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A new field of studies has recently arisen in solid-state physics—quantum crystals. The currently
existing theoretical and experimental data indicate—leaving no doubt—that a quantum crystal is
anew state of matter, which had been predicted theoretically by A. F. Andreev and I. M. Lifshitz.
At low temperatures one has not too large a number of quasiparticles to deal with. This permits
one to treat a quantum crystal as a “rarefied gas™ of quasiparticles in the discrete space of the

crystal lattice. Starting with the founding ideas of I. M. Lifshitz, a method is developed of describ-
ing the process of pairwise scattering of quasiparticles in the discrete space. The energy spectrum
of the quantum crystal is discussed. The features of behavior of vacancions in solution are eluci-

dated.
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INTRODUCTION the atoms). The Debye temperature is @ ~#iw = #i/U /ma.

A new field of study has recently arisen in solid-state
physics—quantum crystals. The currently existing theoreti-
cal and experimental data leave no doubt that a quantum
crystal is a new state of matter, which has been predicted
theoretically by Andreev and Lifshitz.

The quantum theory of solids essentially assumes an
identical order of magnitude among the distances between
atoms. Here the minimum energy of the atomic system cor-
responds to an ordered and localized arrangement of the
atoms in coordinate space, in which all the particles are at
rest at certain equilibrium positions called the crystal-lattice
nodes. The property of localization, which characterizes the
crystal lattice, in this case is classical, since it does not take
into account the quantum-mechanical indistinguishability
of atoms and of their movement arising from tunneling.

In most crystals the thermal movement of the atoms at
temperatures considerably below the melting point (7<®)
has the character of small vibrations about the crystal-lattice
nodes. The smallness of the vibrations implies that the mean
thermal displacement of an atom from the node is very small
in comparison with the lattice constant g, i.e., # <a.

We can easily express the parameter #°/a® = A in terms
of the characteristics of the atoms of the crystal. The charac-
teristic frequency of vibration of the atoms is & ~(x/m),
wherex = U /a? (Uis the characteristic interaction energy of
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The ratio of the Debye temperature to the quantity U is the
parameter A. Hence we have
B
}/ mUa

In this form the parameter A is known as the de Boer param-
eter.

For most crystals the parameter A is actually very
small. However, crystals exist for which A has large values
arising from the smallness of m and the weakness of their
interaction U. Thus, for example, >*He has A = 0.49, *He has
A =043, H, has A = 0.28, Ne has A =0.1, etc. There are
other examples for which A 2 1. This refers to admixtures of
light elements in matrices of heavy metals. Owing to their
small mass and weak interaction with the atoms of the ma-
trix, the atoms of the impurity are characterized by a param-
eter A % 1. For example, this happens for hydrogen in matri-
ces of niobium, zirconium, palladium, etc.

In all these cases the fundamental assumption of solid-
state quantum theory that particles and crystal nodes corre-
spond breaks down. Owing to the large values of the param-
eter A, ie., the ratio of the amplitudes of the zero-point
vibrations #i/ymU to the lattice constant, the atoms of the
crystal exist in a state of intense zero-point motion that leads
to displacement of an atom from one node to another. On the
other hand, the particles forming the crystal are generally
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identical. In quantum mechanics identical particles are in-
distinguishable. A situation arises in which a multitude of
identical particles exists in a discrete crystal lattice, the wave
functions of which overlap strongly owing to the large mag-
nitudes of amplitudes of the zero-point vibrations. The over-
lap of the wave functions implies that the atoms are actually
converted into moving quasiparticles in the space of the
crystal lattice. One can no longer say that each particle cor-
responds to one definite lattice node. Any atom can exist at
any node.

Evidently, two particles cannot exist simultaneously at
the same lattice node. Therefore an infinitely large repulsion
exists when the coordinates of two quasiparticles coincide.
This is described by an “impenetrability”’ potential of quasi-
particles at the same lattice node. Therefore it is important to
take into account the correlation between particles as they
approach one another.

Thus numerous crystals exist that clearly manifest the
following features:

(a) the energy of the ground state of the crystal is altered
by the presence of a large repulsion between the quasiparti-
cles;

{b) the atoms are converted into moving quasiparticles
in lattice space;

(c) the wave functions of the atoms overlap, leading to a
finite probability of tunneling of atoms from one node to
another.

The stated features lead to a physically new pattern pos-
sessing unique properties. This pattern corresponds to quan-
tum crystals.

The fundamental ideas describing theis new state of
matter have been presented by Andreev and Lifshitz' and
have been studied theoretically and experimental-
1y.2_52’54’57—61’63

At non-zero temperature the crystal tends to have a
minimal free energy. Hence it can lose a little energy while
slightly increasing in disorder. The conflict between this loss
of energy and increase in disorder has the result that the free
energy of the crystal is minimal when a certain number of
vacancies exists—nodes not containing atoms. Owing to the
large amplitudes of zero-point vibrations of the atoms, these
vacancies become vacancions—quasiparticles characterized
by a certain value of the energy &£ and quasimomentum p.
Thus, a quantum crystal contains a gas of vacancions whose
displacements are equivalent to the displacement of atoms.

Vacancions can exist even at absolute zero tempera-
ture—zero-point vacancions. In this case they also can move
in the crystal in the equilibrium state. One can picture a
quantum crystal as though it contained within itself a liquid
consisting of zero-point vacancions, and hence capable of
moving easily through the crystal lattice. The flow of this
liquid is accompanied by mass transport of matter. In con-
trast to an ordinary liquid, here the direction of mass trans-
port opposes the direction of flow of the vacancion liquid.**
The vacancions lower the energy of the ground state of the
crystal. The bottom of the vacancion band lies below the
energy of the ground state of the crystal (Fig. 1). The width 4
of the vacancion band is proportional to the frequency of
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FIG. 1. Energy of a crystal containing a vacancion. E is the energy of the
ideal crystal; E' is the energy of the crystal containing a vacancy; E ” is the
energy of the crystal containing a vacancion. The crystal with the vacan-
cion can possess less energy than the ideal crystal.

tunneling of the atoms (4 ~J /#). Hence the velocity of mo-
tion of a vacancion is v~aJ. In a certain sense, quantum
crystals having zero-point vacancions are analogous to met-
als, i.e., crystals containing a liquid consisting of electrons.
The electron liquid in a metal also can move easily through
the crystal lattice. But every change in the electron density is
accompanied by appearance of charge density, which gives
rise to very strong electric fields, owing to which the spatial
redistribution of mass of the material does not occur. A va-
cancy is an electrically neutral object. The flow of the vacan-
cion liquid in a quantum crystal can be accompanied by a
change in the spatial distribution of matter.

A light impurity atom in a quantum crystal also be-
haves like a quasiparticle—an impuriton or mass-fluctu-
ation wave.>*

Let us study a “He crystal containing one *He atom.
This impurity atom becomes an impuriton. Owing to the
ideal periodicity of the “He crystal, the energy of the impuri-
ton is a certain periodic function of the quasimomentum p.
The width of the energy band of such an impuriton is
4 5107* K, and the frequency of tunneling is J~1 MHz.
Hence the velocity of motion is v & 10! em/s.?

The width 4 of the band is considerably smaller than all
the other energy characteristics of helium. Therefore the dy-
namics of impuritons is highly peculiar.>-%'>!> The 3He
atom possesses a nuclear spin 1/2. Hence the motion of the
corresponding impuriton can be observed in NMR experi-
ments.

These considerations on impurity particles also hold in
the case of solutions of light particles in matrices of heavy
metals. The light atoms become impuritons and have specif-
ic properties.'s?

Any defects in crystals in which the parameter A isnota
small quantity in comparison with unity are delocalized and
become quasiparticles—defectons, which are characterized
by a certain value of the energy and quasimomentum.

A quantum crystal is a highly specific state of matter.
As we have noted above, its density distribution is periodic in
space. That is, in symmetry it resembles an ordinary crystal,
but in the character of motion of quasiparticles it occupies a
position intermediate between a liquid and a solid. A first
form of motion has the property of motion in a liquid—this is
the flow of the vacancion liquid with immobile lattice nodes.
A second form of motion has the property of motion in so-
lids, and involves displacement of crystal-lattice nodes. Evi-
dently, when acted on by external forces, a quantum crystal
does not conserve its shape. In a gravitational field a quan-
tum crystal can flow from vessel to vessel analogously to
liquids. However, the flow here is peculiar: the transfer of
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matter from top to bottom is effected by flow of the vacan-
cion liquid from bottom to top over the crystal-lattice nodes.

The motion of the above-stated quasiparticles is a quan-
tum diffusion in lattice space, which has been found experi-
mentally in Khar’kov (Grigor’ev, Esel’son, Mikheev, Shul-
’man) and in Sussex, England (Richards, Pope, Widom) in
1977.%7 The diffusion coefficient is an important, experi-
mentally measurable characteristic of the gas of quasiparti-
cles.

At finite temperatures the quasiparticles can collide
with ordinary excitations, or photons. The scattering cross-
section in collisions with phonons is proportional to the
fourth power of the frequency. The diffusion coefficient in
this region is proportional to 7 —%.1-*1213

At low temperatures we can neglect the phonons, and
scattering of quasiparticles by one another plays the main
role. The diffusion coefficient in this region is proportional
to the concentration of quasiparticles and is independent of
the temperature.® 615

With rising temperature, the frequency of collisions
with phonons increases, and during the time that a quasipar-
ticle spends at a node, it comes into equilibrium with the
lattice. In this case the localized quasiparticle diffuses by a
random walk with a step equal to the lattice period. In this
region the diffusion coefficient does not depend on the tem-
perature.

Further increase in temperature leads to strong local-
ization of the atoms in the potential wells of the crystal. In
this case, diffusion is governed by superbarrier transitions
from the excited state, and is described purely classically.

Evidently this pattern of motion has its own features
depending on the type of quasiparticles (defectons, vacan-
cions, impuritons, etc.). However, within the framework of
this general pattern there are distinctive limiting situa-
tions. %’

The highly unusual properties of impurity quasiparti-
cles are preserved to a substantial degree even under condi-
tions in which their mean free path is considerably smaller
than the lattice period, as Kagan, Klinger, and Maksi-
mov'*'? have shown.

Depending on the statistics of the original atoms com-
prising the crystal, the quasiparticles in a quantum crystal
obey either Bose-Einstein or Fermi-Dirac statistics. Both of
these excitations can be found in a crystal in different con-
centrations or in the form of a solution of Fermi-Bose quasi-
particles. A striking example of a quantum crystal is the
*He—*He solution. Phenomenological equations of hydro-
dynamics describing the macroscopic motions in quantum
crystals have been proposed by Andreev and Lifshitz.! These
equations enable one to study also solutions of quantum
crystals (see, e.g., Ref. 49). The equations for a Fermi liquid
have been derived by quantum field theory and studied for
Fermi and Bose quantum crystals in the studies of Dzyalo-
shinskii, Kondratenko, and Levchenkov.!!

New quantum crystals have been postulated: *He and
spin-oriented hydrogen.**

Experimental studies have recently appeared on the
properties of two-dimensional quantum crystals—films of
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helium adsorbed on graphite.*> At present such systems are
being intensively studied by using well-known contempo-
rary methods (neutron scattering, NMR, the Mdssbauer ef-
fect, etc.).>’

Vacancions exist in rather large concentration in an ad-
sorbed two-dimensional helium crystal. This arises from an
ordering phase transition in the field of the graphite sub-
strate, which amounts to a network of shallow potential
wells in the shape of regular hexagons covering the entire
surface. Owing to the repulsion of atoms at close distances,
this ordered state arises only at a density of covering at
which one helium atom exists per three potential wells of
graphite.

The study of periodicity and its influence on the proper-
ties of a two-dimensional crystal is the key to complete deci-
phering of the behavior of adsorbed systems. Both in these
crystals and in those mentioned above, the phenomenon is
predicted of superfluid motion—the crystal can flow practi-
cally without viscosity in thin capillaries.

This review treats a set of physical phenomena associat-
ed with the behavior of quasiparticles in quantum crystals.
As we shall see below, precisely these phenomena manifest
qualitatively new effects caused by the interaction of the
quasiparticles with one another. The amplitude of two-qua-
siparticle scattering is calculated by the method of I. M. Lif-
shitz, which enables one to elucidate a number of interesting
and unusual properties of the scattering pattern in the dis-
crete crystal lattice.*?

The motion of a pair of quasiparticles is described by the
equation of I. M. Lifshitz, which allows one to associate the
shape of the wave surface and the amplitude of the scattered
quasiparticle with an arbitrary dispersion law.

The fundamental difference between the collisions of
quasiparticles and those of particles in a vacuum is that the
Galilean relativity principle in the usual sense is inapplicable
to quasiparticles. If one identifies the quasimomentum with
ordinary momentum, then it is convenient to picture that the
crystal as a whole can gain momentum in definite portions.

Starting with the solution of the scattering problem, the
method of calculating the increment to the free energy of the
crystal caused by pair collisions of quasiparticles is then pre-
sented. Studies of the free energy of quantum crystals allow
one to obtain the observed physical quantities.

The third part of the study treats a solution of pairwise-
interacting Fermi-bose quasiparticles. The free energy of
such a solution is calculated. This makes possible the con-
struction of the state diagram and prediction of the proper-
ties of such crystals.

1. THEORY OF SCATTERING OF QUASIPARTICLES IN
LATTICE SPACE

a) Exact solution of the problem of two-quasiparticle
scattering

In the case being studied of pair collisions of quasiparti-
cles, the method of 1. M. Lifshitz enables one to construct a
theory of scattering in lattice space without requiring that

the interaction potential be small, as is characteristic of per-
turbation theory.>®
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The construction of the theory of scattering of quasipar-
ticles in lattice space involves calculating the effective cross-
sections of the various processes that generally determine
the behavior of the experimentally observed characteristics
of a quantum crystal, such as the coefficient of quantum
diffusion of impuritons, defectons, vacancions, or NMR
times in systems of atoms possessing nuclear spin, etc. Ex-
amples of the scattering process are collisions of various
quasiparticles with a classical impurity or defect in the quan-
tum crystal, interaction of impuritons with one another, va-
cancions with impuritons, defectons, or with other quasipar-
ticles. At low enough temperatures the concentration of the
different quasiparticles is small. Hence pair collisions play
the decisive role in creating the physical pattern. However,
in contrast to the usual case of a pair collision in a vacuum,
the problem of two-quasiparticle scattering does not reduce
to the problem of scattering of one particle in the field of a
motionless force center. The momentum of the center of gra-
vity of the two quasiparticles is not eliminated by transform-
ing their coordinates, since the motion of the quasiparticles
is restricted by the crystal lattice. Hence the amplitude of
pair scattering depends not only on the relative momentum
of the quasiparticles, but also on the momentum of the center
of gravity. Both these momenta determine the shape of the
isoenergy surfaces of the scattering quasiparticles, whose
dispersion laws are generally periodic functions of these mo-
menta. Naturally, the laws of conservation of quasimomen-
tum and energy are fulfilled in pair collisions (p,

=1p, + 2m#b, e, =€,, where p; and p, are the sums of the
quasimomenta before and after collision, b is an arbitrary
reciprocal-lattice vector, and £; and £, are the energies of the
quasiparticles before and after collision). One distinguishes
normal processes (b = 0) and flipping processes (b70). How-
ever, this distinction is relative in character, since one can
choose the unit cell of the reciprocal lattice arbitrarily.

In the crystal the quasiparticles migrate over the lattice
nodes. Evidently two quasiparticles cannot exist simulta-
neously at the same node. This is ensured by the existence of
an ‘“‘impenetrability” potential (infinitely large potential
when their coordinates coincide):

R=R’
U ) ’
RR { 0, R=£R’,

V- o0,

(1.1)

Here R and R’ are discrete vectors corresponding to lattice
nodes. This interaction can be rather large when the coordi-
nates R and R’ coincide. However, on the average it remains
small, since it equals zero at other points, except for the
nodes. In addition to this potential between the quasiparti-
cles, a long-range attraction also acts. Its character depends
on the type of quasiparticles and on the conditions under
which they are manifested. Thus, for example, the theory of
elasticity yields the following expression for the energy of
elastic interaction of any type of point defects:

u(R—R’) =V, (n) (W:f-ﬁ—l)a (1.2)

Here V(n) is the characteristic energy, which depends on the
mutual orientation of the quasiparticles.
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FIG. 2. Scattering of quasiparticles. 1—He; 2—*He; 3—vacancion (v).

In order to study the scattering process, let us first exa-
mine the simple case of the potential of (1.1). Let two quasi-
particles with the momenta k, and k, and energies £(k,) and
€(k,) interact via the impenetrability potential (Fig. 2a). The
case in which the atoms do not change places in the treat-
ment corresponds to “elastic” scattering. In “inelastic” scat-
tering, the atoms of the target leave the given node to enter
another (Fig. 2b). The process of two-quasiparticle scatter-
ing is described by the Lifshitz equation®!-32:44;

2 Ar,-re® (R, Ry) + 2 A're—na® (R, R)
+2 VR, R) ¢ (R, R") -

=g (R“ Rz)o (13)

Here the magnitudes of the 4 g correspond to the dispersion
laws in the momentum representation:

%} Ag exp (ikk) =e (k,), %} Apexp (ik,R) =¢ (k,). (1.4)

Also we have z = E + /0, where E is the total energy.
Generally this equation describes the different pro-
cesses of scattering of quasiparticles in the discrete crystal-
lattice space for different interaction potentials ¥ (R,,R,). In
the case of interaction of (1.1), this equation will have the
form
[@ Ag,-r=® (R", Ry)+ Y} Ap--g,¢ (R", R,)

R

+ 14 ; 6R1R2(P (Rh R”)

=z (R, R;). (1.5)

In this case Eq. (1.5) can be solved exactly, whereby one
obtains the exact scattering wave function. The interaction
operator of {1.1) satisfies the condition of degeneracy. That
is, it can be represented as the sum of a finite number of
projection operators onto the subspaces L 2, The canonical
form of an arbitrary operator A that is degenerate is defined
by the relationship®"
n

Af, 8)=2 al*® ()1® (). (1.6)
Here the /) (f) are linear functionals, the a, are real
numbers, and fand g are arbitrary functions of L 2. The num-
ber of terms in the formula (1.6) is called the rank of the
operator A.

Having in mind below the study of the case of an arbi-
trary interaction operator, we shall start with the rather per-
spicuous case of a first-rank operator:

(Af, @) = al* (/) 1 (). (1.7)
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An example of such an operator is the “impenetrability”
potential of quasiparticles, which expresses the fact that two
particles cannot lie simultaneously at one node:

(1.8)

Here 8y g, is the Kronecker § symbol, and ¥ is the charac-
teristic interaction energy. The value of this function at an-
other point R = Ry, is obtained by applying the operator/ to
the function f (R). We can rewrite Eq. {1.5) as follows in oper-
ator form:

(2/1 + i/z -
Here the terms L 1, and 224, correspond to the first two
terms of Eq. (1.5), which describe the transition from the
node R, to thenode R,. Actually L =L + L, is the kinetic-

energy operator of noninteracting quasiparticles, for which
we can write the equation

(2/1 + 2’2) P=2~.
Evidently, the functions ¥ have the form of plane waves:

¥ = exp(/k°R). (1.11)
Equation (1.9) can be easily solved with allowance for the

condition (1.8). Upon applying the operator (L —z)~ 'tothe
equation, we have

(Ag,p) v dk

UR[Rz = VﬁR;R'GR'sz

(1.9)

A)cpzch.

(1.10)

o= | foge 1
e1+e2=2
Let us introduce the notation:
p=k,—k;, q=k,+k, qg=q,—q,, z=E+i0,
qa , qa
poe (o= %) e (p+ %),
Then the expression for ¢ will be:
_ exp (iXR) dy
o R =V | o T (1.13)

Here we have 7 = ¢(0), and R=R, — R,.

From the boundary condition for the wave function,
which corresponds to the requirement that two quasiparti-
cles cannot lie at one node, we obtain an equation that en-
ables one to determine the eigenvalues of the energy:

dx
1=V | Sy e ra

The quantity 7 is an important characteristic of the scatter-
ing problem. We can derive the final expression from the
complete form of the wave function for 7. The wave function
as the sum of the incident and scattered waves will have the
form

(1.14)

- . exp (ixR) dy
@ (R)=exp (ipR)+ 1V | iy e
(1.15)
Hence we have
dx -1
_ 16
v [HVS—e(x—(q/z))—e(x+<q/2>>+z]' (1.16)

The integration in the latter equation is performed over the
surface

o (1) o (amt) £
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Thus Egs. (1.14)—(1.16) describe the scattering process
and allow one to find the exact magnitudes characterizing
the collision of the quasiparticles when the first-rank inter-
action operator is degenerate. This case, which is important
per se in a number of problems of scattering theory, is also
essential because it suffices to approximate the interaction
operator with degenerate operators for describing the over-
all scattering problem.

Let us examine the behavior for large R of the integral
that enters into (1.15):

I, B)=§

Let n be the direction of propagation of the wave. We shall
denote x*n = u, and perform the integration initially over a
strip on the surface between u and u + du, and then over the
variable u. This yields

exp (ixR) dy

e (L—(a/2) +eA+@2)—z (1.17)

I(q, E)= S fa. £ (1) exp (iuR) du. (1.18)
Here we have
de
fu) du = | Vet —@/2) 1 Ve G T @) ]
€ (l—%)‘l'ﬂ (l+%)=E‘ (119)

u<gn<u+du

In the asymptotic expression of the integral of (1.18), terms
of order of R ! arise on integrating in the neighborhood of
the discontinuities of the function f (), which are elliptic
points of contact of the surface e(x — ¢4/2) + e(x + 4/2) =
with the reference plane of the direction n. These points are
given by the equations

B(Xv_'__q_) +& (Xv—i) =E1

[={ve (s—2) +ve (n3)}] =0

The discontinuities of the derivatives of the function f(u)
yield the terms of higher order of smallness, i.e., O (R ~3),
which we shall neglect. At the points x,, the jumps 4, are
determined by the equation

(1.20)

-1

Avdude,v-lVe (x\,—-g—)—&—Ve(xv—k%)’ (1.21)

Here df2, is the area of the surface of the “hat” with its
center at the point x,, and the height du:
dQy =2nK ;2 du.
Further, K, is the Gaussian curvature of the surface at the
point v. Finally we have
exp(ix,‘R) 1
\/ﬁ | Ve (Uv—(q/2)) + Ve (v +(a/2)) |

The asymptotic expression for large R form Egs. (1.15) and
{1.22) will have the form

I= (1.22)

¢ (R) =exp (ip-R) + 7V ) £y (p, q, @) 2R - (1.23)
Consequently,
fo(p, 0, €)= i (1.24)

| Ve (Xy— (@/2)+ Ve (v—(9/2))| VEy
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FIG. 3. Isoenergy surface of scattered quasiparticles. The direction of
scattering is n.

is here the amplitude of scattering of the two quasiparticles
by one another.

The expression that we have found for the wave func-
tion (1.23) allows us to draw a number of conclusions regard-
ing the character of the scattered waves.

In most cases the wave function of a scattered quasipar-
ticle in a quantum crystal amounts to a superposition of sev-
eral waves, whose number equals the number of possible so-
lutions of Eq. (1.20). Each of these waves has its own form
and its own rate of propagation (Fig. 3).

Each termin Eq. (1.24) determines the cross-section of a
process in which the quasiparticles after scattering have a
definite value of the quasimomentum for a given value of g.

In the case of open isoenergy surfaces, directions can
also exist in the crystal along which scattering is “forbid-
den”. The event of scattering in this direction will occur only
if one of the quasiparticles goes over into another concavity
of the surface e(y, — q/2) + £(x, + 4/2) = E for the fixed
value of q.

b) Scattering of a vacancion by a defecton

The energy of a vacancion is a periodic function of the
quasimomentum. The form of this function is determined by
the structure of the lattice and by its symmetry. For exam-
ple, in the strong-coupling approximation in a simple cubic
lattice, the dispersin law has the form

e (k) = go + Ay (cos k.a
+cos kya + cos k;a).

Here ¢, is the energy of formation of a vacancion (in bce “He
at pressures P~25 atm we have £4~5 K, and in hcp *He
go~15 K), and 4, is the width of the vacancion band
(4, ~10K).

Figure 4 shows the form of the isoenergy surface con-
structed by machine calculation in the case in which cos £,.a
+cos k,a + cos k.a =0.9. As we pointed out above, the
scattering direction is determined by the form of the isoen-
ergy surface. In this case scattering occurs in four directions
in the crystal corresponding to the convexities of the isoen-
ergy surface.

The width of the energy band of a vacancion consider-
ably exceeds the width of the defecton band 4;. Hence we
can treat the interaction of these quasiparticles as a process
of elastic scattering of a vacancion by a classical defect in the
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FIG. 4. Isoenergy surface in the case of a cubic crystal.

quantum crystal, neglecting the intrinsic tunneling of the
defect.® This scattering process is described by the Lifshitz
equation**

1%] Ar-r® (R") —2¢ (R) = V8pn-¢ (R’). (1.25)
Here
e (k) = V > Ar exp (ik-R) (1.26)

is the dispersnon law of a vacancion, and V'is the characteris-
tic interaction energy (F~10* 4,).

By using the boundary condition that a vacancion can-
not exist at the same node as an impurity, we find from the
expression for the wave function

@ (R) —exp (ipR) +V S ex_l;((‘%“__ujz. (1.27)
that
= - (1.28)
w=[1— 3 e(x) =1 -

The eigenvalues of the scattering energy E (z = E + i0) are
determined by an equation that stems from Eq. (1.14)

1=V5 dx

(1.29)
s (L)—z"°

Figure 5 shows graphically the solution of Eq. (1.29). The

1/ /nf /

‘//V

FIG. 5. Graphic solution of Eq. (1.29).

G. A. Vardanyan 720




sequence of eigenvalues z, alternates with the sequence 4.
In additiion to the scattering states, in special cases Eq. (1.29)
has a solution corresponding to bound states of the quasipar-
ticles. OQutside each of the intervals of the continuous spec-
trum of values of E, Eq. (1.29) has no more than one solution.
These roots split off, either only from the right-hand boun-
daries of the intervals, or only from the left-hand boundar-
ies, depending on the sign of ¥, and they correspond to local-
ized states.

Upon studying the asymptotic values of ¢ for large R,
we obtain from Eq. (1.27):

o (R) =exp (ipR) ~ T 3 fyexp (ix.R).

Here f,, is the amplitude of scattering by a vacancion:

fo— 112
Y 1Ve () VEI

Also, K is the Gaussian curvature of the surface e{x) = E at
the point of contact of this surface with the plane of the
scattering direction n.

Consequently the total scattering cross-section will be

4 ;  dx -2

T o) v (k) Ky (1+7 ] z—e‘(x)‘) (1.30
After scattering, the vacancion will be a superposition of
several waves whose number equals the number of sheets of
the isoenergy surface g(y) = E.

In analyzing the process of scattering of a vacancion, we
must bear in mind the fact that a vacancion at low enough
temperatures lies near the bottom of the band where its ener-
gy is minimal. In this case the dispersion law will be quadrat-
ic: g(x) = #*X*/2m* (m* is the effective mass of the vacan-
cion: m*~#Aqa?). According to Eq. (1.27), the wave
function of the vacancion in this case will be

o

* m*a*tV
2nh?

@ (R) = exp (ip-R)— oxp (2 BRI, (1.31)
Consequently, in scattering in the field of a repulsive poten-
tial, the vacancion remains all the time inside a single reci-
procal-lattice cell. When the energy is close to the maxi-
mum, the vacancion goes over into the adjacent
reciprocal-lattice cell.

In scattering in the field of an attractive potential, the
pattern will be the reverse. The situation here is analogous to
the motion of electrons in metals,>® but with allowance for
the fact that the vacancion, owing to the periodicity of the
dispersion law in the general case, can be reflected not only
from the point at which the energy reaches a maximum, but
also from the point at which the energy is minimal, since at
this point the velocity also vanishes.

c) Scattering of a vacancion by an impuriton

The phenomenon of scattering of a vacancion by an im-
puriton is substantially important for explaining the experi-
mental facts on spin diffusion.*”~® Here we must distinguish
the cases of “‘elastic” and “‘inelastic” scattering—the impur-
iton does not move from its node in the scattering process, or
shifts to an adjacent node. First let us examine the graphic
example of one-dimensional scattering. Let the vacancion be
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scattered by an impuriton whose intrinsic tunneling is a suf-
ficiently small quantity. Consequently, during the time of
interaction the impuriton succeeds only in being displaced
by a distance of the order of a reciprocal-lattice period, while
the vacancion is scattered by this impurity. Whenever the
impact parameter of the scattering is large enough, the va-
cancion after scattering cannot become a nearest neighbor of
the impuriton. This rules out the possibility of simultaneous
exchange of places of these quasiparticles.

Let the interaction potential of the vacancion with the
impuriton have the form

Voa
VRle SRy—R "

Here ¥, is the characteristic interaction energy, and R, and
R, are the one-dimensional position vectors of the interact-
ing quasiparticles. We examine the case in which R, <R, .
Thus, for example, within the time of interaction, the impur-
iton is displaced from the coordinate origin only by the

amount g or — a. The Lifshitz equation for this process has
the following form:

D An, w9 (R R)—20 (By, Be) =3 Vi, -n0 (R, Ry).

(1.32)
The interaction potential ¥, . under the condition R; <R,

is approximated in terms of the degenerate potential in the
form of a finite series. Substitution of the latter into Eq.
(1.32) yields

2 Ar, w@ (R, R)—2¢ (R, R
Y

1 R ’
=D Vea (g7 +55) 0 (R, Ry).
P

(1.33)

Equation (1.33) allows us to determine the cross-section of
the scattering process being discussed. In order to do this, as
we have pointed out in Sec. 1a, we must find the asymptotic
expression of the wave function of (1.33), which leads to the
following expression for the scattering amplitude:

(1+Vosa5 dx )_1

]; Voae
00 —e () +2

~ Neelat, | (1.34)

Here £ = X exp(ixR,)/R,. Analogously one determines

the scattering amplitude of the process in which the impuri-
ton is displaced to the nearest neighboring node.

In the process of “inelastic” scattering of a vacancion
by an impuriton, exchange of places occurs as soon as these
quasiparticles lie at adjacent nodes. For example, this phen-
omenon in a dilute solution of a strongly polarized *He—*He
crystal gives rise to spin diffusion, which is observed experi-
mentally.

The Lifshitz equation describing the stated scattering
process can be written in the form

82 Al‘(l. Ry+a® Ry, Ry +a)—2¢ (Ry, Ry)

R;=R,
=t 2 {0 Ry, R)~¢ Ry, Ry+ )} b var  (1.35)

Here R; and R, are respectively the discrete coordinates of
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the impuriton and the vacancion, and ¢ is proportional to the
probability of transition of the vacancion from a node to an
adjacent node.

For simplicity we shall assume that the impuriton lies at
the coordinate origin. The scattering amplitude is deter-
mined from the asymptotic expression of the solution of Eq.
(1.35), and will be

=g Ty P (— =9 Ol (1.36
Here we have
e
__JdeM)—z
O = w1’
x
_ § exp(—ixa)dw/[e(0)—1]
(p("‘ﬂ) - SAxd'x/[e('x)—z] s
szz}e"“.
a

One determines the scattering amplitude in a completely
analogous way when the impuriton does not lie at the coordi-
nate origin. In this case one uses the expression
Op,r,+a = Zr- Orr-Or-r, +a in Eq. (1.35)

Let us calculate the spin diffusion in the case of a Boltz-
mann gas of vacancions while using the expression (1.36)
that we have derived for the scattering amplitude. The mean
velocity of motion of a reversed spin owing to scattering by it
of vacancions is written as follows'*%*:

u=Y aWa=Ya 5 dkog (k) v (k) [ () — 7 (¢ + F-a]].
. 2 (1.37)

Here W, is the probability of displacement of the reversed
spin by the vector a, F is the force acting on it, and n(¢}) is the
distribution function of the vacancions. For example, if we
use Eq. (1.36) with F-a~¢, we have

u= ) ac(a) S v () exp (—%) [1——exp (—’?)]de.

(1.38)
Here we define

o (a) =12 [ (—a) — @ (0)] ljve (ko) V' X, |

The latter expression enables one to study spin diffusion for
various dispersion laws of the vacancions, i.e., for various
a(a) and densities of state v(¢). For example, in the case
v(€)~ (e — £o)” /%, one obtains well known results'“5!%* that
coincide with the experimental data (see the review on the
NMR experiments in Ref. 4, and also Refs. 6-9).

d) Scattering of like quasiparticles

As low enough temperatures the experimentally ob-
servable characteristics (quantum-diffusion coeflicient, heat
capacity, NMR relaxation times, etc.) are governed by the
pair collisions of quasiparticles with one another.>® To eluci-
date the fundamental features of pair collisions in the lattice
space of the crystal, let us study the scattering of a vacancion
by a vacancion and of an impuriton by an impuriton.

From the standpoint of experimental studies, the pro-
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cess of scattering of a vacancion by a vacancion seems inter-
esting for studying the problem of formation of bound states
of vacancions in a crystal.

The features of the bound states of different quasiparti-
cles in a quantum crystal that are accessible to experimental
verification have been predicted in the studies of An-
dreev.>'” These features include, for example, the correla-
tion of vacancions, or of two quasiparticles, caused by the
finite width of their bands. The total kinetic energy of two
vacancions cannot vary more than by the width of the band
4, . Theinteraction energy is also bounded by the magnitude
of 4, . Therefore two vacancions cannot approach or sepa-
rate from one another by an arbitrary distance. The distance
between them is determined by the condition that the inter-
action energy is of the order of 4, . However, such a pair of
quasiparticles can move freely in the crystal, but only along
certain special directions. Consequently two- or one-dimen-
sional quasiparticles arise in the three-dimensional quantum
crystal. The existence in the crystal of crystallographically
equivalent points for finding such a pair implies the possibil-
ity of its motion as a whole.

Crystal-lattice symmetry can be taken into account in
detail in the process of formation of bound states by employ-
ing the founding study of Pitaevskii,*’ which showed that
bound states of various quasiparticles can be formed in the
crystal at certain special lattice points when the interaction
between the quasiparticles is arbitrarily weak.

The formation of bound states of vacancions is de-
scribed within the framework of the Lifshitz equation,
whose solution allows one to determine the wave functions
and energies of the new excitations.

Let us write the Lifshitz equation for vacancions being
scattered:

g AR, -r'9 R’, Ry) + % Af{'-Rv(P (Ry, R')

+1 RE Ve reg (R, Ry) =29,  {1.39)
Here t is an arbitrary real parameter, while Vis the first-rank
interaction operator. In particular, if we allow for the fact
that vacancions cannot approach to distances less than R,
we can represent the interaction in the form

V = V,Orr,.

Here ¥, is the characteristic interaction energy, while
Ro~a(V,/4 )'/>.V This representation of the potential is im-
portant only for simplicity of presentation, and does not re-
strict the generality.

We obtain the following equation to determine the
eigenvalues of the energy from Eq. (1.39) with account taken
of the boundary condition on the wave function, which con-
sists in the idea that two vacancions cannot lie at a single
node (see Sec. la):

B da
1“”"’5 sO— @ e AT @M —z

This equation, along with the eigenvalues of the scattering
energy, also defines the energies of the bound states of vacan-

(1.40)

YIf the vacancions interact via the potential ¥ = V,(a/R )?, then the condi-
tion ¥~ A4 yields the stated value of R,
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cions. The wave functions corresponding to these states are
determined by solving Eq. (1.39) (Sec. 1a).

For example, let the crystal have a sixfold symmetry
axis. Then, as Pitaevskii*! showed, bound states can be
formed near the symmetry axis when 0. This arises from
the fact that special points exist near the symmetry axis for
which the integrand in Eq. (1.40) diverges. Owing to this, the
equation has a solution for infinitesimally small ¢. The inte-
grand in Eq. (1.40) can be represented in the form of the
following series lacking second-order terms:

(3] belurd) = %)+

Here q, is a certain point on the symmetry axis.

At this point the coefficient of the expansion, e.g., that
of x} vanishes, where y, is the momentum perpendicular to
the symmetry axis. This condition is the definition of the
point qg.

Upon substituting the expansion (1.41) into Eq. (1.40),
we find the following expression for the binding energy
6o = 2e(qo/2) —

(1.41)

TV,

T (1.42)

8=
Here A is a quantity of the order of the reciprocal-lattice
period.

Whenever the crystal has two- or fourfold symmetry
axes, second-order terms will also exist in the expansion of
the total energy. The energy of the bound vacancions in such
cases is calculated analogously on the basis of Egs. (1.39) and
(1.40).

Depending on the way in which they are formed, vacan-
cions can obey either Bose or Fermi statistics. In the case of
Fermi vacancions, pairs of quasiparticles can be formed near
the Fermi surface (analogously to Cooper pairs in supercon-
ductors).>®

A rarefied impuriton gas exists in a dilute *He—*He so-
lution at low enough temperatures. As is indicated by the
theoretical and experimental studies,>’~® the diffusion coef-
ficient of the impuritons is inversely proportional to the con-
centration of the latter:

p~2E, (1.43)

ox

Here J is the frequency of tunneling, and o is the scattering

cross-section of an impuriton by an impuriton, which is de-

termined by Eq. (1.24) with various impuriton dispersion

laws. In the case of a simple cubic lattice, the scattering

cross-section of impuritons, according to Eq. (1.24) (q =0)

will be?

16n%a?
9= R

I(0)= S dk [2ey— £ -+ (2A cos kra + cus k,a - cos k,a)] ™!,

(1.44)

As was shown in the experimental study of Richards and
Owers-Bradley,*® at temperatures below 5 K and covering
densities from 0.7 to 1.0 (with respect to the covering density

HNntegrals of the type of I (0) have been tabulated in Ref. 63.
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of a filled monolayer), the processes of quantum tunneling
that occur in the two-dimensional system make the funda-
mental contribution to the fluctuations of the local field. The
scattering cross-section, and hence the quantum diffusion
coefficient, are obtained by using two-dimensional analogs
of Egs. (1.24) and (1.44).

e) Scattering by an arbitrary potential

The interaction of quasiparticles alters the values of the
equilibrium characteristics of the gas of quasiparticles, and
this means also the characteristics of the solid: the heat ca-
pacity, the thermal expansion coefficient, the diffusion coef-
ficient, etc. The collisions also give rise to relaxation pro-
cesses in the crystal, kinetic phenomena, resonance
phenomena, etc.

In order to study the overall pattern of interaction of
quasiparticles with one another on the basis of the method of
I. M. Lifshitz, let us first examine the problem of interaction
in operator form. This allows us to treat various concrete
cases as depending on the type of potential.

Let the kinetic-energy operator for one of the quasipar-
ticles be L,, and L, for the other. The interaction of the
quasiparticles is described by the operator A. Then the equa-
tion corresponding to their mutual scattering will be

(l: —{—lA/z—{—[AX)q)——zq):F:. (1.45)

Here F'is the operator corresponding to some external force.

Let us denote Z = L+ L2 Equation {1.45) with A=0
gives the wave function ¢ and the eigenvalues of the interact-
ing quasiparticles:

(l:i‘}‘l:z)lp—“l’:[’:-

Let us study the class of degenerate operators that satisfy the
condition
Ag = T,

(1.46)

(1.47)

This actually defines the new operator 7, whose action on ¥
yields Ag@.

In configuration space Eq. (1.47) leads to the following
conclusion. At small distances between the two quasiparti-
cles, where the potential A is infinite, the exact wave func-
tion must vanish, while the product A@ will remain finite.
Moreover, the unperturbed wave function ¢ vanishes no-
where. Therefore the operator T must be regular throughout
space.

Upon substituting Eq. (1.47) into Eq. (1.45), we have

L —2¢+Typ="~F (1.48)
Let us introduce the resolvents of the operators L and A:

(L—2*=R, (T+A-z—R, (1.49)
Upon applying the resolvent ﬁz to Eq. (1.48), we obtain

o=R,F—TR,y. (1.50)

According to the condition (1.49), the magnitude of T is de-
termined by the expression

T =t (g )

Here 7 defines the interaction.

(1.51)
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Upon substituting the value of the wave function ¢ into
Eq. (1.51), we obtain the following expression from (1.50):

T(F, R¥Y)
14T @, 9)

Let us find finally the function ¢ from Eq. (1.52) by using Eq.
(1.50):

(1.52)

(P R.9, R,9)
14+T(R:9, @) °

Finally, we have the following expression for the wave func-
tion:

RF—Bf=— (1.53)

T (R, )

TR, W) 1.54
=Y T @ v (1.54

We note that mathematical methods are well known that
enable one to approximate any interaction operator with de-
generate operators.5> Thus, the approximation of an arbi-
trary interaction operator with degenerate operators gives
an effective method for solving Eq. (1.3) or (1.45) in a broad
class of cases, and it enables one to associate the form of the
wave surface and the amplitude of the scattered quasiparti-
cles with their dispersion law.

2. ENERGY SPECTRUM OF A QUANTUM CRYSTAL
a) Contribution to the free energy of a quantum crystal

Actually, at low temperatures the calculation of the free
energy of a crystal reduces to calculating the free energy of
the gas of the corresponding elementary excitations, which
behave as a sort of quasiparticles moving in the space occu-
pied by the crystal, and which possess definite values of ener-
gy and momentum. When the concentration of quasiparti-
cles is small, the approximation of the virial expansion, in
which the energy is expressed in terms of the pair scattering
amplitude f(k,k’), proves to be quite sufficient in this calcula-
tion. The terms quadratic in the scattering amplitude are
small when the collisions of the quasiparticles can be de-
scribed in the Born approximation.

Therefore the contribution of these terms to the free
energy is inessential. However, at low enough temperatures
the interaction becomes strong. This complicates the situa-
tion, both because of the quadratic terms and because of the
anisotropy of the crystal. An example of such a system is a
crystal in which the quasiparticles are scattered by immobile
impurities. For this case I. M. Lifshitz first proposed a meth-
od for calculating the increment to the free energy of the
crystal caused by the presence of the impurities.>' This
method does not employ the Born approximation, and hence
it does not require smallness of the interaction potential of
the quasiparticles with the impurities.

We shall examine below an analogous method of calcu-
lating the increment to the free energy caused by pair colli-
sions of quasiparticles with one another.>>! For example,
such collisions are realized in quantum crystals. However,
the result in the present treatment is not expressed in terms
of the scattering amplitude, but in terms of a characteristic of
the problem associated with it, but simpler, the so-called
spectral function, which contains the features pointed out
above of the interacting quasiparticles.
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Let us assume that the number of quasiparticles is small
enough that we can consider not more than one pair of quasi-
particles to be colliding at the same time. Evidently, in a
system of N quasiparticles the number of such pairs will be of
the order of N 2. The intereaction between the quasiparticles
will be strong whenever any two of them lie very close to one
another, i.e., practically tend to occupy the same lattice
node. This interaction will be infinitely large and repulsive
when the coordinates of the two particles coincide exactly in
the crystal lattice. This corresponds to the potential (1.1)
with the wave function (1.15). Let us examine the variation of
the free energy of the crystal using the example of this inter-
action potential.

Along with the solutions describing the scattering of the
quasiparticles, Eq. (1.8) also has solutions corresponding to
bound states. If the concentration of quasiparticles is ¢, then
the concentration of bound states will be proportional to c*.
As a function of the variable q/2, the eigenvalues £(q/2) rep-
resent new excitation branches corresponding to bound
states.

Let us represent z in Eq. {1.14) in the form

2= E 4 ak (E) + O (a?). (2.1)

We have
= dx 2
t=v S el —(q/2) +& L+ (@/2)—E—ak (E) ° (2:2)

For simplicity, let us study the sequence of operators
with purely discrete spectrum L, , which converges as a—0
to the value L. The eigenvalues of the opeator L, will be the
numbers E, = na, each of them infinitely multiple. As I. M.
Lifshitz*' showed, for an operator with a multiple spectrum,
addition of the first-rank operator A of (1.1) reduces the mul-
tiplicity of each eigenvalue of the spectrum to unity. Here the
points E, remain, while the eigenvalues z, that are split off
are shifted and lie between the yalues £, and £, , ;. Thus,
the eigenvalues of the operator L, + A that are split off are
represented in the form (2.1) or

z, = B, + a& (E,) + O (a?).

In the case of such a discrete spectrum, the integral in (2.2) is
converted into a summation over the numbers 7. Here, upon
substituting dy = df2 dE (where df2 is an element of solid
angle), we have

_ Y (Em, 9) AZm 2.
1=V 2 p B (- @3)
Here we have
Emq+AE
- B mtaky 40 2.4
v (B 9) = eE—@m+veaT@mic >
m

Upon taking the limit in Eq. (2.3) as @—0 and n— «, so that
E, = E remains in place, we have

E@)= [ 8(&, a)dq,

aVv (E, q)

v(e, q)de *

—_— 2.5
VY ~Fe )

E(E, q)=-atctg

Thus we determine from the scattering problem the spectral
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shift, a knowledge of which enables us to determine the
change in free energy of the crystal

i 1 E, @
5B = 8@ 9da, 1, q)=—,(—arctg}“—:§,,—m.

E—e
(2.6)

Let the free energy in the unperturbed case be
F,=Sp® (L), where

®(e)=TIn(1 —e®T)+ &, 2.7)
while the free energy of the perturbed crystal is

Fy=8p® (L + A).
Then the change in the free energy caused by the perturba-
tion will be

AF=1im 3} [® (En+ at (E,)) — @ (E)]-

(2.8)

(2.9)

Hence we have

AF = 5 E(E) @' (E)dE.

n
H

Here the integral is taken over the region I” of the continuous
spectrum.

Together with the expressions (2.5) and (2.6), the for-
mula derived here enables one to find the contribution to the
free energy of the interacting quasiparticles.

Let us examine some special cases by using Eq. (2.10).
The quantity v(E,q) that enters into (2.5) and (2.6) has the
meaning of the density of states and in all cases is well
known. Thus, for example, in the case of a lattice of cubic
symmetry, v(E ) equals:

v (E) = const-E-14, (2.11)
For simplicity we shall assume that v(E,q) = v(E )f(q), where
f(q) is a certain function of q alone. Then, upon substituting
the value of (2.11) into Eq. (2.6), we have

5_:%. (2.12)

(2.10)

Analogously, we can easily find from the same formulas that
the following expression holds near the boundaries of the
band, when v(E ) = const-E ~'/%
1
E=1.

Consequently, we have the following in these cases from Eq.
{2.10) for a system of quasiparticles:

(2.13)

N2T 4% In2 (2.14)
AF == =,

N2T g% 1n2
AF == ——. (2.15)

Thus the contribution to the pressure will be of the order of
Nb/V (where b is the constant defined in Eqs. (2.14) and
(2.15) in the region in which the infinitely large repulsion
between the pairs of quasiparticles is significant.

b) Heat capacity of a two-dimensional crystal

The experimental studies of Bretz and others have
shown that the heat capacity of a two-dimensional crystal of
helium adsorbed on graphite shows anomalous behavior at
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FIG. 6. Heat capacity of a two-dimensional crystal of “He.**

temperatures of the order of 1 K—a sharp maximum.** In
the range of relative covering densities from 0.7 to 1.0 in the
given system, one helium atom is present for every three
potential wells of the substrate (Fig. 6) upon ordering; owing
to the repulsive forces of atoms at short distances. In such a
system attractive forces exist between the next-nearest
neighboring atoms. The appearance of vacancies in rather
large concentratiion leads to the possibility in principle of
discovering a superfluid phase of the crystal.

Calculation of the heat capacity by Egs. (2.5) and (2.10)
yields the relationship C~ |t | %, where t = (T, — TV/T..
This agrees qualitatively with the stated experimental result.
Thus, the given system behaves like a two-dimensional
quantum crystal containing vacancions (see also Ref. 40).
Interestingly, in such a system, as the monolayer transforms
into a measurable phase, the frequency of sound at which
effective absorption can occur decreases, since the increment
to the free energy of the crystal caused by collisions of quasi-
particles leads to an increase in the relaxation time of the
parameters characterizing the phase transition.*®

As the results of Refs. 33, 48, and 54 imply, the vacan-
cions in a two-dimensional crystal in a certain temperature
region have a specific behavior (see also Sec. 3b) that leads to
a distinctive temperature contribution to the heat capacity.

¢) Nonideal Bose gas of quasiparticles

In the general case the statistics of quasiparticles is de-
termined by the number of particles that must be annihilated
or created to form the corresponding excitation. Each quasi-
particle is characterized by the quasimomentum k, the cor-
responding energy £(k), and the spin s. The process of quan-
tum-mechanical tunneling requires that the existence of the
spins must not violate the periodicity of the lattice, For this
reason, they must all be oriented in the same direction.

The pair collisions of quasiparticles obeying Bose statis-
tics give rise to a rearrangement of the energy spectrum of
the system. It is characteristic of such a system that the rela-
tivity principle of Galileo is inapplicable to quasiparticles
directly, since the latter require the presence of the medium
in which they move. This fact leads to a distinctive pheno-
menon in the rearrangement of the energy spectrum. The
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Bose condensate that arises does not have zero momentum,
as in the case of an ordinary Bose gas, but has a finite mo-
mentum of motion as a whole. Consequently, there are two
privileged systems of reference, respectively associated with
the condensate and with the lattice. Evidently, each quasi-
particle in the condensate is characterized by a quasimomen-
tum and energy that correspond to this quasimomentum.

Let the velocity v of the condensate correspond to the
quasimomentum py(Ve(k)(, _,, = V).

Let us construct the energy spectrum of such a system,
whose Hamiltonian has the form32-3536

H= 2 Ap_p-@hag - Z Ug, r-ahak-ap-ar = Hy+ Hine.
R, R’ R, R’
(2.16)

Here ag and dg are the operators for creation and annihila-
tion of quasiparticles at the node R, while U g is the inter-
action potential of the quasiparticles, and we have

Ag =2 & (k) exp (ikR). (2.17)
k
The operators 3z and dg satisfy the usual commutation re-

lationships>®:

apdh: — akar = Orp’- (2.18)
Pair collisions between quasiparticles via the ‘‘impenetrabil-
ity” potential of (1.1) do not satisfy the condition of applica-
bility of the Born approximation. The attractive potential of
{1.2) satisfies this condition, and hence can be taken into
account in (2.16) in the term H,,, by using perturbation the-
ory.

In order to describe the system under discussion in the
momentum representation, we must take into account the
property characteristic of a quantum crystal—motion of the
quasiparticles over the nodes alone, and the impossibility of
finding more than one particle at one node. This becomes
possible if one takes into account the exact wave function
(1.6) of the quasiparticles in transforming to the momentum
representation. Thus, let us transform the weak attractive
potential to the momentum representation as follows:

UBziRH = 3 Uneo (R, R). (2.19)
The Hamiltonian (2.16) in the momentum representation
will have the form

= e (k) atax
k

. A .
+ X Uk, q, 9) ai—(@/2)8+(q/2%k+(q7/2 Pk—(g'/2)-
kK, q9,9"
(2.20)

The summation in the last term is performed over all values
of the momenta of the quasiparticles, while conforming to
the law of conservation of momentum in a pair collision.

Let us study the case of the gas approximation ka<1.
Then we obtain the following equation from (2.19) with
allowance for (1.15):

U (po) = | o (2.21)

e (X—po) & (X+po)—2e(py) *

Application of perturbation theory in the Hamiltonian of
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{2.20) now implies formally the expansion of the fourfold
summation as a power series in the small quantities 4," and
a, . The zero—order term of the expansion is the number:

(2.22)

a;oa;oapoapo =N g’o'
Here N, is the number of quasiparticles in the condensate.
The second-order terms will be:

ai, > (axa_x--afat, + 2¢fg'ak). (2.23)

k=0 .
Since the number of quasiparticles in the condensate is large,
we can treat the operators as ordinary numbers neglecting

their noncommutativity. Thus we have the following from
(2.20), (2.22), and (2.23):
4 NpU NpoU (o) A “
A="0r0) | e PU S Qg g+ adat, + 20¢ )
k=0

+ ) e (k) af ax.
k

(2.24)

In order to determine the energy spectrum, we must convert
the Hamiltonian to diagonal form, which is done by the Bo-
golyubov transformation. Finally we have
H=E,+ ¢ (k) b;by. (2.25)

3
Here E is the energy of the ground state (5 < and Bk are the

new Bose operators):
2

N
Eo___,g_ncz (Po} —BNpU (Do) 81 80r o= Z e (k),

k

(2.26)

while ¢(p,) is the velocity of sound:

¢ (po) = l/ 2U (p,) N;D. (2.27)

The new dispersion law for £'(k) has the form

' (k, Po) = {7 [e (k—po) + & (k+ o) — 2¢ (po)]

ot e (o) [e (k—po) -+ (k+po) — 26 (po)]} -

(2.28)

The quantity Bk’“ Bk = n,, amounts to the number of quasi-
particles having the momentum k, while Eq. (2.28) defines
the relationship of their energy to the quasimomentum. Ac-
cording to Eq. (2.28), the energy of the quasiparticles de-
pends also on the momentum p,, which corresponds to the
velocity v of motion of the superfluid Bose condensate.
The quantity c(p,) coincides with the velocity of sound
in the system of quasiparticles, since the pressure is
= — (E/3V ), whilec*(p,) = P /3,, whetep =N, / V.
It would be of interest in principle to observe a dependence of
the velocity of sound on p,.

3. THEORY OF THE FERMI-BOSE QUANTUM CRYSTAL
a) Free energy of a solid solution

The method developed in Sec. 2 is applicable, e.g., for
calculating the free energy of a solid solution. The increment
in the free energy owing to pair collisions is finite in the limit
of unlimited enlargement of the crystal. Therefore, in calcu-
lating the change in free energy with respect to a classical
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crystal, one can treat the limiting case of an infinite crystal,
for which the energy spectrum is continuous.

The free energy of the solution is changed by the
amount AF by one event of pair scattering. Then, in the pres-
ence of impuritons in the concentration ¢, the free energy is
represented in the form

F = F, + Nc AF.

Here F, is the free energy of the pure crystal, and N is the
total number of atoms.

Evidently the present statements are true in collisions of
any type of quasiparticles with one another. If, for example,
Fermi-Fermi, Bose-Bose, and Fermi-Bose particle collisions
can occur in a solution of Fermi and Bose quasiparticles, this
leads to the following contribution to the free eneregy of the
solution:

AF =AF N + AFgN2 + AFgy Np Ng. (3.2)

Here N and Ny are the numbers of Fermi and Bose quasi-
particles, AF, (i = F, B, or FB) is the increment to the free
energy [see Egs. (2.5) and (2.10})] respectively in collisions of
Fermi-Fermi, Bose-Bose, and Fermi-Bose quasiparticles.
Equations (2.5) and (2.10) also allow one to calculate the
contribution to the free energy arising from bound states of
quasiparticles. As was shown in Sec. 1, bound states arisein a
quantum crystal near special points in quasimomentum
space when the interaction between them is arbitrarily small
(+=0). In this case the formula for AF will have the form

AF = g vigVie de (33)
J v (dp 2Ty
S0 =

(3.1)

At the concentration ¢, the concentration of bound pairs of
quasiparticles will be of the order of ¢*. Hence the contribu-
tion to the free energy will be ¢> AF.

b) Phase separation in a 3He—*He solid solution

In solutions of quantum crystals, quasiparticles obey-
ing both Fermi and Bose statistics can exist simultaneously.
Let us examine the properties of a crystal that contains
N, = n,V Fermiquasiparticlesand N, = n,V Bosequasipar-
ticles. The concentration of Fermi quasiparticles is ¢ = N3/
N, where N=N; + N,.

Experimentally the problem of phase separation arose
in studying the ordering of the nuclear spins of *He when the
specimen contained an appreciable amount of the impurity
“He.**® Edwards, McWilliams, and Dount found that a
large anomalous heat capacity appears at a certain tempera-
ture that depends on the concentration of the impurity. The
large heat capacity indicates that some ordering process is
occurring. Such an anomaly can arise from the decomposi-
tion of a solid solution into two phases.

To elucidate the problem of phase separation, let us first
treat the case of zero temperature. We shall write the expres-
sion for the free energy for a *He—*He solution in the follow-
ing forml'44 [see (3. 2)]-

14 Ng \5/3
T 5a 3y (_V—s)
NgN
+ ’;: N =+ 2na, (_mi;_'}_m_i:) ‘;,". (3.4)
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Here a, @', and a, are respectively the scattering lengths for
Bose-Bose, Fermi-Fermi, and Fermi-Bose quasiparticles
(see Sec. 1), and m¥ and mY are the effective masses of the
quasiparticles (m¥ ~#2/A,a%, m¥ ~#°/A,a°). Further, ¥, is
the value of the volume at which vacancions are formed.

One can determine by the generally known formulas of
statistical physics®® the pressure and chemical potential of
the quasiparticles. This enables one to determine the region
of stratification of the solution into two phases. One can be
easily convinced from the conditions of phase equilibrium
that zereo-point impuritons, i.e., impuritons existing at zero
temperature, do not contribute substantially to the pressure
in the region of small concentrations:

AV 1 13
P——n J'[ar: #— 27'[00 ('E-*-;:‘) ni (35)

Thus the impuritons have a rather high mobility, for other-
wise the crystal could remain in a metastable state upon low-
ering the temperature. The experimental facts confirm these
results.**!

Now let us examine a solution of Fermi-Bose quasipar-
ticles in lattice space in the presence of equilibrium vacan-
cions and at nonzero temperature. The existence in the solu-
tion of vacancions alters the physical pattern. The
vacancions possess high mobility, owing to which certain
phenomena can appear that are characteristic of liquid solu-
tions.

The Hamiltonian of the solution being studied in the
second-quantization representation has the form

= Ag-reafag-+ D) Br_grbibre
R, R* R, R’

+ 2 URR'aRaR'aR'aR

R, R’
+5 D U bibibabn+ S Ubpagatbsbe.
R,R’ R, R’
(3.6)
Here
Ui = L aon (3.7)
R —vi(R—R’), R=4R’

is the interaction between Bose-Bose (i = 1), Fermi-Fermi
(f=2), and Fermi-Bose (/=3) quasiparticles. Here
4y, Gg, by, and by are creation and annihilation opera-
tors, respectively for Bose and Fermi quasiparticles at the
point R of lattice space. The number of quasiparticles is
smaller than the number of crystal-lattice nodes, Each lat-
tice node can be occupied either by a boson or by a fermion or
by a vacancion. This is analogous to the idea that each node
can exist in three different states. Let us introduce three vec-
tors that correspond to these states: (1, 0, 0) is a state occu-
pied by a boson, (0, 1, 0) is a state occupied by a vacancion,
and (0, 0, 1} is a state occupied by a fermion.

These vectors are the eigenvectors of the z-component
of the unitary spin operator o corresponding to the eigen-
values 1,0, and — 1. We can easily convince ourselves that,
e.g., a Bose quasiparticle is created whenever the operator
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o® o™ acts on a state having o° = 0. Consequently the boson
creation operator can be expressed in terms of the spin oper-
ator multiplied by the corresponding projection operator*®:

. 1 - 1 _

ak = —=0%0%, ar=-—=0g0%. (3.8)
Ry R TR ORR

Analogously one can introduce the operators for fermion

creation and annihilation:

br = 715 0L0R, br= 7/1_2 OR0%.
We can easily verify that the usual commutation relation-
ships remain in force here.

Owing to translational symmetry, o does not depend on
the index R. The molecular-field approximation states that
the field at the Rth node coincides with the mean field U and
does not depend on the orientation of the spin ox.>® In a
quantum crystal the spins are all oriented in the same direc-
tionin order that the system be periodic. The fact of discrete-
ness is taken into account here if one employs the exact scat-
tering wave functions derived in Sec. 1 in going over to the
momentum representation:

U= Uik, k') o2
&

(3.9)

(3.10)

Ut (k, k') =RZRIU;R'¢ R, R). (3.11)

This procedure yields equations that reflect the joint partici-
pation of all the lattice quasiparticles in creating the self-
consistent field.*® The quantities 4 g and By in the Hamil-
tonian of (3.6) correspond to the dispersion laws of the
quasiparticles in going over to the momentum representa-
tion:

Ag = Z} e, (k) exp (ik-R), a2

Bp = g e, (k) exp (ik-R).

The representation of the creation and annihilation opera-
tors in terms of the spin operators also allows one to intro-
duce the order parameter 7:

oF=n. (3.13)
This implies that one can expand the free energy of the solu-
tion corresponding to the Hamiltonian of (3.6) in powers of
the quantity % according to the Landau theory of second-
order phase transitions. As a result, upon equating the coef-
ficient of 77? to zero, we obtain the phase-transition tempera-
ture.

Figure 7 shows the dependence obtained in this way of
the phase-separation temperature on the concentration of
Fermi quasiparticles. When T'¢T,, , the phases are almost
fully separated.’® Separation does not occur throughout the
volume, as in a liquid, but yields a mixture of small clusters
of each phase. The dimensions of these clusters depend on
the concentration of vacancions. The asymmetry of the
phase-separation curve indicates the differing behavior of
the vacancions at different concentrations of Fermi quasi-
particles in the solution, which is also indicated by the ex-
perimental facts.*!
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{ i
2 g2 94 g6 48 47

FIG. 7. State diagram of a *He-*He solution. Solid line—theory®®; dotted
line—experiment.**’

¢) On the structure of vacancies in a 3He-4He solution

As was shown in the last subsection, a *He—*He solution
separates into two phases at temperatures T< T, (T, = 0.4
K) and at concentrations 0 < ¢ < 1. Separation at such low
temperatures indicates that quasiparticles having a specific
behavior exist in this crystal.

For example, the behavior of vacancions is highly sensi-
tive to the system of nuclear spins of *He.>3® Therefore, in
the presence of vacancions the solution has completely dif-
ferent magnetic properties, depending on which branch of
the phase-separation curve is being studied, the branch
where ¢ <1 or the one where ¢ ~ 1.8

Let us study the rather broad temperature region de-
fined by the condition:

g JK T KA. (3.14)

Here J is the magnitude of the exchange interaction
(/~107* K), 4 is the width of the vacancion band (4 ~ 10
K), and ¢ is the characteristic interaction energy of ‘He
atoms with one another.

In this temperature region a vacancion on the former
branch of the phase-separation curve behaves as follows. It
expels “He atoms from a region of radius R and fully polar-
izes the nuclear spins in this region. This occurs at concen-
trations 10~ “<c < 1. On the other branch of the phase-sepa-
ration curve at concentrations c<1, the vacancion expels
*He atoms and is delocalized in the region R,.

The appearance of ordered macroscopic regions arises
from the fact that the formation of a vacancion requires ideal
periodicity of the lattice. This is attained by expulsion of
either “He or *He atoms, depending on the relative concen-
tration.

The minimal work necessary for expelling atoms, e.g.,
of *He, is*®

SR = @ (n) — @ (0). (3.15)
Here we have

@ (n) = npo+ Tnn -+ (p, T), (3.16)

@ (0) =np,+np'. (3.17)

Also, ' is the chemical potential of the dissolved material:

W=Tln=+9(p, 7). (3.18)
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Analogously one can state that the minimal energy for expel-
ling *He atoms is
SR = cen,T. (3.19)

Here ¢ is the concentration of *He atoms. Then an ordered
state arises in the region of a sphere of radius R, with an
energy equal to

Fes + 0 2% Ron T In2+c- 4% Ringl.  (3.20)
Here ¢, is the energy of the vacancion band, the third term in
this expression corresponds to the energy of the ordered nu-
clear spins of the *He atoms, and the last term is the energy of
expulsion of N, “He atoms from the region of radius K. On
the other branch of the phase-separation curve, i.e., the
branch on which the concentration is c€1, the energy of the
region of radius R, will be

252
F1:80+§%§+c'%‘_ Rin,T. (3.21)

We find the radii of the corresponding regions (Fig. 8) from
the condition that the expressions (3.20) and (3.21) should be
minimal.

(T \YE 3.22
R= (4T T 2Fo) ) & (3.22)
i nA \1/5 3.23
'R, = (77:) (3.23)

We shall find the range of concentrations necessary for
manifestation of the stated phenomenon from the condition
that the radius of the sphere must be large enough in com-
parison with the distance between the atoms subject to ex-
pulsion:

R > ac-3. {3.24)
We can easily see from Eqgs. (3.22)—(3.24) that
(%)2/3<< e (3.25)

on the initial branch of the phase-separation curve, and

(‘;’) 38 e (3.26)
on the other branch of this curve, corresponding to the tem-
perature 7=0.4 K.

The onset of order in macroscopic regions of radii R and
R, leads to appreciable changes in the magnetic and thermo-
dynamic properties of the *He-*He solid solution.

d) Absorption of sound by vacancies

Let the solution contain vacancies in concentration c.
Under the action of a sound wave with energy E§ <4 and

i
! o o . o o H
?
: H @ ¢ . ?

FIG. 8. Macroscopic region of radius R in a *He~*He solution.
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wavelength 27/k > R, a vacancy begins to oscillate and scat-
ter energy upon interacting with the lattice.

In the field of a sound wave of frequency @ and wave
vector k lying along the x axis, the force F = F, cos(wt — ker)
acts, where r is the x coordinate of the vacancy.

The energy absorbed per unit time by the vacancy is
determined by the mean value Fx = A (where x is the veloc-
ity of the vacancy). Upon taking account of the fact that the
mobility of a vacancy is determined by the formula*®
v~ '~(a?/#)(T /4 )3, we have the following expression*® for
the absorbed energy:

A~ N, L::ﬂm (%)2/5. (3.27)

The absorption coeflicient has the following form:

A V3 a%e T)2/5
“"'(T) _h—(A .

(3.28)

1t is of definite interest 10 measure these quantities in sound-
absorption experiments.

As Andreev, Marchenko, and Meierovich?® showed,
the experimentally observed increase in the temperature of
magnetic ordering with increase in the applied magnetic
field incicates the onset of ferromagnetically ordered macro-
scopic regions around vacancions.

CONCLUSION

Thus the concept of quasiparticles that Andreev and
Lifshitz proposed describes perfectly the physical picture
corresponding to quantum crystals. The description in the
language of quasiparticles proves so fruitful precisely be-
cause at low temperatures one has not too large a number of
types of motion to deal with, and hence, not too large a num-
ber of quasiparticles. This has enabled us to treat a quantum
crystal as a rarefied gas of quasiparticles in the discrete space
of the crystal lattice and to apply the method of I. M. Lifshitz
to study the scattering process. The discreteness of the space
leaves a distinctive imprint on the physical picture as a
whole. Quasiparticles after being scattered by one another
are a superposition of several waves, whose number depends
on the form of the isoenergetic surface. An elucidation of this
problem in experiments, e.g., on quantum diffusion, would
be of substantial interest.

A quantum crystal containing zero-point vacancions is
a unique object.’* Two superfluid motions can occur in it,
involving the flow of quasiparticles and the displacement of
the lattice nodes. At low enough temperatures such a crystal
possesses specific thermodynamic and hydrodynamic prop-
erties.

Vacancions in *He-*He solid solutions have a distinc-
tive behavior. Macroscopic regions appear on the phase-sep-
aration curve that lead to a change in the thermodynamic
and magnetic state of the material.*® New phase transitions
can occur in such systems.

I express deep gratitude to A. F. Andreev and L. P.
Pitaevskii for repeated useful discussions and valuable re-
marks.
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