holes if the amplitude of the flat spectrum
of the metric perturbations does not exceed 6 X 10~*. But if
it is found that the actual probability of PBH formation sig-
nificantly exceeds the lower bound obtained above, then
comparison of the predicted PBH spectrum with the astro-
physical restrictions can, in principle, give a restriction on
the duration of the superearly dust stages and, therefore, on
the allowed variants of the inflationary scenario.

Thus, the PBH spectrum is a link between all the astro-
physical data that have the nature of restrictions on the PBH
spectrum and the unified gauge theory parameters that de-
termine the spectrum of the initial perturbations and the
parameters of the dust stages. Therefore, looking to the fu-
ture, we can expect that when this program of constructing a
self-consistent picture of the early universe in the framework
of elementary-particle theory has been completed the meth-
od considered in this review will serve as a test of such a
theory.

CONCLUSIONS

Thus, elementary-particle theories in conjunction with
the theory of the hot universe can predict the existence of
dust stages of expansion in the early universe, an unavoid-
able consequence of which is the mechanism considered
above for formation of primordial black holes from small
initial perturbations of the metric. The connection between
the parameters of the theory and the initial inhomogeneity of
the universe, which, in its turn, is related to the PBH spec-
trum in the framework of the considered mechanism, makes
it possible to obtain a number of observational astrophysical
restrictions on the parameters of the theory depending on
the initial inhomogeneity of the universe. All the estimates
given above must still be confirmed by detailed calculations,
and in this sense the quantitative results given in the review
cannot be regarded as final.

It is still necessary to construct a more detailed picture
of the evolution of the perturbations in the dust stages; for
example, to take into account the smooth beginning and end
of the stage, the residual pressure of the relativistic particles,
the part played by the “clumpiness” of the configurations,
and, possibly, much else. In the case of particles that interact
with radiation, allowance for concrete mechanisms of en-
tropy reduction in the nonlinear stage of evolution of the
perturbations will make it possible to raise the lower bound
for the probability of PBH formation and thus strengthen
the restrictions on the parameters of a theory which predicts
the existence of such particles. But already the estimates giv-
en above demonstrate the basic possibility of obtaining infor-
mation about the parameters of elementary-particle theory
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by comparing the astrophysical consequences of the exis-
tence of early dust stages with observational restrictions on
the PBH spectrum.
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APPENDIX

Allowance for inhomogeneity of the configuration in the
framework of the Tolman solution

In a synchronous and simultaneously comoving frame,
the spherically symmetric line element describing the behav-
ior of dust matter has the form (see the books of Ref. 46)

dsz = d1® — M% B AR — 12 (1,R) (462 + sin®d do?);  (Al)

where 7 is the proper time, R is the Lagrangian radius, and »
is the Eulerian radius, chosen such that 277 is the circumfer-
ence of a circle with center at the origin.

We assume for simplicity (although this does not great-
ly affect the estimates made below) that expansion is re-
placed by contraction simultaneously in the complete con-
figuration at the time 7,. Then integration of Einstein’s
equations for these initial conditions makes it possible to
obtain the dependence #(7, H) in the parametric form (see
Ref. 46)

r—’—% ri(R) (1+cos n), (A2)
I LU RO
T= 1+T—Té/'2(T)('\+Sln w5 (A3)

where 0<7<,r, is the gravitational radius of the mass with-
in the Lagrangian radius R, and (R ) is determined by the
density distribution p,(R ) at the time ¢#,. The further evolu-
tion of the density is determined from the same Einstein
equations by the relation

IR (R)

p (v, Ry=0,(R) IR, (R, V)

(Ad)

here, the prime denotes the partial derivative with respect to
R. Suppose that at the time 7, the density p,(R ) is distributed
in accordance with the law

2 (R
r} (R) :I ,

2
T

p1(R)=pc1 I:i— (AS)

where 7. characterizes the degree of inhomogeneity of the
configuration and is determined by the second derivative of
the distribution of the density with respect to the Eulerian
radius at the center of the configuration. The degree of in-
homogeneity of the configuration defined earlier is u = (r,/
r.)?, where r, is the previously introduced characteristic ra-
dius of the configuration. It follows directly from (AS5) that

re (B) = 2201 1 () [1— 3—"2}%&] . (A6)

The time of formation of the caustic at the center of the
configuration occurs in accordance with (A2), (A3), and (A6)
at the time ?_,,,, which is equal to

3n )1/2

tcaus =11+(§ép—cl— (A7)
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The time at which the entire configuration is below its gravi-
tational radius, ?pgyy, is determined by

- 3n \1/2 4 3 \-1/2
tomn ~ it (=) (1= =) (1—3u) 7", (A8

wherex =r,/r,.
As follows from Eqgs. (A7) and (A8), the condition (2.20)
does indeed reduce to the inequality (2.21). It follows from

(A2)~(A6) that
- 2 3 3 sin 1 (n+4-sinn) r} (R)]-1
PR = oy (R) (m) [1 B (I+cos p)? ril ] ’

(A9)

Atthetimet ppy, the parameter 7 at the center of the config-
uration takes on the value

e = T — 20112 (1 — E)L/3, (A10)
where
9
S R (AL1)

At the same time, the parameter 7 on the outer boundary of
the configuration is equal to

Ny = n — 22102,

(A12)

Then, with allowance for (A9)—(A12), the condition (2.19) is
satisfied for §<1, which again reduces to the inequality
(2.21).

UNote that the generalized charge is not necessarily a scalar. In the case of
supersymmetric theories,?® for example, there are spinor charges.

DFor exotic (in our view) cases when catastrophic accretion can still occur,
see Refs. 58-60.

91n principle, relatively short dust stages in the period 1-10° sec are not
ruled out.'>-'S However, precisely because such stages have a relatively
short duration they cannot lead to a significant weakening of the restric-
tions on B (M ).

“Analogous virtual transitions can ensure in some models a small neu-
trino mass and a low probability of neutrino oscillations.?%7-98

SBesides monopoles, the theories predict the existence of antimonopoles.
See Ref. 8 and Section 4a of the present review for a discussion of pair
annihilation of monopoles and antimonopoles.
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