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A detailed review is given of modern theoretical ideas on the absorption of powerful laser radi-
ation by plasmas. The linear theory of collisional absorption and linear wave conversion are
examined, as are the results of the nonlinear theory of inverse bremsstrahlung. The results of
theoretical analyses of the nonlinear interaction between radiation and moving plasmas are pre-
sented. The unusual qualitative features of the nonlinear electrodynamics of moving media that
appear when the flow velocity is comparable with the velocity of sound are demonstrated. The
phenomenon of field self-limitation in ultrasonic plasma flows is described. The fundamentals of
the theory of parametric absorption and of the theory of absorption by plasma with well devel-
oped ion-acoustic turbulence are presented.
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INTRODUCTION

Physical processes governing the absorption of laser ra-
diation have attracted attention for many years. An under-
standing of these processes is essential for the theoretical
description of the rate at which laser energy is stored in plas-
ma. At the same time, it is important to note that absorption
by plasma in the field of powerful laser radiation is largely
determined by the state of the plasma, which is then often
referred to as the turbulent state. There is as yet no rigorous
definition that would correspond to generally accepted ideas
about plasma turbulence. However, the complexity of such
absorption processes has now been established in the course
of statistical and dynamic description of plasmas. At the
same time, the picture of turbulent absorption that has
emerged does not preclude laminar processes such as inverse
bremsstrahlung and resonance absorption. We shall there-
fore begin with collisional absorption and linear transforma-
tion of radiation within the framework of the linear approxi-
mation (Section 1), and will then proceed to the results of the
nonlinear theory of absorption by inverse bremsstrahlung
(Section 2). We shall next present the dynamic theory of ab-
sorption in expanding plasmas (Section 3) and will consider
separately the phenomenon of field self-limitation (Section 4)
in ultrasonic plasma motion. In Section 5, we shall present
results on the rate of absorption of radiation, which follow
from the theory of parametric turbulence. Finally, we shall
consider new results on ion-acoustic absorption (Section 6).
In the concluding Section, we shall examine some experi-
mental data on the absorption of laser radiation.

1. ABSORPTION OF RADIATION DUE TO ELECTRON-ION
COLLISIONS (INVERSE BREMSSTRAHLUNG) AND
RESONANCE ABSORPTION IN THE LINEAR REGIME

Collisions between plasma electrons and ions, in which
the oscillation energy of electrons in the field of an electro-
magnetic wave is transformed into the thermal energy of
electrons, constitute one of the simplest and, under certain
conditions, one of the most important mechanisms govern-
ing the absorption of laser radiation by plasmas. The charac-
teristic measure of such collisions is the electron-
ion collision frequency1 v = vei = 4^l27re2efni A
X [3(xTf.)

3l2ml/2]~l where e is the electron charge,
et = Z \e\ is the ion charge, «e is the number of electrons per
cm3, «; = n = nfZ ~l is the number of ions, A is the Cou-
lomb logarithm (~ 6-20), me is the electron mass, and 7^ is
the electron temperature.

The simplest situation involving collisional absorption
may be demonstrated for s-polarized radiation for which the
electric vector of the electromagnetic wave is perpendicular
to the direction of plasma inhomogeneity, where the plasma
is assumed to be uniformly inhotnogeneous. For the linear
plasma profile nc (x) = (x/L )«c (jc>0), the plasma permittivi-
ty is E = 1 — (x/L ) + i(x/L )vei (x)/co0 and the critical den-
sity for which the radiation frequency co0 becomes compara-
ble with the electron Langmuir frequency is
nc = mec<)o/4ire2. The electric field of the s-polarized elec-
tromagnetic wave satisfies the equation

?^0, (1.1)
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where ve is the electron-ion collision frequency correspond-
ing to the critical density. Equation (1.1) refers to the case of
a normally incident wave. When the characteristic linear
dimensions of the plasma inhomogeneity are large in com-
parison with the radiation wavelength Z,>7t0 = c/<o0 = A0/
2ir, the solution of (1.1) can be obtained in the geometric-
optics approximation and takes the form

X X

E (x) = exp 11 \ k (x) Ax) + R exp ( — I \ k (x) dx ) ,
0 0

where

L ^ fflaZa '

The reflection coefficient R is obtained from the condition
that the electric field E (x) must vanish on the critical density
surface (x = L ): R = exp(2i So k (x)dx) = exp( — t^o^L /3c)
exp( — 16vcZ, /15c). This expression determines the ratio of
the reflected energy flux density qR to the energy flux den-

15c). It will be useful to introduce the quantity

T = = 2 I dxlmk(x).
o

In our case, T = (16/15) (vcL /c}. The fraction of energy ab-
sorbed by the plama is A = 1 — (qR /q] = 1 — exp( — 2r).
Since vc =ZA-10U(/10 fim)-2(Te keV)-3/2 s"1, we may
write

i = 1—exp -7-10-* AZ(L -]. (1.2)

Absorption amounting to more than 10% will be assured
when

3/2 (1.3)

Hence it is clear that inverse bremsstrahlung will be ineflFec-
tive when (a) L is small, which occurs for short laser pulses,
(b) the plasma has a high enough effective ion charge Z, (c)
the electron temperature Te is high enough, and (d) the laser
wavelength is long enough, e.g., in the case of CO2-lasers.
Conversely, (1.1) is more readily satisfied for short-wave-
length laser radiation. For example, for A0 = 0.35 /*m, this
condition assumes the form (L fj,m) ZZ(Te keV)3/2.

Additional analysis is necessary when the laser radi-
ation has a p-component, i.e., when the radiation is polarized
so that the electric vector of the wave has a non-zero compo-

FIG. 1. Electric field in an s-polarized wave as a function of position in an
inhomogeneous laser plasma.

FIG. 2. Field in a p-polarized wave as a function of position.

nent in the direction of the spatial inhomogeneity of the plas-
ma. This component gives rise to electron motion in the di-
rection of the inhomogeneity, which produces charge
separation and small plasma oscillations in the region of the
critical-density layer in which the electron oscillations in the
laser wave field are in resonance with electron Langmuir
oscillations.

Figure 1 shows the spatial distribution of the electric
field in s-polarized radiation in plasma when the radiation
intensity increases in the direction of the inward normal to
the plasma surface. It reaches the critical density at normal
incidence, and is reflected from the layer of density nc cos2 0
where Q is the angle of incidence. As the point of reflection*/
L = cos2 9 is approached from the lower-density side, the
characteristic scale of the spatial variation of the field in-
creases from the vacuum wavelength rt-0 = Ao/2-rr = c/a>Q to
rt0(L /7t0)

1/3. This growth in the spatial scale of the field is
accompanied by an increase in its amplitude, which is gov-
erned by the factor (L /4-0)

1/3. To the right of the point of
reflection, the electromagnetic field falls off exponentially
over the distance ~7t0(sin 6}~'. The p-polarized wave (Fig.
2) can reach the critical-density layer on which plasma reso-
nance occurs (<y0 = ea^), i.e., it can penetrate the plasma to a
distance ~L sin2 6 if the condition for optimum angle of
incidence, i.e., sin 0opt ~(&0/L)1/3, is satisfied. A detailed
theory of the propagation of s-polarized waves under the
conditions of plasma resonance has been constructed by
Denisov3 (see also Refs. 2 and 4). However, Denisov3 did not
determine the rate of absorption of electromagnetic radi-
ation near resonance. The rigorous set of equations that
takes into account the longitudinal wave-field component in
the neighborhood of resonance was formulated in a paper by
Piliya.5 However, Omel'chenko and Stepanov6 have shown
that the conclusions reported in that paper in relation to the
rate of absorption are inaccurate. We note that, in his book,7

Budden points out the strong absorption in the neighbor-
hood of plasma resonance with p-polarized electromagnetic
radiation. Numerical solution of the field equations8'9 has
confirmed strong (resonant) absorption of up to 50% in the
neighborhood of the plasma resonance. A self-consistent
analytic theory of resonant absorption has also been devel-
oped,10'11 with the theory of Ref. 6 as its limiting case for
small angles of incidence. In particular, it was shown that
Denisov's theory3 of the electromagnetic field in the neigh-
borhood of plasma resonance was in qualitative agreement
with the behavior of resonant absorption, except that it over-
estimated maximum absorption by a factor of 1.4.

We shall now use Denisov's approach3 as a basis for a
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theory of resonant absorption when wave dissipation is de-
termined by the collision frequency vc. Accordingly, the
longitudinal electric-field component Ex near the resonance
point x = L will be related to the magnetic field Bz as fol-
lows:

sin (1.4)

In its turn, the magnetic field in the neighborhood of reso-
nance will be related to the amplitude B of the magnetic field
incident on the plasma from vacuum by the following
expression:

where3 4>(r) = 4rVw-[Ai3(r2)/Ai(r2)]
1/2 and Ai and Ai are

the Airy function and its derivative, respectively. A graph of
the function 4> is shown in Fig. 3.

The power absorbed by the plasma is largely deter-
mined by the work done by the component Ex. Assuming
thatvc <eo0, wehaveg = (cB 2 cos 0 /&ir)$2((L /^0)

1/3 sin 0).
The ratio of the last expression to the energy flux density
incident on the plasma q = (cE 2 cos 6 /4ir) = (cB 2 cos 0 /
4rr) is the absorption coefficient A = (1/2)$2((Z,/
&0)

l/3 sin 0). In view of Pert's result,11 we can now write
down the following interpolation formula:

Ai3 ((L/t^l3 sin2 6)
Ai (1.6)

which differs from the previous expression by a numerical
factor. At optimum incidence, this expression yields values
of up to about 50%. We recall at this juncture that the ab-
sorption process that we have examined is due to electron-
ion collisions. On the other hand, the fact that (1.6) does not
contain the collision frequency is due to the resonant in-
crease in the electric field in the neighborhood of the critical
plasma density. We emphasize that resonant absorption will
also occur when the field energy flux from the region of plas-
ma resonance is determined by longitudinal electron Lang-
muir oscillations excited in this region. The field of such
waves is described by the following equation when collisions
are neglected:

-3r De ' dx" = Bz(L)sinQ, (1.7)

where re is the electron Debye length. The characteristic
distance for a change in the electric field Ex is then
(Sx), ~(Lr2

:te)
1/3 whereas, according to (1.3), the correspond-

ing expression for the situation dominated by collisions is
(8x)st~(vc/<o0)L. Comparison of these two expressions
shows that the collision mechanism becomes unimportant
when vc/(t)0<(rDe/L )2/3. The electromagnetic radiation is
then transformed in the region of resonance into longitudi-
nal plasma waves, with the transformation coefficient given
by an expression identical with (1.6). Since plasma waves
generated by this transformation are subsequently absorbed
by plasma electrons, this coefficient is also the coefficient of
absorption of electromagnetic radiation. However, we must
emphasize at this point that the absorption of plasma waves
may be due to a number of different mechanisms. Absorp-
tion due to electron-ion collisions leads to an increase in the
temperature of the main mass of electrons. Another absorp-

/ 2 3*

FIG. 3. The Denisov function.

tion mechanism involves collisionless Landau damping in
which the plasma wave is absorbed as a result of Cherenkov
interactions with electrons. According to (1.7), the plasma
wave field falls exponentially toward the dense plasma re-
gion x>L, but the wave can propagate in the direction of the
lower-density region 0 <L < x. However, the same equation
(1.7) predicts that the wave vector of the plasma wave in-
creases with distance from the resonance region in accor-
dance with the expression kx (x) = r^1 *J(L — x)/3L . When
kx rDe reaches about 0.2 under these conditions, the Landau
damping, ignored in (1.7), leads to the almost complete ab-
sorption of plasma waves. This type of collisionless absorp-
tion results in the generation of fast (suprathermal) elec-
trons.

The simple model, in which plasma is inhomogeneous
in one direction only, leads to substantial absorption only
when the angle of incidence has the optimum value given by
sin 0opt ~ (&0/L )1/3. Resonant absorption is more readily at-
tained in two-dimensionally, and also in three-dimensional-
ly, inhomogeneous plasma. When, for example, the plasma
density is a wavelike function of position along they axis, the
angle of incidence assumes the optimum value in a number
of segments lying along this axis. This is particularly impor-
tant when the characteristic inhomogeneity scale along they
axis is close to the wavelength of the electromagnetic field.
Figure 4 shows the dependence on the angle of incidence
obtained in Ref. 12 for the absorption coefficient of plasma
in which the density inhomogeneity is described by ne(x,
y) = nc(x +(t sin ky)L ~l. The broken line corresponds to
the usual dependence given by (1.6), and curves 1 and 2 rep-
resent//* (L //y1/3 = 0.6 and 0.4.

Even more favorable for resonant absorption is the

0,2

1 Z 3 $*

FIG. 4. Absorption in a plasma with a corrugated density distribution.
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presence of a magnetic field which can give rise to almost
100% absorption of the extraordinary wave by the plas-
ma.12"14 It is important to emphasize, however, that almost
100% resonant absorption is also possible in the absence of a
magnetic field when a more complicated dependence of den-
sity on position ensures better matching between the inci-
dent electromagnetic wave field and the absorbing load, i.e.,
the plasma.15'16 This means that the magnitude of resonant
absorption by a real plasma-density profile may exceed the
value predicted by (1.6). We shall see later, when we consider
the dynamic variation in the density profile of an expanding
plasma, that resonant absorption is determined by plasma
density dynamics.

Spatial inhomogeneity of plasma density and tempera-
ture distributions, unaccompanied by an inordinate reduc-
tion in the spatial inhomogeneity scale, does not produce a
qualitative change in the optical thickness or absorption co-
efficient at normal incidence of the wave on the plasma, since
these are determined by electron-ion collisions. However,
the angular dependence of absorption depends in an impor-
tant way on the form of the density and temperature as func-
tions of the coordinates.17 In the special case Te = const,
nc~x that corresponds to Eq. (1.1), it turns out that
r(6) ~ cos5 e. Next, the law r(0} ~ cos3 6 is valid for both Tf

= const and «e = exp( — x/x0] and ne ~x and ne — T ~3/2

= const. Finally, r(0 )~cos 6 when ne T ~3/2 = const and
«e ~x. The corresponding three curves are shown in Fig. 5 in
which it is assumed that the absorption coefficient is 30% at
normal incidence.

2. ABSORPTION BY INVERSE BREMSSTRAHLUNG—THE
NONLINEAR REGIME

Inverse bremsstrahlung is a nonlinear process that has
for long attracted the attention of researchers. It occurs
when the amplitude of electron velocity oscillations,
UE = e\E/m(L>0, in the electromagnetic wave field exceeds
the thermal electron velocity yTe = V* Te/me. Since the ef-
fective collision frequency is inversely proportional to the
cube of the electron velocity, we have the corresponding
nonlinear dependence on the field in the effective electron-
ion collision frequency, which determines dissipation due tc
the inverse bremsstrahlung effect. Apart from this nonlinear
effect, there is also the logarithmic dependence due to the
variation in the minimum impact parameter under the influ-
ence of the electric field and, for plane-polarized radiation,
the fact that the electron oscillation velocity increases slight-
ly in each oscillation period. This combination of effects was
examined in Ref. 18 on the basis of the classical transport
equations for fast plasma processes in strong fields19'20 (see
also Ref. 1). The publication of Ref. 18 was followed by a
number of papers on nonlinear inverse-bremsstrahlung ab-
sorption, aimed at the development of a quantum theory (see
Ref. 21, and the references therein, for a critical review of the
subject).

The heat liberated per unit plasma volume as a result of
inverse bremsstrahlung is given by

where the nonlinear effective electron collision frequency,
which depends on the polarization a, can be written as21

In the simple case of circular polarization, the minimum
impact parameter for which we can use perturbation theory
for the electron-ion interaction problem is rs = 4Ze2/me u|.
We now assume a Maxwellian velocity distribution, and also
that the amplitude of the electron oscillation velocity is
much greater than the thermal velocity (x Te ># o)0). More-
over, the distance vTe(o0 traversed by a thermal electron in
one field period is assumed large in comparison with the
minimum impact parameter rs which in turn is large in com-
parison with the de Broglie wavelength. We then have

ji i (2.3)

This and many other formulas were obtained in Refs. 21-23,
and practically exhaust all possible relationships between
xTe and fi o)0, and also between the de Broglie wavelength
and minimum impact parameter.

For plane polarized radiation, the characteristic rela-
tions are those containing products of logarithms. We shall
now produce the simple formula corresponding to the classi-
cal limit Ze2># VE for which the distance vTe/a)0 traversed
by a thermal electron in one field period is large in compari-
son with Ze2/xTe. For plane-polarized radiation we then
have

(2.4)

The factor ln(i;E /yTe) in this expression is due to the fact that
the electron oscillation velocity vanishes periodically in the
plane wave. Quantum-mechanical effects in electron-ion
collisions in the field of a strong plane-polarized electromag-
netic wave were taken into account in Ref. 21.

According to Ref. 24, another nonlinear reduction in
inverse-bremsstrahlung absorption is due to the modifica-
tion by the field of the symmetric part of the electron distri-
bution, which becomes increasingly non-Maxwellian with
increasing ion charge and energy of electron oscillations in
the field of the electromagnetic wave. As a result, the elec-
tron distribution approaches the function exp( — uVy5,). A
detailed theory of the distribution of electrons in strong elec-
tromagnetic fields is given in Ref. 25. According to Ref. 26,
the qualitative reduction in the optical thickness, due to this

(2.1) FIG. 5. Angular dependence of the optical thickness of plasma.
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modification of the electron distribution, is described by the
factor

1- 0.533 (2.5)

It follows from this that the optical thickness can decrease by
a factor of two for values of Z that are not small.

We note that, apart from the above reduction in inverse-
bremsstrahlung absorption effects, absorption is also sub-
stantially reduced by the steepening of the plasma density
profile under the influence of the ponderomotive force pro-
duced by the powerful radiation.

3. ABSORPTION OF RADIATION BY NONSTATIONARY
MOVING PLASMA

When powerful electromagnetic radiation acts on plas-
ma expanding into a vacuum, the field energy is transferred
to the plasma not only through collisions and resonant trans-
formation, but also by ponderomotive forces. These forces
are due to both the incident radiation and the longitudinal
waves generated in course of resonant transformation. The
effect of p-polarized radiation on plasmas is of particular
interest in this connection. Below, we present some of the
results obtained in the dynamic approach to this pheno-
menon, based on the researches of Andreev, Silin, and Sten-
chikov28"33 who examined the self-consistent dynamic pic-
ture in plasma electrodynamics and hydrodynamics,
augmented by electron kinetics. This enables us to see the
entire range of the associated phenomena.

We shall model the dynamic interaction between radi-
ation and plasma by considering a plane-parallel layer of
fully ionized plasma with ion density n(x, t ) increasing in the
direction of the x axis. We shall suppose that the following
electromagnetic field is incident from the region x < 0 at an
angle 6 to the density gradient:

= - { c o s 8 , sin9, 0}, B0 = {0, 0, B},

E0 = E(z, *)exp{-ia>o [*--£• sine]}, (3.1)

where ca0 is the field frequency and B and E are the magnetic
and electric fields, respectively. We shall use for the electric
field the usual truncated equations that take into account
nonlinear effects through the permittivity e = 1 - (zn/
nc)[l — i(ve /«„)] which contains the ion density n(x, t } that is
a nonlinear function of the field. The damping of the longitu-
dinal field component is characterized in these equations by
the Landau damping that is a functional of the electron dis-
tribution function which, in turn, is a solution of the quasi-
linear equation.

Next, the ion density and, with it, the permittivity, will
vary because of plasma dynamics described by the hydrody-
namic equations

dn
dt

d (nv)
dx

I E |2

dt

(3.2)

vl = x (ZTe +3T( )/Afj is the square of the ion sound veloc-
ity and Z and Mi are, respectively, the ion charge and mass.
We shall use (3.2) with the assumption of a spatially uniform
electron temperature distribution, which corresponds to the
assumption that the electron mean free path A. Te is much
greater than the linear dimensions of the region in which
most of the field energy is liberated in the plasma.

The field equation for the fundamental frequency ca0 of
the radiation enables us to determine the nonlinear current
at frequency Nco0, which is responsible for the excitation of
the N th harmonic of the electromagnetic field in the plasma.
For our plane-parallel layered medium, the Nih harmonic
may be characterized by the z-component of the magnetic
field

BWa.(*, y, *) = {0, 0, BN(x, t)

X exp[-iMo0 (t-JLsine)]}, (3.3)

for which the field equation is determined by the nonlinear
current j(N). In particular, for the second harmonic, we have

(3'4)

where E0 = (Ex ,Ey,0) is the solution of the truncated equa-
tions for the field at fundamental frequency.

We emphasize that the field equation for the harmonics
must be augmented by boundary conditions describing free
emission of radiation into the vacuum and wave reflection
from the dense-plasma region (n > 4nc in the case of the sec-
ond harmonic). The resulting solution determines the energy
transformation coefficient for the incident radiation. For ex-
ample, for the second harmonic, this becomes

' B,

which include the ponderomotive force. Here,

where B2 and B0 are the magnetic field of the second har-
monic and of the incident radiation in vacuum, respectively.

A numerical solution of the set of field equations and
nonlinear hydrodynamic equations is described in Ref. 30.
The equations were solved numerically for the region
0<;t<Z, of length equal to a few vacuum wavelengths
(L>3(U-0) and containing the point Zn = «c. The initial den-
sities n(x, 0) = n0(x) and velocities u(x, 0) = u0 were specified
at the time t = 0, and the stationary solution on the density
profile H0 was taken as the initial electromagnetic field. The
turning-on of the radiation incident on the plasma was simu-
lated by a linear rise in incident-wave energy, followed by
constant illumination (Fig. 6).

We must now consider boundary conditions for the hy-
drodynamic variables, which depend on the plasma velocity
at* = 0 and AC = L. For ultrasonic plasma influx velocities in
the region of interaction with radiation u(L, t} < — vs, the
density and velocity were specified at x = L: n(L, t ) = n0(L ),
u(L, t ) = u0(L ). For subsonic influx velocities |u(L, t} \ < vs,
only one boundary condition, either for density or velocity,
need be specified at x = L. The left-hand boundary at x = 0
was assumed to be free for the ultrasonic plasma influx u(Q,
t)< — vs whereas, for subsonic flow, it was simulated by
taking the plasma density in the form «(0, t ) = n0(0).

The electron distribution function was determined only
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FIG. 6. Ultrasonic expansion: a—time dependence of ab-
sorption coefficient^ and fraction QT of absorbed energy
due to collisions; b—laser pulse shape WL (t) (curve 1) and
time dependence of the coefficient of transformation of
radiation into the second harmonic (curve 2).

in the region of localization of Langmuir oscillations
(x, <x<xt + / d ) , using the boundary condition correspond-
ing to the entry of electrons into this region with the Max-
wellian distribution and temperature equal to the plasma
temperature near the critical-density layer. The accelerated
electrons leave the region of quasilinear diffusion freely.
However, on the boundary with vacuum, fast electrons re-
enter the plasma, and this symmetrizes the electron velocity
distribution. We emphasize that both the hydrodynamic and
electrodynamic nonlinearities lead to the transfer of energy
to small-scale perturbation modes. Short-wave perturba-
tions are efficiently absorbed by electrons as a result of the
Cherenkov interaction. This produces a substantial smooth-
ing of the solutions, and restricts the spectrum to wave-
lengths that are admissible by Landau damping.

Two types of initial condition were used to obtain the
solutions of the set of hydrodyamic, kinetic, and electrody-
namic equations. In the first case, the flow was characterized
by comparable magnitudes of plasma velocity and density
gradients whereas, in the second case, the corresponding
scales could differ substantially from each other.

The solution of the set of equations of electrodynamics,
hydrodynamics, and kinetics was implemented by program
LAST30 (Light Absorption by Strong Turbulence).

Let us begin by considering the results for comparable
velocity and density gradients in the initial conditions, for
which the initial state (t = 0) can be described by the
rarefaction wave n(x] = nc exp[(x — xc)/l], u(x) — — vc

+ vs(x — xc }/l (vc is the absolute magnitude of the plasma
velocity at the critical-density point xc and / is the character-
istic spatial scale of density and velocity changes: / = vs t0,
where t0 is the time at which the rarefaction wave is pro-
duced), which is an exact solution of the equations of isother-

mal hydrodynamics, with the ponderomotive force neglect-
ed, which can be justified for the initial phase of interaction
with the rising radiation pulse.

Numerical integration under initial rarefaction-wave
conditions was performed for the following parameter val-
ues that were close to those used in the experiment:
T^o = 1.25 keV, VE/C = 0.015, where VE = \e\Einc/mea)0 is
the amplitude of the electron population velocity in the field
of the pump wave in vacuum. For the neodymium-glass laser
(ca0 = 1.8-1015 s^1), the latter corresponds to the energy flux
density q = 5 X 1024 W/cm2. The initial inhomogeneity scale
was assumed to be / = 10»t0 and corresponded to the ultra-
sonic plasma flow with a sharp density and velocity gradient.
The angle of incidence was taken to be d~ 17°(sin 9 = 0.29),
and the effective collision frequency was specified by the
ratio vc/&>0 = 5-10~3.

Figure 6 shows the time-dependence of the absorption
coefficient A, the fraction of energy absorbed as a result of
collisions Qr, and the shape of the laser pulse
W^ (t ) = E fnc (t )/4w/zc x T& . The reflection coefficient R (t )
for laser radiation (at x = 0) determines the absorption coef-
ficient through the expression^ = 1 — \R (t ) | 2. The fraction
QT of energy absorbed as a result of collisions, and expended
in heating most of the plasma electrons, is given by

o I 2 cos 6= i. |E (a:,

Figure 6b also shows the time dependence of the coefficient
of transformation of incident radiation into the second har-
monic. Figure 6 shows that, initially, there is a reduction in
absorption and a relatively large difference between A and
Qf . This is due to the rise in the internal longitudinal field in
the plasma when the radiation is turned on. Next, the coeffi-

FIG. 7. Plasma density (a), plasma velocity (b), and elec-
tric field (c) as functions of position (1—Ex, 2—Ey; ultra-
sonic plasma expansion).
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FIG. 8. Distribution of electrons accelerated by the Cherenkov mecha-
nism in the case of ultrasonic expansion of plasma.

cient of transformation into the second harmonic rapidly
ceases to be proportional to W^ (t ). This is due to the fact
that, for t~(k0vs)~

l, the plasma density profile begins to
deform in the neighborhood of the critical density. In parti-
cular, a sharp jump is formed at the critical density point. A
quasistationary regime occurs for times t £ 7(&0ys ). It is char-
acterized by the relationships shown in Fig. 7 and corre-
sponds to t=8(k0vs)~

l. The absorption coefficient is
A ~ 40% and the fraction of energy expended in the colli-
sional heating of the main mass of electrons is about 25%,
whereas 15% of the incident radiation energy is transferred
to "fast" electrons as a result of Cherenkov interactions. The
electron distribution is then of the form shown in Fig. 8,
where reflection of fast electrons from the plasma boundary
is taken into account. It is clear that hot electrons appear
within a small velocity interval.

A qualitatively different picture may arise when the
characteristic scale / of the initial velocity distribution is var-
ied. To simulate this, we have carried out a numerical calcu-
lation with the initial conditions

n(x, 0) = »c

(3.5)

which correspond to the uniform flux n(x, 0)«(;c,0)
= — nc vc with a linear density profile. In a small neighbor-
hood of the critical density point, the initial conditions (3.5)
lead to a formula for the form of the rarefaction wave with
characteristic spatial scale / = (vs/vc )/„ . The inhomogeneity
scale then depends on the velocity at the critical point
(n = nc ). Our calculations have shown that this dependence
is very important. In particular, for ultrasonic values of vc ,

the characteristic scale of the spatial variation is relatively
small, and the initial conditions (3.16) and (3.17) lead to a
picture that is in many respects similar to Figs. 6-8. A differ-
ent situation arises for small values of vc.

Figures 9-11 show numerical solutions of (3.2)-(3.8)
with initial conditions vc = 0 (all the other parameters are
the same as in Figs. 6-8).

Comparison of Figs. 6 and 9, which characterize the
dynamics of absorption at the fundamental frequency, and
of emission at the second harmonic frequency 2co0, demon-
strates a qualitative difference. Thus, we have sharp absorp-
tion peaks of up to 100% and a considerable (by more than
an order of magnitude) increase in the transformation of ra-
diation into the second harmonic. The latter is a particularly
important indication of the considerable increase in the elec-
tromagnetic field in the plasma. The correlation between
harmonic generation and absorption peaks indicates that the
internal field plays an important role in the radiation energy
transfer to plasma. Figure 10 demonstrates the spatial distri-
bution of velocity and density, and of the electromagnetic
field for t= 11.5/(£0i;s). It is important to emphasize the
presence of cavitons, i.e., regions of space bounded by
"humps" with postcritical densities (n > nc), which trap and
amplify the field of longitudinal Langmuir oscillations. It is
precisely at such instants of formation of cavitons and of
field trapping that absorption becomes particularly high
(A ~ 95%), and more than half the absorbed energy is ex-
pended in generating "hof'electrons (QF ~ 40%). We em-
phasize once again the dynamic character of harmonic gen-
eration and absorption, which is due to the appearance and
annihilation of cavitons. While this is happening, the plasma
can assume states that reflect larger amounts of energy than
are incident upon the plasma at that time. This is due to the
reflection of field energy stored in cavitons.

Figure 11 shows the electron distribution function for
t = 1 l.5/(k0vs), which is qualitatively different from the dis-
tribution of Fig. 8, obtained for ultrasonic expansion. We
note that the presence of cavitons trapping the Langmuir
wave energy leads to an effective acceleration of electrons in
both directions. Further, rhot ^7re0, and this distribution
obtains in a wide velocity interval, which corresponds to a
wide spectrum of Langmuir oscillation wavelengths in the
interior of the cavitons.

Calculations with small but finite value of vc and initial
condition (3.5) preserve the caviton picture, which vanishes
only for large vc. Thus, for \u(L, t)\ =0.5vs when /„ = 4bt-0

and / = 497t0), i.e., for relatively small inhomogeneity scales,
there is an increase in the number of cavitons, and the pro-

FIG. 9. Subsonic expansion: a—time dependence of the
absorption coefficient and fraction QT of collisionally ab-
sorbed energy; b—laser pulse shape (1) and time depen-
dence of the coefficient of transformation of energy into
the second harmonic (2).
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FIG. 10. Plasma density (a), plasma velocity (b), and elec-
tric field (c) as functions of position (1—Ey, 2—Ex; sub-
sonic plasma expansion).

cess whereby they are formed becomes quasistationary. Fig-
ure 12 shows the temporal evolution of the plasma density
distribution, characterized by the caviton structure, and Fig.
13 shows the time dependence of the absorption coefficient
that corresponds to this structure.

Summarizing our dynamic analysis of absorption of
powerful radiation by plasmas, we may conclude that there
is a number of different regimes of interaction between radi-
ation and plasmas. Thus, on the one hand, when the velocity
gradient is relatively smooth, we have the caviton regime in
which cavitons are filled with a strong and short-wave field
that produces an effective transfer of energy to hot electrons.
In the opposite situation, in which there is a steep velocity
gradient, we have established the conditions under which
caviton formation is impeded, and we find that the internal
fields in the plasma, as well as harmonic generation and the
generation of hot electrons, are suppressed. We may there-
fore suppose that, when powerful radiation interacts with
plasmas, the turbulent states that arise in the latter may as-
sume diametrically different forms.

We note that combined calculations of local field struc-
ture and plasma flow in the region of absorption, using the

-WO -50
la,F.(v]

SO 100

FIG. 11. Distribution of electrons acclerated by the Cherenkov mecha-
nism in subsonic plasma expansion.

program LAST, and of global hydrodynamic expansion, us-
ing the program MEDUSA, have demonstrated the impor-
tance of the regimes examined above.34

4. FIELD SELF-LIMITATION EFFECT

It was shown in the last section that the change in the
spatial density distribution and plasma velocity produced by
ponderomotive forces has a qualitative effect on relation-
ships describing the absorption of radiation. We shall now
examine, in this context, some of the consequences of the
nonlinear electrodynamics of ultrasonic plasma flow, in-
cluding some propositions that have been established ana-
lytically. In particular, we shall examine the consequences of
nondissipative time-independent one-dimensional plasma
hydrodynamics based on the equations

(nu)
dx = 0,

d | E
dx dx

(4.1)

1.5,

1.0

:•-

0.5

t=Z,5/.Kgvs

2 x 3
a

f.f

1.0

1.0

0.5

FIG. 12. Temporal evolution of plasma density.
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FIG. 13. Temporal evolution of absorption coefficient^ and fraction gT
of collisionally absorbed energy.

This set of equations has the following two integrals:
(l/2)u2(x) + vl In n(x) + ZB2|E(x)|2(4m.JfX)~1 = (I/
2)F2 +vl In N= const, n(x)u(x)=NV= const.

These formulas enable us to write down one equation
for the relation between the plasma ion density and the elec-
tric field amplitude, namely,

I c.ln _
^ s ~~

With the permittivity given by

e(co, (4.3)

this expression is the constitutive relation that leads to dif-
ferent electrodynamic consequences for subsonic and ultra-
sonic time-independent plasma flows. On the other hand,the
differences can also be seen qualitatively by examining the
following equation that ensues from (4.1):

dx

This shows that, in a subsonic flow (u2 <V2), the maximum
electric field strength corresponds to minimum plasma den-
sity, which leads to the nonlinear focusing of the field in the
plasma. Contrariwise, equation (4.6) shows for the ultra-
sonic flow that the ponderomotive force rakes up the plasma
into the strong-field region. Theoretical indications of the
latter possibility can be found in the literature.35"37 Direct
experimental confirmation of this plasma behavior was re-
ported in Ref. 38.

To demonstrate the unusual electrodynamics of ultra-
sonic plasma flow, let us consider the simple consequences
that readily follow for the weakly nonlinear state in which
the electromagnetic field pressure is small in comparison
with thermal pressure. We may then assume that
n(x) =N + 8n(x), u(x] =V+ Su(x) in (4.2), where 8n and Su
are small, so that
. _
0

fi = _
2 — ws)̂

_incj-. (4.4)

According to (4.3), these expressions enable us to write the
permittivity in the form

FIG. 14. Effective rotator energy as a function of the square of the electric
field.

. ZN
8 = 1 nc

|E (a

We shall use this to obtain solutions of the Maxwell equa-
tions for s-polarized radiation incident on the plasma at an
angle 0. In this case, they reduce to the following equation
for the complex amplitude E (x):

|
(4.5)

where e0 = 1 - (ZNVnc), E2 = Z~2N~
X(V2-v2

s).
Using the formula E(x) = &(x) exp[iq> (x)], and substi-

tuting for the real amplitude ff(x) and phase q> (x), we find
from (4.5) that

\ y

M' = 0,

where M = $ 2<p'. Since M = const, we may conclude that
(4.6) is equivalent to the equation of motion for the anhar-
monic rotator. The energy integral for this rotator is

(f ')2 + -fr + -TT [ (KO - sin2 6) $* - -jjg- ] = const. (4.7)

Figure 14 shows the sum of the centrifugal (M2/& 2) and
potential ((*>o/c)2[(£o - sin2 0)$ 2 - ($ V2.E2.)]) energies of
the rotator as a function of the square of the electric field. It
follows from this figure that the maximum possible electric
field strength in the electromagnetic wave in the ultrasonic
plasma flow is bounded39"^11 (see also Refs. 42-44) because
regular solutions of (4.6) correspond to states in the interior
of the effective potential well of Fig. 14. The two curves in
this figure correspond to zero and nonzero values of M.
Comparison of these curves will readily show that the propa-
gation of electromagnetic waves in the ultrasonic flow is for-
bidden above a certain critical electromagnetic-wave energy
flux. The following restriction ensues from (4.7):

3/2

(4.8)

For the maximum flux, which corresponds to the equality
sign in this formula, the solutionof (4.6) has the form of a
plane wave of constant amplitude E (x) = ^2/3Ev

X V^o — sinz 9 exp[ix(a)o/c) V2/3 ]. It is clear from Fig. 14
that a reduction in M is accompanied by an increase in the
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FIG. 15. Electric field in plasma with a linearly inhomogeneous profile as
a function of position: a—weak field, b—strong field and subsonic plasma
expansion, c—field distribution near the maximum field allowed by the
Painleve equation.

maximum possible electric field, the highest value of which
is given by

Ema* = Ev lA-o-sinse (4.9)

for M = 0. Let us elucidate the essence of the field self-limi-
tation effect in ultrasonic plasma flows that we have estab-
lished. The point is that, because of the raking up of the
plasma into the strong-field region, the increase in plasma
density makes the plasma less transparent, which impedes
the establishment of the field in this plasma and leads to a
limitation on the absolute field strength.

We must now reproduce one further result from Ref.
39. This refers to the case of a given (linear) plasma density
profile n = nc (x + L )/L and normally incident radiation. In
our case of defocusing nonlinearity, we then have

„„ co0
2 r x i E

E —?[—+( £7
(4.10)

As we enter the opacity region, the field decreases and as-
sumes the form corresponding to the asymptotic linear equa-
tion obtained from (4.10) by neglecting the term proportion-
al to E3. This asymptotic behavior is described by the
asymptotic form of the Airy function

(4.11)

For small values of the constant 21, the solutions obtained by
numerical integration of (4. 10) are practically indistinguish-
able from the Airy function. This is clear from Fig. 15a
which shows the solution of (4. 10) with the asymptotic form
(4.11) for 21 = 0.1. The situation changes as 31 increases. In
particular, because of the deformation of the density distri-
bution, the field maximum shifts toward the more rarefied
plasma layers, which can be seen in Fig. 15c, plotted for
21 = 1.4169. However, the most essential point is that there
is no finite solution of (4.10) when the asymptotic form is
given by (4. 1 1) and 91 > - f l . This fact was established in the
theory of the Painleve equation of the second kind.45 This
absence of solutions of the field equation (4.10) corresponds
to the field self-limitation effect in spatially inhomogeneous
plasma. To demonstrate the qualitative difference between
fields in ultrasonic and subsonic flows, Fig. 15b shows, for a
focusing nonlinearity (E^ <0) with SI = 10, how the field
shifts into the interior of the plasma rather than in the
outward direction, as was the case in Fig. 15c for ultrasonic
flow.

Our analytic results enable us to conclude that, when
there is little dissipation of electromagnetic field energy, and
the scale of the spatial change in density in an inhomogen-
eous ultrasonic plasma flow is not too small, the electric field
strength in the radiation incident on the plasma exhibits the
self-limitation effect and oscillates in space, i.e., it does not
increase as in linear electrodynamics or the nonlinear elec-
trodynamics of subsonic flows. On the contrary, as it enters
the plasma, and before it reaches the opaque layer, the field
amplitude shows a decreasing oscillating behavior. This con-
clusion is confirmed by Fig. 16, which compares the penetra-
tion of weak (linear theory) and strong (b) fields into the one-
dimensional ultrasonic flow of an expanding plasma. This
picture was obtained40 by solving the equations of Sec. 3 for
the field of s-polarized radiation.

Definite experimental confirmation of the field self-li-
mitation effect in ultrasonic flows was reported in Refs. 40
and 41, where a study was carried out of the temporal evolu-
tion of the interaction between neodymium laser radiation
and aluminum plasma. It was found that second-harmonic
generation (Fig. 17a) and weak back-reflection of incident
radiation (Fig. 1 7b) were time-correlated with the first half of
the pulse, when the reflected spectrum was shifted to the red.
Conversely, second-harmonic radiation and absorption of

IEI

FIG. 16. Field penetration into an ultrasonically expand-
ing plasma: a—weak field, b—strong field.
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FIG. 17. Experimental time dependence of: second harmonic generation
(a), backward reflection of laser radiation (b), intensity of laser radiation
(c), and spectral composition of back-reflected radiation (d).

radiation were substantially suppressed in the second half of
the pulse heating the laser plasma, which was characterized
by a considerable blue shift of back-reflected radiation, indi-
cating the ultrasonic character of the flow. This may be re-
garded as an indication of a considerable reduction in the
electromagnetic field penetrating the critical-density region,
in accordance with the field self-limitation effect due to the
ponderomotive force that arises in ultrasonic flow and rakes
up the plasma into the strong-field region, which means that
the existence of the wave field in plasma is forbidden.

5. PARAMETRIC TURBULENCE AND THE ASSOCIATED
ABSORPTION OF RADIATION

Among the possible nonlinear phenomena that occur in
plasma illuminated by powerful electromagnetic radiation,
there is considerable interest in the wide class of parametric
effects.27 In physical descriptions of the anomalous interac-
tion between powerful laser radiation and plasma, it is then
important rigorously to take into account the spatial in-
homogeneity of the real laser plasma, which is seen as a
change in the parametric instability thresholds and the spa-
tial localization of parametric turbulence. The latter fact is
reflected in the suppression of parametric turbulence of laser
plasma as compared with the hypothetical spatially-homo-
geneous model. Moreover, we emphasize that it has been
shown46 (see also Refs. 47 and 48) that overestimates of this
suppression led in the past to a substantial underestimate of
the rate of anomalous absorption of laser radiation.

To illustrate the ideas of the theory of parametric turbu-
lence in spatially inhomogeneous plasmas, we shall suppose
that the electron (and ion) density is a linear function of a
single coordinate:

n(x) = n0 /const-]- — , (5.1)

where L is the characteristic linear dimension of the inhomo-
geneity. We shall examine certain consequences of the the-

ory of parametric instabilities in the neighborhood of regions
in which the electron density is equal to the critical value («c)
or one-quarter of the critical value («c/4).

We begin with the theory of decay of the pump wave
into two plasmons, t —»• 21, which occurs near nc /4.

This instability was investigated in Refs. 49 and 50
within the framework of the theory of homogeneous plas-
mas. The role of plasma inhomogeneity in the development
of this instability was investigated in Refs. 51-54. Here, we
must note the absolute parametric instability of the decay of
the pump wave into two plasmons, established in these pa-
pers. It has been shown51>54>55 that the size of the region of
spatial localization of growing plasma perturbations with a
given wave vector component at right angles to the direction
of the spatial inhomogeneity is determined by the relatively
small quantity

~^L, (5.2)

where c is the velocity of light and yE = \e\Eo/meta0 is the
amplitude of the electron velocity oscillations in the pump-
wave electric field

E (x, t) ---= E.j sin (co0£ — \ k0 dx).

The fact that the quantity given by (5.2) was small has
led to the conclusion56 that the anomalous absorption of la-
ser radiation at one-quarter of the critical density was small.
This conclusion resulted from an analysis of solitons pro-
duced parametrically in this region. However, Erokhin and
Silin46 have shown that this conclusion was merely a conse-
quence of artificial self-limitation resulting from the use of
only one-dimensional solitons. On the contrary, multidi-
mensional soliton solutions can fill a very wide region, deter-
mined by the linear theory of parametric two-plasmon decay
and corresponding to the set of regions (5.2) containing plas-
mons with different transverse wave-vector compo-
nents.54'48 Provided we are then not too near to the thresh-
old, the total linear size of the region in which parametric
instability develops is

Ax ~ SLrDc&max, (5-3)

where rDe is the electron Debye length and kmax is the maxi-
mum permissible magnitude of the plasmon wave vector.
This result is a consequence of elementary (but unnoticed in
soliton theory) ideas on detuning from resonance. Since, in
the short-wave region, the limit of instability turns out to be
insensitive to the effect of spatial inhomogeneity, the overall
size of the two-plasmon decay region turns out to be54

Ax2; ~L [ln(c/uE)] ~'. It is clear that the two-plasmon decay
region can occupy a considerable portion of the inhomogen-
eous profile of the laser plasma corona. We note that Ruben-
chik's conclusion57 that the anomalous two-plasmon ab-
sorption was small was due to the unjustified assumption
that the region of localization of turbulence in two-plasmon
decay was small.

The estimated spatial size of the instability region given
by (5.3) is very general. Thus, in the case of one further abso-
lute instability, which now occurs near the critical density
point, and takes the form of an aperiodic parametric instabil-
ity58 that transforms the pump wave into an electron longi-
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tudinal Langmuir wave and an aperiodic plasmon perturba-
tion (soliton or caviton), the characteristic size of the region
in which this type of instability develops is48 A*,a
~L (In [(/•£>,, + '"oil/'"!] j~ ' . where rDi is the ion Debye
length and rE = VE /ca0 is the amplitude of electron oscilla-
tions in the pump field. Again, as for two-plasmon decay, the
size of the region of parametric instability turns out to be
comparable with the size L of the laser plasma corona.

Finally, let us consider the convective decay instability
of the transverse pump wave into an electron Langmuir and
an ion-acoustic wave.58'59 Despite the fundamental differ-
ence between this instability and the absolute instabilities
examined above, the region of convective amplification of a
wave with given wave vector is relatively small. Hence, to
estimate the size of the entire instability region, we must
again use (5.3). For the purposes of estimates, we can take the
maximum magnitude of the wave vector to be the value for
which Landau damping, which prevents the generation of
short-wave plasmons, becomes appreciable. This yields
Axls ~L max{ [ln(&>o/vei ] ~

l 0.3 j, where vei is the electron
collision frequency. This formula also shows that the decay
instability develops in a region whose size is comparable
with the characteristic linear dimension L of plasma in-
homogeneity. When the laser radiation energy flux density is
not too large, this dimension is determined by the usual hy-
drodynamics of expanding laser plasma corona. Conversely,
when the radiation flux density is high, so that ponderomo-
tive forces steepen the profile of the inhomogeneous plasma
density, the quantity L can become relatively small. The
above ideas on the localization in space of parametric turbu-
lent regions have now been widely adopted.

Having determined the characteristic dimensions of the
region of parametric turbulence, we now turn to the charac-
teristic rate of anomalous absorption of radiation, typical for
such turbulence. We shall base this on the concept of effec-
tive collision frequency veff that is a measure of the rate of
transformation of the electromagnetic pump energy E^/brr
into plasma waves and heat. The power transformed in this
way is given by

0 = Vefi-§-. (5.4)

To determine Q and hence veff, we must consider the excita-
tion of electron Langmuir waves with wave vector k d and
the corresponding parametric instability growth rate
Y = y(E0, k d ) . We shall propose that k d is not too small, i.e.,
frd'be >£yLi/<yLe, so that the dispersion correction to the
Langmuir-wave frequency is greater than the ion-acoustic
frequency of nonisothermal plasma. Secondary parametric
instability against the excitation of Langmuir (and low-fre-
quency) plasma waves is then the main process of nonlinear
wave interaction in a relatively wide range of parameter val-
ues. If we let Yk represent the growth rate of this instability,
the power pumped into the plasma is given by

Q='fkT^, (5.5)' 4ji ' ^ '

where Elr is the field in the electron Langmuir oscillations
in the pumped region. Since Yk ls a function of Elt we can
determine E lr by assuming quasistationarity in the pumped

region, i.e., if we equate the growth rates of primary (Y) and
secondary Yk parametric instabilities at k = kd:

We can now use (5.6) to determine the transformed radi-
ation power60 for different secondary parametric processes.
First, for nonisothermal plasma and weak coupling between
the parametrically excited waves, i.e., for

7 < ( (5.7)

so that the electron Langmuir wave decays into another such
wave and sound, the instability growth rate is

(32n«ex7'e (5-8)

According to (5.6), we then have the following expression61

for (5.5):

Q — ~—F— • (5-9)

In isothermal plasma, the decay rate of ion-acoustic waves is
comparable with the frequency of sound, i.e., ys ~ wLi rDc k d,
so that, if (5.9) is valid, the secondary-instability growth rate
s

Vfc (5.10)

Taken together with (5.6), this expression gives the following
expression for the energy pumped into the plasma:

Q x 8n<.xTe • (5.11)

which was obtained in Ref. 62.
Let us now determine veff under the conditions of weak

coupling (5.10). For primary parametric instability corre-
sponding to the t —>• / + s decay, for which the growth rate is
given by a formula such as (5.11), we find that84

v<$ ~ 27 *£ cos. (5.12)

For primary parametric instability in isothermal plasma
that corresponds to the aperiodic process t —* / + a for
which the growth rate is given by a formula such as (5.10), we
find from (5.11) that

v««> ~ fi A <(0 (513)

Finally, for primary parametric instability corresponding to
the two-plasmon decay t —>• 2/ with the rate

Yai'-WLe-^-. (5.14)

we find that, in nonisothermal plasma for which (5.9) holds,
we have61

,,(20 (5.15)

For isothermal plasma, we find with the aid of (5.11) that
,,2

(20 "Te ,c ,--1
ve f ~ ̂ D-^r- P-10)

A similar formula was obtained in Ref. 57. Equations (5.12),
(5.13), and (5.15), (5.16) readily allow values exceeding the
electron-ion collision frequency, and hence correspond to
very effective transformation of electromagnetic energy into
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longitudinal electron Langmuir waves. Under the condi-
tions of weak coupling, such waves can then be absorbed as a
result of electron-ion collisions. The higher rate of absorp-
tion actually corresponds to a strong plasma field that arises
in the plasma as a result of parametric transformation.

We now turn to pump fields that are strong enough for
(5.7) to be violated, so that one can speak of strong parame-
tric-wave coupling. The spectrum of low-frequency oscilla-
tions is then essentially determined by the field:

£?„ \ 1/3 _9 /5 ,, -_ .

At the same time, if both (5.7) is violated and the growth rate
is small in comparison with the dispersive correction to
Langmuir wave frequency

(5.18)

the spectral transformation preserves the decay character in
the pumped region, but with a modified low frequency. An
aperiodic instability is then found to arise for sufficiently
long wavelength secondary products with ka < k d, for which
Yk =<yLe(£a'"De)2- However, the balance condition (5.6) is
important for our purposes, and is determined by the secon-
dary decay process under the conditions of (5.10). Since for
(5.18) the secondary parametric process is determined by the
growth rate (5.17), equation (5.6) yields60

^ riw -*Y»2 . 7. 2 i-2 "

Finally, for high growth rates, for which y > co^ k \ r^ ,
the aperiodic instability occurs directly in the pumped re-
gion, and is therefore a secondary process that determines
the balance with the pumped-in energy through parametric
instability. The aperiodic instability growth rate is then
Yk ~<auEty (^irncxTt )~1/2, and if we substitute this in (5.6),
and use the expression E,Y = [y (E0, kd)/<au ] (4irnexTe )

1/2

in (5.5), we obtain63

The power that is parametrically transformed into longitu-
dinal waves in the absence of secondary aperiodic instability
is absorbed as a result of electron-ion collisions. Conversely,
for long wavelength waves, for which £ < fca , aperiodic insta-
bility can shift the Langmuir instability along the spectrum
into the short-wave region and give rise to Cherenkov ab-
sorption by electrons, which may be an effective mechanism
for the generation of hot electrons.

We note in conclusion that inclusion of convection in
the description of convective instabilities such as the
t — >• / + s decay under the conditions of spatially-inhomo-
geneous plasmas, rather than of the balance of (5.6), requires
that the spatial increments in the growth rates of primary
and secondary parametric instabilities must be equal.64'65

The effective collision frequency is then veff~-0.1fcdi;E,
which may exceed the value given by (5.12).

6. ABSORPTION OF RADIATION DUE TO ION-ACOUSTIC
TURBULENCE

The absorption of powerful electromagnetic radiation
by plasma is accompanied by the appearance of a heat flux

transported by plasma electrons. This heat flux may be the
cause of ion-acoustic instability66 that produces ion-acoustic
turbulence. The presence of high-intensity ion-acoustic fluc-
tuations can be the cause of additional absorption of electro-
magnetic radiation when, for example, electromagnetic
waves are transformed by ion sound into longitudinal-field
pertubations that can be absorbed via the scattering of elec-
trons oscillating in the wave field and the Cherenkov process
on electrons. The question of absorption of radiation by
tranformation on ion fluctuations into longitudinal pertur-
bations was examined some time ago67 together with the im-
plications for laser plasmas.68 The authors of Refs. 69-72
have used a qualitative approach to the analysis of ion-
acoustic absorption, and showed that this absorption can be
strong when the level of ion-acoustic turbulence is high
enough. Here we must emphasize that previous studies were
carried out under the conditions of theoretically unproved
distributions of ion-acoustic turbulence. It is interesting in
this connection to consider recent results of the theory of
ion-acoustic turbulence,73"76 based on the model that takes
into account stimulated scattering of ion sound by ions, and
quasilinear scattering of electrons by ion sound. This model
preserves the Kadomtsev-Petviashvili law for the distribu-
tion of turbulent pulsations over the magnitude of the wave
vector. It has led to an analytic law for the angular distribu-
tion of such pulsations, and has removed the qualitative dis-
agreement with the Kadomtsev-Petviashvili model which
overestimates the turbulent-pulsation intensity.

According to Ref. 74, ion-acoustic turbulence origin-
ates from the vector expression R = neeE — V(nexTe), i.e.,
the sum of the quasistationary electron field and the density
and temperature gradients. In particular, when the main
mass of electrons is described by the Maxwellian distribu-
tion, the turbulent pulsations are described by N(k,
cosd) = N(k)<b(cos 0k) where N ( k ) is the Kadomtsev-
Petviashvili distribution, while the angular distribution
[4>(cos 6k)] and the fluctuation intensity itself depend on the
Knudsen number

KN = (6.1)

the angular distribution for KN > 1 is illustrated76 in Fig. 18
(curve 1) which also gives for comparison the result of a nu-
merical simulation77 (curve 2).

In accordance with Ref. 67, ion-acoustic absorption of
electromagnetic radiation of frequency <DO, wave vector k0,
and polarization e0 can be characterized by the following
effective collision frequency:78

dk a>lea>s (K) N (k) (ke0)
2 Im et ((o, k)

(6.2)

where e, is the longitudinal permittivity and it is assumed
that k>k0 and <a0>.v^.

For the axially-symmetric distributions of Refs. 69-72,
the formula given by (6.2) can be written in the form
Vrfr = «oxVif' + (eoy + eoz)v(i} where the x axis lies along the
vector R, vj" = (l/2)(M0 - MJv, vif = M<v, and
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FIG. 18. Angular distribution of ion-acoustic turbulence for high turbu-
lent Knudsen numbers: 1—analytic theory, 2—result obtained by the par-
ticle method.77
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FIG. 19. Experimental data on the absorption coefficient^ as a function
of laser flux density q (W/m2) under different conditions: 1—1.06/im, 2—
0.53 [im, 30 ps, copper target (garching), 3—10 ,um, 1.5 ns, 4—1.06//m,
100 ps, 5—0.52/im, 80 ps, 6—0.53 ̂ m, 2 ns, polyethylene target (Palai-
seau), 7—1.06/zm, 2.5 ns, 8—1.06/im, CH2, 9—\.06fim, Au, 10—0.53
//m, CH2, 500ps, 45°, 11—0.53^m, 100 ps, 23°, 12—10ftm, 1 ns (Osaka).

; (co0, |e, (co0,
rDeVln

In the limit as col < 2® ̂  we have TV («0) =: 1 . This limit corre-
sponds to the physical picture of dissipation found in Ref. 79
and involving energy loss by an electron oscillating in the
radiation field when it is scattered by ion-acoustic fluctu-
ations.

We shall now follow Ref. 79 and examine the depen-
dence on the turbulent Knudsen number and the anisotropy
of effective collision frequencies. In the limit as KN>1, we
have76 Mn =mnVK^, where m0 = 2.04 and w1 = 1.10.
Consequently, the anisotropy is small in this limit, and the
effective collision frequencies are ~VK N . In the opposite
limit KN < 1, and provided we are not too close to the thresh-
old for ion-acoustic instability (Kst > 1), we can use the angu-
lar distributions taken from Refs. 69-72 to obtain

4KN

3n

where A = max(5; (8KN/37r) In K N ' ) and 8 = (a>i^/tau)
X (Zre /TJ3'2 exp( - ZTe /r,). In the limit of a small depar-
ture from the isothermal state, 5>1, we have v([] = (l/Sjvj'1

and Af, = (16/15 ir] (K^/6). In the opposite case of a highly
nonisothermal plasma, for which 8 41, the anisotropy of the
effective collision frequencies becomes particularly great
(vjf'^vi"). Actually, for A<1 we have M, = 4 KN/37rA,
M0-Mt = (S KN/3fl-)in A"1. Hence it follows that, for
<5>(8 KN/3^-) In KN ', the effective collision frequencies are
proportional to KN. If, on the other hand, 1>(8 KN/
3tr) In KN'>5, the low effective collision frequency v^'1 in-
creases with increasing KN whereas vj'1 varies slowly since,
in this limit, Af, = (l/2)[/n K^ '] ~'. We emphasize that the
well-defined anisotropy of the effective collision frequencies
that corresponds to this limit ensures that p-polarized radi-
ation is more readily absorbed. The optical thickness of plas-

ma that corresponds to the absorption of p-polarized radi-
ation in this limit is then given by

(6.3)

where the average is evaluated over the inhomogeneous plas-
ma layer in which the radiation originates. Since in a suffi-
ciently tenuous plasma oo>\^(x}<(\/2}a)l, tne effective
collision frequency is found to decrease as
~exp [ — «o/2»L M ] > and (6-3) corresponds to substantial
absorption of radiation incident on plasma at angles74 5 60°.
It is clear that the absorption maximum in (6.3) as a function
of the angle of incidence will in general depend on the form
of the plasma density distribution.

We note in conclusion that, as shown in Refs. 78 and 74,
apart from ion-acoustic absorption, a high level of turbulent
pulsations can lead to considerable MandeFshtam-Brillouin
scattering. This scattering may ensure that the fraction of
scattered radiation becomes comparable with the fraction
absorbed by ion-acoustic pulsations if the turbulence spec-

•(0

—p- polarization
• — i - polarization

10° 20° 50°

FIG. 20. Angular dependence of absorption A of p-polarized (1) and s-
polarized (2) radiation.
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FIG. 21. Absorption by Ci0H8O4 plasma.

trum contains sufficiently long waves (kmin 5o>o/c). In the
model that we have used, this condition is satisfied for74

Vu^Le/^L ~(yTe/c)'De/'Di> which is readily satisfied in
modern laser-plasma experiments. At the same time, we em-
phasize that this result may become modified when the tur-
bulence model is improved by taking into account the width
of the resonances (see, for example, Ref. 80).

CONCLUSION

The very formulation of the laser fusion problem de-
mands that a substantial fraction of the incident energy must
enter the plasma. The fact that the usual collisional absorp-
tion decreases rapidly with both plasma temperature and
field strength has for long drawn the attention of researchers
to the necessity for studying anomalous absorption pro-
cesses. Many such processes are now helping us to under-
stand experimentally established relationships. At the same
time, the conditions under which collisional absorption
plays a dominant role have now been identified.

Figure 19 shows a summary43 of experimental data on
laser absorption obtained in the course of the last few years
in experiments with planar targets in different laboratories
around the world.

The relatively strong absorption of short-wave laser ra-
diation is related to the importance of electron-ion collisions
[see Eq. (1.7)]. Conversely, the absorption of CO2-laser radi-
ation is usually interpreted in terms of resonant absorption
on a plasma profile steepened by a strong enough pondero-
motive force.

Crude data on total absorption over a relatively wide
range are consistent with the theory of collisional and reso-
nant absorption. Further hypotheses are however necessary
to explain the more detailed data. For example, Fig. 20 (tak-
en from Ref. 81) demonstrates the difference between the
absorption of s- and p-polarized CO2-laser radiation. At-
tempts to explain these data in terms of resonant absorption
lead to the estimated figure of 10-20/^m for the scale of the
spatial variation in the plasma-density profile. This charac-
teristic scale and the temperature Te =0.23 keV have led the
authors of Ref. 81 to the result A<5% for the estimated
collisional absorption. The much stronger absorption illus-

100
A,-/,

• .-—- 1.06 urn, 2.5ns
A a

1.06/zm, 100 ps

13 *n u10" 10" 10" 10

FIG. 22. Absorption of neodymium laser radiation by C10H8O4 plasma
for two pulse lengths—100 ps and 2.5 ns.

trated in Fig. 20 at 6 = 0° for the long focal length of the lens
used in Ref. 81, and the associated small divergence of the
beam A0 ~ 3°, may be due to (according to the authors of Ref.
81) the transverse corrugation of the plasma density
(Ltr~(4r0), or the strong magnetic field (about 106 G), or
some other results of the strong interaction between incident
radiation and plasma.

In the above review we have ignored the effects of plas-
ma heating by very powerful laser radiation, for which there
is a considerable increase in the role of stimulated Raman
scattering (see, for example, Ref. 82). Parametric instability
may also be important under these conditions. We note in
this connection the paper by Kindel83 which reports an in-
crease from 20 to 70% in the rate of absorption of CO2-laser
radiation when the radiation flux density is increased from
1014 to 1015 W/cm2. At the same time, it was suggested that,
for the latter flux density, absorption was governed by the
following processes: resonant absorption by linear inhomo-
geneity—20%, resonant absorption by corrugation (as-
sumed absent at lower laser flux densities)—30%, absorp-
tion by stimulated Raman scattering—20%. We note that
the data on CO2-laser absorption also indicate an increase in
absorption with increasing radiation flux density.

To exhibit more clearly the experimental relationships,
Fig. 21 shows the results reported by the Ecole Polytechni-
que (France) on the absorption of radiation by a flat C10H8O4

target illuminated by first-harmonic neodymium laser radi-
ation (1; 1.06 /urn, pulse length 2.5 ns) and also by second-
harmonic radiation (2; 0.53 /zm, 2 ns). The increase in ab-
sorption with decreasing wavelength is a manifestation of
collisional (inverse bremsstrahlung) absorption. The reduc-
tion in wavelength corresponds to an increase in the critical
plasma density and, secondly, an increase in electron density
leads to a reduction in electron temperature for a compara-
ble fraction of absorbed energy. Both phenomena lead to an
increase in the effective collision frequency and in the optical
thickness due to electron-ion collisions.

Another experimental relationship is illustrated in Fig.
22 which compares data on the absorption of neodymium
laser radiation by a flat Ci0HgO4 target for two pulse lengths
(1; 100 ns and 2; 2.5 ns). It is clear from this figure that
absorption increases with increasing laser pulse length. This
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increase is due to the increase in the inhomogeneity scale of
the expanding plasma which, on the one hand, leads to re-
duced absorption due to the transformation of laser radi-
ation into the longitudinal plasma field and, on the other
hand, to an increase in inverse bremsstrahlung absorption.
The importance of the latter effect85 is indicated by the data
of Fig. 22.

The relative importance of different processes in the ab-
sorption of laser radiation by plasma can be established only
on the basis of factual information on the internal state of the
plasma which, undoubtedly, is much simpler to obtain in
large-scale laboratory experiments than in laser plasma.
There is no doubt that numerical programs capable of deal-
ing with the global behavior of expanding plasmas will con-
tinue to play an important role. The formulation of these
programs relies on the availability of a realistic theory of the
transfer of energy absorbed by the plasma. The development
of this theory requires a modification of the methods used to
determine the radiation flux when the mean free path is com-
parable with the characteristic scale of the inhomogeneity,
as well as the elucidation of the possible role of magnetic
fields generated in laser plasma and an understanding of the
role of turbulent processes. In view of this, studies of the
absorption of laser radiation by plasmas are nowadays based
on experimental data, the exhaustive analysis of which de-
mands a deep understanding of transport processes that
have not as yet been fully investigated. However, such pro-
cesses will have to be reviewed separately.
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