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The orientational optical nonlinearity of the mesophases of liquid crystals (LCs) is attracting
ever more attention, owing to the high values of the constants characterizing it, owing to the many
interesting specific features that LCs introduce even into traditional nonlinear optical effects, and
owing to the potentialities of studying the physical properties of LCs. This article presents the
state of the theory and experiment of orientational interaction of light waves with LCs. Especial
attention is paid to the physical mechanisms of interaction—the light-induced Freedericksz ef-
fect, recording of director gratings, and the action of surface light waves on the orientation of the
director. Varied manifestations of the effects of orientational self-action and interaction of light
waves are discussed: self-focusing of light, nonlinear optical activity, mutual focusing, stimulated
light scattering, and wave-front conjugation. Optical nonlinearities specific for the mesophase of
a liquid crystal and associated with absorption of light quanta are also discussed. They include
photoconformational nonlinearity, thermal-orientational nonlinearity, and liquid-crystal light
valves. Especial attention is paid to the methodological problem of deriving the Euler-Lagrange-
Rayleigh variational equations and to the correct choice of the free energy for the system LC +
electromagnetic field. Section 8 traces the history of the studies of orientational optical nonlinear-
ity of LCs and reviews the studies whose results are not directly reflected in the main text, and also
reviews the studies on practical applications of light-induced orientational effects.
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INTRODUCTION years—orientational optical nonlinearity of the mesophase
of LCs. It has now become evident to all that the electric field

A new field in the physics of liquid crystals (LCs) has of a light wave enables one to reorient the director of an LC
arisen and is developing vigorously in the past several just as well as a static magnetic or electric field does. How-
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FIG. 1. Diagram of an experiment to observe GON. L—laser; LC—NLC
cell; P—screen.

ever, before the first experiment, the answer to the following
simple question was far from obvious: will the transparency
of the mesophase of an LC (which, as we know, is not too
high owing to scattering and absorption) allow transmission
of light of sufficient power to a distance sufficient for observ-
ing effects of orientational nonlinearity? Fortunately, the
answer was affirmative, and this ultimately led to the need
for writing this review.

1. GIANT OPTICAL NONLINEARITY (GON) OF A NEMATIC:
EXPERIMENT AND SIMPLE ESTIMATES

1.1. Experiment12

The radiation of a neon-helium laser (A = 628 nm) of
power from 0 to 20 mW was focused with a lens of focal
length 25 cm into a cell containing a plane-oriented nematic
liquid crystal (NLC) 60-/^m thick (Fig. 1). The cell was
inclined to the beam, so that the polarization unit vector of
the extraordinary wave in the NLC made an angle a with the
director, i.e., with the optic axis. The angular structure and
the divergence of the transmitted radiation were measured in
the far zone. At a low power level, W^ 3 mW, the angular
distribution of the transmitted wave was practically the
same as in the absence of the cell (Fig. 2). Upon increasing
the power, the angular divergence of the transmitted beam
increased. In subsequent experiments at even greater power,
W~20 mW, the angular distribution in the far zone ac-
quired a distinctive annular structure. The effect was en-
hanced with increasing angle a (the maximum value of a in
the experiment amounted to 32°). If the cell was set up with a
small shift beyond the constriction of the focused beam, i.e.,
in the region having a divergent wave, then as the power was
increased from zero to 10 mW, the divergence not only did
not increase, but even diminished below the original value.
This meant that the cell acted as a positive lens that focused
the divergent wave. Thus the effect was detected of self-fo-
cusing of light at the very low power level, Wx3 X 10~3 W,
which corresponds to a power density at the cell of about 50
W/cm2. The time for establishment of the effect amounted
to about 10 s. Control experiments showed that, in line with
the theory, the effect is absent with normal incidence of the
wave on the cell (a = 0) and for the ordinary wave for any
orientation of the cell.

1.2. Estimates

Rather detailed measurements were made in the de-
scribed experiment of the dependence of the strength of the
nonlinear lens on the angle a and the intensity of the light.
Here we shall restrict the treatment to very simple estimates

that confirm that the experiment revealed precisely what
was sought—orientational optical nonlinearity.

In a beam of power density 50 W/cm2 the electric field
intensity of the light wave amounts to \E \ = 0.5
CGSE = 1.5 X 102 V/cm. We can represent the anisotropic
component of the energy density of the interaction of the
field with the NLC in the form t/E = - (ea/167r)|£ |2

cos2(a — 6 ) , where £a = E\\ — eL is the anisotropy of the di-
electric permittivity of the NLC at the light-wave frequency:
£a = n

2 -n\ = (1.71)2- (1.51)2 = 0.64 under the condi-
tions of the experiment. For example, for a = 45° the change
in the orientation of the director by the angle 6 makes the
optic axis approach the field direction of E, and diminishes
the energy by the amount 8UE (erg/cm3) = — (ea/
\6ir)\E \29. However, a strict planar orientation is fixed at
the walls of the cell, so that the perturbation 9 is maximal in
the middle of the cell and vanishes at the walls. The corre-
sponding energy density of inhomogeneous deformation is
SUd ~KL ~2e2, where L is the thickness of the cell, and
K~W~6 erg/cm is the Frank constant. Upon minimizing
the sum SUE + SUd, we obtain the deviation of the director
by the angle 9 = £a \E

 2L 2/3>2irKx6xlQ~2 rad under the
conditions of the experiment. For a = 45° this deviation of
the optic axis will lead to a change in the refractive
index of the extraordinary wave by the amount
6n~(n}l —n±)d= 1.2xlO~2>0. Consequently an addi-
tional phase shift S(f> = 2irz8n/A. = 10 rad arises at the dis-
tance z = L /cos a s; 1. 4L. This value pertains to the center of
the beam where the intensity \E \2 is maximal, while 8(f> x 0 at
the edges of the beam. Since Sn > 0, the wave front of the
central part of the beam proves to be retarded with respect to
the periphery, which implies self-focusing of the beam.

FIG. 2. Angular distribution of the beams incident on the cell and trans-
mitted through it for different cases, a) Left—incident beam, right—
beam that has undergone self-focusing broadening, at W~ 3 mW; b)
left—incident beam, right—beam that has undergone angular compres-
sion upon self-focusing in a cell set beyond the focal constriction; c)
matching of the divergences of the incident and transmitted beams for the
cases of the ordinary wave and normal incidence of the extraordinary
wave; d) aberrational ring structure of the self-focusing in the transmitted
beam (W—20 mW, tenfold larger scale).
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In nonlinear optics the phenomenon of self-focusing of
light is generally described in terms of the dependence of the
dielectric permittivity of the medium at the optical frequen-
cy on the field intensity, e = e0 + 0.5e2 E \2, where £2 (cm3/
erg) is the nonlinearity constant. For one of the most nonlin-
ear media—liquid carbon disulfide, CS2—this constant is
£2~ 10~10cmVerg. If we recalculate the results of the exper-
iment being discussed for the value of £2, we obtain e2^0.7
cmVerg, i.e., about 109 times larger than for CS2. In line
with this, the discovered nonlinearity has been named giant
orientational nonlinearity (GON).

As is known, the order of magnitude of the Frank con-
stant can be obtained from the requirement that, with 100%
deformation at a scale a of the order of the dimension am of a
molecule, the perturbed free-energy density Ka~2 must co-
incide with Nk B T, where N~ a~3 is the density, and k B Tis
the temperature in energy units. This yields the estimate
K~Na2

n /kB T~kB T/am. On the other hand, for an isotrop-
ic liquid consisting of optically strongly anisotropic mole-
cules, the following estimate holds10 for the orientational
nonlinearity constant: £2 (IL) ~ (NkB T) ~'. Consequently
we conclude that if we have £a ~ 1 in the mesophase, then the
constant corresponding to it £2(GON) ~L 2/K is greater
than £2(IL) by the following factor:

And actually, if we assume that L = 5x lO 3 cm and
am = 10~7 cm, then this factor amounts to about 109, in
agreement with the experimental results. The time for estab-
lishment of nonlinearity is increased by practically the same
factor. This means that approximately the same value of
\E 2?puise is required as for an isotropic liquid as for a meso-
phase: here fpu,se is the duration of the light pulse.

The subsequent sections of the review will treat also the
more complex forms of deformation of LCs. For these the
thickness L of the cell will no longer play the role of the
dimension, but the scale of the interference pattern of the
light fields will do so. If we allow for this substitution, the
estimate of the gain factor derived above holds also in the
general case.

2. DERIVATION OF THE SOURCE EQUATIONS OF THE
THEORY

2.1. Euler-Lagrange-Rayleigh variational equations

The equations of equilibrium of a liquid crystal are
commonly derived from the variational principle, according
to which the free energy .jf = J" Fd}r at constant tempera-
ture in an established state must take on its minimum value.
If the density F (erg/cm3) depends on a certain number m of
independent variables um ( r ) and their derivatives dum /dx},
then the application of the standard methods of calculus of
variations yields the system of equations of equilibrium

-J «£ «£_ = 0 ( 2 1 )
dij 6 (dum/dxj) 6um

(Euler-Lagrange equations). To describe the relaxation
processes of establishment of a stationary state, we must also
introduce the density of the dissipative function R(um ),

such that the tempo of relaxation of the energy into heat is
2R (erg-cm ~3 s ~ ' ) . Here the dot denotes the derivative with
respect to time. Then we should write the following instead
of (2.1):

d 8F &F 6/f
6 (du.mldxj) = 0. (2.2)

This is the Euler-Lagrange-Rayleigh equation.
Usually one selects the free-energy density F and the

density of the dissipative function R from phenomenological
considerations, taking into account the requirement of in-
variance with respect to the translation, rotation, etc.,
groups. At first glance one might write directly the pheno-
menological equations satisfying the same requirements. If
we were dealing only with one independent function u, then
the use of the variational apparatus actually would offer al-
most no advantages. However, in the presence of several var-
iables (e.g., the Cartesian components of the director n),
using the variational principles enables one to take into ac-
count automatically the reciprocity relationships, which are
rather complicated to derive when one writes the equations
directly. For example, the "force" fm=d F/dum satisfies
the symmetry relationship dfm/dun = dfn/dum, since
both these derivatives are equal to d 2F/dumdun .Analogous-
ly, the very fact that the dissipative "forces"/^, are obtained
by differentiating the single function R automatically en-
sures satisfaction of the principle of symmetry of the On-
sager kinetic coefficients df^/diin = df^/ditm

= 32R/dundum.
Moreover, the existence of special forms of symmetry of

the function F, which plays the role of the Lagrangian, en-
ables one by the theorem of E. Noether to write directly the
conservation laws (which are highly complex and difficult
to test in the general case).

2.2. Elastic (Frank) component of the free energy

A nematic and a cholesteric are characterized by a sin-
gle director unit vector n, |n =1, with n and — n deemed
equivalent. The free-energy density F of the deformed state
(n = n( r ) ) is taken in the form

F = -y KI (div n)2 + -i- Kz (n curl n -f ?0)
2 + -1 K3 [n curl n]2.

(2.3)

Here we have q0 = 2ir/h, where h is the equilibrium pitch of
the cholesteric helix; A,, K2, and K3 are the Frank constants
having the dimensionality of dynes; q0 = 0 for nematics. We
shall take the density of the dissipative function in the very
simple form

/? = 0.5ynX (2.4)

Here 7 (poise, II) is the viscosity constant. We note that we
have neglected here the relationship of the director to the
hydrodynamic degrees of freedom; for more details see Ref.
I.

One cannot directly employ Eqs. (2.1) or (2.2) and the
free energy of (2.3), since the three quantities nx,ny, and nz

are interrelated by n\ + n2 + n\ = I. Here there are two
ways to proceed. First of all, one can explicitly eliminate the
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superfluous variable, e.g., by setting nz = (1 — «2 — «2)1 / 2

or transform to the spherical coordinates 0 and <p or any two
other independent variables. Yet if for any reason it is desir-
able to keep a notation symmetric with respect to all three
Cartesian components nx,ny, and nz, then one can use the
Lagrange method ofthe indeterminate multiplier A (r); see
Ref. 1. In this method one adds the term 0.5A(r) (n2 — 1) to
the free-energy density F so that the variational equations
take on the form:

d 6F 6f &R , , >.

To determine the multiplier A (r), it suffices to multiply both
sides of this equation by nk, and to take into account the
relationship nk -nk =1. This directly implies that the equa-
tions derived, on taking into account the relationship n2 = 1,
have the form

6(dnildxj)

(2"5)

That is, they differ from the "ordinary" equations (2. 1 ) and
(2.2) by being multiplied by the projection operator onto a
plane perpendicular to the local direction of n(r) .

2.3. Electromagnetic component of the free energy
(Lagrangian)

If we neglect the electronic nonlinearit^, the interaction
ofthe medium with the external electric ( % ) and magnetic
(2f) fields is described by contributions to the free energy of
the form

Here e°k and^lA. are the tensors ofthe dielectric permittivity
and magnetic susceptibility. Most often in a liquid crystal e°k

and /j,ik are uniaxial tensors having the form

( ntnh — - -

, ~ 10 7 is the anisotropy of the magnetic polariza-
bility, and we have s° = £y — EL, and \£2

a \ ~ 1.
In going to light fields we must allow for the fact that in

an electromagnetic field one has E \~\H\. Since the anisot-
ropy of the magnetic polarizability is seven orders of magni-
tude smaller than the anisotropy ofthe dielectric permittivi-
ty, for electromagnetic waves (including light waves) we
can neglect the effect ofthe magnetic field ofthe wave on the
orientation ofthe director. Moreover, the square ofthe real
field intensity E 2

eal must be replaced by 0.5EE *, where E is
the complex amplitude, which is related to the real ampli-
tude by:

Ereal = "o" [E 6Xp ( — fat) + E* 6Xp[(tCO£)].

Here we have dropped the terms at twice the light frequency.
Finally, we must take eik to be the symmetric real tensor of
the dielectric permittivity at the light frequency. Then we
have

77 * _ / \ 77 /_\ 77* / \

The variation of the sum of Eqs._(2.3), (2.6),and (2.8) over
the variables n for fixed f'(r), J", E(r), and E*(r) and of
Eq. (2.4) over the variables ri allows one to obtain the sought
Euler-Lagrange-Rayleigh equations for the rate of relaxa-
tion ofthe director n(r,t) or those for equilibrium—in the
stationary case. We must add to thesejsquations the electro-
static equations curl ~% = 0, div (e°%) = 0, and the Max-
well equations

to_—eE(r)=curlH, to H =curlE. (2.9)

The latter can be conveniently reduced to the single equation
i 2 * ' '" ' ' " (2.10)curl curl, E — (-^-) V (r) E (r) = 0.

We can employ the Maxwell equations for monochromatic
fields, even when describing nonstationary effects of interac-
tion of light with LCs, since the time of propagation of light
through the specimen, r~Z,/c510~"sis many orders of
magnitude smaller than any of the times of the orientation
processes of the LC.

Remarkably, one can derive the equations (2.10) them-
selves from the variational principle by taking as the energy
(i.e., the Lagrangian with a minus sign):

F = * • • [ ( — \2 ( dEl 8E* _ 9E> dEL\r light 16n L \ to / I dxk dxh dxh dxt I

(2.11)

Here in the variation we must consider the quantities n(r)
and together with them, eik (r), as fixed, while taking E(r)
and E* (r) as the independent variables. Thus one can derive
the entire set of equations that we need by varying the free
energy alone—the sum of Eqs. (2.3), (2.6), and (2.11)—
with respect to the independent variables n(r) , E(r), and
E*(r).

In connection with the incorrect statements found in
the literature pertaining to the variational principle for LCs
in light fields, we shall take up this question in somewhat
greater detail.

The energy density in the light wave consists of the
"electric" term e\E \2/l6tr and the "magnetic" term \H2\/
I6w. To simplify the discussions, we shall neglect here the
tensor character and the frequency dispersion ofthe quanti-
ty E. As we know, in a running wave we ha vee | £ |2 = H 2,so
that the total density of electromagnetic energy is twice as
high as the "electric" term alone. Consequently the addi-
tional contribution to the energy of a dielectric in the pres-
ence of a light wave is given by the expression

17, 16it (2.12)

Here the bar denotes averaging over the time for several light
periods.

The effect of electrostriction is well known. It consists
in the fact that matter is attracted into a region of greater
light intensity, whereby the corresponding extra pressure 8p
is negative and equal to

(2.13)

(2.8) Here/9 is the mass density. Equation (2.13) has been verified
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repeatedly by theory and has been confirmed in experiments
on stimulated light scattering by hypersonic waves. At first
glance it contradicts Eq. (2.12), since usually one uses the
formula

6p = p^-, (2.14)

Here U is the extra energy density. In fact, if one varies
(2.12) for fixed field intensity E, then one obtains an expres-
sion twice as large as the correct magnitude in (2.13), and
moreover, with the wrong sign.

The resolution of this seeming contradiction was given
by L. P. Pitaevskii2; see also Sec. 81 in the book of Ref. 3. The
point is that in an adiabatic variation (i.e., sufficiently slow)
of the dielectric permittivity e, neither the field amplitude
| E \ nor the amplitude of the displacement \D = eE\ nor the
energy density e\E 2/&ir, nor finally the Poynting vector
\P | = cel/2\E 2/&Tr, nor any of its components is conserved.
Actually the conserved quantity is the adiabatic invariant,
i.e., the ratio of the energy to the frequency of the radiation,
which coincides with the number of quanta, apart from
Planck's constant ft. In other words, in an adiabatic vari-
ation of the parameters of the medium, the number of the
quantum state (i.e., the number of quanta) is conserved. On
the other hand, the functional relationship a>~£~112 holds
for a given type of vibration (given mode of the electromag-
netic field in space). (One can trace this relationship most
easily with the example of a resonator of length L having the
refractive index e1 /2, where the frequency of the /nth mode is
determined by the condition LtamJE/C = irm.) As a result
we find that, upon a virtual change in E, the frequency varies
virtually by the amount Sea = — 0.5-eaSE/E. Hence the vir-
tual change in the energy SU can be obtained, taking into
account the conservation of the adiabatic invariant^ = U /
en:

= — -AB - . = = - - - f f - . . (2.15)

If we employ (2. 15) in the variation in (2.14), then we
obtain Eq. (2.13), both with the correct sign and with the
correct coefficient.

To avoid resorting every time to considerations of adia-
batic invariance, this result has been formulated in the fol-
lowing way in Ref. 2. The force exerted on the dielectric by
the ac field can be obtained by a variation taken with a minus
sign of the electric component of the energy alone for fixed
field E:

xTT K I e |g|' \
6 f /==6i leS-JE^onst^' 16n (2.16)

or it can be taken with a plus sign for the electric component
of the energy for fixed displacement D:

16ne'
6e. (2.17)

L. P. Pitaevskii also showed2 that Eqs. (2.16) and
(2.17) remain valid when one takes into account the fre-
quency-dependence of the dielectric permittivity E(CO ) . One
can generalize (2.16) and (2.17) in an elementary way to the
case of a tensor dielectric permittivity.

Substantial errors have entered into a number of stud-
ies6"8 on the theory of the orienting action of light on NLCs,
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and also into the monograph of Ref. 9 (pp. 141 and 332). We
shall illustrate their essence with the example of inclined
incidence of a broad light beam on a plane-parallel layer of a
medium in which an electrostriction effect develops. The
arguments in these studies are about as follows. Let us take
the total energy density U and express it (neglecting the dis-
persion E (a ) ) in terms of the z-component of the Poynting
vector Pz:

p __ e \E\* I q*c* \ l /2

(2.18)
rT 0 8|£|!i — ef*

16n c[e —(g2ca/<a2)]1/2 '

Here the z axis lies perpendicular to the boundaries of the
layer and q is the transverse component of the wave vector.
As is known, the quantity q is conserved for propagation in a
medium having a z-dependent dielectric permittivity. If we
vary the expression from (2.18) with respect to E while as-
suming Pz = const (in contradiction to the idea that the
adiabatic invariant is conserved in virtual variations o f f ) ,
we obtain

KJJ ? / W \ A 1 V K e—(2g'e'/oi')
Ot/=l- j— I OE = -̂  08 . . . . . . . (2.19)

\ oe /Pz-=const « E B— (q'e'lw*)

We can see the error in this approach primarily from the
fact that Eq. (2.19) has the wrong sign, even in the case of
normal incidence ( q = 0). In fact, (2.19) would imply that
the energy increases with the density when (de/dp)>0.
That is, the material must be repelled from the region occu-
pied by the field, rather than attracted as actually happens.
Moreover, when q^0 also the magnitude \SU\ from (2.19)
proves to be erroneous. The concrete expressions from Refs.
6-9 do not allow one to describe the effect of deviation of the
director in the first order in the light intensity in inclined
incidence (GON). Thus the results of these studies contra-
dicts not only the correct theory, but also experiment.

On returning to the problem of a liquid crystal in a light
field, we repeat again: the correct equations for the director
are obtained by variation of the sum of Eqs. (2.3) and (2.11)
for fixed E (r). Of course, after deriving these equations, one
must substitute into them the value of the vector E(r) ob-
tained by solving the self-consistent problem in the Maxwell
equations with the given (distorted) distribution of the ten-
sor e,* (r).

As an example, let us examine the problem of orienta-
tion by a light field having the complex amplitude E (r) of an
NLC specimen with an initially homogeneous distribution
of the director n = n°. We shall also assume that the magnet-
ic field £f = <%fn° directed parallel to the unperturbed di-
rector is applied to the specimen. If we restrict the treatment
to the linear terms in the perturbation <5n(r, t) =n(r ,
t) — n° (with n°-<5n = 0), then the variational Euler-La-
grange-Rayleigh equations are given by

| (V fin)

-£,(n«V)»6n,

Ea

2 6«( — A 6re,] — KIVj (V 6n)

n"V)(V6n)-|-Xa^
26«i

'iE*m (2.20)

and the Maxwell equations (2.10).
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FIG. 3. Inclined incidence of the extraordinary wave on a plane NLC cell.

3. STUDIES OF GIANT OPTICAL NONLINEARITY IN CELLS
CONTAINING LIQUID CRYSTALS (LCs)

Above we have already noted that the energy density
with which the LC resists the orienting action of the light
field declines in proportion to l~z with increasing spatial
scale / of the inhomogeneity of the perturbation of the direc-
tor. This is precisely why, when / is of the order of the thick-
ness of the cell, / ~ 10 ~2 cm, the nonlinearity has a gigantic
value, nine orders of magnitude larger than the nonlinearity
of liquid carbon disulfide. Henceforth we shall denote by the
term "giant orientational nonlinearity" (GON) the appear-
ance of a perturbation of the dielectric permittivity linear in
the intensity of the incident light and having the spatial scale
/ that is the maximum possible for the given specimen geom-
etry. The role of/ will be played by the thickness L of the cell
or the transverse dimension a of the beam, if a 5 L.

3.1. Theory of GON

Let us consider a cell containing a plane-oriented NLC
(Fig. 3). We shall assume the normal to the walls of the cell
to coincide with the z axis, while the unperturbed direction
of the director n° coincides with the x axis, i.e., n° = ex. We
shall also assume that the orientation of n is rigidly main-
tained at the walls of the cell: n(z = 0, x, y) = n(z = L, x,
y) =ex. Let a plane monochromatic extraordinary wave
with the wave vector k and the complex field amplitude
E = eE propagate through the NLC. Here e = e* is a unit
vector. We shall seek the perturbed state of the director in
the form

n (r, t) & ex + eztiz (z, t) + evny (z, t). (3.1)

That is, we shall consider a solution homogeneous in the xy
plane. Then we obtain the following to an accuracy linear in

Let the intensity of the light field be turned on jumpwise at
the instant of time t = 0. Then the solution of Eqs. (3.2) fora
vector E not dependent on r can be easily derived by the
method of separation of variables:

)-S (3.3)

(3.5)

The coefficient m~1[l — ( — I)"1] differs from zero only
for odd values of m and corresponds to an expansion of a
constant function in a sine Fourier series in the interval (0,
L). The constant Tm (s~ l ) characterizes the rate of estab-
lishment for the corresponding sinusoidal mode. If we have
the perturbation of the director given by ( 3. 1 ) and ( 3.3 ) , we
can easily calculate to the same accuracy the perturbation of
the dielectric permittivity at the light frequency,
Se,k = £a (n°Snk + «££«, ) and determine from it the per-
turbation of the phase of the transmitted wave.

Before proceeding to further calculations, let us discuss
the structure of the perturbation of the director given by Eqs.
(3.3)-(3.5). Even in a nonstationary regime (FrS 1), the
mode with the lowest index m = 1 is most strongly excited.
The next mode with m = 3 has an amplitude threefold
smaller when F3f 5 1. When Tlt^, 1, a stationary distribu-
tion is established, for which the amplitude of the mode with
m = 3 is 27-fold smaller than that of the mode m = 1 . Hence
below we shall restrict the treatment to the contribution of
only this lowest mode.

If the wave vector k of the light wave is strictly perpen-
dicular to the director n°, i.e., if kx = 0, then the polarization
unit vector of the extraordinary wave coincides with ex , and
perturbation of the director is absent. The perturbation of
the director is identically zero also for the ordinary wave in
any direction, since the polarization unit vector e for it is
strictly perpendicular to the optic axis. Now let us examine
the extraordinary wave with kx ^0, ky ^Q. It excites defor-
mations of both types: twist ( T, ny ̂  0 ) and transverse bend-
ing (S, splay, «2 7^0). Usually the constant K2 for T-defor-
mation is from two to three times smaller than the constant
Kt. Hence the corresponding contribution is established
more slowly ( F ~K ,~ ' ) , but it reaches a greater stationary
value with other conditions equal.

Most of the experiments have been performed in a ge-
ometry with ky = 0, i.e., for the case in which the wave vec-
tor lies in the plane of the normal ez to the walls and of the
unperturbed director n° = ex . Therefore for simplicity we
shall restrict the discussion to precisely this special case in
which T-deformation is not excited.

In order not to bore the reader with cumbersome calcu-
lations, we shall perform the calculations in the approxima-
tion of a weakly anisotropic crystal, £a ̂ ^ . Then we can
write k = k(ez cos a + ex sin a), where a is the angle of
refraction, esex cos a — ez sin a, and the length of the ray
path d/ in the medium is related to the variation of the z
coordinate by d/ = dz/cos a. In other words, we take no ac-
count here of the small difference (of the order of ea/£i )
between the directions of the group and phase velocities. We
can easily obtain in the same approximation the following
expression for the variation of the phase of the field owing to
the perturbation Se:
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dft 1 (3.6) 6dz cos a. Al cos a 2cn

Here n = kc/a> is the refractive index. Consequently, in a
stationary regime with account taken only of the mode with
m = 1, we obtain

^ e| sin2 a cos a.L3 \ E \2 . - _.
Q& = rj= • \J-i)

To the same accuracy, the z component of the Poynting vec-
tor in the light wave is Pz s P cos a s; CM E \2 cos OT/STT. If we
writeEq. (3.7) in the form <5<* = Le2\E

 2/4c« cos a, then we
obtain the following expression for the effective nonlinearity
constant:

4e sin2 a cos2 aL2

(3.8)

Likewise the giant orientational nonlinearity constant
proves to be proportional to E\ (for moderate ea) . After
separating out the multiplier and the angular dependence
sin2 a cos2 a, the quantity \/e2 having the dimensions of
erg/cm3 coincides with the energy density K}/L

2 for strong
(~ 100%) S-deformation of the director in a cell of thick-
ness L.

We have considered the effects of reorientation in the
first order in the intensity of the light field. Let us estimate
the power density at which the angle of reorientation be-
comes of the order of unity. If we set sin a cos a~0.5, then
the corresponding value of \E \2 is determined from the con-
dition £a E\2/32rr~K(ir/L)2. Numerically, when L~ 100
/nm,K~ 10~6dyne, and£a ~0.7, the required power density
amounts to about 2.5 X 103 W/cm2. Such values are accessi-
ble by using an argon laser. No qualitatively new effects arise
in a planar cell at powers greater than those indicated, while
simply the nonlinearity saturates.

The problem was treated above of incidence of an infi-
nite plane wave on a layer of an NLC. The real restriction on
the applicability of this model consists of the fact that the
transverse dimension a of the beam was larger than the
thickness L of the layer. But if the beam is narrow, a $ L,
then the situation changes.

In this case one can conveniently calculate the self-fo-
cusing effect in the model of an unbounded single-constant
NLC whose orientation along the direction n° is maintained
by the static magnetic field £P = //n°. Here it is convenient
to choose a coordinate system with the z axis in the direction
of the beam so that E = exE(x, y), and n° = ex cos a + ez

sin a. The equation for the perturbation of the director n(x,
y) — n°x0(ex sin a — ez cos a) can be derived from the
variational principle. It has the form

dx* dy*
(3.9)

Here 1H = (K /xa H
2)''2 is the magnetic coherence length,

and we have B = £a sin a cos a/%irK. If actually the initial
orientation is maintained by the walls of the cell, rather than
by a magnetic field, we can consider Eq. (3.9) approximate-
ly accurate also for this case with the substitution
l^

H-+L^/^r2'. One can obtain the solution of Eq. (3.9) by
using the Green's function:

(3.10)

Here iH^(iz) = 2K0(z)/ir is the zero-order Hankel func-
tion of purely imaginary argument. However, since Eq.
( 3. 10) is rather complicated, we shall analyze separately the
structure of the solution in different regions of space for dif-
ferent limiting cases.

If the transverse dimension a of the beam is large, a>/# ,
then we can neglect the spatial derivatives in ( 3 . 9 ) . Then the
solution has the form 6(x, y) = / 2

HB \E(x, y)\2, and we ar-
rive at the results of the previous section. In the other limit-
ing case when a</w , we must treat separately the behavior of
the director inside the beam and outside it. Moreover, we
shall treat separately an axially symmetric cylindrical beam,
E = E( p),p = (x1 +j>2)1/2, and a one-dimensional ribbon
beam E = E(x). To simplify the formulas, we shall also as-
sume E(p) = E0 inside the beam of diameter 2a (or of
width Ax = 2a)andE(r) =0 outside the beam — a round or
rectangular table.

Inside the beam for a<%lH the solutions of Eq. (3.9)
respectively have the following forms for cylindrical and rib-
bon beams:

The reciprocal focal length of the corresponding nonlinear
lens in these cases is

ft1 —The real intensity distribution in the beam is bell-shaped,
and then aberrational self-focusing rings arise.'' Their num-
ber is

„ 1 , , n, , L e? sin2 a cos as21 £012

N w -KJ- [<j> (p = 0) — <j> (p = a)] « -£—5 <

(3.13)
We have deliberately associated the number of rings

with the phase difference at the center of the beam and at its
edge, rather than simply with the phase at the center of the
beam. The point is that, when a-^lH, the perturbation of the
director also differs from zero outside the beam, where the
intensity is zero. Mathematically this is expressed in the fact
that the deviation of the director in the center of the beam
(61 or 02) is determined not by the local intensity
alone. For example, in the one-dimensional case with i
we have

i.e., |0i|~|#(0) — ̂ (a) |/w/a. In this case a sort of nonlin-
ear prisms are formed on both sides of a ribbon beam. How-
ever, one can detect them only by using an auxiliary probe
beam. In the case of a cylindrical initial beam, such "tails" in
the distribution 6( p) outside the beam for a<p5<lH must
also exist. However, there the magnitude of 02/
\0(0) — 0(a) is not so large, being of the order of In (lH/a).
One can derive this conclusion by analyzing Eq. (3.10). To
estimate the time of establishment of Sn (r, t), one must add
to the left-hand side of Eq. (3.9) the term K ~ Iyd0 /dt. Con-
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sequently one finds that, when a<///, a self-focusing lens
must be established in the time T~ya2/K, while the quanti-
ties 61 and 02 together with the tails of the function 0(r) are
established in the time r' ~ yl 2

H/K.
For a cell having a homeotropic orientation (below, for

brevity—for a homeotropic cell, n° = er), the effects of reor-
ientation of the director that are linear in the light intensity
are described by practically the same equations. The ordi-
nary wave in inclined incidence does not excite GON, but
the extraordinary wave deflects the director by the angle
6^ny (z, t) in the plane of n° and the wave vector k. Usually
the constant K3 for longitudinal bending deformation (B,
bend) somewhat exceeds the constant AT, of the S-effect, i.e.,
K3>KV Hence, other conditions being the same, the station-
ary GON in a homeotropic cell is somewhat weaker than in a
planar cell. However, for the same reasons, a homeotropic
cell is more transparent than a planar cell.

Here we have not yet touched on the light-induced
Freedericksz transition, which can develop in a homeotropic
cell even at normal incidence. To observe it, one must exceed
a threshold power density; for more details, see Sec. 4 below.

The influence of the finite dimensions of the beam on
GON (i.e., on reorientation effects proportional to the light
intensity) in a homeotropic cell must be qualitatively about
the same as in a planar cell.

3.2. Experimental studies of GON

In Ref. 12, the experimental results of which were pre-
sented in Sec. 1.1, a cell was used with a planar orientation,
containing an NLC made of a mixture of azoxy compounds
and ester nitrile. This mixture had a nematic mesophase at
room temperature and originally was taken in order to ob-
tain a good homeotropic orientation in a large volume by
applying an rf electric field (it had ea >0 at radiofrequen-
cies). However, for a number or reasons the electric orienta-
tion in a cell ~ 3 mm thick proved unsatisfactory, and the
first experiment was designed with the same NLC with a
planar orientation maintained by walls previously ground
with diamond powder.

The parameters of the medium were Bj.ssl.51,
BH si.71, AT,=;8.5xlO~7dyne, cell thickness L = 60//m.
Quantitative measurements of the effect of self-focusing of
the radiation of an He-Ne laser (A = 0.628 /*m) with an
ideal Gaussian transverse profile were performed by two
methods. In the first of these, lenses were installed in place of
the cell. Their focal distance was chosen so as to yield ap-
proximately the same change in the angular divergence of
the beam as the self-focusing effect introduced. This method
was convenient in the case the number of rings in the self-
focusing pattern was small, N£l. That is, the change in the
divergence was of the order of the initial diffraction diver-
gence of the Gaussian beam. The other method consisted in
measuring, for N £ 1, the divergence or the number of rings
in the far zone of the transmitted beam.13 The results of both
methods supplement one another well and yield practically
identical values of the nonlinearity constant. Figure 4 shows
the dependence of the equivalent strength/ ~' of the nonlin-
ear lens on the beam power (Fig. 4a) and on the angular

10 20 W/mW
a

20 sin2a-cos <*, units fl?"2

12.0 21.0 29.5 34.0 a.deg
b

FIG. 4. Dependence of the reciprocal focal length on the beam power (a),
and on the geometric factor sin2 or-cos a (b).'2

factor sin2 a cos a (Fig. 4b), where a is the angle of refrac-
tion as recalculated inside the crystal. Both graphs demon-
strate a quite convincing linear dependence, in agreement
with the theoretical expressions.

An absolute comparison of Eq. (3.8) with experiment
requires that we know the power density cn\E \ (0) \2/$tr in
the focal constriction of the beam, which posed one of the
most difficult problems of the experiment. To do this, one
can employ the expression describing the variation of the
intensity profile of an ideal focused Gaussian beam upon
diffraction in air:

\E(x, y, «)|»=|
-i

X exp [-2 (**+!/*)

(3.15)
Here we have z0 = ka2/2, la is the diameter of the focal
constriction (full width at the e ~2 level of the intensity at the
maximum), 2a = FWe~2M, z0 is the length of the constric-
tion, k = 2ir/A, and A is the wavelength in air. In the far zone
this beam has a Gaussian angular distribution,
j (0)~exp( — 20V#o), with an angular width
&&(FWe~2M) = ieo = 2/ka. The quantity 2/ka = A /ira is
the diffraction divergence of a beam having the dimension a,
which has a plane wave front in the constriction. If the fo-
cused beam is obtained by passing a parallel Gaussian beam
of diameter d = FWe~2M through a lens having the focal
length/, then we have 00x.d /2f, and hence, a = 2f/kd. Here
we assume that a^d. The total power transported by the
beam is P = ca2\E(0)\2/16. At small angles aair of inci-
dence, the same power density (neglecting reflective losses)
will exist also inside the medium.

In the experiments of Refs. 12 and 13 with focusing of
the beam of an He-Ne laser with a lens having/= 25 cm, the
values 2a ̂  240//m and z0 = 7 cm were obtained. The values
of z0 and 2a considerably exceeded the thickness of the layer
of LC (~ 60/urn). This justifies using the theory developed
for an infinite plane wave. The value z0 = 7 cm appreciably
exceeded the total thickness 8 mm of the cell (LC + glass
substrate). Recalculation of the experimental data for the
angle a = 32° yields e2 = 0.07 cmVerg. The theoretical esti-
mate by Eq. (3.8) yields the same value.
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FIG. 5. Dependence of the number of rings on the thickness of the cell.15

It is most convenient experimentally to define the estab-
lishment time as the interval T in which the number of self-
focusing rings varies by the amount 1 — e~l~0.63 from its
stationary value. It proves to be the same, both on turning on
the intensity and on sharply reducing it almost to zero (if the
light is completely turned off there is nothing to focus). Un-
der the conditions of the experiment,12'13 it amounted to
r ~ l ~ 10 s. Hence we can estimate by Eq. (3.5) the orienta-
tional viscosity constant as y~2Il.

An experimental study of orientational self-focusing by
the radiation of an argon laser (A = 0.49^m) in a planar cell
containing MBBA 50-^m thick was performed in Ref. 14.
However, intrinsic absorption at the stated wavelength be-
comes appreciable specifically for this substance and leads to
thermal and other effects not involving orientation (see Sec.
7).

The dependence has been studied15 of the number N of
aberration rings on the local thickness L of a planar wedge-
shaped cell containing MBBA for the wavelength A. = 628
nm. For the constriction parameter la. =FWe~2M = 46
/zm, the value of L varied over the range from 17 to 500/zm.
The experimental dependence of N on the parameter
sin2 a cos a and on the intensity was linear. For the angle of
incidence aair = 55°, the time of establishment of the ring
pattern increased with increasing thickness to the value
L~ 100 /j,m and remained constant, rs 1.7 s, with further
increase in L. The dependence of In N on In L is given in Fig.
5 for the same conditions of experiment. For a small thick-
ness of the layer of LC we have L 5 aV2~, and the L (N) rela-
tionship is cubic in accord with the theory for broad beams.
For larger L the experimental values of jV increase somewhat
more slowly than by the N~L law implied by the theory for
narrow beams. Perhaps the latter effect involves light scat-
tering in the thick cell.

One can measure the nonlinear phase shift in GON not
only from self-focusing or self-diffraction, but also by bring-
ing about interference of the field being studied with any
reference field that has not undergone a nonlinear change. If
the two waves being studied have the same polarization, then
interference leads to modulation of the phase and of the in-
tensity of the overall field. But if the waves have orthogonal
polarizations, then the result of interference is manifested in
a change in the degree of circularity and inclination of the
axis of the polarization ellipse of the overall field. In an ex-
periment16 to study GON, the ordinary wave obtained from
the initial beam by inclined polarization played the role of
the reference wave. The extraordinary wave to be studied

was obtained from the same beam and yielded the GON. The
essential point is that the phase of the o-wave underwent no
changes upon smooth reorientation of the director. The ob-
served16 pattern of change of the polarization of the overall
field of the transmitted wave corresponded to the GON-self-
focusing of the e-wave.

GON in a homeotropic cell has been observed17 in the
focusing of the radiation of a rather powerful (~0.12 W)
argon laser (A. = 0.5145/im) in a cell containing an NLC of
the OCBP (octylcyanobiphenyl) type. The ring structure of
the self-focused light was measured in this study with in-
clined incidence of the extraordinary wave.

A highly detailed experimental study of self-focusing
and self-diffraction in homeotropic cells containing MBBA
has been performed in Ref. 18. The radiation of an argon
laser with A =0.5145 /zm was focused into the specimen.
The dimension 2a of the constriction amounted to about 40
/im. The thicknesses of the cells used were 25,50, and 75/um.
The observed number of self-focusing rings agreed well with
the theoretical predictions, both in absolute magnitude and
in functional dependence on the angle of incidence (the an-
gle aair in our notation). Thus, for a = 25° and power den-
sity 20 W/cm2, a cell 50-/zm thick formed a nonlinear lens
with a focal length/~ 20 cm.

A homeotropic cell containing MBBA 75-fj.m thick was
used in studying self-diffracton effects in Ref. 18. The inci-
dence of two waves at an angle /?air ~0.8° to one another
yields an interference pattern <x cos qx with the period
A = 2ir/q = A //?air -36.1/nm for A = 0.5145 ̂ .m. If we take
K2 = 4X 10~7 dyne,K3 = 7.5 X lO"7, andK2/K3 = 0.53 for
MBBA, then with L = 75 //m, the interference grating must
be recorded weaker by a factor of 1 + (K2/K3)(2L/
A)2~ 10 than the homogeneous component of the perturba-
tion.

The incidence of two coherent waves at the angle /7air to
one another yields a sinusoidal pattern of intensity distribu-
tion with the spatial period A = 27r/^=;Aair//?air (for
/?air < 1). The change in the dielectric permittivity under the
action of light gives rise to a phase diffraction grating. The
appearance of new waves diffracted by it is termed the pro-
cess of self-diffraction.19 The quantitative calculation of the
amplitudes of the different orders of diffraction is based on
using the well known formula exp(irj cos y ) = 2/'"/n (77)
exp (iny), where Jn is a Bessel function and the summation
is extended over integral« from — oo to + oo. As applied to
liquid crystals, this process of self-diffraction was first dis-
cussed theoretically in one of the pioneer studies on orienta-
tional nonlinearity of LCs67 and was first experimentally de-
tected in Ref. 69. A highly detailed experimental study of
self-focusing and self-diffraction in homeotropic cells con-
taining MBBA for the wavelength of the argon laser
(A = 514.5 nm) has been performed.18 Its results agree well
with the theory. We note that the interference component of
the intensity distribution under the conditions of Ref. 18 had
a spatial scale about three times smaller than the thickness of
the cell. In line with the theory, it yielded a response about 10
times smaller than for the homogeneous component of the
exposure.

In Ref. 20 a phase grating was written in a homeotropic
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NLC cell with a GON mechanism upon interference of two
waves: one plane wave (E,) and the second having a com-
plex wave front (E3 (r)). These waves were directed into the
cell at an angle of incidence of 15°. Their central directions
made an 0.7° angle with one another. The readout of the
hologram that was obtained <5n(r) ocEtE^(r) + E f E 3 ( r )
was performed with a wave in the opposite direction to E,.
Owing to the readout, in addition to the other waves, a wave
was genera tedE^^EjE-^Ef^) that propagated in the oppo-
site direction to the wave E3(r) and had a wave front re-
versed with respect to E3 (r). With a power density of each of
the three incident waves of 10W/cm2, the efficiency of con-
version was 10~2. The strong effects of GON-self-focusing
led to appreciable distortions of the wave E4(r) as compared
with the exactly reversed configuration.

3.3. Influence of nonrigid attachment at the boundary

Up to now we have been treating a cell with rigid attach-
ment of the orientation of the director at the boundary. If the
attachment is nonrigid, the effects of reorientation of the
director and GON are altered (they prove to be stronger).
Thus the possibility arises of studying the orienting action of
the phase boundaries of an NLC with various media by the
methods of nonlinear optics.23 For example, let us study a
planar cell in which the director is attached rigidly at the
boundary z = 0, n = e*, while the following boundary con-
dition is assigned at the boundary z = L:

^.+-^nz = Q, (3.16)

Here R is the "attachment length." One can obtain a
boundary condition like (3.16) by adding to the free energy
the surface term /Fsurfd5, where Fsurf (erg/cm2)
= + 0.5£7a«

2. One can term the parameter aa the anisotro-
py coefficient of the surface tension. Under the stated as-
sumptions we have R = AV°"a • The linearized Euler-La-
grange equation (2.20) for the established orientation of the
director with the boundary condition of (3.16) and with
nz (z = 0) =0 has the solution

zLTqFr)' (117)

Here we have £ = L /R. As g—»oo (rigid attachment to the
second boundary as well), the solution (3.17) identically
coincides with the sum of the series of (3.3) as ?—*•<». We
note that the difference of Eq. (3.17) as ^—>oo from the first
term of the series of (3.3) is very small—of the order of 3%
in the middle of the cell. This constitutes the justification of
practically everywhere neglecting the higher harmonics
ocsin(wwz/Z,) with m > 1.

With nonrigid attachment, other conditions being the
same, the perturbation of the director becomes larger. Cor-
respondingly the phase shift also increases:

(3.18)

As £—»0 (completely free orientation at the boundary
z = L), the phase shift of (3.18) increases by a factor of four
as compared with two-sided rigid attachment.

If the wave vector of the light does not lie in the xz
plane, i.e., if k = k(e2 cos a + ex sin a cos/9 + e,, sin a

sin /?), then the electric field of the extraordinary wave has a
y component, and according to the equations of (3.2) it also
must give rise to r-deformation, ny ^0. For a cell with rigid
attachment of the director, r-deformation only made its
contribution to the nonlinear phase shift. Since the polariza-
tion adiabatically tracks the optic axis, the polarization vec-
tor at the output of a cell with "rigid" walls remains the same
as in the absence of nonlinearity.

A qualitatively new effect must arise from T-deforma-
tion in a cell having one free surface. Namely, when z = L
here, the director proves to be rotated in the xy plane by the
angle 8\f> = ny (z — L), which is proportional to the intensity
of the light.21 Along with the director, the polarization vec-
tor of the transmitted light is also rotated by the same angle
8i/>. The rotation angle disperse is small in comparison with
the nonlinear phase shift 8$ under the same conditions, 8i/>/
8$ ~A. /Z,£a. However, an important point is that the rota-
tion of the plane of polarization can be easily observed ex-
perimentally, even when |<5^|~10~3 rad. Moreover, the
measurement of 8i/> can have certain advantages for NLCs as
compared with the relatively small quantity £a

The effect that we have been discussing of rotation of
the plane of polarization of light with the angle 8i/> ~ E\2 can
be called the effect of "nonlinear optical activity." The right-
left asymmetry here is ensured by the very geometry of the
vectors, e2, n, and k (the vector ez is directed from the "rig-
id" to the "soft" wall). If we write 8\f> in the form 8i/> = GLP,
we obtain Gs; 6xlO~2 rad-cm/W as the value of the con-
stantG fora~300,/? = 450,£a;=;0.5,andL = 10"2cm.Asis
known, the order of magnitude of the constant G for elec-
tronic nonlinearity amounts to G^10~3 rad-cm/W. If the
anisotropy of the surface tension aa has the other sign, then
we have J" < 0. That is, the surface z = L tends to orient the
director homeotropically, rather than planarly. However, as
long as — 1 < £, the influence of the rigid surfacez = 0 main-
tains the planar orientation throughout the thickness. Only
when § < — 1 does the homogeneous planar orientation be-
come unstable. Besides, this can also be seen from Eq.
(3.18), which diverges when £—»• — 1.

There is a number of theoretical and experimental indi-
cations22 that the dependence of the surface energy on the
orientation of the director has an appreciably more compli-
cated form than the Rapini potential that we have been us-
ing. Hence it is of especial interest to study the orienting
influence of the surface by the methods of nonlinear optics,
in particular in the regime of large perturbations of the direc-
tor. There are grounds for expecting a rather high accuracy
of experiment, owing to the possibility of calibrating the geo-
metric and power characteristics of the light beam in the cell
containing the same NLC, but with rigidly orienting sur-
faces.

3.4. Cells with inhomogeneous orientation

Very interesting and specific effects should arise in the
action of a light wave on a cell in which the initial orientation
of the director is inhomogeneous throughout the thickness.
The propagation of light in such cells under typical condi-
tions is described in terms of independent o-and e-waves
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whose polarization adiabatically tracks the direction of the
optic axis, i.e., the direction of the director. The quantitative
criterion for such adiabatic tracking has the form
co ne — «01/c> | <?«,-/<?;cfc |. Upon estimating dn/dr as ~ 103

cm~', ne — na ~0.1, we obtain that, when co/c~ 105 cm~'
(/lvac ~0.6,um), this condition is fulfilled with much room
to spare. If the cell is inhomogeneous only in thickness,
n = n( r ) , then in the propagation of light in such a medium
the transverse component of the wave vector is exactly con-
served. If we neglect the moderate changes (AA:/
k~(ne — «0 )/«) in the length of the wave vector k = km,
then the direction of propagation m is also conserved. In this
approximation the polarization unit vectors for the ordinary
and extraordinary waves can be written in the form

[mn (2)]
Co (z) = - ee(z) = [me0(z)]. (3.19)[mn(z)H

First let us study a cell having a so-called hybrid orien-
tation, for which the director is rigidly fixed: on one wall in
the plane n (z = L) =ez, and perpendicular to it on the oth-
er wall, n(z = 0) = ex.

The distinguishing feature of such a cell is that always,
i.e., for any direction of the wave vector m of the incident e-
wave, regions are found for which the director and the polar-
ization unit vector form an oblique angle. Therefore GON,
i.e., an effect linear in the intensity of the incident light, al-
ways occurs here. The order of magnitude of the nonlinear
phase shift here is the same as for homogeneous (i.e., planar
or homeotropic) cells under their optimal conditions. We
shall not take up the derivation of the corresponding expres-
sions; see Refs. 23 and 24.

In a hybrid cell the unperturbed director lies in the xz
plane:

n (z) = eT sin 0 (z) + ez cos (3.20)

Here we have 6>(z = 0) = 0, 0(z = L) = 0L. In the single-
constant approximation, the relationship Q(z} =pz is a so-
lution of the equations of equilibrium and the conditions of
attachment to the walls yieldp = 6L/L.

In the absence of a light field, small perturbations 80
relax to zero for any value of the parameter 0L. In contrast to
this, with respect to perturbations 8ny that correspond to
moving the director out of the xz plane, the system becomes
softer with increasing 0L and loses stability at a certain crti-
cal value of 0L. The threshold of this instability can be easily
found in the single-constant case, where it is 9L (thresh-
old ) = TT (cell with both walls planar and with kinking of the
director).

Near the instability threshold the response Sny to the
action of a light field increases according to a law of the
Curie-Weiss type (0L (threshold)-0L ) ~'. However, it is es-
sential that the electric field of the e-wave must have a y
component to excite 8ny. To do this it must have ay compo-
nent of the wave vector. That is, the light must be incident
outside the xz plane of the director.

Another interesting case is presented by twist cells, i.e.,
cells with a twisted nematic or cholesteric LC. Here the dis-
tribution of the director has the form

n (z) = (e,. cos 1)3 + ey sin ij)) cos £ + e2 sin £. (3.21)

Here we have if> = pz and £ = 0 in the unperturbed state, and
the conditions for rigid planar attachment to the walls have
the form f(0) =£(£) =0,^(0) =0,^(L) =^,L,p = ^L/
L. Here the system is also stable with respect to small pertur-
bations Si/>. Yet the situation is more complicated with re-
spect to small perturbations 8£. We shall write the linearized
system of equations for 81(1 and 8£ for a cholesteric with the
helix parameter q0, which in the general case does not coin-
cide with/?:

ea sin a cos a sin (pz + P) I E \2

(3.22a)

v2

^?0, the system is stable to all small perturba-
tions. If the nematic is twisted (q0 = 0), then the instability
of the perturbations off, which draw the director out of the
xy plane, is realized when (if>L/ir)2>Kl/(2K2 — K->). For
comparison with the experiment of Ref. 25, we shall restrict
the treatment to the case q0 =p. Without writing explicitly
the solutions of Eqs. ( 3.22 ) , we point out that the character-
istic scale of the inhomogeneity of the perturbations is
Az ~p~ ' . Hence the order of magnitude of the elastic energy
amounts to Kp2. Therefore, when/>L>l,the optical nonlin-
earity proves to be substantially suppressed as compared
with the case of a homogeneous cell containing an NLC. Let
us present here the final answer for the contribution to the
nonlinear phase shift,25 which is proportional to the thick-
ness L of the layer:

An experiment25 was set up using the nematic 5CB ( p-
amyl-p-cyanobiphenyl ) , to which was added from 0. 1 to 1 %
by weight of cholesteryl chloride to create the required pitch
of the helix satisfying the condition q^ = irn. Here n is an
integer and L = 60 (im is the thickness of the cell. The radi-
ation of an argon laser was employed, A = 0.51 /um, with
power up to 200 mW. We can conveniently introduce the
parameter 77, which characterizes the ratio of the nonlinear
phase shift in a CLC cell to the shift in an NLC cell of the
same thickness for the same values of the power, A", ,n\\,nL,
and the angle of incidence aair . Figure 6 shows the experi-
mental dependence of the parameter 77 on the reciprocal he-
lix pitch h "'. The solid line is drawn by Eqs. (3.23) and
(3.7). We observe very good agreement.

We have discussed above the orientational nonlinearity
of a CLC involving the change in the structure of the orienta-
tion within the limits of a single period. This nonlinearity is
weak in comparison with GON, since it contains the small
parameter (h/L)2. It is of interest to elucidate whether a
form of GON can be realized for a CLC where the direction
of the axis of the cholesteric helix undergoes major varia-
tions in space for the case opposite to the adiabatic Mauguin
limit. Calculation shows that for wide beams (a>L)a GON
effect ofthistypeinaCLChavingthe constant £2~E\L 2/Kt

cannot occur if the director is rigidly attached, even to one of
the surfaces. The point here is that bending of the axis of the
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FIG. 6. Dependence of the parameter ri on the reciprocal pitch of the helix
A-'.25

helix under these conditions unavoidably leads to local
changes in the pitch Sh to give rise to a large elastic energy
F~(6h/h)2(K/h)2. The highly interesting problem of
GON for CLCs in narrow beams with a 5 L requires sepa-
rate treatment.

3.5. C smectics

The deformation energy of smectics (SLCs) consists of
a large term, Q.5B0(du/dz)2, involving the change in the in-
terlayer distance, and relatively "soft" terms that describe
the different forms of deformation that do not affect the dis-
tance between the layers. Here u(z) is the displacement of
the layer and the quantity B0 (erg/cm3) can be estimated as
B0~K/a2

m. With the molecular dimension am ~10~7 cm
(which approximately coincides with the distance between
layers), we have 50~AM014 cm~2~108 erg/cm3. We are
interested in the large effects of orientational nonlinearity.
They correspond only to "soft" orientational modes with
fixed interlayer distance.

Since experimentation on C smectics is still in the quali-
tative stage, we shall not write out the corresponding expres-
sions explicitly (see Refs. 26 and 27), but shall restrict the
treatment only to estimates and discussion of the qualitative
features. Let the smectic layers be planar and directed per-
pendicular to the z axis (Fig. 7). In this case the molecules of
the SLC are oriented along the director n, which makes the
fixed angle 9 with the z axis:

n (r) = ez cos 6 + c (r) sin 0,

c (r) = ez cos i|) (r) + ev sin i|> (r).
(3.24)

Here c(r) is a unit vector lying in the plane of the layers. In
the undeformed state the c-director (the vector c) is con-
stant throughout the volume. We can write the deformation
energy in a quadratic form in the spatial derivatives of the
vector c(r).

If the angle Q is small, then one can consider the SLC-C
medium to be optically uniaxial as in the case of a nematic.
The greatest nonlinearity is reached when the unperturbed
director n and the polarization unit vector ee of the extraor-
dinary wave lie about 45° apart. Its magnitude and time of

establishment must be about the same as for the correspond-
ing nematic. When the direction of the normal to the smectic
layers, which we have denoted as ez is fixed, the director n
can lie only within the limits of the cone of (3.24) with a
fixed value of 0. Hence, to obtain the nonlinear response of
the polarization unit vector ee, the director n and the normal
ez to the layers cannot lie in one plane. Moreover, when the
value of the parameter 0 is small, the maximal value of the
variation of the tensor E, which is obtained at 8$ = 180°, will
be of the order of E\ sin2 6. This means that, when #<1, the
orientational nonlinearity of the SLC-C is saturated at a
power smaller by a factor of 6 ~2 than for a nematic having
the same parameters.

Experiments on the action of laser radiation on SLC's
have been performed in Refs. 27 and 28. Unfortunately the
results of these studies are qualitative in nature.

Qualitatively new effects must arise in a SLC-C when
one takes into account the fact that they are biaxial in their
optical properties. In particular, an orientational nonlinear-
ity must arise here even for the polarization that corresponds
to the o-wave in a nematic. Besides, it will be rather weak,
and in fact proportional to the square of the difference of the
eigenvalues of the tensor e that coincide in the nematic or in
the smectic.

Analogously to the case of a nematic, when one employs
a cell containing a SLC-C with one free surface, nonlinear
optical activity must arise, i.e., rotation of the plane of polar-
ization induced by light.

In A smectics the orientation of the molecules (the n-
director) is parallel to the normal to the smectic layers, and
the degree of freedom corresponding to the c-director in an
SLC-A is absent. Therefore the reorientation of the director
in an SLC-A must generally be accompanied by deformation
of the layers. Owing to the practical incompressibility of the
interlayer distance, such a deformation propagates in an
SLC-A to great distances, up to the boundaries of the cell. If
the orientation of the director (or layers) is rigidly fixed at
the boundaries of the cell, then the effect of GON must be
absent in the SLC-A.

4. LIGHT-INDUCED FREEDERICKSZ TRANSITION (LIFT)

The Freedericksz effect in static or radiofrequency
fields (electric, %>, or magnetic, Sf) is well known. In the

FIG. 7. Plane layered structure of a C smectic. The normal e2 to the layers
is constant throughout the volume, and the orientation n of the molecular
axes makes the angle 0 with the normal ez. The projection of the vector n
on the plane of the layers characterizes the c-director; the angle between
the c-director and a certain unperturbed direction is denoted by J0(r).
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FIG. 8. A geometry in which the reorientation of the director occurs in
threshold fashion.

broad sense, one takes the Freedericksz effect to mean any
reorientation of the director by external fields on the scale of
the entire cell29 (see Sec. 4.2). When the directions of the
director and the reorientation field do not coincide and are
not strictly perpendicular to one another, even in weak fields
a perturbation 80 ~ i?2 or 8Q~S^ri arises from the Freeder-
icksz effect. However, in the very important special case in
which the unperturbed direction of the director corresponds
to the maximum energy of interaction with the field (e.g.,
n0||^when^a <0), reorientation arises only beyond some
threshold value of the square of the field. In this case the
Freedericksz effect is of threshold type.

As we showed above, the light field also reorients the
director of the LC. When the light field is incident oblique to
the director, this reorientation occurs even in weak fields
with 89~ \E 2. The effect is easily observable at an intensity
~50W/cm2.

A threshold effect of reorientation of the director by a
light field has been experimentally detected17 upon using a
far more powerful light beam (~ 103 W/cm2). This effect is
observed in normal incidence of the light beam on a homeo-
tropically oriented cell containing an NLC (Fig. 8). At such
a high power density P, even a moderate relative excess over
the threshold, P-Pthr~ 0.3/>thr ~ 300 W/cm2, leads to very
strong reorientation, and as a consequence, to a very great
self-focusing increase in the angular divergence of the trans-
mitted beam. The threshold effect found in Ref. 17 has been
termed a light-induced Freedericksz transition (LIFT). Ac-
cording to the tradition that has been established by now,
this name is applied to denote precisely the threshold effect.
However, a reorientation of the director that is linear in the
intensity of a weak field is called giant orientational nonlin-
earity.

In this section we shall first present the results of the
theory with the aim of using them later is discussing experi-
ment.

4.1. Broad beams: threshold behavior

Let us study the case of strictly normal incidence of a
light wave with the polarization ex on a homeotropic cell
(see Fig. 8). For a broad beam, a>L, one can restrict the
treatment to the problem homogeneous in the xy plane.
Then, from symmetry considerations the vector of the field
throughout the cell will remain in the xz plane: E(z)
= exEx (z) + ez£z (z). The appearance of az component

arises from the action of the nondiagonal components of the
tensor eX2 = ezx that appear when the director is deflected
from the unperturbed state. We shall write the field of the
director in the form of (3.21): n(z, f ) = ez cos 6 + ex sin 6;

9 = 6(z, t). The equations for 6 have the form

-(A'j —A'j) sinecos6 - .

+ -j2L_ [sin 26 (\EX
 2- \Et\*) + cos 26 (£,£* + £•£,)].

(4.1)

Equation (4.1) and the corresponding Maxwell equations
have the exact solution 0 =0, E = ex E exp (/'<u«i z/c). To de-
termine the threshold, one must linearize Eq. (4.1) in the
small deflection 9. The modification of the field by the per-
turbation of the director can be determined with the required
accuracy from the equation

dz - = 0.

This equation yields Ez = — ezx /Ex /ezz, so that we have
the following in an approximation linear in d:
Ez ~ — £a 6EX /£||. As a result the linearized problem is de-
scribed by the equation

II

The correction term £*/£\\ in (4.2) corresponds to taking
into account the z-component of the light field that arises on
perturbing the director; this correction amounts to ~0.3
when ea ~0.9, £( = 3. Precisely this correction distin-
guishes the exact calculation of the LIFT threshold from the
simple replacement in the corresponding expressions for the
rf electric field. The solution of Eq. (4.2) with the boundary
conditions &(z = 0, t) = 6(z = L,t)=0 has the form

z, *)= 2 cmexp(-rm«)sin.

K,
m=i

mn
(4.3)

Ea

The smoothest perturbation, m = 1, becomes unstable
(F < 0) before the others. This corresponds to the threshold
conditions E 2[\ — (E./EU

PFr(erg/CM2s) = - 8n P r1/2
Eaex

(4.4)

Near the threshold the characteristic times of develop-
ment (or decay) of perturbations are retarded:

(4.5)

Just as for Freedericksz transitions in quasistatic fields (Pis
the power density of the radiation incident on the NLC).

To determine the LIFT threshold in a beam of arbitrary
polarization state, we shall write the perturbation of the di-
rector in the form

n (z, t) « ez + ex£>nx (z, t) + eybny (z, t).
Moreover, to an accuracy linear in 8nx, 8ny, we find from
the equation div D = 0 that Ez ~ - (£a/f „ ) (<5n-E). Conse-
quently the equation for the perturbation of the director ac-
quires the form

&nh,
(4.6)

dz*
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Here the subscripts / and k run through the two values x and
y. Thus the LIFT threshold is determined by the symme-
trized matrix composed of the x- and .y-components of the
unperturbed field.

While referring to the original study30 for the details, we
shall present the final result for the LIFT threshold:

ce*/2 (E£*)thr
PFr(erg/CM2s) = - 8n eae./2L«

(4.7)

Here £, = (£,, £2> |"3) is the so-called Stokes vector31 that
characterizes the polarization state of the radiation. If the
radiation is fully depolarized (^ = £2 = £3 = 0) or if it is
circularly polarized (|r,=|3 = 0, |J"2 =1), then the
threshold proves to be twice as high as that for linearly polar-
ized radiation. In the case £, = £3 = 0, the eigenvectors of
the symmetrized matrix E,E%+EfEk are not defined.
Hence the direction of the perturbation in an established
superthreshold state must be governed by more subtle effects
(e.g., by the transverse distribution of the intensity in the
beam).

4.2. Broad beams: superthreshold structure

To determine the superthreshold stationary structure,
we need a more accurate solution of the Maxwell equations
(2.9) in the inhomogeneous medium. The complex ampli-
tude of the field varies, so to speak, by 100% if the phase
shifts by the amount 8<f> ~ 1 radian. For normal incidence of
the light, this corresponds to a deflection of the director
B~ [/I /2irL(M|| - MI ) ]1/2. ForA~0.5//mandZ,~ lOO^m,
this yields the estimate 0~0.05 radian. Actually, in the case
of a Freedericksz transition in the field of the ordinary wave
(see below, Sec. 5.4), the nonlinearity of the system of equa-
tions involving the strong modification of the field vector
takes effect, even at such small distortions of the director.
Here we can neglect the "elastic" nonlinearity of the LC.
However, for a broad, linearly polarized beam, one can treat
the problem as homogeneous in thexy plane; the field vector
remains in the xy plane. The action of the light on the liquid
crystal is determined only by the modulus and the direction
of the vector E. The strong phase change of the field (of the
order of <u(n\\ — nL )L92/c) in this case does not affect its
modulus in any way. The direction of the complex vector E
changes only by an amount of the order of 6, approximately
in the same way as for a Freedericksz transition in a static
field.

For a broad, linearly polarized beam, the problem of the

stationary superthreshold structure of the director for LIFT
has been solved in Refs. 32 and 30. While referring the reader
to these studies for the details, we shall present here the re-
sults for the case of a small excess of the flux density P over
the threshold value PfT:

o

(4.8)

(4.9)

(4.10)

Equation (4.9) yields an important conclusion: the quantity
9l^9(z = L /2) increases very rapidly ( < x (P — PFr)

in) as
the power exceeds the threshold value. For example, for
MBBA we have u = 0.28, so that we obtain tf^O.5 radi-
anss30°, even when (P-Pfr )/Pfl =:4%. For OCBP the
parameter u is 0.24. In the same approximation the nonlin-
ear phase shift is

£.- P Jea f — A
(4.12)

Fr

The numerically small quantity u characterizes the
compliance of the system toward the superthreshold action,
0i a [ (P - Pfc)/"]1/2. In a simplified treatment of LIFT,
i.e., in the single-constant approximation and without taking
into account the reverse influence of the reorientation of the
director on the field (fa —»0), this parameter would be unity.

Very importantly, for certain NLCs the value of the
parameter u can prove even to be negative. For example, for
PAA at T= 125°C we have u = - 0.12. In this case the
relationship (4.9) has no region of applicability at all. One
can show from the more exact solution that LIFT in broad
beams for NLCs with u < 0 will show hysteresis. As the in-
tensity increases from zero, the transition will occur at the
power density/? defined by the relationship (4.9), Fig. 9.
However, 6m will increase jumpwise in the transition. As
one goes backward in power, the transition to the state 6 = 0
also will occur jumpwise, but at a lower value of the power."

4.3. Effects of transverse flniteness of the beam

For a beam of limited transverse dimensions, the Frank
energy acquires an additional term SF = K //2, where / is the
transverse dimension of the perturbation. Hence a crude es-
timate of the LIFT threshold in this case has the form

8nAT (4.13)

FIG. 9. Hysteresis of a light-induced Freedericksz transition (the arrows
indicate the direction of change of the power of the light field).

Just as in the case of GON, the form of the exact answer
proves to depend substantially on whether we are dealing
with a one- or two-dimensional problem with respect to the
transverse coordinates. Namely, if the dimension of the
beam is small, a<£, then in the one-dimensional case the
dimension / of the perturbation proves to be of the order of
/~ (oL)1/2, so that \E |2hr ~K/aL. In contrast, in the two-
dimensional problem an estimate of the form of (4.13) is
valid with logarithmic accuracy when / = a.

For more details on the effects of transverse finiteness of
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the beam in LIFT, see Refs. 4, 5, and 30. The analogy of the
equations for the transverse distribution of the director with
the stationary Schrodinger equation is employed in Ref. 30,
while Ref. 4 uses the Ritz variational procedure to find the
threshold. As regards the superthreshold structure in LIFT
in narrow beams, it is difficult to expect here a good analytic
theory, since usually the light wave strongly alters both the
direction of propagation and the polarization, even with a
small excess over the threshold and even within the limits of
the cell.

4.4. Experimental studies of LIFT

A light-induced Freedericksz transition has been
found17 upon illuminating a homeotropic cell containing oc-
tylcyanobiphenyl (OCBP) with the radiation from a trans-
verse single-mode argon laser, A = 0.5145 //m, power up to
0.2 W, radius of the constriction at the focus of the lens
~ 5 X 10~3 cm, and power density up to 2 X 103 W/cm2. In
agreement with the results obtained earlier experimentally
and theoretically for a planar cell, with inclined incidence of
the extraordinary wave one observes threshold-free self-fo-
cusing arising from GON. With normal incidence of the
light wave on the cell, the wave vector is parallel to the un-
perturbed direction of the optic axis (the director), and at
low intensity self-focusing was absent. However, starting at
an intensity of the order of 70-80 mW (for a cell 150-//m
thick), after a rather considerable time, from 10 s to 3 min, a
very strong angular divergence of the transmitted beam
~ 10" arose, accompanied by a characteristic pattern with a
large number N ~ 20-50 of aberrational rings.

LIFT was recorded in Ref. 33 for a circularly polarized
beam. The threshold power proved to be about two times
higher than for linearly polarized radiation. This agrees well
with the theory.

For broad beams the threshold power density P (W/
cm2) must decline as L ~2 upon increasing the thickness of
the cell. This statement has not been verified in its pure form.
However, the absolute values of the experimentally mea-
sured threshold power densities agree well with the theory.

For narrow beams the dependence of the threshold in-
tensity on the transverse dimension of the beam has been
studied experimentally and theoretically in Ref. 4. The re-
sults obtained agree well with the theory presented in Refs.
4, 30, and 32.

The dependence of the LIFT threshold on the tempera-
ture, according to the theory, is mainly determined by the
factorPFr oc £a

 1K3. SinceK3 declines as T—*TC as the square
of the order parameter, ATccS2, while £a <xS, PFr <xS must
also decrease along with decreasing 5 with increasing tem-
perature. In the experiment34 for LIFT in an OCBP cell, a
lowering of the threshold was measured from P = 51 mW to
P=24.5 mW as the temperature varied from 34 °C to
39.4 °C (A = 0.515 f^m, cell thickness 150/zm, transverse
radius of the beam 18.6/zm at the constriction). In this same
study LIFT was measured by using the radiation of a neon-
helium laser (A = 0.628yum) and two lines of an argon laser
(A = 0.476 /um and A =0.515//m).

Under conditions above the LIFT threshold the polar-

ization of the transmitted light proves to be inhomogeneous,
depending on the angle of incidence even for a linearly polar-
ized incident beam. There are two different causes of the
deviation of the polarization from the initial direction. Both
causes are based on the fact that the polarization unit vector
of the extraordinary wave under conditions of large birefrin-
gence tracks the local direction n of the optic axis and the
local direction k of propagation: ee = const-kx (kXn) .

In one of the mechanisms30 one takes into account the
fact that the perturbations of the director n are nonplanar in
type when K2^Kl: n = ez + ex8nx + eySny. Here we have
Sny 7^0, even with x-polarization of the incident light.

The other mechanism35'36 substantially rests on the fact
that, even inside the medium, the rays undergo a consider-
able self-focusing deviation (~10°-20°). Owing to the
change in the vector n, the polarization vector, which adia-
batically tracks it, must also change.

While referring to the original studies30'35 for the de-
tails, we point out that experimentally the rotation and ellip-
ticity of the polarization of light transmitted in LIFT have
been studied in Refs. 17 and 36. When the threshold is slight-
ly exceeded (small deviations of the rays), the depolariza-
tion pattern approximately corresponds to the first mecha-
nism, while in the case of large divergence of the beam
(considerably exceeding the threshold), the experimental
results36 agree with the second mechanism.

The problem is very interesting of the dynamics of non-
stationary processes of establishment and relaxation of the
orientation upon turning the field on and off. For broad
beams the relaxation <5nocexp( — Ff) is determined by the
relationship F = K3 (ir/L) 2/y, which is valid both for GON
and for LIFT (and generally for a Freedericksz effect of any
type). For narrow beams (a<L), the major part of the per-
turbation relaxes with the constant T~Ka~2/y as the field
is turned off to zero. This statement also holds both for GON
and LIFT.

Near the threshold of LIFT instability (both above and
below it), all the processes are retarded by a factor of ap-
proximately P t h r / \P- />thr |; cf. Eqs. (4.3) and (4.5). This
statement is valid both for broad and narrow beams. The
situation here, just as for a Freedericksz transition in nonop-
tical fields, recalls a second-order phase transition.

The concrete expressions depend on the form of the
transverse intensity distribution, on the relationships
between the constants K2/Klt K2/K},nnd £a/£i, and on the
initial and final power. We must acknowledge that a quanti-
tative theory of the effects near the established state above
the LIFT threshold for narrow beams does not exist, since
one must solve in self-consistent fashion the entire 100%-
nonlinear three-dimensional problem for the Frank and
Maxwell equations, even when the threshold is very slightly
exceeded, owing to the strong saturation.

The exponential growth of small perturbations upon
turning on the power above the threshold and the decay
again of the small deviations of the director from the direc-
tion n° = ez upon reducing the power to values below the
threshold are of greatest interest. We recall that, when 6m •< 1
and d(z) = 0m sin(wz/L), the phase shift at the center of
the beam for normal incidence of the light wave on a homeo-
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tropic cell amounts to E = 'Si exp + E2 exp (ik2r - zw2i). (5.1)

(4.14)
Hence 5$ «. 6 *m must vary according to the law exp ( — 2Ff).
In this relation, which is characteristic of LIFT, normal inci-
dence yields a result differing from the case of GON, where
8(t> <x 9 oc exp ( — Fr). In other words, for LIFT the given re-
laxation constant or increment F of the director yields twice
as large a constant 2F for the number of rings N = 8^>/2ir.

In practically all studies, the experimental investigation
of the dynamics of reorientation in LIFT has been performed
by observing the LIFT. Just as in a nonoptical Freedericksz
transition, the increment of the perturbations 89(t)
= <500exp(|F|0 starts from the small level of the initial

fluctuations (5#0-The sign of the resulting perturbation is de-
termined by the sign of 800 and varies by a random law. The
time for reaching the stationary state is given by the expres-
sion

1 , 1 1 , 1
P — P In

thr 166,1 -

This time is rather large, both owing to the logarithmic fac-
tor (which, moreover, fluctuates from experiment to experi-
ment) and owing to the retardation of the processes near the
threshold. Under typical experimental conditions it varies
from seconds to tens of minutes.

The experimental study of the growth and decay of
small perturbations in Refs. 37 and 38 showed the following:
1) an exponential character of the dependence of the number
of rings on the time is obeyed in the initial period to good
accuracy; 2) a near-threshold retardation of the rate of re-
laxation and growth of perturbations occurs with the rela-
tionship |T| ̂  const/\P — Pthr \; 3) the absolute value of the
relaxation constants | F | for LIFT, as previously for GON,
agrees reasonably with the data on the viscosity constants y
and elasticity constants Kt obtained from nonoptical experi-
ments.

We note an interesting experimental method.6 In it
LIFT in a cell containing the NLC 5CB 250 /^m-thick was
excited with a broad beam from an argon laser (A = 0.51
^m). The induced perturbations were measured from the
phase differences of the ordinary and extraordinary waves
for a weak, very narrow beam of a helium-neon laser
(A = 0.63 fj.m). In the adiabatic approximation the o-wave
should not sense the distortion of the director at all.

5. STIMULATED SCATTERING (SS) AND GRATING
ORIENTATIONAL NONLINEARITY (GRATING ON)

Stimulated light scattering is one of the most beautiful
phenomena of nonlinear optics. It consists in the fact that a
beam of coherent laser radiation of sufficiently high power
begins to be intensely scattered by the elementary perturba-
tions of the medium. Here it yields a resultant beam of shift-
ed frequency, while the amplitude of the elementary pertur-
bations increases in self-consistent fashion under the action
of the light fields.

Let us explain the essence of the wave processes that
occur here. Let two waves propagate through the medium:

Their interference acts on the medium, including its dielec-
tric permittivity e, so that in the first nonvanishing approxi-
mation we can write

6e(r, t) = (A'

X exp[ — i(kt — k2)r-H(co,— co2) £] + :c.c. (5-2)

The concrete mechanisms can be most varied; thus, we shall
study below the variation of the tensor E owing to reorienta-
tion of the director by light fields. The complex coefficient
A ' + iA " describes the possible phase shift of the response of
the medium as compared with the phase of the original inter-
ference pattern. The scattering of the wave El exp(/k,T
— itoit) by the running space-time grating <5e(r, t ) yields by
(5.2) additional terms in the displacement21

6Z? = (A1 + iA") | EI \ 2 E2 exp (ik2r — ic>2t)

+ (A1 + iA") EiElE^ exp [t (2kt — k2n (2^ — a^)t}.
(5.3)

Usually the second term in (5.3) stongly fails to satisfy
the wave equation. Therefore it practically does not excite
propagating waves. On the contrary, the first term gives rise
to radiation of additional waves in the direction k2 at the
frequency <a2. One can say that the Bragg condition for scat-
tering by the corresponding running grating 8e (r, t) is auto-
matically satisfied. In order to understand whether the new-
ly radiated waves exp( — ico2t + /k2«r) attenuate, amplify,
or only shift the phase of the wave E2 already existing in the
medium, it is convenient to interpret this first term in (5.3)
as a change in the effective dielectric permittivity of the me-
dium for the wave EIt. Simultaneously the wave vector k2

also varies:

(>kz-

When A " = 0, A '^0, the scattering (c
grating alters the phase of the wave E2:

cj a>A'E2 (z) = exp (i6
2C81/2

(5.4)

f^—Ky2k2) by the

i l 2 - (5.5)

When A " ̂  0, it also alters its intensity according to the law

"\El\\ (5.6)

Exponential amplification of the wave E2 with the coeffi-
cient g, which is proportional to the "pumping" intensity
\El

 2, as is realized when^4 " < 0, characterizes the process of
stimulated light scattering ( SS ) . One can call the change in
the phase of the wave E2, which is proportional to the inten-
sity EI 2, cross-focusing by analogy with self-focusing,
while the nonlinearity itself is called grating orientational
nonlinearity ( also grating ON ) . Thus grating ON and SS are
manifestations of the same physical process of excitation of
running gratings in the medium; see, e.g., Ref. 39.

5.1. Theory of orientational SS in nematic LCs

After these general remarks, let us proceed to discuss
the concrete features of orientational SS and grating ON in
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nematic liquid crystals (NLCs). To do this, we must substi-
tute into the usual dynamic equations of NLCs the stimulat-
ing force from the interference of the two waves, find the
response, and calculate the result of scattering by the run-
ning grating of perturbation of the director. This procedure,
while extremely simple in principle, leads to rather unwieldy
expressions. While referring to the original study40 for the
details, we shall write the equations for the concrete case for
which SS and grating ON were found and studied experi-
mentally.

Let a wave propagate through a homeotropic cell at the
small angle a to the director. In the general case it contains
both polarizations and is nonmonochromatic. Upon choos-
ing the 2 axis along the unperturbed director, we shall write
the field in the form

(x, z, t)=-

X exp[i& (za + zcosa) — icot]+ c.c. (5.7)

Here k = conL/c is the wave number of the o-wave eyEy,
which is the "pump" in our case. The signal is the e-wave
exEx with the shifted frequency H. The quantity fi = (conL/
2c) [ 1 — (n\/n\ ) ] a2 is the difference of the z components
of the wave vectors of the o- and e-waves. The linearized
equation for the perturbation of the director
n = ez + ex0x + ey&y has the form

(5.8)

The right-hand sidein(5.8)is written in the first non vanish-
ing approximation in £a.

If the rate of variation of the slow amplitude Ex (z) is
small in comparison with the quantity /u, then the stationary
solution of Eq. (5.2) neglecting boundary effects has the
form

. c.c. (5-9)

Here T = K3q
2/y is the relaxation constant ( s~ ' ) . The

complex conjugate term in (5.9) does not yield accumulat-
ing effects owing to lack of fulfillment of synchronism condi-
tions. If we omit it, we can derive truncated equation for the
amplitude of the signal:

- .̂= — iua-'e,,^, t)E0 exp ( - i

Equation (5.10) implies that the greatest amplification is
reached for the Stokes signal with fl = F, so that
£1

x|2<xexp(gz):

(5.11)

The time for establishment of the maximum intensity of SS
amounts to rsrgz/2F (see Refs. 41-43). Under the experi-
mental conditions we havegz~ 1-2, so that TxT"1.

The use of a small angle between the director and the
direction of propagation leads to two effects. First, accord-
ing to the right-hand side of Eq. (5.8) the action of the light

on the director when 0^0 is attenuated by the small factor
a<l. The action of the perturbation 6 on the interaction of
the waves is also attenuated by the factor a ( right-hand side
of Eq. (5.10) ). All this yields the small numerator ~a2 in
the expression for the nonlinearity. At the same time the
denominator, which corresponds to the Frank energy K3 /u2,
is proportional to a4, since// ~ a for a small angle of refrac-
tion. Hence the amplification coefficient g of SS (along with
the grating ON constant ) depends on the angle of refraction
a as gcc a ~2; see (5.11).

5.2. Observation of SS in nematic LCs

Stimulated scattering in NLCs was found in Ref. 44.
The o-wave was incident at a small angle on a homeotropi-
cally oriented layer of the NLC 5CB 1 10-^m thick. An argon
laser (A. = 0.49 //m) was used. A certain fraction of the radi-
ation was spontaneously scattered into the e-wave with a
frequency shift close to optimal. This fraction was amplified
exponentially in the volume of the NLC, and its intensity
was measured at the output of the cell. Figure 10 shows the
dependence of the power of the scattered e-wave Ws on the
power of the incident o-wave WL .

The frequency shift was measured as follows. A polariz-
er was placed at the output of the cell so that the o- and e-
waves in the transmitted radiation interfered. Then the time
course of the interference beats could be directly recorded in
an oscillogram.

The functional dependences and absolute values of the
measured quantities ( g,nopt , WS/WL ) on the pump inten-
sity and the angle of refraction agreed well with the theory;
see the original paper for the details.

The observed results included one not fully understood
at present. After 10-15 s of the normal SS pattern, the inten-
sity of the e-wave fell almost to zero. This can involve a
homogeneous reorientation of the director by the e-wave
based on GON, whereby the angle between the optic axis and
the direction of propagation becomes unfavorable for SS.

A study73 has been performed very recently in which

= 0.15

FIG. 10. Dependence of the power of the scattered e-wave on the power of
the incident o-wave.
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forward SS was experimentally determined with normal in-
cidence of the o-wave on a planar cell containing the nematic
5CB. The exciting radiation at the wavelength A =0.69 ̂ m
was generated with a ruby laser; its duration of 8x 10~4 s
was appreciably shorter than the relaxation time T = y/
Kq2zz2.5 X 10~3 s of orientation gratings having the period
A = 2ir/q = A/(n^ — «1). For this reason the nonstation-
ary theory of SS was used to describe SS from the o-wave into
the e-wave (see, e.g., Ref. 74). The experimental results
agree well with the theory, both in functional dependences
and in absolute values for the increments.

5.3. Observation of static gratings and four-wave mixing

Insofar as we know, grating orientational nonlinearity
(grating ON) in the mesophase of an NLC has not been
observed. However, a related nonlinear-optical process has
been studied, involving the recording and readout of static
gratings <5n(z) in NLCs, namely, four-wave mixing.45 The
radiation of an argon laser was directed in this study into a
homeotropic cell lOO-yum thick containing the nematic 5CB.
It had a polarization such that an o-wave and a signal e-wave
of lower power (by a factor of about 9) were simultaneously
excited. The interference of these waves produced a volume
static grating. The transmitted o-wave was isolated with a
polarizer and reflected exactly backward with a plane mir-
ror. Owing to scattering of the forward-propagating o-wave
by the grating of the director, an e-wave was excited that also
propagated in the opposite direction to the original laser
beam. Both the absolute value and the functional depen-
dences of the intensity of the resulting e-wave and time of
establishment on the angle of incidence and the power of the
incident radiation agreed well with the theory. A coefficient
of pumping from the o-wave into the e-wave of ~70% (in
intensity) was attained at relatively low levels (~500 W/
cm2) of power density of the reference beams.

5.4. LIFT in the field of the ordinary wave

With strictly normal incidence of a broad beam on a
homeotropic cell, the absolute direction of polarization is
inessential, since the problem is symmetric about the z axis.
With strongly inclined incidence, k = £(er cos« + ex

sin a), a ~ I, one must study the behavior of the system un-
der two possible types of perturbations of the director.30 If
the perturbations are smooth (which is favorable from the
standpoint of the deformation energy), then the incident
wave is split into o- and e-waves, with the polarization of
each of them tracking the local direction of the director.
Then the e-wave gives rise to the usual giant reorientation,
while for the o-wave the free energy does not depend on the
orientation of the director, and hence it has no effect on the
LC. If the perturbations have a small spatial scale, ~A /
(ne — n0 ) or smaller, then a nonadiabatic transfer of energy
from the o-wave to the e-wave can occur in the process of
propagation of the light. Under these conditions a lowering
of the light component of the free energy can occur also for
an incident wave of the o-type. However, the deformation
energy sharply rises for small-scale perturbations.

For these reasons LIFT is practically impossible for

strongly inclined incidence (a ~ I) of waves of o-type under
ordinary conditions in which «a(«n — «x )L /c~ I02. In fact
the compromise between the deformation energy and the
energy of interaction with light would be attained at such a
large power that the system would prove to be considerably
above the threshold of other nonlinear processes, e.g., stimu-
lated scattering.

LIFT in the field of a weakly inclined (a<l) o-type
wave is of great interest. While referring for the details to
Ref. 46, in which this problem was studied both theoretically
and experimentally, we note only the following. The theo-
retical dependence of the threshold on the angle of refraction
a has the form

f / r e e3/2 \2 1
Pthr(a) = Pthr (oc = 0) 1 + aM-f ~^\ +•• • •

(5.12)

In Fig. 11, which is taken from Ref. 46, the dots show the
experimentally measured dependence of the LIFT threshold
on a4. The solid line is the straight line drawn through these
points. The dotted line corresponds to the theoretical depen-
dence with the parameter (Le^e^/Ae^) obtained from ob-
servation of the conoscopic pattern.

As V. F. Kitaeva has kindly reported to us, she and her
associates have recently studied in detail strictly periodic
and chaotic oscillations upon exciting LIFT with an ordi-
nary weakly-inclined wave.

6. ACTION OF LIGHT ON THE SURFACE LAYER OF A LIQUID
CRYSTAL

This Section 6 will discuss a series of problems in which
a light wave acting on an LC is localized in a relatively thin
layer Az at the surface. At first glance the corresponding
effects are weaker than those of bulk type by a factor of L /
Az, where £ is the thickness of the cell. However, in concrete
problems a number of favorable factors exists that allow
compensation of the weakening effect of the small parameter
Az/L. Importantly, when one studies surface actions, one

FIG. 11. The dots indicate the experimentally determined dependence of
the LIFT threshold on the fourth power of the angle of refraction a4. The
solid line is the straight line drawn through these points. The dotted line
correspondstothetheoreticaldependence/>

thr = P0[l + ( pL/tr)2] with
/j. determined from experiment.
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FIG. 12. The plate of the NLC cell in the plane z = 0 is a prism at whose
boundary with the NLC total internal reflection of light occurs.

can study an LC in the presence of strong bulk scattering and
in a region of light frequencies at which strong absorption
exists.

6.1. GON and LIFT in the field of a surface light wave

Let us study the orienting action on an NLC of a non-
propagating light wave localized near the boundary z = 0.
Such a wave can arise when light is incident on an NLC from
a medium having a large refractive index «, owing to the
effect of total internal reflection (TIR) (Fig. 12). Let the
cell have a planar orientation (n° = ex) caused by rubbing
of the surface z = L, while the surface z = 0 does not affect
the orientation. We shall take the wave vector of the incident
wave in the form

For concreteness, let us examine the case in which the
wave is polarized perpendicular to the plane of incidence,
einc cc k X (k X ez). In this case the field in the NLC has only
the components^ andEy and the equation for the profile of
the director n = ex cos 0(x) + ey sin 6(z) has the form

ae „ a*9 , ea
-Y-5T+*s-g?-+iBS

When the anisotropy is small, £a -%£L, the field inside the
NLC can be taken as the same as for an isotropic medium.
Then, employing the usual relations of the theory of TIR, we
obtain

P / . X _ E V „ 2exp(-»/2p) ( 62 )

Here aTIR is the angle of total internal reflection, sin2 aTIR

= n2/«2, and
Xvac TI _ / sin°T!R \2-j-l /2

" 4itni sin a L I sin a / J

LIFT arises when the unperturbed direction of the director
lies in the plane of incidence of the wave, i.e., /? = 0, einc

= ey. Upon linearizing Eq. (6.1), we obtain

Here we have b2 = £a E \ fnc /2irK2. (If we do not assume ea

to be small, then the reorientation of the director leads to
modification of the conditions of refraction and will excite a

field component Ex ^0. It turns out that an accurate treat-
ment of these effects47 does not alter the qualitative conclu-
sions and gives rise only to a certain redefinition of the quan-
tities b 2 and p.)

One must solve the problem of finding the threshold of
instability from Eq. (6.4) with the boundary conditions
6(z = L) = 0,(d(9/dz)z = 0 = 0. The latter is the condition
for free orientation of the director at z = 0. Upon employing
the small parameter p/L ~ 10~2 for p~ 1 /nm, L~ 100 /j.m,
we can describe the action of the term b 20 exp( — z/p) by
introducing the boundary condition

- d * = Wp. (6.5)

Here we can treat the equation itself without the term <x b 2.
The instability threshold is determined by the appearance of
a nontrivial solution having a zero time increment. Then we
have 0(z) = const-(z — L) and CL = 1 at the threshold,
whence we obtain the following expression for the threshold
power density in the incident wave:

c n i \ f - i n c I 2 cniK, cE; (s in 2 a— sin2 cc-j-jj^)1/2

(6.6)

Comparison of Eq. (6.6) with the threshold power density
for bulk LIFT in a homeotropic cell of the same thickness
(Eq. (4.4)) yields

P(Surf. LIFT)
.1/2 K. (6.7)

Thus (6.7) contains the large dimensional factor L /
Az = L(sin2 a — sin2 «TIR )1/2//l, which involves the fact
that the light action occurs in the small fraction Az/Z, of the
cell. However, the ratio K2/K3 proves to be a favorable small
factor, which usually amounts to about 0.3, and the numeri-
cal coefficient v~2 is ~0.l. All this shows that the LIFT
threshold in the field of a surface light wave can prove to be
of the order of the threshold of ordinary LIFT for a homeo-
tropic cell of the same thickness.

To determine the superthreshold structure in the same
approximation with/j^Z, and ca <EL, one can use a boundary
condition of the form [d0 /dz + 0.5 sin 20]z = 0 =0. Hence
we have 0(z) = #,( I — z/L), and the quantity 0, is deter-
mined by solving the equation

sin 29,
29, (6.8)

If the angle (3 ^0, then analogously to GON, a reorien-
tation of the director arises even in the first order in the light

(63) intensity. Upon taking \EX = E\cos/3 and Ey \ = \E \
sin 13, where E is defined in (6.2) and solving Eq. (6.1) in
the first order in 6, we obtain

P sin 2p
(6.9)

The time of establishment for GON amounts to r = 4yL 2/
TT2K2, while for LIFT it is even larger, especially near the
threshold.

The discussed effects must occur also in the case when
we take a cholesteric instead of a nematic. All of the derived

1077 Sov. Phys. Usp. 28 (12), December 1985 B. Ya. Zel'dovich and N. V. Tabiryan 1077



formulas are also valid for a CLC as well if we consider
0(z) — q0(z — L) instead of 0(z). Qualitatively the same ef-
fect, but with a certain modification of the formulas, should
also occur for a SLC-C cell in which the layers are parallel to
the walls of the cell.

If the surface z = 0 has the preferential orientation
9 = 0, then we can introduce the surface energy Fsurf (erg/
cm2) = l/2cra sin20(z = 0). This corresponds to an attach-
ment length R= K2/a&; cf. Eq. (3.16). Then the threshold
power density is increased by the factor

(6.10)

which has been derived under the assumption that
When R is decreased to the value R^L, the threshold begins
to increase as R ~l. After R has become less than p, the
threshold again ceases to depend on R and is determined by
Eq. (6.6) with the substitution L—*p.

An experiment48 has been performed according to the
diagram of Fig. 12 using the radiation of an argon laser
(A = 0.51 /urn) and the nematic MBBA. The deviation of the
director was determined from the rotation of the plane of
polarization of a probe beam of a neon-helium laser trans-
mitted through the NLC from the side of the rigidly orient-
ing surface z = L. The LIFT in this geometry was recorded
at a power density of the incident wave Pthr ~ 1.2 kW/cm2

for a cell thickness of 50 /mi. We point out that the value ofp
was about 25 X 10~5 cm. The angle of rotation observed by
using the test beam was about 25° for P/Pthr ~ 5.

The absolute value of Pthr agrees reasonably well with
the theoretical estimate by Eq. (6.6). The superthreshold
angle 0, had different signs in different experiments, in ac-
cord with the general views on the development of instability
in LIFT from initial random fluctuations. The magnitude of
\0i\ above the threshold strongly deviates from Eq. (6.8).
This can involve the fact that the condition for TIR was not
satisfied for the extraordinary wave (the refractive index of
the prism n, = 1.76 is close to the value nn si.75). The
times of establishment for the intensity near the threshold
amounted to ~ 120-150 s. A threshold-free effect was ob-
served for/? 7^0, an analog of GON.

6.2. Interaction of surface plasmons with liquid crystals

Localized electromagnetic waves can propagate near
the boundary of two media having the dielectric permittivi-
ties £, and em—surface plasmons; see, e.g., Refs.49 and 50.
Their existence requires that one of the media (usually a
metal) has a negative e so that — £m = |£m > 5, > 0. Let us
denote by ez the normal to the boundary, and by m the unit
vector in the direction of propagation of the surface plas-
mon, m = cos /7ex + sin fiey. Also let v = ez X m = ey cos
P — ex sin P. Then, if we assume that e = EI when z > 0 and
e = — \em | when z<0, we can write the following expres-
sion50 for the electric field of the surface plasmon (SP):

E (r) = "<e*

m (6.11)

In Eq. ( 6. 1 1 ) the upper row pertains to the region z > 0, and
the lower row to z < 0. The quantities (2x{)~

1 and (2x2) ~ '
characteri/e the dimension of the region of localization of
intensity of the SP respectively when z > 0 and z < 0, where
we have

(0 \2 n l /28iJ '
p. / ra= + "

-11/2|J •
(6.12)

For example, when z > 0, the square of the modulus of the
field declines as exp( —z/p), where p = (2xl)~

l. More-
over, the equation xl/£l = x2/\£m \ is implied by the contin-
uity of the fields at the boundary; it gives rise to the disper-
sion equation, or connection between co and k:

®ii^MI /a 1i\
iM^T,- (6'13)

We can express the quantity \A |2 in terms of the component
Pm of the Poynting vector P. If we introduce the specific
energy flux,

+ 00

W(erg/cM.s)= \ (Pm)dz,

then we have

W=\A\ le.il
81 I

\ ' /2
/

(6.14)

Here the term — £\/£2
m corresponds to a counterflux of en-

ergy flowing in the medium having a negative dielectric per-
mittivity.

We shall be interested in the problem in which the SP
propagates along the phase boundary of a solid having
s = Em < 0 and a layer of a LC adjoining it. Strictly speaking,
we must solve the problem of SPs taking into account the
anisotropy of the tensor £ for the LC. For estimates of the
order of magnitude of the orientational effects, we shall use
the formulas given above that were derived for SPs at the
boundary of isotropic media.

The action of the field of the SP on the orientation of the
LC has roughly the same character as for the nonpropagat-
ing surface wave in TIR discussed in Sec. 6.1. In particular,
the SP can cause a twisting deformation in the geometry of
Fig. 12 in threshold fashion (whenmin0 = ex ) or threshold-
free (when 0< |nvn° < 1). Instead of the prism, we must
assume here a medium having E = £m < 0.

Rather often for metals we find £m |>1, even at fre-
quencies in the optical range. Then we have k2~(a)2el/
c2) [ 1 + (£i/\£m |) ], the dimension of localization in the in-
tensity in the LC is small, and/9 = /lvac \em

 l/2/4ir£1. There-
fore |E-ez is larger than |E-m| by a factor of about (\em \/
e,)1/2. Under these conditions the interaction of an SP with
an NLC in the geometry of Fig. 12 can be of interest, but with
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account taken of the possibility of S-deformation. If the di-
rector at the surface z = 0 is not attached at all, then one can
consider perturbations of the form n(z, t) = e^ cos#(z,
t) + ey sin 0(z, t ) . Let the SP propagate in the direction
k = ey k perpendicular to the director. Then the linearized
equation for 9(z, t) acquires the form

Here we have b 2 = ea A \2/2irK3. Treating this equation in
the same way as in Sec. 6. 1 , we find that the threshold condi-
tion on the reorientation of the layer by the field of the SP has
the form b 2pK = I, whence we obtain the following expres-
sion for the specific threshold power W thr (erg/cm-s) of the
SP:

<««
Applicability of the one-dimensional approximation used
above requires that the dimension of the SP packet along the
y coordinate must not be smaller than L. Thus we obtain the
condition for the total power WlhrL (erg/s) transported by
the SP. Upon assuming that £t/\£m |<l, kzzto-Je^/c, ea ~ I,
K}~IQ-6 dyne, we obtain the estimate JFt h rL~lO~3 W.
This value proves independent of the thickness L. When
L~IQ~~2 cm the specific threshold flux amounts to
JFt h r~lO-' W/cm-s.

Above in Sees. 6. 1 and 6.2 we have studied the influence
of surface waves on the orientation of NLCs. In turn, the
altered orientation of the NLC exerts a reverse influence on
the amplitude and phase of the same light waves — the re-
flected wave in TIR or the propagating surface plasmon. For
example, effects can occur for SPs such as self-focusing
owing to GON and LIFT, grating nonlinearity in the inter-
action of two SPs, and stimulated scattering of one SP in the
field of another. Effects of rescattering from an SP bound at a
boundary into a bulk wave and vice versa owing to nonlinear
orientational interaction are highly interesting. This field is
only beginning to develop at present.

6.3. Variation of pitch of the cholesteric helix

The strongest influence of a light field on the pitch of a
cholesteric helix involves the trivial effect of heating of the
CLC by the light field. With a heat-conductivity coefficient
~ I0~3 cmVs and a cell thickness L = 50 //m, the time for
establishment of a stationary temperature profile amounts to
T = (L /tr)2/x = 2-5 X ICT3 s. For a moderately pure LC,
one can adopt the estimate of the coefficient of true absorp-
tion a ~ I cm~ '. Then, with a power density of the incident
light of ~ I03 W/cm2, we obtain the energy release in the
time T of the order of 2.5 J/cm3. This corresponds to a tem-
perature elevation of about 2 °C. We shall defer a detailed
discussion of the thermal effects to Sec. 7.

In this section we shall completely neglect thermal ef-
fects and discuss how a light field can alter the pitch of a
CLC owing to direct dynamic action on the director. It turns
out that the greatest effect is attained under conditions of
Bragg scattering (con/c) ~q0 of a normally incident light
wave from a planar Grandjean structure. For CLCs the mag-
nitude of £a is usually small, £a ~ 0.03-0. 3. However, this

smallness is compensated by the fact that the wave being
reflected penetrates into the CLC to a depth Az ~A /£a. Con-
sequently, for thick enough specimens (totally reflecting),
the moment of the force exerted by the light wave on the
helix does not depend on ea.

In the stationary case the Maxwell and Euler-Lagrange
equations imply the relationship

_dM__ 0
dz ~~ '

Here the director is defined by the relationship n = ex co-
s 0 + ey sin 6; E+ and E_ are the circularly polarized com-
ponents of the electric field of the light wave

E(z)=\ I
*v E (z).-\ I

It expresses the law of conservation of angular momentum of
the system CLC + field. Although one can easily verify
(6.17) indirectly, we have derived the original expression by
using Noether's theorem on the connection between the law
of conservation of angular momentum and the in variance of
the Lagrangian with respect to the rotation group about thez
axis.

While referring to the original study51 for further de-
tails, we shall formulate its fundamental results. The wave
E_eikz is totally reflected from a ."right-handed" CLC
( q0>0) when the Bragg condition is satisfied, while trans-
ferring its energy to the wave E+e ~ikz. The moment of the
"recoil" forces arising here is transferred to the helix so as to
alter its pitch. If the director is free on the side on which the
light is incident and reflected, and fixed at the opposite
boundary of the cell, then the pitch of the helix is shortened
by the action of the field throughout the volume (and not
only in the layer where light is present). At equilibrium we
have

de 2_ p
dz (0/^2

Here P0 is the power density of the reflected light (erg/cm2

s). Yet if the director is fixed specifically to the input bound-
ary and free at the opposite boundary, then the pitch of the
helix increases by about the same amount, but only in the
region where the reflection process takes place.

We can liken the situation of the change in the pitch of a
CLC to the problem of the change of the pitch of a steel
spring to which we apply a twisting moment to a certain
small region 0 < z < Az. If the spring is free at z = 0 and fixed
atz = L, then its pitch is altered practically throughout the
length. Yet if the spring is fixed at z = 0 and free at z = L,
then the pitch is altered only in the layer 0 < z < Az, and in
the sense opposite to the former case. That is, the pitch re-
mains unchanged through most of the cell, while the change
in the angle 86(z = L) amounts to about

7-. (6.18)

None of our conclusions have rested on any concrete form of
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the dependences 9(z) and P(z) (z), and have employed only
the fact that the waves can be distinguished both in direction
of propagation and in circular polarization when £a <e.

The problem that we have treated shows how useful it is
to employ a unitary Lagrangian for obtaining the total sys-
tem of equations and finding the conservation laws. Owing
to such a solution of this problem,51 the qualitatively new
conclusion presented above was obtained of the nonlocal de-
pendence of the helical pitch on the intensity of the light
waves; see also Ref. 75 (previously this problem had been
treated incorrectly in Ref. 52 and in our own Ref. 21).

7. NONLINEARITIES INVOLVING ABSORPTION

Above we have treated the orientational nonlinearity of
transparent LCs in which the light quanta are not absorbed.
The natural question remains of the source of the energy that
goes into reorienting the director. The answer is that on the
average the light quanta are slightly red-shifted in the non-
linear processes. For example, the light transmitted through
a GON cell when the intensity is abruptly turned on has the
time-dependence
Etrans (0 = Einc (t) exp [ij&0 + J8j4nonlin/ (t) — io>0*],

(7.1)
Here we have f ( t ) = 1 - exp( - T t ) . Since <5<4nonlin >0,
then Eq. (7.1) implies that the instantaneous frequency
^inst = — d<j>/dt is shifted by the amount

dinary wave will undergo thermal self-defocusing, while the
ordinary wave will undergo self-focusing. In order of magni-
tude one can write

— to0 = — re-r*6^nonlin < 0. (7.2)

Precisely this quantum defect #(«0 — wins,) is spent on
establishing the equilibrium orientation. Under ordinary
conditions this is an extremely small quantity: when <5^non.
,in ~ 20 - 2ir~ 120 and F ~ 10 ~' s~', the relative frequency
shift \6(o\/co amounts to less than 10~ M. If we multiply the
typical power density 103 W/cm2 = 10!0 erg/cm2 s by the
time r~ 10 s and by the factor 10~14, we obtain an energy
expenditure of about 10~3 erg/cm2. And actually, the Frank
energy for 50% reorientation of the director in a cell of
thicknessL = 100^m isFL = LK(w/L)2^ 10~3 erg/cm3.

These estimates show that a quite insignificant absorp-
tion, 1 —exp ( — crZ,)~10~13 would suffice to make the
light beam release a tenfold larger energy in the medium.
This implies that if we can find a suitable mechanism trans-
forming the absorbed energy into a change in the refractive
index, then nonlinearities caused by absorption can prove to
be far stronger than all the "dynamic" nonlinearities treated
in the previous sections of our review.

The simplest group of effects involves the heating of the
medium upon absorption of light; we shall start with them.

7.1. Thermal self-focusing and self-defocusing

A distinctive feature of the mesophase of an LC is the
very strong dependence of the refractive index on the tem-
perature. While in an isotropic phase we have dn/dT-x (dn/
dp)(dp/dT)^ - (10-4-10-5)deg-',forthemesophaseof
MBBA at T= 33 °C (i.e., T- TC~10°C) we have Bn\\/
dT^. - 4x 10~3deg~'. The quantity dn±/dTis positive but
more than five times smaller in modulus. Consequently, in
propagating through a weakly absorbing NLC, the extraor-

-e-r«). (7.3)

Here a is the absorption coefficient (cm ~ l ) , pCp (erg/cm3

deg) is the heat capacity per unit volume, F~ l is the time for
establishment of a stationary temperature profile, with
T~x[a~2 + (ir2/L2)];^~10~3cm2/s is the heat-conduc-
tivity coefficient, a is the transverse dimension of the beam,
and L is the thickness of the cell with well-cooled walls. Ef-
fects of this type were observed experimentally53 as early as
1974. Both the power and the duration of the radiation of the
argon laser were sufficient for the detection of GON. To do
this, it was necessary to incline the cell with respect to the
beam, which unfortunately was not done. From our view-
point, this example convincingly shows how nontrivial it
was to acknowledge the fact that the light field can reorient
the director in a quite appreciable fashion.

For the extraordinary wave, the thermal effects lead to
defocusing, and GON to self-focusing. In principle, one can
compensate these nonlinear effects by choosing the angle of
incidence.

7.2. Stimulated temperature scattering

If two waves of somewhat differing frequencies are
propagating in a weakly absorbing medium, the interference
term in the temperature perturbation is phase-shifted with
respect to the intensity pattern. Consequently a stimulated
temperature scattering of the light (STS) arises (cf. Sec. 5),
caused by absorption (A). For isotropic liquids it has been
studied in Refs. 54—56 and many other papers. Temperature
SS in the mesophase of an LC has been discussed in Refs. 40
and 57; the essential point consists in the large magnitude
and the anisotropic character of the derivative de/dT. For
example, for STS of opposing extraordinary waves propagat-
ing perpendicular to the director, with/lvac = 0.5 /«n, dn\\ /
dT = -4xlO"3deg~1,^=;10~3cm2/s, andpCp^l.5//
cm3-deg, we have the threshold power density for STS
/>thr ^6X 10s W/cm2, T=;2X 108 s"1. If we make the ab-
sorption not too small, a^5 cm"1, Ps20Pthr, then at the
length L = 0.1 cm of the medium, the amplification of the
wave \E2\

2 amounts to exp( gz)xe10 times. In the time
T~7r^1=;3xlO~8s, the medium having these parameters
is heated by the beam \El \

2 by about 1.5 °C. Thus the obser-
vation of STS-A in NLCs using pulsed lasers seems quite
realistic.

7.3. Thermal reorientation

In a homogeneous specimen of a nematic, a change in
temperature leads to a local change in the refractive indices
«H and «±, but does not alter the homogeneous orientation of
the director. If we are dealing with an inhomogeneous nema-
tic, e.g., in a hybrid cell (see Sec.3.4) or a twist cell, the
heating of the specimen upon absorption must lead to a
change in the profile of the director in the volume owing to
the temperature-dependence of the Frank constant. We can
expect this mechanism to manifest effects of self-focusing,
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defocusing, grating ON, SS, etc.
We can expect interesting phenomena in cholesterics,

where the equilibrium parameter q0 = dd /dz depends on the
temperature. For example, far from Bragg resonance a lin-
early polarized wave can propagate through the CLC (with
a smoothly rotating direction of polarization). Owing to
dichroism, the heat release in the CLC proves to be modulat-
ed with a period equal to the period of the helix. Then, owing
to the temperature-dependence of q0, the course of the angle
0(z) must be distorted within the limits of a period. In turn,
this can lead to the appearance of higher Bragg orders of
reflection at normal incidence.

In C smectics, in addition to the thermal effects dis-
cussed above, another effect exists: a temperature-depen-
dence of the magnitude of the angle £ between the n-director
and the normal to the smectic layers. If we can assume the
orientation of the layers to be fixed in the employed geome-
try, then heating must lead to a local rotation of the optical
axis with all the consequences for nonlinear optics that stem
from this. Effects of bistability based on thermal orienta-
tional nonlinearity have been discussed in Refs.75 and 76.

7.4. Nonlinearity due to photostimulated transitions

A new, substantially nonthermal mechanism of large
optical nonlinearity due to absorption has been found.58"60 A
planar cell containing a mixture of cyanobiphenyls 10-//m
thick or containing MBBA 65-fim thick59'60 was illuminated
with the field of two plane waves incident normal to the
director and forming a small angle A# (up to several de-
grees) with one another. The interference of these waves
inscribed a refractive-index grating with the spatial period
A = /ivac/A#. The intensity of diffraction by the grating be-
ing formed of a third (probe) beam, as well as that of the
inscribing waves, was recorded. The experiment had a geom-
etry such that the orientational nonlinearity could make no
appreciable contribution to this process. The authors58"60

also convinced themselves that the thermal nonlinearities
under the experimental conditions would yield a nonlinear-
ity smaller by several orders of magnitude and faster by a
factor of about 103 than that experimentally observed.

A model of reversible transitions of the molecules of the
LC in the mesophase upon absorbing light was proposed as
the mechanism in the cited studies. The greatest nonlinear-
ity, |£2|~5 cmVerg, was measured at the wavelength
/I = 0.44 fj,m (helium-cadmium laser), for which the ab-
sorption coefficient of MBBA amounted to cr~25 cm"1.
This nonlinearity declined by about ten times in going to the
wavelength A = 0.48 ^m, for which ax 18 cm"1. If we as-
sume that the modified state of the molecules persists in the
homogeneous medium for the time T and diffuses with the
coefficient D (cmVs), then we can write the following phen-
omenological equation for SE:

dt (7.4)

Here the constant £2 is proportional to the absorption coeffi-
cient. The measurements60 of the time course of 8e and the
dependence of SE on the angle A# between the interfering
waves enabled determining the value of the parameters from

Eq. (7.4): 1^1.6 s, D± = 1.3xl(T7 cmVs. The authors
also convinced themselves that the strongest nonlinearity
arises upon absorption of the extraordinary wave. More-
over, a result of the process is preferentially the change in the
value of £||, while the value of EL varies more weakly by a
factor of about two.

It is interesting to compare all these results with those
from the earlier study,61 where the processes of deactivation
and diffusion of the dye "methylene red" mixed into the
mesophase of MBBA were studied. In Ref. 61 about the
same technique was applied of inscribing the amplitude-
phase gratings with the radiation of an argon laser. How-
ever, owing to strong absorption in the green region of the
spectrum, the beam of a helium-neon laser, A. = 0.628 fim,
was used for readout of the grating. The values obtained
there amounted to about several seconds for the time T, and
Z>H ;=1.5xl(r7cmVs,.D1 =;2.4xlO-7cm2/s.Wenotethat
also in Ref. 61 all the experimental conditions existed to
enable detecting GON by choice of the inclination of the
beams.

Returning to Ref. 60, let us present the estimate from it
for the relative change in the polarizability 13 of an individual
MBBA molecule upon phototransformation: A/?//8~ 10""1.
The methodology of Ref. 60 did not allow determining the
signs of <5£|| and 8eL, i.e., ascribing the effect to self-focusing
or self-defocusing. An extremely important experimental
fact determined in Ref. 60 was the total absence of that type
of nonlinearity in the isotropic phase of the same specimens.
Moreover, at a light power density of the order of 4 W/cm2,
saturation of the nonlinear increment to the refractive index
was observed. Actually, with an absorption a~ 25 cm ~' and
a flux 7~ 1.5X 1019 quanta/cm2 in the time T~ 1.5 s, about
6x 1020 photoexcitation events/cm3 occur. This constitutes
an appreciable fraction of the total density JV0~3xl021

cm~3 of MBBA itself. Therefore, despite the large value of
the constant £2, it proves impossible to obtain a considerable
(<5<I> £ 2ir) nonlinear phase shift based on the studied mech-
anism in cells containing MBBA of thickness L S 60 fim,
owing to saturation.

In our opinion studying this type of nonlinearity in the
mesophase of other LCs is of great interest.

8. ON THE HISTORY OF THE PROBLEM

The orientational nonlinearity of the isotropic phase of
an LC near the transition point to the mesophase was studied
in the early papers of G. Wong and Y. R. Shen,62'63 Rao and
Jayaraman,64 and others; see also the review by Shen.65 In
that work it was possible to obtain experimentally a nonlin-
ear constant of the order of 2X 10 ~9 cmVerg. It was not
possible to approach closer to the transition point and thus
to elevate the constant, owing to turbidity of the specimen. A
study by B. I. Lembrikov66 3) has treated theoretically the
effect of mutual modulation of the phase in the normal prop-
agation of the o- and e-waves in a nematic (grating ON in
our terms). Herman and Serinko67 have treated theoretical-
ly the process of reorientation of the director of an NLC by a
pair of interfering light waves. Here the cell was supposed to
be brought into a state near the Freedericksz transition by
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using an external magnetic field. The process was studied of
amplification of a weak wave by self-diffraction of a strong
wave, and the low level of power required for observing ef-
fects was noted, especially near the FT threshold. B. I. Lem-
brikov68 has treated theoretically stimulated scattering (SS)
by second sound in a SLC-A with an amplification constant
of the same order as for Mandel'stam-Brillouin stimulated
scattering in ordinary liquids. B. Ya. Zel'dovich and N. V.
Tabiryan57 have calculated the cubic nonlinearity of an
SLC-C and the corresponding SS processes owing to orienta-
tional, thermal, and orientational-thermal mechanisms. The
estimates made indicated a high value of the nonlinearity
constants. B. Ya. ZePdovich and N. V. Tabiryan40 have cal-
culated the cubic susceptibility tensor of an NLC in light
fields owing to reorientation of the director, have studied
processes of orientational and temperature SS in NLCs, and
noted anomalously high values of the amplification coeffi-
cients. B. Ya. Zel'dovich, N. F. Pilipetskii, A. V. Sukhov,
and N. V. Tabiryan12 were the first to discover experimental-
ly the giant orientational nonlinearity (GON) of the meso-
phase of an NLC—the light analog of the Freedericksz effect
with inclined orientation of the field with respect to the di-
rector. An experiment on self-focusing of low-power radi-
ation, S 10 ~2 W, was set up to test the theoretical predic-
tions of the present authors, which were being developed by
them independently of the studies of Lembrikov and of Her-
man and Serinko. In our study12 these predictions were fully
confirmed. Khoo and Zhuang69 have carried out an experi-
mental test of the predictions of the study of Herman and
Serinko67 by observing the amplification in the case of self-
diffraction. The theoretical studies of B. Ya. Zel'dovich and
N. V. Tabiryan26,70'71 contained a detailed discussion of the
processes of GON, grating ON, SS, and wave-front conjuga-
tion based on a mechanism of orientational nonlinearity of
the mesophase of SLCs, NLCs, and CLCs. In an experimen-
tal test of the results of Ref. 12 on the existence of GON-self-
focusing with inclined incidence of the light, A. S. Zolot'ko,
V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag17 used
a homeotropic cell. Here they were able to detect experimen-
tally a threshold reorientation of the director for a normally
incident beam with power of the order of 0.1 W—a light-
induced Freedericksz transition (LIFT) in the narrow
sense. S. G. Odulov, Yu. A. Reznikov, O. G. Sarbei, M. S.
Soskin, E. K. Frolova, and A. I. Khizhnyak58 have reported
observing a large nonthermal absorption nonlinearity of the
mesophase of an NLC by the self-diffraction method. A the-
ory of threshold LIFT, including its qualitative differences
from the theory of the FT in quasistatic fields, has been pre-
sented by B. Ya. Zel'dovich, N. V. Tabiryan, and Yu. S.
Chilingaryan.32

A large number of interesting theoretical studies has
been performed in the short period since 1980 on the optical
nonlinearity of liquid crystals. A bibliography approximate-
ly up to 1983 can be found in Ref. 9.

In closing these remarks on the history of the problem,
we wish to note the following. The possibility of observing
giant nonlinear effects in thin (~0.01 cm) layersofanLCat
a very low power level (~10~2-10~2 W) was not at all
obvious at the time of appearance of the first theoretical

studies. As an example, we draw attention to the detailed
review on nonlinear optics of LCs of the "preorientational
period." 77 Apparently the impetus to a broad study of orien-
tational nonlinearity in the socialist countries were Refs. 12
and 17, and in the Western Hemisphere, Refs. 67 and 69.

CONCLUSION

In essence the study of orientational optical nonlinear-
ity is just beginning. In a number of cases the nonlinear ef-
fects enable one to determine parameters of the LC that are
difficult to measure by other methods. A distinctive feature
of the optical actions on an LC is their high spatial localiza-
tion, down to dimensions A/2ff = /lvac/47rn~0.02 fim.
Moreover, the nonlinear effects in the mesophase of an LC
enable one to create a model for many phenomena of interest
to coherent optics using low-power lasers. The role of the
possible nonlinear effects (harmful in some cases) must be
taken into careful account in building LC devices designed
to transmit light fluxes of even moderate power.

In our opinion a detailed experimental verification of
the numerous predictions of the theory is highly desirable.
We are almost convinced that many unexpected things will
be discovered along this line, perhaps even more interesting
that what we have been concerned with for the past several
years and in which we are so delighted now.

The authors thank R. S. Akopyan, L. M. Blinov, E. I.
Kats, N. F. Pilipetskii, A. V. Sukhov, and V. V. Shkunov for
valuable discussions. We are deeply grateful to Yu. P. Raizer
and V. V. Titov for supporting the writing of this article.

"The condition for existence of hysteresis of LIFT in a broad beam and the
qualitative behavior of 0( p) have been found in Ref. 32. Unfortunately
the diagram given in this paper inaccurately conveyed the character of
the correct analytic expressions derived in this same study. H. L. Ong8

has pointed out this situation, but has employed an erroneous procedure
of deriving the variational equations that in principle does not allow one
to describe GON.

2)Transl. editor's note: The second term in Eq. (5.3) appears to be incor-
rect as reproduced here from the Russian original, but, since the authors
claim that it is in any event unimportant, no effort was made to correct
the error.
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