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Application of the Kirchhoff theorem to lattice statistics leads to solution of the two-dimensional
dimer problem, earlier obtained by the Pfaffian method. It is shown that the relation between the
theory of network of linear resistors and the dimer problem is particularly useful in the three-

dimensional case. A number of dimer configurations on a decorated diamond lattice is found by
calculating spanning trees on the corresponding lattice. The Kirchhoff theorem is proved in the

spirit of the combinatorical solution of the Ising model.
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INTRODUCTION

Two notable theoretical results, the Kirchhoff matrix
theorem' and the equation for the partition function of the
two-dimensional dimer problem??, were obtained in totally
different areas of physics, separated by over a century, and,
at first glance, have nothing in common. In fact, these results
are so closely related, that in some cases the latter is a simple
consequence of the former. We attempt to clarify this con-
nection, and provide some new consequences concerning
dimer statistics.

In the first section we provide a short introduction to
dimers. We confine ourselves to the simplest statement of the
problem, and to explaining the method of its primary solu-
tion. A more detailed solution and application of dimers to
other problems of statistical physics are discussed in two
thorough reviews by Montroll (both translated into Rus-
sian®).

The second section contains the required definitions of
the theory of graphs and the Kirchhoff theorem.

Despite the fact that the theory of linear electrical cir-
cuits has become classical a long time ago, in the pedagogical
literature it is difficult to find the *electric” and “graphic”
parts of this theory in a unified form. Therefore the exposi-
tion of the matrix theorem is preceded by a derivation of
equations for the resistance of a finite system of conductors.

In the third section we demonstrate the relation
between the Kirchhoff theorem and the dimer problem on a
two-dimensional square lattice.

In the last section it is shown how the established rela-
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tion makes it possible to solve the dimer problem on a certain
three-dimensional structure of the diamond lattice type.

1. DIMERS

The dimer problem belongs to the extensive class of lat-
tice gas models.>® The lattice gas differs from an ordinary
continual gas in that its molecules do not occupy arbitrary
positions in space, but are located in sites of a periodic lat-
tice. As a rule, it is assumed that due to strong repulsion at
small distances not more than a single molecule can reside in
onesite. The configuration integral over particle coordinates
transforms in this approximation into a lattice sum, which is
calculated exactly in several simple cases.

Most often one considers a gas, whose molecules have a
spherical shape, and each of them occupies a single site. In
this case the molecule is assumed to be a point, coinciding
with the lattice site, and is called a monomer. If the molecule
has a dumbbell shape, in the lattice gas model it occupies two
adjacent sites and is represented in the form of two neighbor-
ing points, joined by a lattice edge. A mixture of molecules of
two kinds forms a system of monomers and dimers. An ex-
ample of a typical monomer-dimer mixture is a benzene so-
lution of several hydrocarbons: diphenyl, diphenylmethane,
and dibenzyl, where the monomers can be assumed to be
C.H, groups.’

Besides repulsion at a single site it is also necessary to
take into account the interaction between different sites. In a
gas consisting of identical monomers one usually considers
interactions between nearest lattice sites. This model is equi-
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valent to the Ising model. If the gas has molecules of more
complex structure than monomers, this relatively weak in-
teraction is not always accounted for, since even without it
the quite important and interesting problem arises of calcu-
lating the entropy of a mixture of different molecules.®®

In the general statement this problem is very difficult.
In 1960 Green and Leipnik published its solution,'® but their
result turned out to be erroneous.'' After some time it be-
came clear that the monomer and dimer problem is equiva-
lent to the Ising model in a magnetic field,' which so far also
has no exact solution.

The only case, in which the entropy can be calculated
exactly, is the limit of vanishing monomer density. In this
case the lattice is totally covered by dimers, so that each site
is occupied by one, and only one, dimer (it is ultimately
assumed that the number of sites is even ). The problem con-
sists of enumerating the ways of dense packing, i.e., all meth-
ods of arranging (n/2) dimers on a lattice with n sites. Some-
times the limit of vanishing monomer density is called the
pure dimer problem, but we retain for it the title of the gen-
eral problem, since in the following we will handle only this
case.

The high interest in the enumeration of dense packing
of dimers in statistical physics is explained by the fact that
numerous lattice models reduce to this problem. A more
accurate statement is: any two-dimensional model from the
class of “free fermions” can be represented as a dimer prob-
lem on some lattice.'> The basic and most studied represen-
tative of the class of *‘free fermions™ is the two-dimensional
Ising model in a vanishing magnetic field.

A graphical representation in the form of a set of closed
polygons is well-known for states of a spin system with an
Ising Hamiltonian."* This implies that the solution of the
Ising model can be reduced to enumeration of all graphs for
which each site is associated with an even number of edges.
In the case of a square lattice 0, 2, or 4 edges can meet in a
site. All these possibilities are illustrated in Fig. 1. Consider-
ing now a lattice with a more complex elementary unit cell
(Fig. 2), it can be noted that the different methods of filling
elementary unit cells by dimers correspond uniquely to the
possible edge locations in a site of a square lattice. Therefore,
solution of the dimer problem on a complex lattice after as-
signing required weights to the edges provides the partition
function of the two-dimensional Ising model on a square
lattice.

The dimer problem is most simply formulated as fol-
lows. Let there be given a square lattice, consisting of M
columns and N rows, folded into a torus for the creation of

.
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FIG. 1. Graphic representation of the Ising model.
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FIG. 2. Dimer coverages of the elementary unit cells, uniquely corre-
sponding to the sites of Fig. 1.

periodic boundary conditions. We denote by d(m,n) the
number of ways of totally covering this lattice by » horizon-
tal and » vertical dimers under the condition that
m + n = MN /2. The partition function or the generating
function of dimer configurations is then written in the form

Ay )= 2 (LD

m,n
{m4+n=MN/2)

where x,y are parameters or weights, which can be assigned a
statistical meaning by expressing them in terms of the reci-
procal temperature B and the chemical potentials u, , i, of
horizontal and vertical dimers: x =exp(Bu,,)y=
exp(Bu, ).

The total number of dimer coverages F is obtained by
puttingx =y = 1:

F=A1). (1.2)
One is usually interested in the system properties for large M
and N:

d(m, n)z™y",

1

A(z, y)-M’li?:m v Az, y). (1.3)

The fundamental quantity characterizing dimer cover-
ages is the molecular freedom of a dimer in dense packing

Q = MY, (1.4)
so that the number of dense packings equals
F = qMnA, (1.5)

Itis clear from physical considerations that A (x,y) increases
exponentially with increasing lattice size (this fact was rig-
orously proved in Ref. 15). It is also easy to give a crude
estimate of the quantity ¢: it must be larger than unity, and
cannot exceed the 4-coordination lattice number. The sur-
prisingly accurate estimate @ = 1.786 was obtained by
Fowler and Rushbrooke in one of the first dimer studies.’

In 1961 Kasteleyn? and simultaneously Temperley and
Fisher® found the exact solution of the dimer problem, and
showed that

¢ = e26/n = 1.791623..., - (L6
where G=1"2—-3"24572_7"24 .. =0.915965... is
the Catalan constant. They also obtained the general expres-
sion for the partition function in the limit of large M,N:

19

N
A(z, y)=exp{-(%l— S ) In 2 [(2? 4 y?) — % cos 6,
0

— y2 cos B,] df, dez} . (L7

V. B. Priezzhev 1126




The derivation of this equation fits in, generally speaking,
among the ideas leading to the solution of the two-dimen-
sional Ising model. Thus, for example, in 1967 Lieb'® ob-
tained Eq. (1.7) by means of a transition matrix, a method
close to the initial Onsager solution. A new technical ap-
proach, used in Refs. 2, 3, was the introduction of a Pfaf-
fian,® substantially simplifying the matrix approach of the
preceding solutions.

The Pfaffian of an antisymmetric matrix of even order
2NA = {a(p,p’) } is defined as:

Py (A):g‘,spa(piv P2) a{Py, Pu) ---2(Pan-1» Pan)s (1.8)

where the summation is carried out over all permutations
P=(p,, psy ..., Pon ) of the numbers (1,2, ... ,2NV), satisfying
the condition

P1 <I Pg; P3 << Puy Ps << Pgs » + »» Pan-1 << P2ns

Pr<<pPs<< ... <<Don-1s (1.9)

and the factor §, equals to 1 for even and — 1 for odd per-
mutations. It is easily understood why this matrix object is
convenient for enumerating the dimer configurations. Con-
sider a square lattice with dimers located on it (Fig. 3). We
number all lattice sites row by row. Each site is represented
by the number pair (p,p’). The whole dimer configuration
can be represented in the form

(P1> P2) (Pas P4} « « « (Paw-15 Pan)s (1.10)
ordering the dimers from left to right and from bottom to
top. For the configurations shown in Fig. 3 the following
representation is obtained:
A, ) (2, 3) 4, 10) (5, 6) (8, 9) (11, 17) ... (23, 24).

(1.11)

In this description the permutation (p,, p, -.. , P24) of the
numbers (1,2, ... ,24) obeys the same conditions (1.9), as do
the matrix subscripts in the definition of a Pfaffian, while the
number of ways of satisfying inequalities (1.9) coincides
with the number of dimer configurations. In the matrix
A = {a(p,p')}, defined by the conditions

y, if p and p’ are vertically adjacent,

z, if p and p' are horizontally adjacent,
a (P, pl) = . :
0, if p and p’ are not adjacent,

(1.12)

to each nonvanishing matrix element a(p,p’) can be asso-
ciated a dimer (p,p') with its weight factor. From the above
consideration it follows that

Pf (4) ~ A (z, ¥)
4
JJ 2%
7

1 12

(1.13)

.
nt Il
FIG. 3. Dense packing of dimers.
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accurately up to the signs in front of the terms of the expan-
sion of the left hand side, which are negative in half the cases.

Despite this successful representation of the partition
function, all difficulties are still ahead of us, since we must
make the remaining terms of the expansion of the Pfaffian
positive and evaluate it. To overcome these difficulties one
introduces the concept of superposition polygons, proves the
Kasteleyn theorem, constructs the cyclic matrix, and, final-
ly, uses the simple (but nontrivial) equation

Det 4 = (Pf A), (1.14)

relating the determinant and the Pfaffian of the antisymme-
trix matrix. All these steps are described in great detail in
Montroll’s reviews mentioned above, and we will not dwell
on them, but postpone the derivation of Eq. (1.7) to section
3, where it is obtained as a consequence of the Kirchhoff
theorem.

2. THE KIRCHHOFF THEOREM

Consider an interconnected electric circuit, consisting
of the points 1,2, ..., &, arbitrarily connected by conductors.
The reciprocal resistance of the conductor combining the
points / and j is denoted by x;. At the points &k and / let us
connect to the circuit a source of current /. We denote by v,
the potential generated at the point i. Ohm’s law, in conjunc-
tion with the first Kirchhoff law, gives:

2 xhj(vh_vj)zl; ]

Ik I

D w0 —v) =0, iEk, I, 2.1)
J*E=1 |

2y 0 —v) = —1,

ik J

or in more compact matrix form

N
IiZE Ti.fij i=1, 2, ...,N, (22)
=1
where I, =1(6, — &), and
Tij= mz#:iximv L=, (23)
— Ziss 7’%]

To determine the potential difference v, — v, it is sufficient

to consider ¥ — 1 independent equations. Taking into ac-

count that by the definition of the matrix T
2 Ty=—Ty,

j==l

(2.4)

we rewrite the first N — 1 equations (2.2) in the form

N
I8y =23 Tyy(w;—v)), iy jL (2.5)
j=1
This system has the solution
%) (2.6)
vp—v =1 o)

where T'” is the determinant of the matrix obtained from T
by deleting the rows and columns with subscript /, and the
determinant 7¢"*’ —by deleting the two rows and columns k
and /. From equation (2.6) immediately follows an expres-
sion for the resistance R, between points & and { of the given
circuit:
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IT(’I.. ')I

Rhl = ITml

2.7)
The equation obtained is a consequence of Kirchhoff’s laws.
The Kirchhoff matrix theorem provides this equation with a
geometric meaning.

To formulate the matrix theorem consider our electric
circuit as a graph G with N marked (enumerated) vertices.
The vertices { and j are joined by an édge, and are considered
to be adjacent if the circuit contains a conductor connecting
the points i and j. The graph G can be set in correspondence
with an (N X N)-matrix A, called the adjacency matrix. In
this matrix ¢; = 1 if the vertex / is adjacent to the vertex j,
and a; = 0 otherwise. It is natural to require that the circuit
contain no closed loops, exiting and entering a single point;
the diagonal elements of 4 vanish in this case.

A cycle in the graph G is the name given to an alternat-
ing sequence of vertices and edges, in which the initial and
final vertices coincide. A connected graph is called a treeif it
contains no cycles. We say that the subgraph H of the graph
G covers G if each vertex of G is a vertex of H. A core of the
graph G is a tree covering it. Figure 4 shows a graph with all
its cores.

Let M be the matrix obtained from ( — A4) by replacing
each ith element of the principal diagonal by the number of
vertices adjacent to i. This number is usually denoted by deg
i, and is called the vertex degree.

Kirchhoff showed' that the following statement is val-
id:

2.1. Matrix theorem on trees

Let G be a connected marked graph with the adjacency
matrix 4. Then all algebraic complements of the matrix M
are equal to each other, and their general value is the number
of cores of the graph M.

For the graph illustrated in Fig. 4 we have

0111 3 =l =i =1

100 1 1 2 0 —1 (2.8)
A=1001'M= -1 0 2 —1

1110 ~ -1 —1 3/

All algebraic complements of the matrix M are equal to
8, i.e., the number of cores of this graph.

In combinatorical calculations it is more convenient to
deal not with the number of graphs of a given form, but with
their generating functions. We assign to each edge, joining
the vertices 7 and j, the weight x;. The core of the graph is
uniquely determined by the product of weights of the edges
appearing in it. The sum of these products over all possible
cores is called the core generating function S({x}), where by

AE Do
53

FIG. 4. A graph and all its cores. The first four cores contain edge (14).
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{x} we denote the set of all weights of the graph. We put the
weight of each edge x;; equal to the conductivity of the cir-
cuit portion appearing in the definition (2.3) of the matrix
T. In these terms the Kirchhoff theorem acquires the follow-
ing form:

For a connected graph G all algebraic complements of
the matrix T are identical, and are equal to the core generat-
ing function S({x}). To understand the connection between
the two statements of the theorem it is sufficient to note that
the matrices M and 7T coincide if all x; = 1, and the number
of cores is simply S({1}).

We return now to Eq. (2.7) for the resistance. Accord-
ing to the matrix theorem, the denominator | 7¥” | is the gen-
erating function of the core trees S({x}). The numerator
|74 | is equal to the coefficient of x; in the expansion of

S({x}), ie.,

|70 = 52— 8 ({a}). (2.9)

This implies that |7%%" | for x; = 1 equals to the num-
ber of all cores containing the edge k/. Then from Eq. (2.7)
and from the Kirchhoff theorem follows an intersetting pre-
scription for calculating the resistance of a system of one-
ohm conductors: for a given circuit it is necessary to find the
number of core trees containing the edge £/, and divide it by
the number of all cores. It is seen from Fig. 4 that the first
number for the edge (1,4) equals 4, and the second is 8. The
resistance between the points 1and4is R, , = 1. If the resis-
tances are not all equal to unity, to calculate R, it is neces-
sary to find the appropriate generating function.

The following problem can arise: what to do if the
points k and / are not joined by a conductor? In this case it is
simplest to proceed as follows: add to the circuit a known
conductor between the points k£ and /, find the resistance of
the resultant circuit, and then determine R, of the original
circuit by the equation for a parallel connection of conduc-
tors.

In the classical study' the matrix theorem was obtained
implicitly. The formulation given above was taken from F.
Harary’s book.'” This book also contains a modern proof of
the theorem. Despite its briefness, it is far from elementary.
Therefore we provide another proof, intended for the reader
more familiar with the Ising model than with the literature
on graph theory.

2.2. Proof of the matrix theorem

The first part of the proof consists of a simplified var-
iant of the combinatorical solution of the Ising model. "

Consider a connected graph G with ¥V vertices, enumer-
ated by the numbers 1,2, ..., N. As above, we assign the edge
joining vertices i/ and j the weight x;. We denote by p the
closed non-self-intersecting path, passing some sequence of
vertices and edges of G, in which all vertices are different.
We define the weight W (p) of the path p as the product of all
the weights of the edges contained in it taken with a minus
sign. Consider the set T of closed nonintersecting paths on
the graph G. The weight of this set is defined as

@ =11W (), (2.10)
r
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00 b

FIG. 5. 2) Two paths intersecting at point i; b) one self-intersecting path.

where the product is carried out over all paths of the set I
We denote by Z an arbitrary closed path on G without

the restriction on self-intersection. Its weight W(#) is de-

fined similarly to W (p). The following equality is valid

Ha4+w(®)=2x@), (2.11)
P T

in which the product is carried out over all possible paths on
the graph, while the sum is carried out over the whole set of
closed nonintersecting paths. To confirm the validity of this
equality we expand the product on the left hand side and
note that each term of the series obtained corresponds to
some set of closed paths. If the set has no intersecting and
self-intersecting paths, this term provides a contribution to
the right hand side. If the two paths p, and p, intersect at the
point , as shown in Fig. 5a, then a term can be found, corre-
sponding to one path self-intersecting at the point /, travers-
ing both routes (Fig. 5b). The weight of the pair of paths
equals W(p,) W(p,) and is positive, the weight of the single
path is—W(p,) W(p,). Thus, the contribution of all inter-
secting and self-intersecting paths vanishes, and the required
sum remains in the left hand side.

We take the logarithm of both sides of equality (2.11),
and, similarly to the way it is done in deriving the partition
function of the Ising model,'* we write:

In S ()= In+W @)= [L—(—W () -
r # P

o N

@ (=W (F)i W, ()
=—2 X =2 2

P i=1 r=1 i=1 (2.12)

where by W, (i) we denote the sum of weights of all possible
closed paths of r steps, starting and ending at the point i. The
weight of these paths is again equal to the product of weights
of the traversed edges, but taken with the positive sign.

Continuing the analogy, we note that the sum of the
weights of all paths from point i to point j taking r steps
W _(i,j) obeys the following recurrence relation:

Welis D=2 AG, W, G, k), (2.13)
with the N X N transition matrix A. The elements A(i, ) of
this matrix are equal to the edge weight x,; if the vertices i
and j are adjacent, and zero otherwise. The transition of
length r is determined by the matrix A", for which the diag-
onal elements correspond to return of the path to the original
point. Therefore,

N
TrA =Y W, (). (2.14)
i=1

Denoting by 4, the eigenvalues of the matrix A and taking
into account equality (2.12), one can write down:
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oo N
Sa@=exp (=3 - M)
T r=1 n=1
N N
=exp[2 1n(1—x,,)]=ﬂ (A—hn) =T —Al,
n=1 n=1

(2.15)
where [ is the unit matrix of order N.

Having obtained the expression for the sum Zy(I"), we
can construct a more useful object—the “partition func-
tion” for the closed paths taking into account the vertex
weights. For this we assign to each vertex i a weight v;
(i=1,2, ..., N). Let the set of closed paths I" leave unoccu-
pied a part of the graph vertices: 7 ,,i,, ..., [, . We introduce the
product

x @) =viwi, .. vy (D) (2.16)
and define the function
Z(v, {z})=§i(1“), (2.17)

summing again over all sets of closed paths. The expression
for Z(v,{x}) is easily obtained, multiplying Ty (T") by Ilv,
and replacing the weight of each edge x,;; by x,, /v;. In each
set all the v, will cancel out in vertices occupied by paths, and
the required expression will be obtained for x (T"). The factor
I1v; canbe introduced by multiplying the row numbered i of
the matrix (1 — A) by v,. We then obtain

Z (v, {z}) = det (:6;; — A (i, ). (2.18)

Here we reach the end of the analogy with the derivation of
the partition function of the Ising model. We have found a
“partition function”, which is, in some sense, the opposite of
the one required. Indeed, the generating function Z enumer-
ates (with minus sign) all possible cycles on the graph, while
we seek the cores generating function, i.e., the subgraphs in
which there is not a single cycle. The inversion of the prob-
lem is carried out by means of the well-known combinatori-
cal inclusion-exclusion principle.

2.3. The inclusion-exclusion principle

Let there be NV elements and a certain number of proper-
ties p(1), p(2), ..., p(n). Let, further, N, be the number of
elements with property p(i), and, generally, let N,, , bethe
number of elements with properties p(i,), p(i,), ..., p(i,).
Then the number of elements N (0) not possessing any of
these properties is given by the equation (see, for example,
Ref. 18):

N(O):N—ZNiﬁ“.;‘ N+ .+ (—1)°
1 11<12

X , Nijiag. i, o.. — 1"

i1<iz§-..<is+ nieets TNz
(2.19)

To use this equation we note that the arguments v, ..., vy of

the function Z(v,{x}) do not appear in the definition of the
generating function S({x}), and are, in fact, free param-
eters.

We set

V.B. Priezzhev 1129



R (2.20)

vy = %5, iL=1,2,
1= 2,7

and consider Z term by term as the sum (2.17) over all sets
of closed paths. The first term arises when the set I is empty.
We write it down explicitly:

fri vi= iljl (J'gi #21)-

i=

2.21)

This expression can be regarded as the generating function
of transitions between sites under the condition that from
each site there emerges a single path to one of the adjacent
sites of the graph. We denote by p,; the path from site / into
the adjacent site j. The sequence p,; p;; ...p; _; is the path
from site i, to site i, . If i, and i, coincide, the path is closed.
In the generating function (2.21) there appear no self-inter-
secting paths, since only one path emerges from each vertex.

Let all possible combinations of paths obtained by those
N elements, which we had in mind in formulating the inclu-
sion-exclusion principle. Then the first term of Z(v,{x})
corresponds to the first term in the right hand side of Eq.
(2.19).

The properties p(1), p(2), .... will be assumed to be
closed paths, enumerated in an arbitrary order. The second
term of Z is the sum over the sets I', consisting of a single
closed path, and, by definition, the weight of the path is neg-
ative. Consequently, this term of Z corresponds to the sec-
ond term in Eq. (2.19). The third term of Z is the sum over
the sets I of two closed paths, and has a positive sign. Con-
tinuing this argument, we obtain a full correspondence
between Z and the left hand side of Eq. (2.19)—the sum
over all path combinations not including a single closed
path.

From the result obtained it immediately follows that
after substitution of (2.20) we obtain

Z (v, {z})=det (Jg{z,,-—A(i, N=|T|=0, (2.22)

since it is impossible to construct a system of paths, emerging
from each vertex of the graph, not forming a single closed
cycle. We consider now some algebraic complement of T,
say |T'" |. In the matrix TV the first column and the first
row have been deleted, implying that in the generating func-
tion of |7¥" | paths passing through vertex 1 are not taken
into account. We allow only transitions to vertex 1 from the
adjacent vertices 7,,i,, ... due to the diagonal elements T}, ,
T, , ... Thus, vertex 1 turns out to be a sink for all paths on
the graph G. The system of paths passes through each vertex
and contains no closed cycles, therefore it is a core. Conse-
quently, we have

| 7@ | = 8 ({z}). (2.23)
As a sink one can choose any vertex of G, therefore all
|7 | (i = 1,2, ..., N) are equal. Moreover, from the vanish-
ing of the sum of the elements in each row and column of the
matrix T it follows that the remaining algebraic comple-
ments are also all equal. The theorem is thus proved.

3. DIMERS AND CORES

Consider the problem of dimers on a plane square lat-
tice, formulated in Sec. 1. We intend to show that any dense
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1]

FIG. 6. Dense dimer packing. The light circles are sublattice points.
Dimers are marked by arrows, and the wavy lines form a core on the
sublattice sites.

packing of dimers on this lattice can be represented as a core
tree on a certain auxiliary lattice, and thereby identify this
dimer partition function A(x,y) with the core generating
function .S ({x}). The expression for A (x,y) will then follow
from the Kirchhoff theorem.

For simplicity we assume that both numbers M and N,
determining the lattice sizes, are even. The site coordinates
are denoted by the pair of integers (k,k;), 1<k<M,
1<k,<N. The set of sites, whose coordinates take on the
values

k=2m, m=1, 2, ...,

3.1)
k,=2n, n=1, 2, ...,
together with the edges connecting these sites, are called a
sublattice L of the basic lattice. In Fig. 6 the sites of the
sublattice L are denoted by light circles, and the remaining
sites—by dark ones.

Consider an arbitrary dense dimer packing on the basic
lattice. Part of the dimers falls on the sublattice L (see Fig.
6). We provide each of these dimers by an arrow, directed
from the end located on a site of L to the other end. From
eachsite of L we draw a path to an adjacent site of L, indicat-
ed by the arrow. A simple observation, making it possible to
apply the Kirchhoff theorem to the dimer problem, consists
of the fact that the set of constructed paths forms a core tree
onlL.

Indeed, the graph formed by the paths contains all sites
of the sublattice L, and, by definition, covers it. The exclu-
sion of cycle formation is generated by the fact that any
closed contour on the sites of L covers an odd number of
points of the basic lattice, and these cannot be covered by
dimers. This is simplest to verify by induction: the elemen-
tary square on L consists of one point of the basic lattice,
while the connection to the available contour of the follow-
ing square increases the number of spanned points by 2, 4, or
6, depending on the connection method. Consequently, the
graph formed by the paths is a core.

To establish the mutually unique correspondence
between the cores of L and dense packings it is necessary to
verify that any core, in turn, produces a unique dimer config-
uration. For this consider all points of the basic lattice, not
belonging to the given core. We combine by edges all pairs of
adjacent vertices. The graph obtained is also a tree, while
each of its branches from a free end to a connection point to
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the following one has an even length. Therefore; we can con-
secutively cover by dimers all vertices of the tree, and thus
assign to each core in L a dimer packing on the basic lattice.
The uniqueness of this covering follows from the construc-
tion.

Let now A be the matrix of the adjacencies of the sublat-
tice L, and M—its corresponding matrix with diagonal ele-
ments deg /. Then, according to the matrix theorem, the
number of dimer coverages, determined in Sec. 1, is given by
the equation:

F=|M'|, (3.2)
where M is an arbitrary algebraic complement of the matrix
M.

Before calculating F explicitly we obtain an expression
for the generating function A (x,y). We recall that x is the
weight of a horizontal and y—that of a vertical dimer. In
addition to establishing a correspondence between the cores
of L and dense packings, we show a more refined property of
dimer coverages.

In the given dense dimer packing let m, horizontal and
n, vertical dimers be placed on the sites of the L sublattice.
The packing then contains m,; horizontal and n, vertical
dimers, so that their total number is

omy + 2y = 225 (3.3)

To prove this we define the reduced site coordinates:
K, = k, (mod 2),
K, = k, (mod 2).

Equalities (3.4) imply that X, and K, equal O or 1, depend-
ing on whether the numbers k,/2 and k,/2 are even or odd.
Consider the square ABCD with reduced coordinates
[K,,K,], shown in Fig. 7. To each dimer on the basic lattice
corresponds a dimer on the square. For example, to a hori-
zontal dimer on a site of sublattice L there corresponds a
dimer on the edge CD, and to a vertical on the edge AC. Since
all sites of the basic lattice are occupied, the number of
dimers covering the points 4, B, C, D are equal. If the edge
AC has n, , and the edge CD — m, dimers, the only way of
adding equal numbers of dimers to the vertices of the square
istoadd n; dimerstotheedge BD and m, dimers to the edge
AB. Hence follows the property mentioned above.

From the set of weights {x} appearing in the definition
of the core generating function S({x}) it is convenient to
retain, as in the case of dimers, only two: the weight of a
horizontal edge x and of a vertical one y. Let g(m,n) be the
number of cores of the sublattice L with /m horizontal and n
vertical edges. In the new notation the core generating func-
tion acquires the form:

S (z, y) =m2n g (m, n)z™y™

(3.4)

(3.5)

13 4t
FIG. 7. Representation of a square lattice in re-
duced coordinates.

[y 3

0y ; > (6
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Each edge of the core passes through a dimer lying on a site
of L. If the core has m edges with weight x and n edges with
weight y, then, according to the property proved, in the
dense packing connected to this core there are 2m horizontal
and 2n vertical dimers. The number of packings and cores
coincide, therefore we obtain for the dimer generating func-
tion A(x,p)

Az, y)= 2 g(m, n) 22"y =S (a2, ¥?). (3.6)

The elements of the matrix 7T, defined by conditions (2.3),
are for our choice of weights

2r+2y, i=j,
7.=1 ~% i, j horizontally adjacent, (3.7)
v - i, J vertically adjacent,
0, i, j not adjacent.

By the Kirchhoff theorem S(x,p) is equal to the algebraical
complement of the matrix 7, and an expression for A (x,y)
follows directly from equality (3.6).

We turn now to derive Eq. (1.7). We must diagonalize
the matrix T, for which purpose we use one its properties
referred to as cyclic behavior (see, for example, Ref. 4).

A matrix 4 of order n is called cyclic if its elements
a(i, j) depend only on the difference i-j, and satisfy the con-
dition a(i + n) = a(i). A cyclic matrix is diagonalized by
means of the orthogonal transformation

B = R-AR, (3.8)
where R is a matrix with elements
R (k, 1) = n-1/2¢-Qni/m k1, (3.9)

Substituting expression (3.9) into Eq. (3.8), we have

B(j, k)= D) R'(j, Da(s—1) R (s k)
i, s=1
=% S etemima-it Zi a(s— 1) e@rim -0k
=1 s=

el B (3.10)

n
Due to the periodicity of a (k) the summation over s is inde-
pendent of /. Therefore

n

A(g) =2 a(s)eiso,

s=

(3.11)

For the determinant of the matrix 4 we obtain:

(3.12)

det A=det B= [[ & (ZL).
j=1
The matrices being considered depend on the positions
of the points 7, j, which, in turn, are given by the pair of
coordinates (k,,k,). In this case the cyclic condition implies
that
a .v k) = k—3j ,
(3, k) = a(k —3j) (3.13)
a(k + n) = a (k).
The components of the vector n are the lattice dimensions.
Egs. (3.9)~(3.11) take on the form
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R (k, 1) = (n,n,)™/2 e2milny) (k1ln)e(2mi/ng) (haly) (3.14)
s 2nj 2nj
B(j, k) =8, Oupgh (S, 222, (3.15)
and
(3.16)

A (@)=2) a(s) eise.

These are exact expressions for the diagonal matrix elements
for vectors ¢ and s of any dimensionality. The expression for
the determinant of 4 is, similarly to (3.12):

det A= Qi,-ll A9y, P). (3.17)

In the limit of large #,,n, one can put ¢, =2nj,/
n,@, =2mj,/n,anddp, = 2n/n,,dgp, = 2mw/n,. The follow-
ing asymptotic equation is then obtained for det 4

! IndetA

nng

np N2

=— 3 3 InA(¢y @)

nyng

i1=1 ja=1
2n

=Wi){ SOS InA (@, @) de, des, (3.18)

These general prescriptions of the theory of cyclic matrices
are sufficient for obtaining Eq. (1.7). Firstly, the matrix T is
indeed cyclic due to the periodic boundary conditions. Sec-
ondly, the only five nonvanishing elements of 7(s) have the
following vectors s: (0,0),(1,0),( — 1,0),(0,1),(0, — 1).
We substitute them into expression (3.16) for A (@,,@,):

Moy, 9)=T (0, OF+T (1, Ol T(—1, Q)e~in
+T(0) 1) ei‘Dn_’_T(O, —1) g—i@z,

or, taking (3.7) into account

(3.19)

APy, @) =22+ 2y — zet01 — ze- 191 — yel®s — yo—ios,
(3.20)
Recalling that the sublattice dimensions are n, = M /2 and
n, = N /2, and using Eq. (3.18), we obtain'®:
2n

Indet7=2Y _1 SS In (22 + 2y — 2z cos ¢,
0

e
— 2y cos ¢,) doy dgy.

(3.21)

The asymptotic expressions for large M and N coincide for

the determinant and the algebraic complement, therefore

expression (3.21) gives S(x,y). Relationship (3.6) is then
transformed to the final result (1.7):

MN "

In A (2, y)=4n—, S S In 2 (224 y2—2%cos @,
0

—y2cos @g) do, dopz.  (3.22)

The number of dimer coverages F is obtained from equality
(1.2).

Thus, in the case of a square lattice we have verified that
the solution of the dimer problem follows directly from the
Kirchhoff theorem. One can find several more lattices with
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the same simple connection between dimer coverages and
cores. One must not, however, overstate the universality of
the method: for example, for the lattice illustrated in Fig. 2
the construction described is no longer possible. The advan-
tages of reducing the dimer problem to core enumeration are
fully apparent only in the three-dimensional case, to whose
treatment we now turn.

4. DIMERS ON THREE-DIMENSIONAL LATTICES

The idea of applying the Kirchhoff theorem to the
three-dimensional dimer problem is clear: the validity of the
equations for the number of cores is independent of the di-
mensionality, and if we find cores which uniquely determine
dense packing, their enumeration encounters no difficulty.
The question consists only of whether there exist such cores
for three-dimensional lattices. The answer to it is not clear in
advance, since the simple arguments of the preceding Sec-
tion are substantially based on the lattice being plane. We
show below that there exists at least one lattice, close to the
diamond structure, for which the matrix theorem gives a
generating function of dense packing.

Consider a simple cubic lattice, contained within a par-
allelepiped with dimensions N, XN, XN;. The lattice is
formed by points with integer coordinates (k,,k,,k;), taking
on the values 1<k, <N,,i = 1,2,3. The reduced coordinates
of the points are denoted by [K ,K,,K ], defined as in Sec. 3:

K, =k (mod 2), t =1, 2, 3. (4.1)
We call the set of points with the reduced coordinates
[0,0,0] sublattice 4, and the set of points with coordinates
[1,1,1]—sublattice B. Choose again an arbitrary dense
packing of dimers. We provide each of the dimers situated on
the sites of sublattice 4 or B with an arrow, directed from the
end situated on a site of the sublattice towards the other end.
From each site of sublattice 4 we trace a path to an adjacent
site of 4, indicated by the arrow. The same is done in sublat-
tice B.

Two systems of directed paths, G, and G,, have been
generated on the sublattices 4 and B. Unlike the two-dimen-
sional case, we cannot state that all G, and G, are dimers,
since in the three-dimensional case there are no geometric
restrictions on cycle formation. In what follows we shall find
a way of getting rid of cycles, and for the time being consider
only such G, and G,, which form core trees on the sublat-
tices 4 and B. Two such cores occupy half the sites of the
original lattice. The question arises, how many methods ex-
ist of covering the remaining points by dimers? The answer
to this question can appear to be somewhat unexpected. For
any core configurations there is exactly one method of bring-
ing the lattice up to dense packing. The full proof of this fact
was given in Ref. 20. Here we give only its outline.

For two given cores on sublattices 4 and B we deter-
mine a new graph G, whose vertices are points not belonging
to cores, and whose edges are connections between adjacent
points. We construct a square area of size 2 X2 with sites at
points of sublattice 4. If the site at the center of the area is
occupied by a core, we paint it dark. An area with a free
center is considered white. Consider the set of all white
areas. These areas cannot delimit a closed volume, since then
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there would be a cutoff portion of the core B, which is by
definition connected. Then the set of white areas has a
boundary, a set of lines traced over all sides of the white areas
adjacent to three dark ones. On this boundary there must be
found at least one point of G with degree unity. If the degree
of the point is higher than unity, then the side on which this
point is found does not belong to the boundary. If the degree
of all points on the boundary is zero, the whole boundary
belongs to the core B. The white areas, however, form a non-
closed region, therefore one can trace a closed line along its
boundary, which contradicts the definition of a core.

We have proved that in the graph G there is at least one
point with degree unity. This and a point adjacent to it can be
covered uniquely by a dimer. There remains a graph G,
which for the same reasons contains at least one point with
degree unity. Continuing this construction, we uniquely cov-
er the whole graph G by dimers.

An important consequence immediately follows from
the fact that has been proved. Let f'be the number of all cores
on sublattice 4 (equal, by symmetry, to the number of cores
on sublattice B). Obviously, the points belonging to cores
are uniquely covered by dimers. The points not belonging to
cores are also uniquely covered. The cores on the sublattices
A and B are independent. Therefore, the following inequality
is valid for the number of all possible dimer coverages F

Fz=f. (4.2)
Unaccounted remain those dimer packings for which at least
one closed path is generated on the sublattices 4 and B. The
estimate (4.2) gives the lower bound on molecular freedom
of a dimer on a cubic lattice. We proceed to find its numerical
value.

The matrix T for sublattices 4 and B differs from the
matrix (3.7) only in that there appear the additional ele-
ments I, = — zfor pointsiandjadjacent in the direction of
the z-axis, while the diagonal elements are replaced by
(2x + 2y + 2z). We substitute the values of the nonvanish-

ing matrix elements in Eq. (3.16):
AM(P1, Pay @3) = 2z + 2y 4 22 — 2z cos ¢y
— 2y cos g, — 2z cos g5 (4.3)

Arguing exactly as in the two-dimensional case, we hence
obtain an expression for the core generating function

Sz, y, 2)

n

=exp &é\%& SS S In2(z+y-+2
B

— I COS (py — Y COS Py — 2 c0S ;) dp, d@, dq;,] . (44)
Recalling that
we obtain from inequality (4.2) and from the definition of
the molecular freedom (1.5):

3
% In qa>4—;;,— ﬁ S do; dg, des In (4 2 sin? %)
] :

i=1

=0,418347 ... (4.6)

This is the well-known Hammersley estimate.?' It is quite
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close to the presently accepted more reliable value of .446,
calculated by a series method.?* The high accuracy of the
estimate shows, by the way, that the contribution of dimer
coverages with closed paths on the sublattices is relatively
small.

We turn now to the main purpose of this section, the
derivation of equations for the partition function of dimers
on a three-dimensional lattice. We already saw above that on
a cubic lattice there is no natural prohibition on formation of
cycles on the sublattices 4 and B. We introduce this restric-
tion as follows.

We alter the system of dimer weights on a cubic lattice.
If the dimer has a weight x (or p), is located on a site of the
sublattice 4, and is oriented relative to this site in the positive
direction of the x (ory) axis, we replace this weight by x’ (or
»"). If the dimer has a weight x (or y), is located on a site of
sublattice B, and is oriented relative to it in the negative
direction of thex (ory) axis, we also replace this weight by x’
(ory’). The remaining weights remain unchanged. We now
setx’ =y’ = 0, i.e., in other words, we remove from the lat-
tice all edges emerging from A sites in the negative direction
of the x and y axes, and all edges emerging from B sites in the
positive x and y directions. The elementary unit cell of the
lattice obtained is illustrated in Fig. 8. The white circles de-
note sites of sublattice 4, and the dark ones—sites of sublat-
tice B. The dashes denote the discarded edges of the original
cubic lattice. A lattice of the diamond type (more accurate-
ly, a lattice topologically equivalent to it with coordination
number 4) is obtained if in addition to the discarded edges
we remove from each elementary unit cell the edges (2,7),
(3.7), (4,6), and (4,8). In such cases we say that the dia-
mond lattice is decorated by additional edges.

We now examine how the paths appear on the sublat-
tices 4 and B. Any path from an A site has four possible
extensions, and contains not a single portion, directed in the
positive direction of the x and y axes. Consequently, the path
system on the sublattice does not contain a single closed cy-
cle, and is a core tree. For the same reason there are no cycles
on the B sublattice. The cores on the new lattice are a part of
the set of all cores on a cubic lattice, and therefore, for points
not belonging to cores there exists, according to the property
proved, a unique dimer coverage. The dimer partition func-
tion is then obtained from the generating function of the
cores.

If the sites of sublattices 4 and B have n,, n,, and n,
dimers with weights x, y, and z, arguments entirely similar to
the discussion in Sec. 3 show that there exist additional n_,
n,, and n, dimers with corresponding weights.

Wedenote by S, (x,p,2) the core generating function on
one of the sublattices of the decorated diamond lattice. It
follows from the discussion above that the dimer partition
function on this lattice 4, (x,,z) is

W6 4
2 ' A FIG. 8. Decorated diamond lattice. The light
. - circle is a site of sublattice 4, and the dark one—
- a site of sublattice B. The dashed lines denote
/5 8 discarded edges of the cubic lattice.
7 J
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AD (I, Y, Z)=S§)(IZ, yzv z-z)- (4-7)

To calculate S}, (x,y,z) we find the matrix 7 on sublattice 4.
It is clear from the construction that the nonvanishing ele-
ments are the following elements T'(s) of this cyclic matrix:
T(0,00)=x+y+2z T(—-100)=x, T(0,—1,0) =y,
7(0,0,1) =z, and T(0,0, — 1) = z. Substituting them into
Eq. (3.16) gives

Moy 95 ¢3) =24y +22—ze~ 191 — ye=i9:1— 2z cos g,

(4.8)
whence, performing standard operations, we obtain
S (x, y, 2)
k14
=exp I-—}%]%’,Lv’— S S Y In(z+y+22
- 8
—ze~ it —ye-i®:— 2z co8 ;) do, do, d(pa] . 4.9)

The final form of the partition function follows from relation
4.7):

Ap(z, y, 2)

—exp[Hfals S'S‘ [ 1n R (@ @2 ) dpidedan],
o (4.10)
where

R (91, 92 9a) = 22° (1 + cos ¢y)
+ 2y* (1 + cos @) + 4z* (1 4 cos @,)?
+ 22%5% (1 + cos @, + cos @, + cos (p; — 9,))
4 22222 (1 4 cos @,) (1 + cos @g)
+ 4yz (1 + cos @,) (1 + cos @y). (4.11)

Setting x =y =z = 1, we find the value of the molecular
freedom @ from Egs. (4.10) and (1.5). Numerical integra-
tion in (4.10) gives:

¢ = 1.97526. (4.12)

In the Bethe approximation'? for a cubic lattice ¢ = 2.41,
while for the diamond lattice @ = 1.68. As could be expect-
ed, the molecular freedom of the decorated diamond lattice
lies between these values.

It remains to consider the important problem of phase
transitions in dimer models. Both partition functions (1.7)
and (4.10) obtained above are analytic for all positive values
of their arguments, and, consequently, give no phase transi-
tion. It can be noted that the expressions under the logarithm
sign in the integrals (1.7) and (4.10) always vanish at the
minimum point in the variable of integration, unlike, say, in
the Ising model, in which this occurs only at the critical
point. This comment motivated Kasteleyn?? to state that the
model of dimers on a square lattice is equivalent to the Ising
model at the critical point. This statement is, possibly, also
valid in the three-dimensional case.

The absence of phase transitions in the models consid-
ered implies that ordering of dimers takes place continuous-
ly. What must be changed in the model, so that phase transi-
tions occur in it? There exists so far no general answer to this
question, but comparison of the different known models
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FIG. 9 a) Square lattice, b) decorated hexagonal lattice, c) hexagonal
lattice.

makes it possible to draw some conclusions. The first exam-
ple of a dimer model with a phase transition is the lattice in
Fig. 2, equivalent to the Ising model. As is well known, the
model has a logarithmic divergence of the specific heat at the
critical point. Figure 9 shows four sites of a square (a), deco-
rated hexagonal (b), and hexagonal (c) lattices. The parti-
tion function of the dimer models in all three lattices is calcu-
lated by the Pfaffian method, and it seems that in the first
two models there are no phase transitions, while the third
partition function gives a critical point with a root singular-
ity in the specific heat. It is seen from these examples that a
phase transition occurs when the lattice becomes sufficiently
dilute, or, which is the same, when the molecular freedom of
the dimer is sufficiently small.

In just the same manner in the three-dimensional case
the decorated diamond lattice has no phase transition, while
the discarding of excessive edges and its coversion to a pure
diamond lattice lead to a phase transition. Its existence can
be proved by using, for example, the Peierls contour meth-
od,?* though in this case the nature of the singularity at the
critical point remains unclear.

The dimer problem on the three-dimensional lattice
shown in Fig. 10 was recently considered in a number of
papers.?>~*7 In Ref. 25 an expression was found for the parti-
tion function with a specific heat jump at the critical point,
and it was stated that this result was exact. However, it was
shown in Ref. 26 that the specific heat jump occurred as a
result of an approximation, similar to the Bethe approxima-
tion, and a logarithmic singularity of the specific heat was
predicted?’ for this model. If this assumption will be verified,
the dimer problem will be the first model with short-range
action, for which critical behavior is exactly known in the
three-dimensional case.

CONCLUSIONS

The discussion given above must not be perceived as an
attempt of dating the solution of the dimer problem to the

L7
7

Llﬁ

I T
FIG. 10. Three-dimensional dimer model with a phase transition.
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nineteenth century. In this connection the moral suggests
itself that each result has its own time. From the point of
view of pre-Gibbs physics the dimer problem is no more than
an amusing puzzle. Moreover, its solution by means of Pfaf-
fians led to the creation of a beautiful and general method,
making it possible to solve any plane dimer problem, not
necessarily reducible to core enumeration.

It is of greater significance that the Kirchhoff theorem
allows to make headway in solving three-dimensional prob-
lems, where the Pfaffian method does not work, or, at least,
itis not clear how to apply it. Here it is necessary to note that
the usefulness of these calculations is strongly reduced due
to the analyticity of the core generating function, which
leads to absence of a phase transition in all models thus
solved. The only practical application of the exact results
obtained remains the checking with their aid of the various
approximate methods and computational algorithms in the
three-dimensional case.

It is currently difficult to predict which of the three-
dimensional dimer models is most promising for further
study. Some optimism is evoked by the success in the study
of phase transitions in the model mentioned at the end of Sec.
4. This model is also interesting in that the structure of the
excited ground state in it recalls the vortex structure in su-
perfluid He®, while attempts of a rigorous proof of the loga-
rithmic singularity at the critical point®® have additional
physical justification.

Besides the dimer problem, the Kirchhoff theorem is
naturally applicable to the theory of branching polymers,'®
if the lattice pattern is used, and the polymer is identified
with the core of the given lattice. Less obvious is the connec-
tion between the Kirchhoff theorem and the limit #—0 in the
n-component Potts model, as was established in Ref. 29 (see
also the review of Ref. 30).

The examples provided show that the Kirchhoff
theorem is a strong combinatorical statement, which in
many cases is equivalent to complicated computational
methods of contemporary statistical physics.

1135 Sov. Phys. Usp. 28 (12), December 1985

'G. Kirchhoff, Ann. Phys. und Chemie 72, 497 (1847).
2p. W. Kasteleyn, Physica 27, 1209 (1961); 29, 1329 (1963).

*H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6, 1061 (1961).

“E. Montroll, in: Applied Combinatorical Mathematics [Russ. Trans.
Mir, M., 1968]; in: Stability and Phase Transitions [ Russ. Transl. Mir,
M., 1973].

*Yu. V. Shulepov and E. V. Aksenenko, Reshetochnyi gaz [ The Lattice
Gas], Naukova Dumka, Kiev, 1981.

“H. S. Green and C. A. Hurst, Order-Disorder Phenomena, Interscience
Publ., New York, 1964.

7). H. Baxendale, B. V. Enustun, and J. Stern, Philos. Trans. R. Soc.
London 243, 169 (1951); D. M. Everett and M. F. Penney, Proc. R. Soc.
London 212, 164 (1952).
®E. A. Guggenheim, Mixtures, Clarendon Press, Oxford, 1952.

°R. H. Fowler and G. S. Rushbrooke, Trans. Far. Soc. 33, 1272 (1937);
T. S. Chang, Proc. Roy. Soc. A169, 512 (1939); A. R. Miller, Proc.
Cambr. Phil. Soc. 39, 54 (1943); W. J. C. Orr, Trans. Faraday Soc. 40,
306 (1944).

'H. S. Green and R. Leipnik, Rev. Mod. Phys. 32, 129 (1960).

""M. E. Fisherand H. N. V. Temperley, Rev. Mod. Phys. 32, 1029 (1960);
S. Katsura and S. Inawashiro, Rev. Mod. Phys. 32, 1031 (1960).

‘’D. S. Gaunt, Phys. Rev. 179, 176 (1969).

'*C. Fan and F. Y. Wu, Phys. Rev. B2, 723 (1970).

"“L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika Nauka, M.,
1976 (Eng. Transl. Statistical Physics, Pergamon Press, 1979).

'*J. M. Hammersley, in: F. N. David (ed.), Research Papers in Statistics:
Festschrift for Neyman, Wiley, New York, 1966.

'E. H. Lieb, J. Math. Phys. 8, 2339 (1967).

'7F. Harary, Seminar on Graph Theory, Holt, New York, 1967.

'8M. Hall, Combinatorical Theory, Blaisdell, 1967.

'H. N. V. Temperley, Farad, Soc. Disc. 25, 92 (1958).

V. B. Priezzhev, J. Stat. Phys. 26, 917 (1981).

*'J. M. Hammersley, Proc. Cambridge Philos. Soc. 64, 455 (1968).

2], F. Nagle, Phys. Rev. 152, 190 (1966).

2P W. Kasteleyn, J. Math. Phys. 4, 287 (1963).

**Ya. G. Sinai, Teoriya fazovykh perekhodov (Theory of Phase Transi-
tions), Nauka, Moscow, 1980,

**T. Izuyama and Y. Akutsy, J. Phys. Soc. Jpn. 51, 50 (1982).

**E. L. Kornilov and V. B. Priezzhev, Z. Phys. B54, 351 (1984).

S. M. Bhattacharjee, 1. F. Nagle, D. A. Huse, and M. E. Fisher, J. Stat.
Phys. 32, 361 (1983).

M. Rasetti, in: Trudy III mezhduradnogo simpoziuma po izbrannym
problemam statisticheskoi mekhaniki (Proc. III Intern. Symp. Selected
Problems in Statistical Mechanics), OI'Yal, Joint Institute Nuclear Re-
search, Dubna, 1984,

2C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).

F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

Translated by Nathan Jacobi

V.B. Priezzhev 1135

b



