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A new direction in the field of x-ray optics is discussed. This new direction is associated with
diffraction at grazing angles of incidence and diffraction; it is associated with the excitation of x-
ray surface waves and quasiwaveguide modes, and with the study of the angular and energy
dependences of the reflection spectra. An analysis of theoretical and experimental investigations
in this area is carried out with the aim of determining the possibility of using these diffraction and
reflection features for the study of surface layers, thin films and interfaces. The extremely asym-
metric two- and multiwave diffraction schemes and the two-wave symmetric noncoplanar dif-
fraction scheme are analyzed, as is the anomalous reflection of the x rays. The angular depen-
dences of the anomalous reflection are calculated on the basis of a model of a nonuniform surface
layer. It is shown to be possible to use the angular dependence of the reflection for the determina-
tion of the statistical characteristics of surface nonuniformities. Experiments for the determina-
tion of short range order in surface films on the basis of the analysis of the extended fine structure
of reflection spectra are discussed.
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INTRODUCTION waves—x-ray surface waves and quasiwaveguide modes.

Recent experiments demonstrate that x-ray optics has
become a tool for the study of two-dimensional structures.
Evidence for this conclusion is given by investigations of
surface reconstruction of semiconductor and metal crystals,
study of the phase transition in a monolayer of atoms on the
surface of a single crystal, and by the study of the interface
between a single crystal and a thin crystal film grown epitax-
ially on it. These advances stem from the use of a novel dif-
fraction geometry based on the diffraction of waves that de-
cay exponentially in the medium. Since the penetration
depth of the wave into the medium amounts to some tens to
hundreds of angstroms, such diffraction schemes are sensi-
tive to the structure of the surface. Investigations of these
diffraction schemes have led to a new type of nonuniform
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The x-ray surface waves are strongly coupled to the bound-
ary of the crystal; they have their maximum intensity at the
crystal boundary, decay exponentially on both sides of it,
and have an anomalously great propagation length along the
surface. The quasiwaveguide modes occur in the case of dif-
fraction in thin crystal films, and in this case the diffracted
wave turns out to be “locked” within the film. Waves having
this structure are of interest both from a general physics and
an applied point of view, particularly in the generation of
coherent x rays and gamma radiation in crystals.

Diffraction methods are associated with the study of
long range order in crystalline systems. Studies of the fine
structure of reflection spectra have made it possible to deter-
mine the structure of the short range order in amorphous
film containing a few atomic layers.
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X-ray diffraction methods are ordinarily regarded as
suitable only for the investigation of bulk properties of crys-
tals. This is because the characteristic length of formation of
the diffracted wave that carries the basic information on the
crystal structure lies in the range 1-100 um. Therefore, in
the investigation of thin films consisting of a few atomic lay-
ers, the intensity of the diffracted wave is extremely low. At
first glance this same situation would appear to hold in x-ray
absorption spectroscopy, since the optimal length of the
sample for obtaining the necessary contrast is close to the
absorption length, which also lies in the above-mentioned
range when radiation is used whose wavelength corresponds
to the K absorption edge in media of intermediate atomic
number.

The thickness of the layer in which the diffracted wave
is formed in the case of diffraction in reflection depends on
the angle of incidence of the wave onto the crystal, and it
decreases with decreasing grazing angle, i.e., the angle
between the beam and the crystal face where it enters. It is
natural then in studying the properties of thin films to work
at grazing angles of incidence. The investigation of diffrac-
tion in this geometry poses the problem of determining the
dependence of the depth of formation of the diffracted wave
on the angle of incidence as the grazing angle goes to zero.
Diffraction schemes which use grazing angles of incidence
or of diffraction have been called extremely asymmetric dif-
fraction schemes. A discussion of these schemes is given in
section 1. In extremely asymmetric Bragg diffraction a spe-
cularly reflected wave is formed in the vacuum along with
the diffracted wave, and its intensity exceeds that of the dif-
fracted wave by several orders of magnitude. The most strik-
ing physical results have been obtained with the use of a
novel arrangement, that of two-wave symmetric nonco-
planar diffraction. A discussion of this scheme is given in
section 2. In this case both the incident and the diffracted
wave make a small angle with the surface of the crystal. The
intensity of the diffracted wave is now comparable to that of
the specularly reflected wave, and for certain angles of inci-
dence the specular wave is suppressed.

A discussion of the mechanisms for the excitation of x-
ray surface waves and quasiwaveguide modes and the fea-
tures of their propagation are given in sections 3 and 4.

In diffraction arrangements using grazing angles of in-
cidence, the microrelief of the crystal surface becomes im-
portant, since surface roughness causes an angular broaden-
ing of the reflected beams. In section 5 we discuss anomalous
x-ray reflection effects that arise when the angle of incidence
of the x rays is close to the angle of total external reflection
and that are caused by the nonuniformity of the surface lay-
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er. Calculations are made of the angular dependence of the
nonspecular refiection and a comparison is made of the theo-
retical and experimental results. It is shown that from the
angular characteristics of the nonspecular reflection one can
obtain information on the statistical properties of a nonuni-
form surface.

The determination of short range order in surface layers
from an analysis of the extended fine structure of the reflec-
tion spectra is discussed in section 6.

Until recently, surface sensitive methods in x-ray optics
have been based on measurements of the angle and energy
dependences of the yield of secondary processes. Among
these methods are, for instance, various versions of the meth-
od of x-ray standing waves.’*%* Experimental investigations
have been carried out on the fluorescent® and photoelec-
tric® yields as a function of the x-ray angle of incidence
under conditions of total external reflection. In the method
of EXAFS (Extended X-ray Absorption Fine Structure)
spectroscopy, the photoelectron,5¢%" Auger electron,®® and
fluorescence®® yields have been studied as a function of the
energy of the incident x rays.

In these methods the thickness of the layer that is inves-
tigated is small because of the small escape depth of the sec-
ondary particles. However, in the present paper we shall not
touch upon this aspect, since, in our opinion, it is properly
the subject of a separate review. In this review we shall dis-
cuss only those methods in which the properties of the sur-
face and surface layers are studied via angular and energy
spectra of elastically scattered x rays.

1. EXTREMELY ASYMMETRIC DIFFRACTION

a) Two-wave diffraction

The principal diffraction schemes in x-ray optics are the
Laue (Fig. 1a) and the Bragg (Fig. 1b) diffraction geometries.
The Laue diffraction geometry is that of diffraction in trans-
mission, where the energy flux of the waves leaving the lower
face of the crystal (for a nonabsorbing crystal) is equal to that
of the wave incident on the crystal. In the case of Bragg
diffraction there exists a range of angles of incidence within
which there is total reflection of the wave incident on the
crystal. An important feature of the Bragg diffraction geom-
etry is the possibility of decreasing the angular width of the
reflected beam relative to that of the incident beam and the
possibility of increasing the electric field strength (for more
detail see, e. g., the monograph of Ref. 1). These possibilities
are realized in asymmetric diffraction, i.e., when the angle 3
between the entrance face of the crystal and the reflecting
plane (the dashed line in Fig. 1) is nonzero (Fig. 1c). When

FIG. 1. Mutual arrangement of the wave vectors of the inci-
dent (x,), diffracted (x,, ), and specularly reflected (x,, ) waves.
a) Laue diffraction geometry; b) Bragg diffraction geometry;
c) asymmetric diffraction.
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6,> 0,, the angular width of the reflected beam decreases, as
mentioned above, and when 6, < 8, the linear dimensions of
the reflected beam decrease relative to those of the incident
beam, and this also leads to an increase in the field strength.
These properties of asymmetric diffraction have found wide
application in various x-ray optics devices. If 6, and 6, are
close to 7/2, then the corresponding diffraction schemes are
termed extremely asymmetric. The case 8, = 7/2 is inter-
mediate between the Bragg and Laue diffraction cases. For a
long time the extremely asymmetric diffraction schemes
were not studied in x-ray optics. The first detailed investiga-
tions of this diffraction geometry were reported in Refs. 2-5.

Later there followed a series of investigations both of the .

cases of x-ray®'® and neutron?®?2 diffraction.

Let us consider the features of extremely asymmetric
diffraction. For §,~ /2 there appears in the vacuum along
with the diffracted wave a specularly reflected wave propa-
gating at an angle §, with respect to the normal to the inter-
face(x,, in Fig. 1c). When the grazing angle 7, = (7/2} — 6,
liesin the range 0 < 77 < 7., Where 77, = |y ¢! is thecritical
angle of total external reflection of the x rays and y g is the
real part of the polarizability, the intensity of the specular
wave exceeds by several orders of magnitude the intensity of
the diffracted wave. This is explained principally by the dif-
ference in the exit angles of the waves. " The reflection coeffi-
cients R, and R, are not significantly different:

sin20g Ip R .-Im
. I. m

¥ In
Ry = ~ I’ T

Yo Io ~

where ¥, = cos 6, ¥, = cos 6, and I, I, and I, are, re-
spectively, the intensities of th diffracted, the specular, and
the incident waves.
As we have noted above, for 6,> 6, the angular width

A6, of the region of total reflection of the incident beam is
larger than A8, for the reflected wave. The relation between
them is given by the following expression’:

Aﬁh sin n,

AO., sinnp ?

where 7, = (7/2) — 6,,. Calculations which take into ac-
count the particular features of the extremely asymmetric
diffraction scheme have shown that with decreasing 7, the
angular width of the diffracted wave does not go to zero, as
would follow from the above formula, but approaches a
limiting value.

Features that are interesting from a physical point of
view appear in the case 8, ~7/2. In Ref. 6 it was shown that
in this case total internal reflection of the x rays is possible.
As we have noted above, far from Bragg diffraction condi-
tions the index of refraction is less than unity in the x-ray
range. However, near the Bragg diffraction conditions, as a
result of dynamic interaction between the refracted and dif-
fracted waves, a strong spatial dispersion is observed, lead-
ing to the result that the modulus &k ,, of the wave vector of the
diffracted wave can become greater than that of the wave
vector in vacuum (x = w/c): k, = xe, >x,i.e, e, > 1. In

UIn the Laue diffraction geometry the intensity of the transmitted wave
increases.
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thecase 8, = 7/2, when the angle of incidence is varied near
the value 8,~26y (where 0y is the Bragg diffraction angle
for the chosen family of planes) the modulus &k, can vary
within the limits

x(1—LBL) o < % (14+181)

without significant change in the intensity of the diffracted
wave. Consequently, by a choice of the point of excitation on
the dispersion curve, one can make the projection k ,, of the
wave vector of the diffracted wave in the medium larger than
x. Then from the condition of continuity of the tangential
component of the wave vector at the interface we obtain
X, = %> — k§, =iJki — x*. Thus, the diffracted wave
in the vacuum becomes nonuniform, being attenuated with
distance from the interface.

A theoretical investigation of these diffraction schemes
has shown that it is necessary to abandon the traditional
approximations of dynamical diffraction theory. Since the
refractive index in the x-ray region is only slightly different
from unity, n = 1 — §, in the solution of the dispersion equa-
tion the approximation that the modulus of the refraction
vector Ak = x, — k_ is much smaller than x, or k, is widely
used, where x_ and k. are, respectively, the projections, on
the normal to the interface, of the wave vectors of the inci-
dent and refracted waves. Actually, for 7, €7,€7/2, we
have Ak~x5, whereas x, = xsiny, and consequently
%, »4k. However, when the angle 7, approaches 7, x, ap-
proaches Ak = x7_ and the condition »x, ~Ak > k, is satis-
fied. There are similar changes also for the case 7, ~7,.
Therefore, while in the traditional theories (see, €. g., Ref. 1)
of dynamic two-wave diffraction the dispersion equation of
fourth degree

(k3 — %) (k — k2) = 8 (eqen)? Xixm, (L.1)

where k = xye = %1 + yo, ¥ 1 is a Fourier component of
the polarizability of the crystal, and e, and e, are the unit
vectors of the polarization of the waves, is replaced by a
second degree equation

(ko — ) (k) = 2~ (e080)2 X5 (1.2)
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FIG. 2. Width 48, of reflection curve as a function of the angle of inci-
dence 7, (Ref. 7). Solid curve: theory of extremely asymmetric diffraction.
Dashed curve: calculated from a dispersion equation of the form (1.2).
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in the case of extremely asymmetric diffraction this replace-
ment is not admissible. The solution of (1.1) cannot always be
given in a compact analytical form, which makes the analy-
sis of this diffraction geometry difficult. Various approxi-
mate solutions of Eq. (1.1) have been obtained.”*° Figure 2
shows the dependence of the angular width A6, of the reflec-
tance curve on the grazing angle 7, for calculations with Eq.
(1.1) {the solid curve) and Eq. {1.2) {the dashed curve). It can
be seen that these two curves diverge significantly for small

No-

b) Multiwave diffraction

In multiwave diffraction schemes a single one of the
waves taking part in the diffraction or various combinations
of the waves can make a small angle with the surface of the
crystal, and among these combinations is included the set of
all the waves, when all the reflecting planes are perpendicu-
lar to the entrance surface of the crystal. In crystals oriented
so that the entrance surface coincides with one of the crystal
planes, extremely asymmetric diffraction schemes are as a
rule, not two-wave, but multiwave. Actually, in oriented
crystals the diffracted wave (for 8, ~/2) or the refracted
wave (for 8, ~m/2) propagates almost parallel to one of the
crystal planes. Therefore, if in the diffraction there is a plane
that makes an angle ¢ with the surface of the crystal, then in
the diffraction there will also be a plane making an angle

— o with the surface (Fig. 3a).
Let us now discuss the features of the extremely asym-

metrical multiwave diffraction scheme. In Ref. 23 the dif-
fraction of Cu K S radiation by the (311) planes of single
crystal silicon was studied for the case where the entrance
surface coincided with the (100) plane. In this case we have
three-wave diffraction (311)/(311)/(600) for a small angle of
incidence (scheme 1) or (311)/(600)/(311) for a large angle of
incidence (scheme 2). Figures 3b and 3¢ show the form of the
angular dependences of the intensities of the waves in vacu-
um. Figure 3b (scheme 1) shows the intensity I, of the specu-
larly reflected wave and the intensity I, of the diffracted
wave as a function of the grazing angle 75, for various values
of the angle ¢ = ¢ — @, in the plane of the entrance sur-
face, where @, corresponds to the Laue three-wave point.
Figure 3c (scheme 2) shows the intensities 7, and I, of the
diffracted waves as a function of the angle of incidence
50 =mn,—20g

Thus, for grazing angles of incidence the angular depen-
dence of the intensity of the specularly reflected wave devi-
ates only insignificantly from the corresponding one-wave
curve. The angular width of the diffracted wave in vacuum
[Z351(70)] increases substantially and becomes comparable to
17.. The intensity of the diffracted wave is several orders of
magnitude lower than that of the specularly reflected wave.
We note that just as in the case of two-wave diffraction, the
coefficient of reflection R ;, and of specular reflection R,,, are
not significantly different.

At large angles of incidence the main features are the
possibility of internal reflection and of excitation of x-ray
surface waves (see section 3).

FIG. 3. a) Geometry of extremely asymmetric
diffraction in oriented crystals; b} /., and I, in-

tensities of specularly reflected and diffracted
waves, respectively, as functions of grazing an-
gle 7, of the incident wave (scheme 1). Curves 1-
3 correspond to deviations 4¢ = 1) 0, 2) 337, 3)
5.6'; c) intensities I;,, and I, of diffracted

0 0.4 08 12 7.6

b)
7 L5 T600
0.8
a.6 1
0,41
c) 2.2 i I L ) 1
0 7 2 3 4 5 &

73 Sov. Phys. Usp. 28 (1), January 1985

waves as functions of the angle of incidence
(scheme 2).
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Mo — 20p, arc sec
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An interesting feature of coplanar three-wave diffrac-
tion is that the degree of the dispersion equation in this case
is reduced relative to the case of two-wave extremely asym-
metric diffraction. Actually, now the dispersion curve be-
comes symmetric about the interface and its equation be-
comes a third degree equation in k2. A third degree
dispersion equation is a good approximation also for weak
noncoplanarity, where the Laue point moves off the plane
formed by the reciprocal lattice vectors of the reflecting
planes.

2. TWO-WAVE SYMMETRIC NONCOPLANAR DIFFRACTION

a) General characteristics of the diffraction scheme

When the reflecting planes are perpendicular to the en-
trance surface of the crystal, then a situation is possible
where both the angles %, and 5, approach close to 7, simul-
taneously. This diffraction scheme can be called nonco-
planar two-wave diffraction, since, in contrast to usual two-
wave diffraction schemes,' here the incident, the refracted,
and the diffracted waves do not lie in a single plane. A calcu-
lation of the amplitudes of the specularly reflected and the
diffracted waves in vacuum for this diffraction geometry was
first carried out in Ref. 24, where it was noted that in this
geometry instead of a single critical angle of reflection, there
are several.

The geometry of symmetrical noncoplanar two-wave
diffraction was obtained experimentally in Ref. 25. These
authors studied the structure of aluminum films grown by
molecular beam epitaxy on GaAs crystals having a 2 um
thick surface layer produced by molecular beam autoepi-
taxy. The variation of the aluminum lattice constant in the
planes parallel to the interface was studied as a function of
the distance from the interface. For this purpose the authors
used diffraction by aluminum planes perpendicular to the
entrance surface in films of various thicknesses from 75 to
2000 A. The grazing angle of the x-ray beam was chosen
such that 7" < 775 < 7{°*4%, i.e., the wave was incident on
the crystal at an angle greater than the critical angle of re-
flection at the film and less than the critical angle of total
reflection from the substrate. This condition led to an in-
crease in the intensity of the incident wave compared to that
in transmission experiments. In Table I, which is reproduced
from Ref. 25, are shown the values of the measured shift
|, — % | in units of 27/a,, for various film thicknesses for
the (220) reflection (the plane of the crystal was the (00/)
plane), where x, is the wave vector of the diffracted wave,
%, is that of the specularly reflected wave, and g, is the
lattice constant of the GaAs substrate.

In Refs. 26-28 experiments were carried out on the use
of noncoplanar two-wave diffraction geometry for the study

of crystal surfaces. In Ref. 26 the surface structure of single
crystal germanium and the formation of the (2 X 1) structure
of the Ge (001) surface were studied. It was shown that the
surface reconstruction involves not only the first layer. In
Ref. 27 the solid-liquid phase transition in a monolayer of Pb
on the Cu (110) surface was studied. In this investigation
synchrotron radiation was used as the source of x rays. In
Ref. 28 the formation of the (2 X 1) structure on the Au {110)
surface was studied.

These experimental investigations showed that this
method has a wide application in the study of two-dimen-
sional phase transitions, the growth of thin films, and the
behavior of clusters on crystal surfaces.

The features of the symmetric noncoplanar two-wave
diffraction geometry that are associated with the possibility
of excitation of x-ray surface waves have been studied in
Refs. 23 and 29. The theoretical and experimental investiga-
tion of this diffraction geometry were the subjects of Refs.
30-34.

b) Features of the diffraction geometry

In this section we derive, on the basis of the formulas of
Ref. 23, several simple relations that characterize the ratio of
the intensities of the specular and diffracted waves in vacu-
um and the magnitude of the linear displacement of the re-
flected beam relative to the incident beam. There is always a
displacement of the reflected beam relative to the incident
beam when the Fresnel coefficients are complex, and in this
case the displacement can serve as a measure of the degree to
which the diffraction is dynamic.

Figure 4 shows the diffraction arrangement and a cross-
section of the dispersion surface. This diffraction geometry
permits an exact solution of the Fourth-degree dispersion
equation (1.1). The solution has the form

2
kg = x? (3—% + ]/54—'{' (€0, €n)? Xf,Xh) = %%y,

(2.1)

where £ = 1 + y, and @ = 28¢ - sin 2¢, - sin0, is the devi-
ation parameter. Figure 4b illustrates the existence of two
critical angles

Nei =V 1—eg.

One of the critical angles corresponding to dispersion
branch 1 in Fig. 4b is associated with a Borrmann mode,
which has antinodes of the field in the space between the
planes and nodes at the atom planes. The second critical
angle is associated with an anti-Borrmann mode, which has
the antinodes of the field 4t the atom planes. The difference
between 7)., and 7, is substantial and reaches several min-
utes of arc. For example, for the (220) reflection in silicon of
Cu Ka radiation for zero deviation parameter, Ap = 0, we

(2.2)

TABLEL

,;l'hickness of aluminum film in atomic] 1000 45 100 35
Hayers

| shift of A1(220) - 0.0025 0.005 0,0128
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FIG. 4. a) Two-wave noncoplanar diffrac-

b) tion geometry. Cross sections of dispersion

0 surface: b) formed by the plane perpendicu-
lar to the reciprocal lattice vector H; and
passing through its middle; c) formed by exit
face of the crystal.

(hkt)

have7_, = 8.4'and 7., = 16.9". Thus, if the grazing angle of
the incident beam lies in the range 7., <7, < 7., then one
can separate in space those beams that correspond to the
Borrmann and anti-Borrmann modes. The waves that corre-
spond to the anti-Borrmann mode will emerge into the vacu-
um through the entrance surface of the crystal along the
direction of the specularly reflected wave, while the waves
corresponding to the Borrmann mode can emerge through
the side or the lower surface of the crystal. The waves corre-
sponding to the various states of polarization can be separat-
ed in exactly the same way. For example, for the case consid-
ered above, but for polarization in the plane of diffraction,
we obtain 777 = 10.2’ and 77 = 15.9".

The form of the dependence of the intensities of the
specularly reflected and the diffracted waves in vacuum on
the angle of incidence and on the deviation parameter is
shown in Fig. 5.

The expressions for & ,, the amplitude of the specularly
reflected wave and &, the amplitude of the wave in vacuum
have the simplest form for a = 0.?

13 ‘Jm _ Tis+Tas rl(la) _ %h _ Tis+Tag

rg=lponde, rpofpongm oy

where & is the amplitude of the incident wave and r;; is the
Fresnel coefficient for each sheet of the dispersion surface
(the parameter s defines the polarization state of the incident
wave: s = L and s = || mean, respectively, perpendicular and

Z'The general expression for the coefficients 7,, and r,, when the polariza-
tion vector of the incident radiation is perpendicular to the plane of
incidence has the form

_ (eq1—2) (%t kyg) (Rhzt+kz1) — (B3 —8) (%2 — kz1) (Mhz+ K2a)

(eol — &) (nz+ k) (hz+ kz1)— (oa —8) (%z+ Kz1) (%hztK2e)?
2 (@€h) An%z (kz1— Kzs)

= €01 —8) (%5 T Kz2) (%hz T K1) — (8oa — &) (6z T Kz2) Kbzt Kz2)

where x, is the projection of the wave vector of the incident wave on the
normal to the interface, x,, = (x? — xa)'/? is the same for the vacuum
diffracted wave, and k,, and k_, are the same for the waves in the medi-
um. From these expressions it follows, in particular, that in a nonabsorb-
ing crystal, in the region of excitation points that correspond to purely
imaginary values of k., , k.,, and x,,, the coefficient |7, | = 1 (for more
detail, see section 4).
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(000}
c)

parallel to the plane of incidence):
cos 0,— l/a( ) __sin3 0,

r
= cos 6+ V agi)—sm’ 90
efﬂ) c0s 6, — l/afﬂ) —sin3 6,
r(“ — s (2.4)
e{? cos 6+ Vag‘? —sin? 6,
For 7,<7,, formula (2.3) has the form
(8) = COS (¢(C) (l)) exp [ l ((P(C) (8))]’ (2 5)
ri® = —isin ((Pul Ls)) exp[—i ((P(n u))]’ *
where

g =aretg () sin? 6, —e§? (cos 8)™),

¢y = arctg (]/ssinz 0, — e$) (eff) cos 8,)1).
In particular, for 6, = 6,, the coefficients |r, |* and |r, |*
have the form

21 xnl

P I+’ FRETE

T =y F w26

|rn 2=
Thus, for reflection of CuKa radiation from the (220) plane
of silicon® we have

Iry |2 = 0,754, |ry|®= 0,246.

Expression (2.6) refers to the case a = 0, where the grazing
angles 7, and 7, are equal and therefore |r,, |* + |, |> = 1.
For a > 0 the angle 77, <7, so that |, |* can take on values
greater than unity.

Let us now determine the linear displacement of the
reflected beam relative to the incident beam. If the size of the
slit in the diaphragm that delimits the beam incident on the
crystal satisfies the condition x/cosf,> 1, then the displace-
ment of the specularly reflected wave relative to the incident
wave is given by the formula

= —L. 290 | 2.7)

% 08in® |o=a,

¥For y-ray and neutron diffraction, where y,~y is possible, there is a
strong supression of the specular wave.
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FIG. 5. a) Intensity [, =
b) as functions of the deviation parameter.

For a = 0 we obtain from (2.3)}-(2.5)
2

L S
n e ]/sm’ 0,— (9
(o)
A tg 0
I & Y

A 2 €01
2n 2 )+ +ef7)sin? 8 |/ sin6, el

The displacement is a maximum when the condition sin’8,
= £,, is satisfied. In this case 1, for example, has the form

l A -l/- €01
= 2 (1—eq)eg”

The ratio of this quantity to the maximum displacement / {°®
far from the Bragg condition has the form
l(B)

=+ (i) (51

Thus, the maximum displacement of the reflected wave un-
der diffraction conditions exceeds the maximum value of
I{°® by more than an order of magnitude for strong reflec-
tions. This is due to two reasons: 1) the anomalous penetra-
tion depth of the Borrmann wave into the crystal, and 2) the
change in the critical angle for total external reflection.

3. X-RAY SURFACE WAVES

Previously we have found two forms of nonuniform x-
ray waves. Far from the Bragg conditions and for an angle of
incidence 6, of the wave on the crystal greater than the criti-
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cal angle @, there is total external reflection, and nonuni-
form waves that decay exponentially with distance from the
interface propagate in the medium. On the other hand, in the
case of extremely asymmetric diffraction, as was shown in
section 1, the phenomenon of total internal reflection can
occur, with the appearance of a nonuniform wave in the
vacuum. It turns out that these two types of nonuniform
waves do not exhaust all the possibilities. In Ref. 29 it was
shown that the excitation of waves with a more complicated
structure is possible; these are waves that have a maximum
at the interface and decay exponentially on both sides of it
(i.e., the wave propagates along the interface and decays ex-
ponentially on both sides of it). Waves having this structure
have been called® x-ray surface waves.

Let us discuss the mechanism of the excitation of x-ray
surface waves, using by way of example two-wave nonco-
planar diffraction. A cross section of the dispersion surface
and the diffraction geometry are shown in Fig. 4. In the area
with the vertical crosshatching in Fig. 4c the projection of
the wave vector of the diffracted wave on the interface is
larger than the magnitude x = w/c of the wave vector in
vacuum, i.e., the condition for total internal reflection of the
diffracted wave is satisfied. In the region with the horizontal
crosshatching the condition for total external reflection is
satisfied; here all the waves that propagate in the medium are
nonuniform. Thus, in the region of excitation points where
there is the double crosshatching the conditions for total
internal reflection and for total external reflection are simul-
taneously satisfied. In this case the diffracted wave travels
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FIG. 6. Experimentally determined®® intensity I, of specular and I,, of
vacuum diffracted wave as functions of grazing angle 7, for sapphire crys-
tal, CuKa radiation.

along the surface of the crystal, has its maximum intensity
there, and decays exponentially on both sides of it.

In Ref. 23 the two-wave noncoplanar geometry was re-
alized with the use of the reflection of CuKa radiation from
the (1011) plane of sapphire. Figure 6 shows the experimen-
tally determined dependence of the intensities /; of the spe-
cularly reflected wave and 7, of the diffracted wave in vacu-
um on the grazing angle 7,. The angular width of the
incident beam in the plane parallel to the entrance surface
was much greater than the corresponding width in the re-
gion of Bragg reflection, and this result accounts for the ex-
perimentally obtained relation between the intensities 7,
and I,. The dependences that were obtained agree qualita-
tively with the corresponding theoretical calculations (see
Fig. 5). It is necessary only to note that because of the differ-
ence observed in the curvesin Fig. 6, it is necessary to make a
comparison of the curves integrated over a. Figure 7 shows

<)

FIG. 7. a) Experimental arrangement; and diffraction pattern for b) posi-
tive, and c) negative deviation from exact Bragg condition.?*
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the experimental arrangement and the form of the angular
dependence of the diffracted wave intensity on the azimuthal
deviation of the incident wave. In view of the discrepancy in
angle noted above, the amount of deviation was estimated
from the decrease in intensity of the diffracted wave by one-
half relative to its maximum value for a given angle of inci-
dence @,. Figures 7b and 7c correspond, respectively, to neg-
ative and positive deviation. It can be seen that for positive
deviation the intensity maximum of the diffracted wave
shifts towards the surface of the crystal. This circumstance
undoubtedly indicates that the mechanism of the formation
of the diffracted wave is associated with dynamic diffraction
effects.

In Ref. 23 it was shown that x-ray surface waves also
arise in similar multiwave diffraction schemes, for instance
in noncoplanar three-wave diffraction (all the reflecting
planes are perpendicular to the entrance surface), as well as
in multiwave coplanar diffraction schemes. An example is
the diffraction scheme discussed above, in which CuKf radi-
ation is diffracted in silicon crystals by the (311)/(600)/(311)
planes and the entrance surface coincides with the (100)
plane. The main difference between this diffraction scheme
and the noncoplanar two-wave scheme is that the attenu-
ation of the wave in the medium in this case is due to the fact
that the surface wave is excited within the Bragg reflection
region. As a result, the depth of penetration of the wave into
the medium is considerably enhanced.

In conclusion to this section we shall estimate how criti-
cal, from the point of view of surface wave excitation, the
noncolinear two-wave diffraction scheme is to deviations
from exact perpendicularity of the reflecting planes to the
surface of the crystal. Let 3 be the angle between the recipro-
cal lattice vector and the plane of the crystal. Then the rela-
tion between the exit angle 7, of the diffracted wave into the
vacuum, the grazing angle 7, the incident wave, and the
deviation parameter a has the form

Ny =V n —a - 242 sin? 0g.

If the reflecting planes are exactly perpendicular to the en-
trance surface of the crystal, then the region of surface wave
excitation is determined by the condition

> 15

If /40 then this condition takes the form
@ > 12 24?2 sinZ 0.

Thus, for 77, > ¢sind  the region of surface wave excitation is
practically unchanged. This condition can easily be fulfilled
even for mechanically prepared surfaces.

4. QUASIWAVEGUIDE MODES

Since for x rays the vacuum is an optically more dense
medium than matter, waveguide propagation of x rays could
exist in an air gap between two plates. However, the main
part of the energy of the x-ray wave will in this case be con-
centrated in the vacuum, whereas in the investigation of the
structure of matter it is desirable to increase the interaction
of the field and the medium. Waveguide modes can also be
excited in less dense layers sandwiched between more dense
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layers. Quite frequently, however, the problems one en-
counters involves layers that are deposited on a substrate,
i.e., layers, one of whose interfaces is with the vacuum. If
these layers are crystalline, then the use of dynamic total
internal reflection” permits the excitation of quasiwave-
guide modes, where the diffracted wave is locked within the
layer, while undergoing total reflection both at the layer-
vacuum and the layer-substrate interfaces. Such quasiwave-
guide modes and the possibility of their application in the
generation of coherent Mdssbauer radiation have been stud-
ied in Ref. 56.

To understand and explain the conditions for the exci-
tation of the quasiwaveguide modes we shall return to the
two-wave noncoplanar diffraction scheme. In the excitation
region with single crosshatching in Fig. 4c, the condition of
total reflection is satisfied both at the layer-vacuum inter-
face: |k, | > %, where k, is the projection of the wave vector
on the interface, and, of course, at the layer-substrate inter-
face: |k, | > xn,, where n, is the refractive index of the sub-
strate. The interior sheet of the dispersion surface corre-
sponds to waves that decay exponentially within the layer,
while the outer sheet (with an anomalously small absorption
coefficient) will correspond to uniform plane waves having
projections k; of the wave vectors on the normal to the inter-
face that is determined by the intersection of the normal and
the dispersion surface. For a layer of thickness d, those
points will be selected for which

(ko —k2) d_¢l _¢2 =an,

where ¢, and ¢, are the phases of the coefficients of refiec-
tion from the boundaries of the layer.

The region of excitation of x-ray surface waves corre-
sponds in a certain sense to the zero waveguide mode in an
infinitely thick layer.

The interest in the quasiwaveguide modes from the
point of view of generating coherent Mdossbauer radiation
lies in the possibility of increasing the amplification factor
G =expl(u, —pu_)-L), where u, and y_ are the coeffi-
cients of amplification and absorption, and r = L /c is the
interaction time of the resonance radiation with the medium.
The decrease in the factor (£, — g _}in the exponent, due to
the fact that the region of excitation of the quasiwaveguide
and surface modes lies at the edges of the reflection maxi-
mum can be substantially compensated by the increase in L,
the effective length of the interaction of the field with the
medium. A planar layer on a crystal surface is a natural form
for the active region in the application of laser annealing to
the reconstruction of a crystal lattice that has been damaged
by intense pumping of nuclear transitions.3”%8

5. ANOMALOUS REFLECTION OF X RAYS

In this section we shall discuss the features of the angu-
lar dependence of the reflection of x rays incident on a crys-
tal at angles that are close to the critical angle for total exter-
nal reflection. Total external reflection has been finding ever
wider application in the investigation of surface layers of

“'We use the term “‘dynamic total internal reflection” to emphasize that

we are dealing with total internal reflection resulting from dynamic dif-
fraction.
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various materials. The problems of the use of total external
reflection in x-ray optical systems such as x-ray microscopes
and telescopes of the reflection type, collimation devices,
and so forth, and the use of total external reflection for the
determination of surface quality are addressed in the review
of Ref. 35. While not dwelling at length on these aspects, we
shall discuss here two effects: 1) the anomalous reflection of
x rays incident on a crystal at an angle less*® than the critical
angle 6., and 2) the anomalous reflection of x rays incident
on a crystal at an angle greater®’ than the critical angle 6, .

a) Anomalous reflection for angles of incidence less than 4,
the critical angle for total external reflection

The first effect was observed twenty years ago; it has
been studied many times since then®®**? and the investiga-
tions have continued up to the present time.*>** A number
of models have been proposed to explain the phenomenon
(for more detail, see Ref. 35); however there have been few
attempts to calculate theoretically the angular depen-
dence.*!42

The essence of the effect is the following: when a beam
of x rays isincident on a crystal at a grazing angle that is 2-3
times greater than the critical angle, then, besides the specu-
larly reflected wave, an additional peak in the angular distri-
bution of reflected rays appears at an angle, somewhat less
than the angle of incidence, with respect to the crystal sur-
face (Fig. 8). Such a structure is observed in the reflected field
for various materials and it exhibits the following regulari-
ties: 1) the angle 7, is independent of the angle of incidence
1) and the ratio of 7, to 7., the critical angle for total exter-
nal reflection, is** , /77, = 0.91 4+ 0.11; 2) the angle , var-
ies approximately proportionately to the wavelength; 3) The
integrated intensity J of the anomalously refiected beam in
the first place decreases with increasing grazing angle 77, and
in the second place depends on the imaginary part of the
refractive index; 4) a study of the anomalous reflection from

s 8 7y=0.4°
o 1]0=0,5°
- an,=2.9
2L

) S S N S B S O {
0 04 08 1Z L6y
b)

FIG. 8. a) Anomalous reflection effect; b) form of angular distribution of
anomalous reflection for various angles of incidence (K8 glass).**
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samples of K8 glass, prepared having 8th to 14th class
roughness, has shown*? that first, the maximum intensity of
the anomalous reflection is observed for the 11-12 class of
roughness and, second, the magnitude depends on the class
of surface roughness while the angular profile is practically
independent of it.

These regularities that we have listed allow us to con-
clude that the angular position of the peak of the anomalous
reflection is determined by the refractive index of the given
material, and mainly by the magnitude of the refractive in-
dex in the surface layer of the material.

b) Anomalous reflection for angles of incldence greater than
4. the critical angle for total external reflection

In Ref. 37 during the study of total external reflection of
x rays from ion bombarded silicon crystals the following ef-
fects were observed: 1) the angular width of the reflected
beam was considerably greater than that of the incident
beam; 2) In the angular dependence of the reflection an addi-
tional peak appeared which corresponded to waves traveling
along the crystal surface; 3} the ratio of the intensity of the
specular peak to that of the secondary peak depended on the
position of the illuminated region (Fig. 9). For illumination
at the edge of the sample only the secondary peak is ob-
served, and as the illuminated region is moved away from the
edge of the sample the intensity of the specular peak in-
creases and that of the secondary peak falls off; 4) the rela-
tion of the intensities of the two peaks depended on the dose
ofions to the crystal®®; 5) in the case of reflection from nonir-
radiated crystals and amorphous media the secondary peak
was not observed, and the angular width of the specularly
reflected beam decreased.

FIG. 9. Dependence®’ of angular distribution of reflection on position of
illuminated region. Distrance between beam edge and crystal edge: a) 30
mm; b) 21 mm; c) 4 mm. The inset shows the shape of the beam in the
absence of the crystal.
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c) Theory of reflection of x rays from media with a
nonuniform surface layer

The review of the experimental data presented above
shows that the principal mechanism for the anomalous re-
flection is evidently small-angle scattering by nonuniformi-
ties in the surface layer.

In this section, on the basis of a model of a nonuniform
transition layer we calculate the main characteristics of the
angular dependence of the reflection.

Let us consider the reflection of x rays from a sample
with a nonuniform surface layer. We shall not specify the
form of the nonuniformity. It may be due either to surface
roughness or to the presence of radiation defects in the layer
next to the surface, or to other such factors. Taking into
account the electron density in the nonuniform layer by the
random fluctuation of the position vector r, we can represent
the dielectric permittivity in the form

& (r) =& (2) + be (r),

where £4(z) = {£(r)) is the dielectric permittivity averaged
over the density fluctuations; the z axis points down into the
sample, perpendicular to the surface, and d¢(r) is the fluctu-
ation in the dielectric permittivity. We write the amplitude
of the field in the form of a regular component Er) that
satisfies the equation

AE, (r) + %, (2) Ey (r) =0,

(5.1)

(5.2)

and a component 8¢(r) that is scattered by the fluctuations
and obeys the equation

AE, (r) + %2 (2) E, (r) = — n20e (r) Ey (1). (5.3)

Since in the absence of diffraction polarization effects are
unimportant, we can limit the treatment to scalar ampli-
tudes.

Let us assume that there is incident onto the crystal a
plane wave with wave vector

%o = {11 %z}s
where | | = xsinf,, x = w/c, and 6, is the angle of inci-
dence with respect to the normal to the interface. Then the
field E,(r) can be written in the form

Eq (1) = Eo (2) exp (inp)s
where Ez) satisfies the equation

g
LEo | (wteg— uh) B, =0. (5.4)
As linearly independent solutions of Eq. (5.4) we can choose
solutions with the following asymptotic forms:

etrzz +re—(x;z' Z2—> — 00,
u(z)= teitse,

Z—> 005
te—tnaL,

Z—>—00,
v (Z): e—ikﬂ—{—-rleikﬂ; Z—>» 00,

(5.5)

where k, = x\€ — sin’0 , ¢ is the bulk value of the dielectric
permittivity,  and ¢ are, respectively, the amplitudes of the
reflected and refracted waves for the case where the wave is
incident onto the interface from the vacuum to the medium,
and r, and ¢, are those same quantities when the wave is
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incident onto the interface from the medium to the vacuum.
Using (5.5) we can write Eq. (5.3) in the form

z

eik[ﬂ
E (t)=— S dk “ﬁ [2@) S F(s, z)v (') dz’

+v (@) [ Fe u)ar],

z

(5.6)

where
2
F (s, 3) = — g Eo (2) S dpbe (r) exp (isp),
s = x; — k; and the Wronskian has the form W= — 2ix,
t, = —2ik,t.

1) Scattering by surface roughness
Assume that £,(z) has the form

ez/a

so(z)=1+xo—mz/—a. (57)

Then the solutions u(z) and v(z) can be expressed in terms of
hypergeometric functions, and in the case of statistically
uniform surfaces the expression for the scattering intensity
for z— — 0, according to (5.6) has the form

—i{n, ~x¥*)z 2
Il_—zlox‘*]to}zg ke 04D szz’ K(s), (5.8)

where I, is the intensity of the incident wave. The coefficient
t for a layer of the form (5.7) has the form

1= I'(1—ixa—iksa) T (—in,a—ik,a) |
- T'(1—i2k,a) T (—i2x%,a) !

K (&) =ga5r | doe?(de (97) 8e* (0,

8e (p) = 5 dz be (r) uq (2) u (2),

-0

ezja

- (z) - (m)i%zﬂ (1 +ez/a)lhza

X F(i (%y—k;) @, 1+ (%, —k,) a, 1—i2k,a, 1++/) ,
where t, =1 (6y), uolz) = u(z)|o_4,, and F(a, B, 7, 2) is the
hypergeometric function. Since in the experiments the re-
flection intensity is studied as a function of only one of the
angular variables (the grazing angle 7}, we can average over
the second angular variable. It is also convenient to go over
to a Fourier transformation of the quantity 5¢(z).

Expression (5.8) then takes the following form

Iy =Igxb |82 S dly e

-00

]

21, |2 K(9),

(5.9)

where

o0

K(s)= S dk S ar'f (]) * (k) - o S dze'= (8¢ (k) 6* (K')),

- 00

f (8= f dz uq (z) u (2) ™,

—ikg

_1 - L% €€ sh(nka)—nka
be () =5 | e () e dz—t]la Pobinke)—aks
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and z = { (x, y) is the equation of the surface roughness. If for
simplicity we assume that u,(z) = ™ and u(z) = €7, i.e.,
that these functions have the form of a plane wave, then it is
easy to show that X (s) can be approximated by the following
expression:
[Xol? L
K@= ("oz‘?"‘z)’ { 2vVn (1—e
03(ng,+%,)2

2 sh 7a (%g;+ %;)— R (Xe,+%;) 2
Bty s ()},

-o2 (ﬂoz+nz’)’) e—#'LY/4

+[ -

(5.10)

where
L— L

V1408 (o, +%;)3 '

1 is the characteristic correlation length of the nonuniform
surface, and o is the dispersion. The first term in (5.10) de-
scribes the intensity of the nonspecular component in the
scattered field, and the second describes the intensity of the
specular component.

The degree of surface roughness is defined by the pa-
rameter @ (x,, + x,) which determines the phase difference
between the waves reflected from the lower and the upper
surfaces of the transition layer. For o{x,, + »,)<], the sur-
face is not very rough, while in the opposite case the surface
is very rough. In the first case the width of the angular distri-
bution of the nonspecular reflection, as follows from (5.10),
is determined only by the correlation length /, while only the
intensity depends on o. For very rough surfaces both the
width of the angular distribution and the intensity depend on
the parameter o//, which defines the average angle of misor-
ientation of the surface nonuniformities. We shall now esti-
mate the numerical value of o that corresponds to the condi-
tion oxg, ~ 1. Setting x,, ~x7_, we obtain for the amplitude
of the roughness d = 20~200 A in the case of Si, i.e., the
surface can be considered not very rough if it has a 14th class
finish.

Let us now determine the scattering angle dependence
of the second factor |¢ /2ix, |* in the integrand of expression
(5.8). The form of this dependence is shown in Fig. 10. This
factor is constant in the region 047 <7 and falls off rapidly
on both sides of this interval. Because experimentally the
intensity of the reflected field is measured as a function of the
grazing angle 7, the factor dk | = d(xcosy)=~ — xndn also
plays an extremely important role, i.e., the dependence I (7)
will be observed to fall off towards small values of 7. The
overall dependence I () has the form shown in Fig. 11, where

2

I
1.0 2(k,~%)
pF

FIG. 10. Interpretation of formula (5.9).
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FIG. 11. Form of the angular dependence of the anomalous reflection
intensity according to (5.9)~(5.10) for the following values of the param-
eters: 0 = 1000 A, I =70 um, 55, = 2%, and 7, = 15'.

the following values of the parameters were used: o = 1000
Aand! = 70um. A comparison of Figs. 11 and 8b show that
they agree.

We shall now determine the dependence of the intensity
of the anomalous reflection on the class of surface rough-
ness. This dependence is completely determined by the first
term in expression (5.10). Figure 12a shows the dependence
of the integrated intensity of the anomalous reflection on the
class of surface roughness.** Figure 12b shows for compari-
son the dependence of the maximum intensity of the anoma-
lous reflection on the class of surface roughness, as calculat-
ed from formulas (5.8) and (5.10).

Thus, the above comparison of the experimental data

FIG. 12. Dependence of anomalous reflection intensity on class K of sur-
face roughness. a) experiment**; b) calculation from formulas (5.9) and
(5.10) for the following correlation lengths: 1) 47 um; 2) 40 um; 3) 34 um.
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with the results of our theoretical calculations allows us to
conclude that the appearance of anomalous reflection in the
experiments described in section 4a is due to scattering of the
x rays by density fluctuations of the medium within the sur-
face (transition) layer. The formulas presented above make it
possible from the angular dependence of the reflection to
determine the statistical characteristics of surface nonuni-
formities.

2) Scattering by bulk nonuniformities in a surface layer

Formula (5.8) will have exactly the same form if the
scattering of the x rays occurs also at bulk nonuniformities
that are due to radiation damage in the surface layer. The
only difference will be in the form of the function X (s), which
in this case takes the following form:

o0

K (8)= e | doer | dzu,@u(2)

-0

X 5 dz’ ud (z') u* (z') (Be (r)-Be* ('), (5.11)
The correlation function now depends not on two variables,
but in general on four:

(Be (r) Be* (r'))

2 ’ 2 ’ -

— I%0]2 (&2 exp [_%__ (z a:z) _ L 2;z)2J’
where £ = 8¢/|y,|. It is meaningful to speak of scattering by
bulk nonuniformities only when the contribution from scat-
tering by surface nonuniformities is small. According to the
estimates of the previous section, this occurs if the surface
corresponds to a 14th class finish or better. In this case the
transition layer can be replaced by a sharp boundary. Then
assuming that xaz, ~xbn.»1, we obtain

‘lXolzl 2 1
Ko =3 va ® T

where k, = x\Je — sin’0 .

Thus, the functions X (s), which are the Fourier trans-
forms of the correlation functions and determine the form of
the angular dependence of the nonspecular reflection, have a
similar form both for scattering by surface and bulk nonuni-
formities.

e— /4

(5.12)

3) The secondary peak

In formula (5.9) the integration over k| was carried out
from minus to plus infinity. Waves with |k | < x have in the
vacuum real projections of the wave vector on the normal to
theinterface, », = \/x* — k |, while waves with k| > x have
imaginary projections. In the latter case the waves in the
vacuum will be nonuniform and their amplitudes will fall off
exponentially with distance from the interface into the vacu-
um. The tota intensity of these waves as a function of z is
determined by the value of the following integral:

¢ 2 Vi
Iy (a) =Tt [t | dk,,l—Zithl K (s) 2V Hil-7

k4

We recall that the vacuum occupies the half-space z <O.
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Consequently, if the width of the curve X (s) is much larger
than |k, — x [>x|y 3|, then for angles of incidence close to
the critical angle, there will be a peak in the intensity of the
scattered field at the crystal surface, and its intensity will be
determined by that part of the area under the curve in Fig. 10
that lies to the right of the point k| = x. Figure 13 shows the
form of the dependence of the integrand in (5.9) on the exit
angle 7 normalized to 7, in the region k| < (the right half
of the figure) and on the variable x = 2(k |, — x)/x|y ;|in the
region k| > x (the left half of the figure. We note that the
value = ), corresponds tox = — 1. Inthe calculation the
function X (s) of the form (5.12) was used, with / = 6.25 um
(Fig. 13a) and / = 62.5 um (Fig. 13b).

Thus, our calculations show that the formation of the
secondary peak in the experiments described in section 4b,
paragraph 5 can be explained by small-angle scattering in
the surface layer. This is due to scattering both by bulk non-
uniformities and by surface roughness, where the dominant
contribution is evidently from the former mechanism. The
dependence of the angular distribution on the distance of the
irradiated region from the edge of the crystal can be ex-
plained by a displacement of the scattered beam that im-
pinges from the medium onto the interface with the vacuum
and undergoes reflection. If we use formula (2.7), then for
Nea =+ |¥ |, Where y 4 is the polarizability of air, we ob-
tain

_ 2A
B ALEAL

For characteristic values of the parameters we obtain /= 0.5
cm, which agrees with the experimental data.

6. STUDIES OF THE EXTENDED FINE STRUCTURE IN THE
REFLECTION SPECTRA

Studies of the extended fine structure in reflection spec-
tra significantly widen the possibilities for the application of
EXAFS spectroscopy (see the review of Ref. 47) to the inves-
tigation of the structure of surface layers, thin films, and
interfaces. The basis of EXAFS spectroscopy is the study of
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FIG. 13. Form of the nonspecular reflection intensity as a function
of scattering angle 7 (right side of figure) and of k| for k| > x = w/c
(left side). The calculations were carried out for a silicon crystal for
the following parameters: 7, = 0.3 5.,/ = 6.25 um (a) and | = 62.5
pm (b).

the fine structure of the absorption energy spectra from the
absorption edge upwards towards higher energy. This struc-
ture is due to the dependence of the final state wave function
of the photoelectron on the photoelectron energy and is re-
lated to the scattering of the photoelectron by the nearest
neighbor atoms. The phase of this scattering depends on the
type of neighboring atoms and their arrangement relative to
the atom whose absorption edge is being studied. Therefore,
EXAFS data allows inferences to be drawn concerning the
structure of the short range order.

In transmission experiments the crystal thickness that
is optimal for producing the necessary contrast is close to the
reciprocal of the absorption coefficient. This has placed a
limitation on the use of the method for the study of thin
films. Methods that are associated with detecting secondary
processes have substantially reduced sensitivities. Therefore
the observation of oscillations in spectra of specular reflec-
tion at grazing angles of incidence*® has opened up wide pos-
sibilities in the study of thin films. While the first experi-
ments used synchrotron radiation, later it was shown to be
possible to use ordinary x-ray tubes.**->*

The possibility of varying the penetration depth of the
wave in the medium by varying the angle of incidence per-
mits the study of the variation of the short range order struc-
ture with distance from the interface. The penetration depth,
as the grazing angle goes from zero to 7., varies, as we have
noted above, from several tens to several thousands of ang-
stroms. Ion-implanted silicon crystals have been studied by
this method in Ref. 53, and it was shown that there is a
substantial change in the short range order structure
between a penetration depth of the order 40 A, (angle of
incidence 7') and 1000 A (angle of incidence 9').

If the surface layer of the material studied is nonuni-
form, then information on the short range order structure in
films of different thicknesses can be obtained by studying the
energy spectra at various parts of the angular distribution.
Actually, to each value of the exit angle # corresponds a
particular projection k ; of the wave vector on the interface:

n= V3% — k%/%. On the other hand, to each value of & g in
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the range 0 <7 < 7. there corresponds a particular attenu-

ationincrement I = \J/k | — »°(¢) in the material, and, con-
sequently, a particular escape depth / = 1I". In Ref. 54 the
appearance of a secondary peak in the angular dependence
was utilized, and the energy structure within the broadened
specular peak and the secondary peak was studied. Germa-
nium crystals with oxide films were used as samples. Nonun-
iformity of the oxide films evidently was the reason for the
appearance of the secondary peak. The Fourier spectrum of
the fine structure of the specular reflection corresponded to
the germanium structure. In the scattered field correlation
with the structure of the germanium environment in GeQ, is
observed and there is a peak that corresponds to the Ge-Ge
spacing.

CONCLUSIONS

In summary, we can conclude that the use of grazing
angles of incidence of x rays (and also gamma rays, neutrons,
ions) opens up new prospects in the investigation of thin
films. X-ray diffraction at grazing angles of incidence has
become a universal tool for the study of two-dimensional
structures whose thickness is a few atomic layers. In this
area the method that is the most developed is that of nonco-
planar two-wave diffraction, which has been used for the
study of such delicate effects as the reconstruction of metal
and semiconductor surfaces and two-dimensional phase
transitions. The possibility of studying single layers of biolo-
gical macromolecules deposited on a solid substrate is being
considered.** Noncoplanar diffraction is opening up greater
possibilities in the study of interfaces within multilayer
structures, including those beneath amorphous films.

The first experiments have been carried out in the inves-
tigation of dynamic effects in noncoplanar two-wave diffrac-
tion geometry. Further developments of this method will no
doubt provide new information on the structure of crystal
surfaces, information that cannot be obtained by other sur-
face diagnostic methods.>® One of the clear manifestations of
dynamic diffraction at a surface is the possibility of exciting
diffracted x-ray surface waves.

The investigation of total external reflection in the ab-
sence of diffraction has also received a new surge of develop-
ment. For instance, investigations of the energy spectra of
extended fine structure in reflection have shown the possibil-
ity of studying the short range order structure in near-sur-
face regions consisting of a few atomic layers. The simplicity
in varying the thickness of the investigated layer from a few
to hundreds or thousands of monolayers by varying the an-
gle of incidence is of considerable significance. The study of
the structure of damaged surface layers must be associated
with the angle-dependent structure of reflected waves. In the
article above we have attempted to show that the statistical
characteristics of nonuniformities can be determined on the
basis of a simple analysis.

Methods based on a combination of those described
above are believed to hold considerable promise. Such com-
binations may provide information on short and long range
order both for ideal and for mildly damaged crystals.

Thus, there is every reason to expect in the near future
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vigorous progress in the development of x-ray optical meth-
ods in surface diagnostics.

The author wishes to express his deep gratitude to S. A.
Akhmanov, E. K. Kov’ ev, Yu. V. Ponomarev, and Yu. A.
Turutin for many discussions of the problems treated in this
review.
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