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Experimental and theoretical studies of the properties of superfluid phases of rotating liquid 3He
are reviewed. The observational data on nonsingular vortex textures in the rotating A phase as
well as experiments revealing a structural transition inside the cores of vortices in the A phase are
discussed. The gyromagnetic effect in the rotating B phase, due to the spontaneous magnetization
of the vortex cores, is described

1. INTRODUCTION

The beginning of the second decade of research on su-
perfluid liquid 3He was marked by a number of new achieve-
ments, linked directly to the study of the properties of the A
and B phases in a rotating state. These experiments, per-
formed within the framework of the Soviet-Finnish Project
ROTA, made it possible to study in greater depth the nature
of the ordering in superfluid 3He and to penetrate to dis-
tances of the order of the coherence length, revealing a num-
ber of features of the internal structure of the vortices
formed in the rotating vessel.

The outstanding results obtained along these lines in-
clude the observation of nonsingular vortex textures in ro-
tating 3He-A. The observation of a structural transforma-
tion inside the core of the vortex in 3He-B and the
observation of a gyromagnetic effect in rotating 3He-B,
which appears due to the spontaneous magnetic moment of
the vortex concentrated near the core. In this paper the main
results of studies of the properties of rotating superfluid
phases of 3He are reviewed.

If a vessel with an ordinary viscous liquid is put into
uniform rotation, then an equilibrium state corresponding to
rigid-body rotation of the liquid with a velocity distribution

v (r) = Q X r, (1)

where SI is the angular velocity vector, is quickly estab-
lished. Such a state can be realized because in a classical
liquid there are no obstacles to the formation of local vortical
motions with VX v^O, while the velocity field (1) with

V x v = 2Q (2)

ensures that the liquid will be in equilibrium relative to the
rotating vessel.

The situation changes radically for an ordered liquid
such as superfluid 4He-II. It is well known that the proper-
ties of this liquid are described by the macroscopic wave
function i/t = |^|e'*, in addition, coherent (nondissipative)
mass transport is characterized by the superfluid velocity.

v.^VO. (3)

Since because of (3) V X vs =0, it is clear that the super-
fluid component cannot be entrained into vortical motion
and is therefore incapable of purely rigid-body rotation to-
gether with the rotating vessel. Thus the superfluid compo-
nent1 4He-II must attain equilibrium with the rotating vessel
via a very unusual (from the point of view of a classical liq-
uid) mechanism, compatible with the requirement that
VXvs vanish everywhere, except possibly on special lines
along which the vorticity is infinite (while the density of the
suyperfluid component equals zero). An analysis of this pe-
culiar situation led to the development of a picture according
to which equilibrium rotation of 4He-II occurs due to the
presence of a system of singular filaments (Onsager-Feyn-
man vortices) that permeate the superfluid liquid along the
axis of rotation. In addition, the vortical filaments, which
carry the localized vorticity, rotate together with the vessel,
whereas the superfluid component undergoes potential (ir-
rotational) flow around the individual vortices. An impor-
tant fact is that because of (3) the circulation of the superfluid
velocity around a closed contour is quantized (in units of h /
m4) and each Onsager-Feynman vortex carries a single quan-
tum of circulation. The vortex structure in rotating 4He-II
described above forms against a background of purely rigid-
body motion of the normal component with a velocity of
v_ =f txr .

As is well known,' studies of rotating 4He-II, performed
over a period of many years, have led to a number of impor-
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tant results, which have made an important contribution to
the physics of the superfluid state of matter. Very recently,
quantized vortices in 4He-II were photogaphed (and filmed)
and Planck's constant was measured (from the distance
between vortices).2

The example of 4He-H demonstrates that the ordered
(superfluid) liquid undergoes very exotic rotational motion.
Amongst the other, presently known, ordered states of mat-
ter, the superfluid phases of the light isotope of helium, dis-
coverd in 1971, are undoubtedly of special interest.3 At tem-
peratures of the order of mK the neutral quantum
system-liquid 3He-transforms into a coherent state, which
simultaneously exhibits the characteristic features of a su-
perfluid medium, an antiferromagnetic body, and a liquid
crystal.

Until very recently, all experimental studies of the
properties of the superfluid phases of liquid 3He were con-
ducted in stationary vessels. It is clear, however, that the
question of how these ordered phases are entrained into a
rotational state is of fundamental significance. The experi-
mental study of this problem encountered great technical
difficulties. These difficulties were recently successfully
overcome due to the joint efforts of Soviet and Finnish physi-
cists, who developed the unique rotating low-temperature
apparatus ROTA, operating in the Low Temperature Labo-
ratory of the Helsinki Technical University in Otaniemi.4

The first experimental studies of superfluid 3He in a state of
rotation were performed using this apparatus within the last
two years. A characteristic feature of 3He, which distin-
guishes it from 4He, is that the properties of the superfluid
phases of 3He can be studied by highly sensitive NMR meth-
ods. All experimental information obtained thus far on ro-
tating phases of 3He have been obtained from the analysis of
NMR spectra. Before reviewing the main results of these
studies, we shall give a brief exposition of the basic theoreti-
cal prerequisites, based on our current understanding of the
nature of superfluid liquid 3He.

2. THEORETICAL PREAMBLE

The transition into the low-temperature ordered state
in liquid 3He occurs as a result of the formation (below Tc) of
Cooper pairs of quasiparticles. Since at small distances there
is a strong repulsion between helium atoms, pairing in a state
with angular momentum, L = 0 is impossible5 and effective
attraction, which leads to the formation of Cooper pairs,
occurs, as has been established, in a state with relative orbital
angular momentum L = 1. As a result, according to Pauli's
principle, Cooper pairs in superfluid 3He must have a total
spin S = I, which is confirmed by all available experimental
data (see the reviews of Refs. 6-8).

The temperature range from 0.1 mK to 3 mK and the
pressure range from 0 bar up to Pm = 34 bar (Fig. 1) have
now been studied in great detail. The curve of the continuous
(second-order) phase transition from the normal state of liq-
uid 3He into the ordered (superfluid) state describes a mono-
tonic growth of the critical temperature Tc (P) with increas-
ing pressure; in addition, at pressures in the range
P<P0?r21 bar the B phase is bypassed in the transition into

the superfluid phase. As far as the pressure range
P0<P<Pm is concerned, here, as the temperature is de-
creased, a transition into the superfluid A phase (whose
properties differ markedly from the properties of the B
phase) occurs first and the jump-like transition (first-order)
into 3He-B occurs only when the temprature is further de-
creased.

When the macroscopic system transforms into the or-
dered state, the inherent symmetry of the Hamiltonian is
lowered (broken). The superfluid phases of liquid 3He are
characterized by the breaking of several types of symmetries,
which is what leads to the diversity of their physical proper-
ties.

The uniform orbital state of the superfluid A phase is
characterized by a macroscopic wave function, which it is
convenient to designate with the unit vector 1 along which
the orbital angular momentum of the Cooper pairs is direct-
ed, and the pair of unit vectors (Ai,A2), lying in a plane per-
pendicular to 1 (their orientation in this plane determines the
phase of the orbital wave function).

The local orbital state of 3He-A is described by fixing
the triad (A1( A2,1), whose orientation can vary smoothly (on
the scale of the coherence length) in space. The variation of
the orbital state of the A phase accompanying a displace-
ment by a distance 8r is described by a rotation of the triad by
the angle

6<p = 16<p + I X 61, (4)

where 8<p describes the rotation around the local orientation
of 1, while SI describes the change in the orientation of the
vector 1 itself.

The state determined by the local orientation of the tri-
ad (AL A2,1) exhibits a loss of symmetry relative to the three-
dimensional rotations in the orbital space. It should be not-
ed, however, that the rotation around 1, described by the
angle &<p, is equivalent to a local change in phase of the wave
function by — 8q> and can therefore be compensated by the
corresponding gauge transformation 8<P = 8<p. Thus the A
phase retains the symmetry relative to the combined rota-
tional-gauge transformation mentioned above and only the
relative rotational-guage symmetry is broken.

Because of the above-mentioned equivalence of the op-

solid 'He i solid 3He
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FIG. 1. Phase diagram of 5He near absolute zero (schematically).
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eration of rotation around the direction 1 and of the gauge
transformation, the Galilean-covariant expression for the
superfluid velocity for 3He-A is given by the formula

Since 8 A2 = 8<p X A2, we have 8cp = \8<p = — A,(5 A2,
and it follows from the defintion (5) that for the A phase

va = A.-VA,- . (6)2m3 " 2 ' i '

We have arrived at the fundamental result that the ve-
locity of coherent mass transport in 3He-A does not reduce
to the gradient of the globally determined phase (as occurs in
4He-II). This, of course, associated with the fact that the
operation Scp = — A,<5 A2 is determined only locally and it is
impossible to construct with its help in a unique manner the
globally determined "phase." Rotational symmetry in spin
space is broken in 3He-A, but this symmetry breaking is only
partial: a rotation around the direction fixed by the unit vec-
tor d leaves the state unchanged; in addition, the vector d
defines the axis along which the projection of the total spin of
the Cooper pair equals zero (Sd = 0). It is possible to select a
local coordinate system relative to which Cooper pairing oc-
curs only in the states with Sz = + 1, and in the absence of a
magnetic field these pairs have equal weights (antiferromag-
netic configuration).

Thus under fixed external conditions 3He-A is com-
pletely described by the local orientation of the pair of orbi-
tal unit vectors (A,, A2) and the vector d (the 1 axis is automat-
ically determined by the relation 1 = A, X A2). If to this we
add the fact that the state of the A phase does not change
when d is replaced by — d and at the same time the unit
vectors (A+, A2) are rotated by an angle TT around the direc-
tion 1, then we obtain a complete description of the internal
symmetry of superfluid 3He-A.

All the characteristics listed above can be described by
introducing an order parameter for the A phase

= (A,-MA2) (7)

where A = A (T] determines the amplitude of Cooper pair-
ing.

The superfluid B phase of liquid 3He has a completely
different structure. First of all, the gauge symmetry is
broken in it. Second, the symmetry under rotation of the spin
space relative to the orbital space is lost. This means that
under fixed external conditions the 3He-B state is completely
described by the local orientation of the axis of the rotation
mentioned (defined by the unit vector n) and by the angle of
rotation 0, as well as by the globally determined phase <P.
Nondissipative mass transport in the B phase is character-
ized by the superfluid velocity

v s =—VO, (8)

as in 4He-II. Everything said above can be summarized by
introducing an order parameter for the B phase

A A D . n\ -fj. /Q\

-^iu ~ — T ^ - ^ i u v ^ T ") & f I-'/
y 3

where Rifl are the components of the matrix of three-dimen-

sional rotations, which realizes rotations of the spin coordi-
nates relative to the orbital coordinates. We note that in the
B phase Cooper pairing in spin states with the spin projec-
tion along the rotational axis Sz = ± 1 and Sz = 0 occurs
with equal weights (in the absence of an external magnetic
field); in addition, the total angular momentum of the pairs is
J = 0.

In the absence of different orienting factors (external
fields, superfluid flows, vessel walls) the equilibrium state of
the phases of 3He must be spatially uniform. However, under
real conditions, due to the orienting influence of the walls of
the vessel within which the superfluid liquid is contained in
the A phase some spatial distribution (texture) of the orbital
axis 1 is established (in order to avoid the breaking of Cooper
pairs and loss of the energy of condensation at the boundary
with the solid wall, the vector 1 is oriented along the normal
to the wall). Taking into account further the fact that the
external magnetic field affects the orientation of the vector d
(the magnetic energy is minimum for dlH), while the spin-
orbital forces, due to the weak dipole-dipole interaction
between the magnetic moments of 3He nuclei, try to orient d
along 1, it becomes obvious that as a result of the competition
between the factors mentioned above the establishment of a
spatially nonuniform texture with respect to 1 and d is more
the rule rather than the exception. Analogously, in the B
phase a spatially nonuniform texture with respect to n is
usually established, because the walls of the vessel and the
external magnetic field have an orienting effect on n. As far
as the angle 6 is concerned, its equilibrium value is deter-
mined by the requirement that the spin-orbital (dipole-di-
pole) energy be minimum: 90 = arccosf — 1/4) ~ 104°.

In the experimental and theoretical studies of super-
fluid liquid 3He performed during the last decade, a great
deal of attention was devoted to the study of the diverse tex-
tures appearing in the A and B phases. A convenient method
for studying these textures is NMR. When the spin degrees
of freedom deviate from the equilibirum configuration, the
spin-orbital interaction creates an additional coherent rotat-
ing moment, which acts on the nuclear magnetic moments of
3He and causes a shift in the transverse-NMR freqeuncy rel-
ative to the Larmor frequency a>0 = yH, observed in the nor-
mal phase of liquid 3He.9

It is clear that the nature of the NMR spectrum of su-
perfluid 3He must depend strongly on the equilibrium tex-
ture, which forms the background for the oscillations of the
spin degrees of freedom. For example, in the case of the uni-
form equilibrium distribution of 1 and d in the A phase the
transverse-NMR frequency is given by the formula

(10)

where flA(T) is the dipole frequency associated with the
above-mentioned coherent rotating moment, and a is the
equilibrium angle between d and 1 (under the conditions
created by the combined effect of the vessel walls and of an
external magnetic field, the angle a can differ from zero
(from 77). A more complicated situation is realized in the
presence of soliton textures (domain walls), within which the
mutual orientation of the vectors d and 1 changes gradually,
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over a characteristic dipole length of £ D ss 10 3 cm, from the
configuration with d||l to the configuration with d||-l. With-
in these textures, localized oscillatory modes of the magneti-
zation, observed in the form of satellites in the NMR spectra
of super-fluid 3He-Al, are formed.10

In the rotating state, superfluid phases of liquid 3He
should exhibit a number of peculiar new properties, because
the restrictions imposed by the internal symmetry of the or-
der parameter (by the topological structure of the degener-
acy space) on the capability of undergoing local vortical mo-
tions can lead to the establishment of a very peculiar
rotational state of the superlfuid component. An example of
this is 4He-II for which these restrictions are so stringent
(V X vs =0 everywhere except, possibly, along special lines)
that the equilibrum rotation of the superfluid component is
realized only because of the presence of a system of singular
quantized Onsager-Feynman vortices.

The order-parameter space of the superfluid A phase of
liquid 3He is multidimensional [see Eq. (7)] and, for this rea-
son, the topological restrictions, which we mentioned above,
are less onerous. Indeed, the superfluid velocity in 3He-A, as
we saw, does not reduce to a gradient of a scalar [see (6)] and
its curl, with an appropriately "arranged" texture of the or-
bital vector 1, can be continuously distributed over the vol-
ume of the liquid.11 Because of this, the circulation of the
superfluid velocity vs along some closed contour C.

= f \
J J

( i i )

can assume a continuous series of values depending on the
nature of the distribution of the 1 field over the surface 2,
supported by the contour under study. This is what distin-
guishes the superfluid A phase of 3He from 4He-II, where the
circulation P is unavoidably quantized (in units of /i/m4).

From what was said above it is evident that due to the
formation of a smooth, periodic, singularity-free terxture of
the 1 field, the superfluid component of 3He-A can rotate (on
the average) as a rigid body without the formation of a lattice
of singular vortices. An example of an isolated axisymmetri-
cal texture without singularities is the state of the A phase
with the following oribtal structure of the order parameter12:

= (cos p-p + sin p - z + i<p) e{<?, (12)

where p, <p, and z are the unit basis vectors of a cylindrical
coordinate system, and /3(p) varies smoothly from zero at
p = 0 to -IT at some distance from the texture axis (oriented
along z). It is easy to verify (using Eq. (6)) that the texture
under study is characterized by the following superfluid-ve-
locity distribution:

2iip

with the circulation r(p} = (h /2m3) [1 — cosfi(p)], which
along a closed contour, far from the z axis, is equal to two
times the circulation quantum (in units of P0 = h /2m3) and
smoothly approaches zero as the contour is contracted
around the texture axis. A significant factor is that a texture
of the type (12) can be continuously "squeezed out" of the
uniform state of the A phase (its topological charge equals

zero) and, for this reason, the energy of condensation is not
lost when it is formed, as occurs with the formation of a
singular vortex in 4He-II.

It is now clear that rigid-body (on the average) rotation
of the superfluid component in 3He-A can be imitated by
forming a periodic lattice of nonsingular textures of the type
(12) by joining them along the boundaries of unit cells.r 3 One
such possibility is shown in Fig. 2. Along the boundary of
each unit cell the orbital vector 1 points downwards, and it
gradually rotates to the opposite orientation at the center of
the cell. The circulation of the superfluid velocity around the
boundary of each such cell is equal to two times the circula-
tion quantum (Pc + 2P0). It should be recalled that since the
circulation P is not quantized in 3He-A, it can vary smoothly
as the contour of integration is deformed. The circulation
has a quantized value P = N-2P0, where N is the number of
cells enclosed by this contour.

If the periodic texture of the type examined above is
realized in a cylindrical vessel with radius R (the diagram in
Fig. 2 refers to the cross section perpendicular to the axis of
the cylinder), then a circulation P = (irR 2/2c )-2P0, where
J?c is the area of the unit cell, is established along the inner
surface of the vessel. In order that the pattern imitate rigid-
body (on the average) rotation of the superfluid liquid, the
expression presented for P must be equal to 2irR-fiR, i.e., in
the rotating vessel the equilibrium density of the cells should
be nc = \/2c = n /P0. It is clear that when each cell "car-
ries" v circulation quanta, the density is equal to nc = 2f2 /
vP0.

The example presented above merely serves to illustrate
how an equilibrium circulation of the superfluid velocity can
be created in rotating 3He-A without resorting to a lattice of
singular vortices. On the other hand, the question of precise-
ly which specific periodic structure of nonsingular vortex
structures is realized with a given angular rotational velocity
requires a detailed analysis based on energy considerations.
Quantitative calculations have shown14 that in the absence
of an external magnetic field, the square lattice of nonsingu-
lar vortex textures, each unit cell of which carries four circu-
lation quanta (v = 4), is energetically the most favorable lat-
tice structure. A detailed analysis15 has also shown that this
structure is stable only for relatively low values of
/2</2,s:30 rad/s. For angular velocities exceeding filt a
lattice consisting of singular vortex textures, without singu-
larities in the velocity field v,, but with singular cores due to
the singularities in the 1 field16 (the internal structure of these
cores was studied in Ref. 17), must become preferable. As fl

(13) f

FIG. 2. Periodic texture of the I field of the rotating A phase (according to
Volovik and Kopnin13).
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is further increased, a loss of stability should also be expected
in the lattice of singular vortex structures, described above,
with a transition into the rotational state carrying the lattice
of singular vortices with a unit quantum of circulation
against the background of a uniform 1 field, perpendicular to
the rotational axis.15"18

When an external magnetic field is switched on, the
structure of the lattices formed by the vortex textures will be
distorted due to the combined effect of magnetic anisotropy
and spin-orbital interaction.18 Since in equilibrium dlH,
while the spin-orbital forces strive to maintain 1 oriented
parallel to d, the periodic 1 field of vortex textures must flat-
ten out and as the intensity of the magnetic field is increased,
the region where the vorticity of the superfluid velocity
differs from zero will gradually contract toward the center of
the unit cells, making room for regions where the field 11H
and is almost uniform. Thus, in the presence of a quite strong
magnetic field, a soft core, within which V X vs ̂  0, forms
around the axis of the nonsingular vortex texture. The radius
of this nonsingular core in fields //>//c zz 25.TC is deter-
mined by the dipole length £ D >£, at which, due to the spin-
orbital interaction, a parallel orientation of 1 and d, de-
stroyed near the center of the vortex texture, is restored. It is
clear that in the case of a lattice consisting of singular vortex
structures, hard singular cores with dimensions £, within
which the A phase is destroyed, are concentrated at the
centers of soft cores.

We note that the lattice of singular vortex textures can
be formed by splitting each nonsingular vortex texture with
v = 2 into two singular vortex textures with unit circulation
quanta. To do so, a significant (topological) energy barrier,
associated with the presence of hard cores in the singular
vortex textures, must be overcome, but the final state ob-
tained in the presence of a strong magnetic field turns out to
be energetically more favorable.1S Thus the lattice of nonsin-
gular vortex textures in rotating 3He-A must be metastable
in fields H^-HC. On the other hand, it should be expected
that it is easier to form it uniformly over the entire volume of
the 3He-A (by means of the above-mentioned "squeezing
out" without the topological barrier) than it is to form the
lattice of singular vortex textures, since the latter can appar-
ently enter the bulk of the superfluid liquid only by being
formed at the walls of the vessel.

Turning now to the proposed properties of the rotating
B phase of 3He it should be recalled [see Eq. (8)] that in this
phase the superfluid flow is a potential flow, and for this
reason the equilibrium state with the average value
(Vx vs) = 211 can be realized only as a result of the forma-
tion of a lattice of singular vortices, similar to the well-stud-
ied picture in rotating 4He-II. On the other hand, it should be
expected that specific textural effects, arising due to the ef-
fect of counterflows of superfluid and normal components
(with relative velocity vs — vn) on the orientation of the n
axis (directrix), characterizing the B phase, will appear in
rotating 3He-B.

For H$-HC, the anisotropy energy density in the B
phase, which depends on the orientation of n and is associat-
ed with the combined action of the magnetic field and super-

fluid counterflows, has the form19

Fa n(n)=- f f l{(nH)* + -|(u"fl*(n)H)*}, (14)

where ax 10~12, u = (vs — vn )/vc and vc is the characteris-
tic velocity with which the orienting action of the counter-
flows is comparable to the direct orienting effect of the ap-
plied magnetic field (it is easy to show that vc = ft/
2wJ3^D = ^o/2w|'D ^0.1 cm/sec near Tc}. The first term in
(14) describes the part of the dipole-dipole energy that arises
due to the distortion of the completely isotropic state of the B
phase in the presence of a magnetic field (as a result of the
predominant breakdown of Cooper pairs with spin configu-
ration Ti ) . At the same time, due to the above-mentioned
magnetic distortion (~H 2 ) , the kinetic energy of the super-
fluid flow will also acquire an anisotropic correction, leading
to the appearance of the second term in (14).

In the rotating vessel with 3He-B the effect of counter-
flows of superfluid and normal components should be most
distinctly manifested immediately after rotation is switched
on, when the normal liquid is already entrained into rigid-
body motion, while the superfluid component is still station-
ary (it may be conjectured that in order to form the equilibri-
um lattice of singular vortices, a macroscopic time will be
required, analogously to the picture observed in 4He-H). In
this strongly nonequlibirum situation we have
u = — (fl X r)/yc and, if in an appreciable part of the volume
of liquid |flxr|>uc, then the counterflows must have a
strong effect on the nature of the n-field in the B phase. Sub-
sequently, as the superfluid component is entrained into mo-
tion and the vortex structure is formed, the effect of the
counterflows will weaken and, after an equilibrium state
with (Vxvs) = 2fl is established, the counterflows will be
concentrated only in the regions between the vortices.

In order to describe the effect of the equilibrium vortex
lattice on the orientation of the directrix n in the B phase, the
second term in (14) must be averaged over a cross section
perpendicular to the rotational axis z = fl//2. As a result, we
arrive at the following expression for the effective anisotropy
energy of uniformly rotating 3He-B20:

(Fan> = - off* {(nh)o—| K (zR (n) h)»} , (15)

where h is a unit vector oriented parallel to the external mag-
netic field, while the dimensionless parameter A = A (fi)
characterizes the degree of the orienting effect of the super-
fluid flows flowing around the singular vortices and is given
by the expression

(16)

where wr2. =£c = F0/2fl, and the cutoff radius gc deter-
mines the effective size of the core of the vortex in the B
phase.

Expression (16) for A. takes into account the contribu-
tion of vortex effects, due to the superfluid flows flowing past
the vortices at a distance from their axes exceeding £c. The
region inside the cores (where the B phase is completely de-
stroyed) can also contribute to the anisotropy energy of the
rotating 3He-B (this will be discussed in greater detail below).
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By examining the case of an axial field (H||z), it is easy to
establish that

, (17)

and in equilibrium20

f 0,

Thus, in a large volume of rotating 3He-B (when the
orienting effect of the vessel walls can be ignored), there ex-
ists a threshold value A — 1, below which n||H, as in the
absence of rotation. At A = 1, a phase transition occurs into
the state with/? ̂ 0, which must be manifested as a shift in
the frequency of the transverse NMR relative to the Larmor
frequency co0 by an amount

6a)fr = —2-sin2B. H^>H (19)2to0 f» ci

where /? B is the dipole part of the longitudinal NMR of the B
phase.

A different situation occurs if the magnetic field is in-
clined at some angle •& relative to the rotational axis. It can be
shown20 that in this case there is no threshold with respect to
/I; in addition, for/l^l

0.1A2 sin29, (20)

and the effect of the vortex lattice on the orientation of the
directrix n is maximum for i? = ir/\.

The characteristics of the behavior of rotating super-
fluid 3He described above followed from the representations
of the structure of A and B phases that were formulated over
the last ten years, but until recently existed only in the imagi-
nation of theoreticians. The diversity of the expected new
effects, as well as confidence in the fact that nature's inventi-
veness is limitless, increased interest in the experimental
study of the problem of rotating 3He.

3. THE ROTA ULTRA-LOW-TEMPERATURE ROTATING
APPARATUS AND THE EXPERIMENTAL CELL

To realize the rotation of superfluid 3He, a powerful
3He-4He dilution cryostat and an adiabatic demagnetization
(Cu nuclei) cryostat, assembled on a massive platform "sus-
pended" on a cushion of air (the air pressures was 4-6 bar) in
order to decrease friction, were developed (Fig. 3). The rota-
tion of the 360-kg unit is driven by a belt drive from an 18-W
servomotor. The maximum angular rotational velocity at-
tained is 2 rad/s. A measuring apparatus is mounted on the
rotating platform connected by an electro-optical system to
the computer that controls the experiment and stores the
information collected. In order to decrease possible vibra-
tions, which can lead to rapid warming up, special dampers
were used and the entire apparatus was placed on an isolat-
ed, five-ton foundation. In addition, the dilution and adiaba-
tic demagnetization cryostats were assembled to be as rigid
as possible. As a result, the system was insensitive to both
low- and high-frequency vibrations; with the flow of heat
into the nuclear stage being equal to 30 mW and virtually
independent of the rotational velocity.

FIG. 3. Diagram of the ROTA ultra-low-temperature rotating apparatus.
I) Electro-optical data transmission line; 2) liquid-metal contacts for pow-
er input; 3) upper radial, lower radial and axial air bearings; 4) tube for
evacuating the dilution cryostat (disconnected during rotation); 5) cryo-
pump; 6) l° K pot; 7) dilution cryostat; 8) experimental cell; 9) demagnet-
ization stage; I0| superconducting solenoid (80 kOe|.

The dilution cryostat use: three Frossati sintered heat
exchangers,21 whose total working area is equal to ~ 100 m2.
During the process of cooling the nuclear stage, the dilution
cryostat operates continuously. Then, after the adiabatic de-
magnetization is completed, the external pumping system is
switched off and the 3He is slowly pumped out of the cryostat
with a cryosorption pump of novel design. The dilution
cryostat operates autonomously for about 17 hours and the
duration of the experiments in the rotational state is limited
by the volume of 3He in the dilution chamber.

The nuclear stage of the cryostat contains 30 mol of
high-purity 0.5-mm copper wire. The dilution cryostat cools
the nuclear stage to 20 mK in a magnetic field of 8 T. Then,
by the method of adiabatic demagnetization of the Cu nuclei,
a temperature of the order of 1 mK is attained. This is trans-
ferred through a conical contact to the sintered silver heat
exchanger in the experimental cell. The conical contact is
standardized to Soviet apparatus—an operating stationary
nuclear demagnetization cryostat belonging to the Institute
of Physical Problems of the USSR Academy of Sciences and
an ultra-low-temperature rotating apparatus under con-
struction at the Institute of Physics of the Academy of Sci-
ences of the Georgian SSR, which makes it possible to inter-
change the experimental cells.

Since the characteristic properties of the rotating
phases of liquid 3He, described in the preceding section, are
reflected in the nature of their textures, it was natural to use
primarily NMR methods, which were so effective in probing
the A and B phases in stationary vessels. The first experi-
mental studies of the properties of 3He-A and 3He-B in the
state of rotation were performed with the help of observa-
tions of the transverse-NMR spectra.
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FIG. 4. Experimental 3He cell. 1) Cell consisting of epoxy resin; 2) saddle-
shaped NMR coils, 3) Pt NMR thermometer; 4) silver sintered heat ex-
changer; 5) conical contact.

The experimental cell (Fig. 4) consisted of a cylindrical
vessel 30 mm long with a diameter of 5 mm, whose axis is
oriented along the rotation axis. The rf magnetic field was
excited in saddle-shaped coils, wound around the generatrix
of the cylinder. The constant magnetic field was created by
two orthogonal solenoids, so that its orientation could be
varied in a plane perpendicular to the poalrization of the rf
field. The uniformity of the constant magnetic field was con-
trolled by the correcting coils to within AH/H0~4-10~5.
The cell with 3He, connected to the dilution cell so that its
temperature was in the range 10-15 mK, was positioned
next to the experimental cell. The NMR signal from this cell
served as a reference point for calibrating the field. The mag-
netic field was scanned at a rate of the order of 1 G/min,
while the 920-MHz NMR signal was stored in the memory
of the computer and was recorded on an automatic plotter.
Data from a PLM-3 platinum NMR thermometer, whose
sensor was positioned at the bottom of the experimental cell,
were recorded in phase with the scanning of the magnetic
field. Most of the measurements were performed under con-
ditions of natural heating-up of the sample at a rate of 1.5
/uK/min; in addition, the rotation was usually turned on and
off at intervals sufficient for establishing equilibrium, but in
many cases the experiments were performed in a state of
continuous rotation.

4. NMR SPECTROSCOPY OF ROTATING 3He-A

The first information on the rotating A phase of liquid
3He was extracted from the anlysis of the line shape of the
transverse-NMR line. It turned out that as the angular ve-
locity is increased, the absorption peak at a frequency of
«,r xa)0 + (f2 i/2fi)0) [see Eq. (10) for the case a = 0 and
«0>/2 A ] "squats down" and is broadened with the integrat-
ed intensity remaining unchanged.22 The proportionality of
the observed effect to the angular velocity gave a basis for
associating it with the formation of a system of vortices in the
rotating A phase with an equlibrium density nc ~/2.

Further experiments,23 performed with an improved re-
solution, revealed important details of the absorption spec-
trum of transverse NMR in rotating 3He-A. It was found
that the main peak is accompanied by a weak satellite at a
frequency of <ysat < «tr, virtually independent of the angular

JijkHz

1 W
f

/

-e /•„ a f - f , , kHz

FIG. 5. Spectrum of the main absorption peak (1) and of the satellite lines:
spontaneous line (2) and the line arising with rotation (3). The satellite
lines are shown on the right (in units of the intensity of the main signal).

rotational velocity, while the intensity 7sat is proportional to
f l . Figure 5 shows a fragment of the data for the satellite
mentioned.

It should be noted that in many cases, a second satellite,
situated closer to the main absorption peak, was observed in
the experiments. It appeared in the nonrotating vessel in the
case of rapid passage into the A phase from the normal state
of the liqud 3He (see the left side of Fig. 5). An analysis of this
secondary peak showed that it is associated with the forma-
tion of soliton textures, observed previously in stationary
experiments.24 In a cylindrical vessel, in the presence of an
axial magnetic field, the appearance of so-called twist com-
posite solitons should be expected. The oscillations of the
magnetization, localized within the spin-orbital wells of the
solitons, are observed precisely in the form of satellites in the
transverse-NMR absorption spectra; in addition, the posi-
tion of the above-mentioned secondary peak agrees very well
with the theoretical prediction based onthe soliton model.10

After the vessel with the 3He-A is put into rotation, the in-
tensity of the soliton satellite gradually decreases with time
and approximately 30 min later the satellite vanishes com-
pletely.

Turning now to the newly observed satellite in the
transverse-NMR spectrum of the rotating A phase, it should
be emphasized that it has a large width and it has not been
excluded that we are actually dealing with an unresolved
structure arising as a result of superposition of close-lying
peaks. If, however, it is interpreted as an isolated absorption
peak, then the corresponding frequency can be represented
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FIG. 6. Temperature dependence of R u for the vortex satellite for differ-
ent angular velocities, fl (rad/s) = 0.60 (1), 1.04 (2), 1.21 (3), and 1.43 (4).

in the standard form

^L (21)
^Q) '

where the renormalizing factor is R \T < 1. Figure 6 shows
the experimental results for the temperature dependence of
R1T for different angular rotational velocities. The fact that
R*r and, therefore, the frequency of the satellite also, are
virtually independent of fl is interesting.

Figure 7 shows the experimental data on the depen-
dence of the intensity of the new satellite on the angular
rotational velocity, which can be described satisfactorily by
the following empirical formula:

= 0.058 Q, (22)

where /„ is the intensity of the main absorption peak at the
frequency cou xco0 + (/? \/2o)0}, with the angular velocity
expressed in rad/s.

An analysis of the results presented in Figs. 6 and 7
shows that the observed absorption peak is undoubtedly as-
sociated with the rotation of 3He-A and is most likely formed
within isolated vortex formations arising in the rotating ves-
sel. This is indicated by the proportionality of the integrated
intensity of the satellite to the angular velocity on the one
hand and by the independence of its position from fl on the
other.

Further details on the characteristic properties of the
transverse-NMR spectra in the rotating A phase of liquid
3He can be found in Ref. 25, where, together with the ques-
tions mentioned above, data on the times of formation of the

IB -

s -

a - •
? 0.5 1.0S, rad/s

FIG. 7. Dependence of the relative intensity of the vortex satellite on the
angular rotational velocity. 1) Rotation switched on in the state 3He-A; 2)
transition into the A phase occurring in the state of rotation.

vortex satellite after the rotation is switched on as well as on
the broadening of the main absorption peak in the rotational
state are discussed.

In order to interpret the experimental data obtained, it
is necessary to make a quantitative comparison with theo-
retical calculations. The starting point here is the assump-
tion that the appearance of the detached absorption peak
(satellite) is associated with the formation of localized oscil-
lations of the magnetization, trapped, due to the coherent
spin-orbital interaction, by inhomogeneities of the 1 field
(mentioned in Sec. 2) of the soft cores of the periodic vortex
structure of the rotation 3He-A.The two-dimensional poten-
tial well of the dipole core of the vortex contains at least one
bound state, which is excited under the conditions of trans-
verse NMR, manifesting itself as the satellite described
above. For a quantitative analysis of the spectrum of fre-
quencies of localized spin oscillations, it is necessary to con-
sider the wave equation for the transverse magnetization

where U (r) is the dimensionless dipole potential of the core of
the vortex structure, and £ = (ca2 — (o^/fl \.

In performing specific calculations of the spectrum of
localized oscillations of the magnetization, one must start
from realistic models of the soft cores, forming around the
axes of the vortex textures in the presence of a strong mag-
netic field (//>//<; ;= 30 G), when their size is of the order of
the dipole length £D ,18 In the most general case, the triad A1;

A2,1), describing the local orbital state of the A phase, can be
parameterized with the help of the Euler angles (a, fi, y) as
follows:

! + i A2 = (HI + « eiv

where

Uj = (cos a-x — sin a-y) cos 0 + sin |3-z,

u2 = sin a-x + cos a-y.

It is easy to verify that the orbital vector is

(24)

(25)

1 = H! X u2 = — (cos a-x — sin a-y) sin p -f- cos P-Z,
(26)

so that the texture is described by the local values of the
azimuthal angle a and of the polar angle /3.

Using Eq. (6) it is easy to show that the superfluid veloc-
ity is equal to

vg = -^(Vy-(-cospVa), (27)

which once again confirms the impossibility of reducing vs

to the gradient of a globally defined scalar. At the same time,
Eq. (27) indicates an extremely important fact, which is the
key to constructing analytically different nonsingular vortex
structures. It is easy to see from (27) that in the region where
costp = 1 it is possible to construct a state with a regular
behavior of vs, if the quantity a + y does not have singulari-
ties. Analogously, in the region where cos/? = — 1, the su-
perfluid velocity will be regular, if a — y is a nonsingular
function.
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FIG. 8. Schematic illustration of the nonsingular radial (a), circular (b),
and hyperbolic (c) vortex textures. The symbol Q( e ) indicates the axis of
the texture, where the vector 1 is oriented upwards (downwards).

Following the prescription formulated above, it is easy
to construct several very simple isolated nonsingular vortex
textures.

a) Mermin-Ho nonsingular radially-circular vortex tex-
ture

n

(28)

<x= —

P=P(p), P(0) = 0, P («>)=-£-,

f—(f, a-}-Jj> = a!0 = const.

This vortex is characterized by an axisymmetrical tex-
ture

1 = _ (cos cc0-p + sili a0-<p) sin P + cos p - z (29)

and by a regular distribution of the superfluid velocity

r (,Q) <p /-J/-.Iy*=-2^r ( '
with circulation F ( p ) = ro(l — cos/?(p)), in addition,
r (oo) = ro. We note that with a0 = 0 we have a purely radial
texture and with a0 = -ir/2 we have a purely circular texture.

b) Nonsingular cross-like (hyperbolic) vortex texture26:

P=P(p),

(31)Y = <p, a — y = OC;, =const.

This vortex is characterized by an axially unsymmetrical
texture

1 = _ [cos (aa + 2<p) p — sin (a0 + 2cp)-q>]
X sin p + cos p - z (32)

and by a regular distribution of the superfluid velocity ac-
cording to Eq. (30), but with the circulation
F ( p ) = F0( 1 +cos/7 (p)); in addition, once again,

~x x
\ 0 t

\\ \
t t P

\
FIG. 9. Schematic illustration of the texture of the 1 field in the "mole-
cule" of a circularly-hyperbolic vortex. With the transition from the axis
of the circular texture to the axis of the hyperbolic texture, the vector 1
turns over smoothly into the opposite orientation.
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FIG. 10. Schematic illustration of the unit cell containing a pair of circu-
larly-hyperbolic vortex textures. The circulation of the superfluid velocity
along the boundary of the cell is equal to 4T0.

c) Nonsingular Anderson-Toulouse vortex texture:

a=-<p, )

P=P(p), P(0) = 0, p(oo) = n, (33)

This vortex, as alrady mentioned in Sec. 2, is character-
ized by an axisymemtrical texture [Eq. (12)] and by a regular
distribution of the superfluid velocity [Eq. (13)]; in addition
^(00) = 2F0.

Figure 8 illustrates schematically the radial, circular,
and hyperbolic textures.

It is easy to see that from the vortex textures of the type
a) and b) it is possible to construct smooth periodic textures,
free of singularities in the velocity field vs and which imitate
rigid-body (on the average) rotation of the A phase of liquid
3He. The building blocks here are "molecules," consisting of
pairs of circularly-hyperbolic vortex textures and capable of
being easily inscribed in the uniform 1 field (Fig. 9). From
these "molecules" it is possible to form a periodic structure
with tetragonal symmetry, whose unit cell is illustrated in
Fig. 10 and contains two circularly-hyperbolic "molecules."
It is easy to show that the circulation of the superfluid veloc-
ity along the closed contour, running around the boundary
of this cell, is equal to 4T0. The described periodic structure
in rotating 3He-A was first examined in Ref. 26, and it was
demonstrated in Ref. 14 that in the absence of an external
magnetic field it is energetically the most favorable nonsin-
gular vortex texture with an equilibrium density of unit cells
nc = n /2ro, which ensures an on-the-average rigid-body
rotation of 3He-A.

In the absence of a magnetic field the size of the "mole-
cules" examined above, which comprise the equilibrium vor-
tex lattice of the type described, is determined by the angular
rotational velocity and does not have an intrinsic character-
istic size. When a strong magnetic field is aplied.the situa-
tion changes radically. As already noted in Sec. 2, forH$-Hc ,
soft cores, whose size is of the order of the dipole length J"D ,
form around the axes of the analytic vortex textures. With
moderate rotational velocities the size of the unit cell of the
vortex lattice rv, which is proportional to 1//2, is much
greater than j j D , and for this reason the distribution of the 1
field will be almost uniform over a wide area within each cell,
if the size of the circularly-hyperbolic "molecule" is com-
pressed to a quantity of the order of £D . Thus for H>HC it
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FIG. 11. Transverse cross section of the 1 field of the circularly-hyperbolic
vortex "molecule" in the presence of a strong magnetic field (according to
Seppala and Volovik27).

should be expected that the periodic vortex texture in rotat-
ing 3He-A will be constructed from compact "molecules,"
which have a double quantum of circulation of the super-
fluid velocity and, most likely, will have a triangular symme-
try, similar to the vortex lattices in superconductors and in
4He-II.

An example of the compact "molecule" mentioned
above is examined in Ref. 27 (Fig. 11), where the spectrum of
localized spin oscillations, trapped within its dipolar poten-
tial well, was studied. According to the theoretical calcula-
tions, the previously introduced quantity R lr, estimated for
the texture illustrated in Fig. 11, is quantitatively close to the
experimentally observed value.

The frequency of the satellite formed within the soft
dipole core of a singular vortex texture in a field //>//c (a
singular vortex, of course, also has a hard core within radius
£) was also estimated in Ref. 27. Since, as it turned out, the
dipole core of the singular texture is approximately two
times smaller than the dipole core of a nonsingular vortex,
the local vibrational level is located quite close to the upper
edge of the potential well and R tl is close to unity. A quanti-
tative calculation showed that for the singular texture
R tr s;0.98 and the presence of such a weak isolated satellite
[see Eq. (21)] could hardly be observed against the back-
ground formed by the broadened main peak. A theoretical
estimate of the relative intensity of the vortex satellites also
supports the fact that a system of analytic vortices with soft
dipole cores was observed in rotating 3He-A. It should be
kept in mind, however, that according to calculations, per-
formed in Refs. 18 and 27, in fields H%-HC a lattice consisting
of singular vortex textures may turn out to be energetically
more favorable and for this reason it has not been excluded
that the system of nonsingular vortices, observed expeirmen-
tally, is metastable. this question requires further study.

S. NMR-SPECTROSCOPY OF ROTATING 3He-B

Turning to the experimental data on NMR spectrosco-
py of the rotating B phase of liquid 3He and their interpreta-
tion, it should be kept in mind, first of all, that in 3He-B the

magnetic length £\, at which the parallel orientation of the
directrix n and the field H, which was destroyed in some
region of space, is restored, is determined by the competition
between the very weak anisotropy energy — aH 2(nh)2 and
the gradient energy of the B phase and is estimated from the
formula

2-—K H
(34)

where K is the coefficient of rigidity of the order parameter
of superfluid 3He relative to spatial distortions of the con-
densate (details can be found in the review of Ref. 8). Because
of the smallness of the coefficient a, the magnetic length ̂
can have an entirely macroscopic value, comparable to the
size of the vessel containing the 3He-B, even in relatively
strong fields H$>HC. For example, at T =0.7 Tc and
H0 = 284 G the magnetic length £ ̂  ~0.4 mm, which is only
six times smaller than the radius of the cylindrical vessel
used in the experiments described below. This means that
the presence of the vessel walls, which have an orienting
effect on the directrix n, must be felt in a substantial part of
the vessel volume, determining the nature of the equilibrium
texture of the n field of the B phase.

In a magnetic field oriented along the axis of the station-
ary cylindrical vessel with 3He-B, an axisymmetrical coni-
cally expanding (flare out) texture of the directrix is estab-
lished. It is characterized by the fact that the vector n on the
axis of the vessel is oriented parallel to H and as the distance
from the center toward the periphery increases it becomes
gradually tilted by an angle/? = /?(/?) from the axial orienta-
tion, reaching a tilt angle of/3(R )~63° relative to H at the
walls of the vessel of radius R. At the same time the vector n
is turned by an angle a = a( p) relative to the radial direc-
tion, with a(R )x 60°.

Oscillations of the magnetization, whose frequency
spectrum can be studied by NMR methods, appear against
the background formed by the equilibrium texture n = n( p).
If the texture is smooth enough (on the scale of the dipole
length |"D •<!" g), the NMR spectrum can be described in the
first approximation by the model of local oscillators, assign-
ing to each point with a fixed value of the angle P its "own"
frequency.

w, r(p) «co0+-^- (35)

and, in addition, knowing the distribution P = P (p), the en-
velope of the spectral density can be constructed using the
formula

= -gr i 6 ( w - < o t r ( p ) ) p d p . (36)

In a more accurate approach, it is necessary to take into
account the fact that due to the rigidity of the order param-
eter of the B phase the oscillations of the magnetization are
collective modes and they must be described with the help of
a wave equation of the type (23) with the dipole potential

A detailed calculation of the texture of the n field of the
B phase, confined in a cylindrical vessel and placed in an
axial magnetic field, was performed in Ref. 28 for the case
I" ̂  <R (see also Refs. 29 and 30). At a distance from the side
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wall of the cylindrical vessel exceeding |"^, the tilt angle of
the directrix away from the magnetic field is small and in the
stationary case (i.e., in the absence of rotation) is described
by the formula

7kHz

l(p)«c]/ — «-«'««/, (^-j, (37)

where c~l, £„ = (16/13)1/2££, and /,(*) is the modified
Bessel function of the first kind.

From (37) it is easy to see that forp<£gH

= -jcV2ni;e-x, (38)

and, therefore, near the axis of the cylindrical vessel oscilla-
tions of the magnetization occur within a two-dimensional
isotropic harmonic dipolar well

TrMTr)1, (39)
which leads to the formation of a spectrum of equidistant
spin-wave levels, observed in the form of a series of trans-
verse-NMR absorption peaks. Turning to Eq. (23) and using
the oscillator potential (39), we can verify that the character-
istic values of the quantity e = (a> — ta0)/(f2 B/2<y0) are given
by the formula £„ = (2n + 1)£0> where £0 = 1.72(|"D/
£H}P\(R/SH}- Thus the distance between the neighboring
resonance peaks is equal to

A"=2-Sre° (40)

It should be kept in mind tht the harmonic-oscillator
model is adequate only if the effective radius of localization
of the spin-wave excitations satisfies pL <£H-%R. Since p2

L

~£r>£H/P\> the condition mentioned holds for/3^a > |"D ,
i.e., if the magnetic length £,H is not too small.

From what was said above it follows that the effects of
the vortices on the frequency spectrum of NMR in a rotating
cylindrical vessel containing 3He-B must be built up against
the background formed by the pattern of equidistant absorp-
tion peaks described above. Turning to expression (17) for
the density of the anisotropy energy, which takes into ac-
count the average orienting effect of superfluid vortex flows
on the field of the directrix n of rotating 3He-B, we verify that
near the axis of the cylindrical vessel (where /?<<!)
(F3n)~aH2(l —J.){32, while the effective magnetic length
[see formula (34)] is

,.,,(41)

Thus, as the parameter A. (/2 ), which characterizes the
average effect of vortices on the orientation of the n axis, is
increased, £H (A. ) increases, which must lead to an increase of
the slope of the dipole oscillator well [see formula (39)] and a
corresponding increase of the distance Aa>(A. ) between the
neighboring absorption peaks inthe transverse-NMR spec-
trum of rotating 3He-B.

Experimental studies of the frequency spectrum of
NMR of the rotating B phase of liquid 3He were performed
in the cylindrical vessel used for NMR spectrosocpy of the
rotating A phase (see Fig. 4). The very first measurements
performed in the presence of an axial magnetic field
(H = 284 G) with a pressure of P = 29.3 bar, led to the dis-

FIG. 12. Shape of the transverse-NMR signal for the B phase of 3He in a
magnetic field oriented along the axis of the cylindrical chamber.

covery of unexpected effects.31 Figure 12 shows the spec-
trum of the transvwerse-NMR signal for 3He-B in a state of
rest (/2 = 0) and in the rotating state (/2 = 0.6 rad/sec). The
structure of the spectrum is characteristic for NMR of the B
phase under conditions of a limited geometry, when the ef-
fect of the vessel walls destroys the uniformity of the n field,
creating a dipolar potential well in which standing spin-
waves with a discrete frequency spectrum are formed, as de-
scribed above. Precisely this picture was observed in the sta-
tionary cylindrical vessel in the presence of an axial
magnetic field (almost equidistant absorption peaks are
clearly visible in Fig. 12).

Immediately after the rotation is switched on, for 1-2
minutes a transient state, during which the transverse-NMR
spectrum described above is radically altered, was observed;
in addition, judging from everything, the directrix n tilts
strongly away from the axial direction. This picture corre-
sponds to the nonequilibrium situation described in Sec. 2,
when the superfluid part of the liquid is still not entrained
into rotation and large counterflows of superfluid and nor-
mal components of 3He-B exert a strong orienting action on
the n field. The expected spectral density of the frequencies
of the transverse NMR (more precisely, its envelope) is
shown in Fig. 13 for different values of the angular velocities
f l . It is evident from this figure that due to the orienting
effect of the nonequilibrium counterflows a distinct absorp-
tion peak is formed.32 This conclusion qualitatively agrees
with the observed transient effect.

After the end of the transient rotational regime the

FIG. 13. Calculation of the envelope of the transverse-NMR absorption
spectrum for the B phase in the presence of nonstationary counterflows of
superfluid and normal components.
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FIG. 14. Temperature dependence of the distance between neighboring
transverse-NMR peaks for 3He-B, placed in a cylindrical vessel rotating
with an angular frequency fi.

character of the NMR frequency spectrum of the B phase is
restored (see the right side of Fig. 12), since the lattice of
singular vortices formed prevents large counterflows of the
superfluid and normal components, existing at the initial
(nonequilibrium) stage of rotation of the 3He-B. However, as
ascertained in Ref. 31, the distance Aco between the equidis-
tant absorption peaks increases with the angular velocity
(Fig. 14), which is undoubtedly associated with the average
effect of the system of vortices, described above, on the tex-
ture of the n field of 3He-B in the rotating cylindrical vessel.

The described behavior of the NMR spectrum of rotat-
ing 3He-B completely corresponds to the formulated model
of the superfluid B phase and does not contain any unexpect-
ed developments. On the other hand, the nature of the tem-
perature dependence of A& with fl ^0, shown in Fig. 14,
shows that at T = 0.6 Tc and P — 29.3 bar, we encounter an
unexpected effect, which is manifested in the form of jumps
in the magnitude of Ao>. The lack of dependence of the tem-
perature at which these jumps occur on the angular rota-
tional velocity /2 (i.e., lack of dependence on the number of
vortices) undoubtedly indicates that the observed pheno-
menon is associated with a jump-like change in the structure
of separate vortices in the B phase of liquid 3He.

Since the possible rearrangement of the structure of the
singular vortex must primarily affect its core, we encounter
for the first time a phenomenon occurring at a distance of the
order of the coherence length £, which is the smallest scale in
the hierarchy of characteristic lengths of superfluid 3He-B.
It is thus necessary to study the nature of the core structure
of the vortex in the B phase and how its characteristics are
manifested in the experimentally observed effects.

Because of the multicomponent nature of the order pa-
rameter of superfluid 3He, the core of the vortex in the B
phase can be set up by different methods, differing according

to symmetry. It has not been excluded that one of the possi-
ble cores is filled with the superfluid phase, which is not
realized in the bulk of the liquid 3He. The jumps in the mag-
nitude of Aco observed; in Ref. 31 are associated with phase
transitions within the core of the vortex, accompanied by a
jump-like rearrangement of its structure.

The vortex cores make a definite contribution to the
anisotropy energy (15) of the rotating 3He-B. The parameter
A, characterizes the averaged orienting effect of the vortices
on the directrix n. In addition, the expression (16) describes
the part that is due to the superfluid flows in the region
/? > Ic . The contribution of a vortex core (the region p<£c)
to A is proportional to the area of its transverse cross section
crc = TT£ 2 . If it is assumed28 that the vortex core is filled with
the superfluid liquid with a magnetic-susceptibility anisot-
ropy 8%,. , then this contribution will be characterized by the
parameter Ac ; in addition,

a*c = -l6Xc-g-, (42)

while the total value A = A f + /lc , where A f is determined by
the superfluid flows flowing around the vortices and is given
by formula ( 1 6). As a result we arrive at the following model
estimate of the paramter A :

Near Tc the dipole length £„ does not depend on the
temperature and is close to 0. 6- 1 0 ~ 3 cm, and for fl = 1 rad/
s, A f ̂ 0. 1. On the other hand, an estimate of the parameter
A, based on an anlysis of the experimental data for Aa,
showed that for (I = 1 rad/s, A < 1. This fact served as an
argument28 in support of the fact that Ac >A f ; in addition, in
order to satisfy the requirement Ac s; 1, it was necessary to
postulate a high anisotropy of the magnetic susceptibility of
the vortex core (<5jc ~A%B ) and a large transverse core size
(£c s 10|" ). However, it should be kept in mind that the ex-
perimental data described above refer to temperatures far
from Tc and, in addition, at P = 30 bar the dipole length is
£D(0.5rc)s=2£D(rc), i.e., Af(0.5Jc)^0.4/2 [rad/sec], and
the contribution of the core no longer apears to be predomi-
nant. We note, further, that A f increases as the pressure is
decreased. Figure 1 5 shows the temperature dependence of
A f for different pressures, constructed from estimates made
in Ref. 33. As far as the value of Ac is concerned, its estima-
tion requires detailed information on the structure of the
vortex core in the B phase.

0.8 -

P=18 bar

FIG > 15. Temperature dependence of the vortex parameter A f at differ-
ent pressures.33
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Before considering the question of the structural fea-
tures of the vortex core in the B phase, we shall consider the
methods used to determine the parameter A experimentally.
One of these methods is based on the analysis of the quantity
Aa, which characterizes the distance between neighboring
NMR absorption peaks in the rotating cylindrical vessel
with 3He-B. It was already pointed out that the average ef-
fect of vortices on the n field leads to a renormalization of the
effective magnetic length [see formula (41)], which is mani-
fested in the dependence of Aa> on /I. It was this renormaliza-
tion that provided the first information on A = A (fl, T) at
P = 29.3 bar in an axial magnetic field.

Later it became clear that more reliable information on
A=A(fl,T,P) can be extracted from experiments performed
in the presence of an inclined magnetic field, forming some
angle i? with the rotational axis. In Sec. 2 it was already
noted that according to Ref. 20, for •& ^0, a shift should be
observed in the transverse- NMR frequencies realtive to the
Larmor frequency «0 by an amount

6o>tr A," sin2 2fl. (44)

This expression is valid for A < 1 and shows that in this
case the effect is maximum at a tilt angle j? = Tr/4. For arbi-
trary values of the parameter A, the shift in the NMR fre-
quencies in the rotating B phase in the presence of an in-
clined field, is given by the equation32

o 4 ^B /. ....

2co0
(45)

and, in addition, the quantity u = «( + , d ) satisfies the equa-
tion

It is easy to verify that the estimate (44) is reproduced
for A •% 1, while in the general case the frequency shift is maxi-
mum for tilt angles dm = &m (A ). Figure 16 shows the depen-
dence of the normalized frequency shift on the parameter A
for different values of the angle &.

In Refs. 34 and 35 the relation (45) was used as a source
of information on the quantity A = A (/?, T, P). Figure 17
shows the experimental data on the shift in the transverse-

&15

O.05

a ff.f 0.8 1,2

FIG. 16. Dependence of the normalized shift in the transverse-NMR fre-
quency spectrum for the B phase, placed in a tilted magnetic field, on the
vortex paramter A (theory).

0.05 -

0.7 0,9 T/TC

FIG. 17. Temperature dependence of the normalized shift in the trans-
verse-NMR frequency spectrum for the B phase for different tilt angles 6
of the magnetic field relative to the rotational axis. The absorption spec-
trum obtained at T= 0.53 Tc is shown in the inset.

NMR frequency spectrum, observed in rotating 3He-B
(f2 = 1.4 rad/s) for different tilt angles of the magnetic field
relative to the axis of the cylinder. The frequency spectrum
of th NMR signal, which is displaced relative to the absorp-
tion spectrum in the stationary B phase, is shown in the inset.

It should be emphasized that the nature of the trans-
verse-NMR spectrum in a tilted field differs appreciably
from the absorption spectra observed in experiments with an
axial magnetic field. As the angle i? is increased, the sharp
left boundary of the spectrum in the stationary case (/2 = 0)
moves closer to the Larmor frequency a>0 and an increasingly
larger part of the spectral density is concentrated near its
low-frequency boundary. This circumstance indicates that
in the tilted field the equilibrium configuration of the n field
differs in a significant way from the flare-out texture: in a
large region of the transverse section of the cylindrical vessel
the directrix of the B phase is oriented along the magnetic
field. This fact can apparently be related to the special role of
the surface energy in the cylindrical vessel, placed in a tilted
magnetic field with i?> 14.5° (see below).

Returning to the large shift in the NMR frequency spec-
trum, due to the orienting effect of vortices on the directrix
of the B phase under conditions of a tilted magnetic field (see
Fig. 17), we once again observe the sharp breaks in the curves
of the temperature dependence of the frequency shift aa>lt at
T = 0.6 Tc, reflecting the presence of a jump-like change in
the parameter A, stemming from the above-mentioned rear-
rangement of the internal structure of the vortex cores in
3He-B. Relying on relations (45) and (46), it is possible to
obtain from the experimental data (see Fig. 17) information
on the coupling constant A, describing the average interac-
tion of vortices with the directrix n. The result of this analy-
sis is shown in Fig. 18. At a pressure of P= 29.3 bar, the
experimental points obtained with different tilt angles of the
magnetic field do not exhibit an appreciable spread, which
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FIG. 18. Temperature dependence of the vortex parameter A, measured
for two values of the pressure with (I = 1.40 rad/s.

demonstrates the adequacy of the interpretation based on
the theoretical results in Ref. 2. The same figure shows the
temperature dependence of /I, measured at a pressure of
P — 20.5 bar. The increase in the parameter A as the pressure
is decreased is clearly evident (compare with Fig. 15).

We shall now discuss briefly the nature of the equilibri-
um texture of the n field in the B phase, contained in the
cylindrical vessel and placed in a tilted magnetic field. For
t? 7^0 the boundary value of the angle/9 (nz = cos/?) depends
on the aximuth cp, which determines the position of the point
on the circle along the inner surface of the cylinder. If the
angle <p is measured from the plane defined by the vectors ft
and H, then32

sin ps = 7=V~1 (47)

and the equilibrium texture in the volume of 3He-B must be
"inscribed" into this boundary condition. It is now clear that
for tilt angles t? > 14.5°, i.e., for sim? > 1/4, both branches of
the solution (47) must be used, in order to ensure that the
boundary condition is satisfied along the entire inner surface
of the cylindrical vessel. This discontinuous behavior of the
angle fis indicates the presence of a pair of linear surface
singularities (so-called boojums) of the n field. For example,
these linear defects can be situated along the generatrices of
the cylinder with <p = + v/2. It is easy to verify that for
i? < 14.5° the volume texture, which joins with the described
surface configuration, is such that the orientation of the pro-
jection of the directrix n on the transverse plane differs little
from the projection of the magnetic field almost everywhere.
This is what explains the characteristic features of the NMR
frequency spectrum in a tilted field and the large frequency
shift observed in the case of rotation.

It should be kept in mind that the equilibrium texture
described above in the tilted field is formed when 3He enters
the B phase in the presence of a fixed orientation of H. If,
however, H is tilted away from the axis with an already
formed flare-out texture, then the latter, in a somewhat dis-
torted form, remains in the form of a metastable state (see

Ref. 35 for a more detailed discussion).
Turning now to the question of the structure of the vor-

tex core inthe B phase and the effects stemming directly from
its characteristic features, it is necessary to start with a gen-
eral analysis of the structure of the wave function of the
condensate of triplet Cooper pairs with relative orbital angu-
lar momentum L = 1. A natural basis is the set of states
Ylm (R)Xn with fixed projections of the orbital angular mo-
mentum m = ±1,0 and total spin/z = ± 1,0 on the corre-
sponding quantization axes (the spherical harmonics Ylm

are functions of the "internal" spatial coordinate
R = rt — r2 of the Cooper pair).

Any state of the superfluid condensate can be represent-
ed in the form of a superposition

^ (r> R) = S amn (T) Ytm (R) Xu, (48)
mil

and, in addition, in the nonuniform case the coefficients am/J

depend on the coordinates of the center of mass
r = (r, + r2)/2 of the Cooper pairs. We recall that for the A
phase m = ± 1, while n = 0 and, therefore, a0 is the only
nonvanishing coefficient. On the other hand, in the case of
the B phase, in which the total angular momentum of the
Cooper pairs is /= 0, the coefficients with m + /J, = 0, i.e.,
ai, -i'aoo> ar>da- 1,1 > arenonvanishing.

Far from the core of the vortex with a unit quantum of
circulation of the superfluid velocity, the state of the B phase
is described by a triplet of coefficients (as above, ( p , q>) are
polar coordinates)

fl'.-« = c«.- '<P)e<M (49)

and, in addition, ignoring the effect of the magnetic field, the
amplitudes cmM are equal to one another and at distances
p>gc are virtually independent of p. As the center of the
vortex is approached (in the region p<gc) the amplitudes
cm/J ( p ) in (49) must gradually be suppressed, vanishing at
p = 0. At the same time, within the core, new states with
m +/z^0 can be mixed into the states already examined
above, characterizing the B phase (if, of course, this lowers
the energy of the system).

The structure of the vortex core in the B phase was stud-
ied theoretically in Ref. 36 taking into account states with
m + /j, = +2, i.e., the matrix a was selected in the form

(50)

and, in addition, the factors in front of the amplitudes Cj, and
c _!, _ , were selected so that the energy density of the vor-
tex state described by the matrix (50) would be independent
of the azimuthal angle <p. The amplitudes cmfl must be deter-
mined by minimizing the energy of the system (the sum of the
energy of condensation and the gradient energy) under the
condition

<W(0) = 0, CU (°°) = C-1,-1 (°°) = 0. (51)

Figure 19 shows the results of the numerical calculations36
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FIG. 19. Radial dependence of the coefficients cm>1 for the five-parameter
vortex in the B phase.36 The broken curve shows the energy density of the
vortex.

of five amplitudes cm/^ (p), performed for the Ginzburg-Lan-
dau temperature range (near Tc). Of course, they refer only
to the low-pressure B phase ( P<P0), when 3He-B is directly
adjacent to the normal phase of liquid 3He. It is noteworthy
that the so-called nonunitary state, characterized by the
spontaneous magnetization

m

is concentrated within the core of the vortex.
We note that vortices with magnetized cores can also

exist, as demonstrated in Ref. 37, in superfluid Fermi sys-
tems with 3P2 pairing (neutron stars).

The existence of vortices with magnetized cores in the
rotating B phase of liquid 3He was recently observed in Ref.
38. This gyromagnetic effect was revealed by comparing the
NMR spectra obtained with rotational angular velocities ft
and — ft (or for magnetic fields H and — H). As in the
previously described experiments, two independent meth-

0.05 -

0,5 ff.ff 0.7 0.8 0.9

FIG. 20. The temperature dependence of the normalized shift in the trans-
verse-NMR frequency spectrum of the B phase with n = 1.40 rad/s in a
tilted magnetic field. The symbols O and • correspond to measurements
with oppositely oriented rotations.

ods were used to observe the transverse-NMR frequency
spectra: measurement of the distance Aa> between equidis-
tant absorption peaks in the presence of an axial field and
determination of the shift in the frequency spectrum 8a>a in
a tilted field (i?> 14.5°). Figure 20 shows the data on the
frequency shift &otr, measured with P = 29.3 bar, fl = 1.4
rad/s, and tilt angles of the magnetic field i? = 25° and
t? = 155°. The distinct gyromagnetic effect for T<0.6TC

shows that in the rotating B phase, a system of magnetic
vortices with nonunitary cores is present in this region. An
analysis of the data on Aa>, measured with parallel and anti-
parallel orientations of ft and H, leads to the same conclu-
sion.

The effects described above indicate the presence of a
gyromagnetic term which is linear with respect to ft and H
in the free energy of rotating 3He-B

which was proposed in Ref. 39 in order to describe phenom-
ena related to the appearance of the orbital angular momen-
tum L in the rotating B phase. It turned out that because the
Cooper pairs in superfluid 3He strongly overlap, the volume
contribution of the effect mentioned to the constant x is neg-
ligibly small and the magnetized vortex cores make the main
contribution to it.40 It is not difficult to obtain an estimate of
the magnitude of the gyromagnetic constant. Since
ax~ncMc, whereMc is the spontaneous magnetic moment
of the core of a vortex of unit length (Afc ~r^n /y), the
parameter is x ~ (%n /ay)fl.

Taking into account the gyromagnetic term described
above, the anisotropy-energy density of the n field of the
rotating B phase is given by the expression

an> = -aff«{(nh)»-f

'(z'fl(n)h), (54)

the analysis of which shows that in a tilted magnetic field the
shift in the frequecy of transverse NMR is described by the
formula (45), where the quantity u is determined by the equa-
tion39

(55)[ cos ft ± u (1 - w2)~1/2 sin fl] = 1.

The interpretation of the experimental data,38 based on the
relation (45), confirms the validity of the estimates of the
gyromagnetic constant x presented above. At the same time,
the results of the measurements of the temperature depen-
dence of 8<otl (see fig. 20) show that the gyromagnetic effect
is very distinct in the region T< 0.6 Tc , whereas for T> 0.6
Tc it is practically unnoticeable. This fact once again con-
firms that in the indicated temperature ranges the vortices in
the B phase of liquid 3He have substantially different charac-
teristics and, in addition, the difference is undoubtedly asso-
ciated with the jump-like rearrangement of the structure of
their cores at T= 0.6 Tc (we recall that this point refers to
the pressure P = 29.3 bar).

The transition temperature T, depends on the pressure.
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FIG. 21. Phase diagram of the vortex states in 3He-B (schematically).
There are no reliable experimental data in the immediate vicinity of Tc.

Figure 21 shows the phase diagram, reflecting the presently
available information on the dependent T, = T, (P). At low
pressures the curve of the vortex phase transformation ap-
proaches Tc, but, near the transition into the normal phase,
the accurancy of the measurements drops (in view of the
weakening of the coherent dipolar effects, determining the
nature of the NMR spectra), and for the time being there are
no reliable data on the behavior of the curve T, — T,(P)'m
the immediate vicinity of Tc.

Returning to the question of the possible structures of
the vortex cores in the B phase, it should be kept in mind that
the five-parameter solution studied in Ref. 36 describes the
vortex state with the highest symmetry. Together with it,
other states with lower (broken) symmetry, which differ
from (50) by the structure of the core, can be realized. An
exhaustive classification of the possible vortex states in 3He-
B was recently made in Ref. 41; in addition, computer calcu-
lations established the quantitative characteristics of vorti-
ces with different symmetry (energy, magnitude of the
spontaneous magnetic moment, coupling constants A and x).
It was shown that the experimentally observed jump-like
structural transition in the rotating B phase can be interpret-
ed as a transition between vortex states with different sym-
metry.

6. CONCLUSIONS

In this paper we reviewed the basic results of studies of
the properties of the superfluid phases of liquid 3He in a state
of rotation. The experimental data were obtained with the
unique Soviet-Finnish ROTA apparatus using the method of
NMR spectroscopy. Experimental and theoretical studies
revealed the characteristic features of the textures in the ro-
tating A and B phases, and an analysis of their results yielded
rich information on the properties of superfluid 3He in the
rotational state. It was confirmed that the A phase can un-
dergo uniform rotation without the presence of singular vor-
tices. The observed smooth texture, which carries a distrib-
uted vorticity 1/2V X vs, leads to the formation of a separate
absorption peak in the transverse-NMR spectrum. A study
of the rotating B phase revealed a phase transition, associat-
ed with the jump-like rearrangement of the structure of the
vortex cores. It was shown that in the low-temperature phase
the cores of vortices in 3He have a spontaneous magnetic
moment, which is manifested as a gyromagnetic effect in the

rotating B phase.
All experimental data on the enumerated properties of

the rotating superfluid phases of liquid 3He were obtained
with the help of observations of the nature of the frequecy
spectrum of transverse NMR. The application of other
methods (oscillations of bodies immersed in the superfluid
liquid, absorption of ultrasound, mobility of ions) will per-
mit obtaining in the near future new information on the
properties of the A and B phases of 3He in a state of rotation.

In working on this review we made extensive use of in-
formation from discussions of the questions touched upon
here with our colleagues G. E. Volovik, A. D. Gongadze, V.
I. Mineev, T. Ohmi, M. Salomaa, A. Feter, and P. Hakonen,
to whom we are sincerely grateful.

'E. L. Andronikashvili and Yu. G. Mamaladze, Rev. Mod. Phys. 38,567
(1966).

2E. J. Yarmchuk and R. E. Packard, J. Low Temp. Phys. 46, 479 (1982).
3D. D. Osheroff, R. C. Richardson, and M. Lee, Phys. Rev. Lett. 28, 885
(1972).

4P. J. Hakonen, O. T. Ikkala, S. T. Islander, T. K. Markkula, P. Roubeau,
K. M. Saloheimo, D. I. Garibashvili, and T. S. Tsakadze, Cryogenics 23,
241 (1983).

5L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 37, 1794 (1959) [Sov. Phys. JETP
10, 1267(1960)].

'A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
7P. Wolfle, Rept. Progr. Phys. 42, 269 (1979).
8V. P. Mineev, Usp. Fiz. Nauk 139, 303 (1983) [Sov. Phys. USP 26, 160
(1983)].

9A. J. Leggett, Ann. Phys. 85, 11 (1974).
10K. Maki and P. Kumar, Phys. Rev. B 17, 1088 (1978).
"N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).
12P. W. Anderson and G. Toulouse, Phys. Rev. Lett. 38, 508 (1977).
13G. E.Volovik and N. B. Kopnin, Pis'ma Zh. Eksp. Teor. Fiz. 25, 26

(1977) [JETP Lett. 25, 23 (1977)].
14T. Fujita, N. Nakahara, T. Ohmi, and T. Tsuneto, Progr. Theor. Phys.

60,671(1978).
15A. L. Fetter, J. A. Sauls, and D. L.Stein, Preprint, Stanford; Princeton

(1983).
16G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 72, 2256 (1977)

[Sov. Phys. JETP 45, 1186 (1977)].
17P. Muzikar, J. Phys. (Paris) 39, C6-53 (1978).
18G.E. Volovik and P. J. Hakonen, J. Low Temp. Phys. 42, 503 (1981).
19W. F. Brinkman and M. C. Cross in: Progress in Low Tmperature Phys-

ics (1978), Vol. 7a, p. 105.
20A. D. Gongadze, G. E. Gurgenishvili, and G. A. Kharadze, Fiz. Nizk.

Temp. 7, 821 (1981) [Sov. J. Low Temp. Phys. 7, 397 (1981)].
2IG. Frossatti, J. Phys. (Paris) 39, C6-1578 (1978).
22P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, T. K.

Markkula, P. Roubeau, K. M. Saloheimo, G. E. Volovik, E. L. Androni-
kashvili, D. I. Garibashvili, and J. S. Tsakadze, Phys. Rev. Lett. 48,1838
(1982).

23P. J. Hakonon, O. T. Ikkala, and S. T. Islander, Phys. Rev. Lett. 49,1258
(982).

24C. M. Gould and D. M. Lett, Phys. Rev. Lett. 37, 1223 (1976); ibid. 41,
967(1978).

25P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E.
Volovik, J. Low Temp. Phys. 53, 423 (1983).

26T. L. Ho, Ph.D. Thesis, Cornell University (1978).
27H. K. Seppala and G. E. Volovik, J. Low Temp. Phys. 51, 279 (1983).
28P. J. Hakonen and G. E. Volovik, J.Phys. C 15, L1277 (1983).
29K. Maki and M. Nakahara, Phys. Rev. B 27, 4181 (1983).
30K. W. Jacobsen and H. Smith, J. Low Temp. Phys. 52, 527 (1983).
31O. T. Ikkala, G. E. Volovik, P. Yu. Khakonen, Yu. M. Bun'kov, S. T.

Islander, and G. A. Kharadze, Pis'ma Zh. Eksp. Teor. Fiz. 35, 338
(1982) [JETP Lett. 35, 416 (1982)].

32G. E.Volovik, A. D.Gongadze, G. E. Gurgenishvili, M. M. Salomaa,
and G. A. Kharadze, Pis'ma Zh. Eksp. Teor. Fiz. 36, 404 (1982) [JETP
Lett. 36, 489(1982)].

33S. Theodorakis and A. L. Fetter, J. Low Temp. Phys. 52, 559 (1983).

746 Sov. Phys. Usp. 27 (9), September 1984 Bun'kov eta/. 746



34Yu. M. Bun'kov, M. Kruziuss, and P. Yu. Khakonen.Pis'ma Zh. Eksp.
Teor. Fiz. 37, 395 (1983) [JETP Lett. 37, 468 (1983)].

35Yu. M. Bunkov, P. J. Hakonen, and M. Krusius in: Proc. of the Sanibel
Symposium on Quantum Fluids and Solids, 1983, AIP Conf. Proc., No.
103, p. 194(1983).

36T. Ohmi, T. Tsuneto, and T. Fjuita, Progr. Theor. Phys. 70, 647 (1983).
17J. A. Sauls, D. L. Stein, and J. W. Serene, Phys. Rev. D 25, 967 (1982).

kov, V. P. Mineev, and G. E. Volovik, Phys. Rev. Lett. 51, 1362 (1983).
39G. E. Volovik and V. P. Mineev, Pis'ma Zh. Eksp. Teor. Fiz. 37, 103

(1983) [JETP Lett. 37, 127 (1983)].
40G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 86, 1667 (1984)

[Sov. Phys. JETP 59, No. 5 (1984)].
41G. E. Volovik and M. M. Salomaa, Phys. Rev. Lett. 51, 2040 (1983).

I8P. J. Hakonen, M. Krusius, M. M. Salomaa, J. T. Simola, Yu. M. Bun- Translated by M. E.Alferieff

747 Sov. Phys. Usp. 27 (9), September 1984 Bun'kov et a/. 747


