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This review is devoted to critical phenomena such as the threshold of explosive instability and
kinetic transitions of the "medium populating" type in nonequilibrium systems with breeding,
decay, and diflFusion. A detailed analysis is made of the situation where breeding is localized
within particular spatial regions (breeding centers) which arise randomly in the medium at arbi-
trary times and have finite lifetimes. The analogy with problems in percolation theory and sec-
ond-order equilibrium phase transitions is discussed. The effect of fluctuations in external fields
on competition processes in media with diffusion is examined. Diffusion in a medium with ran-
domly distributed traps is investigated and particular attention is devoted to the contribution of
statistically rare spatial configurations.
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1. INTRODUCTION

There has been increasing interest recently in processes
occuring in highly nonequilibrium flux-type open systems
because such systems have been found to exhibit effects of
self-organization, i.e., the formation of dissipative macro-
scopic structures.

Flux-type systems are coupled to an external source of
energy or are connected to two thermostats at different tem-
peratures. The result of this is that relaxation to thermal
equilibrium cannot take place in such systems. Even in the
steady state, a flux of energy passes through the system and
is dissipated into the ambient medium.

When the energy flux is small, deviations from thermal
equilibrium are also small. These deviations increase with
increasing energy flux, and the system exhibits a sequence of
instabilities leading to qualitative modifications of the kinet-
ic state established in the system. Each such modification
constitutes a kinetic transition" accompanied by the estab-
lishment or complication of order in the open and highly
nonequilibrium system, i.e., a reduction in its symmetry. By
analogy with the corresponding phenomena in equilibrium
systems, kinetic transitions are sometimes referred to as non-
equilibrium phase transitions. The study of these processes
and of the attendant ordered structures is the concern of the
modern theory of self-organization.

"The phrase "kinetic transition" was introduced in Refs. 3 and 4.

There is a close connection between self-organization
and the initiation of turbulence. L. D. Landau1 was the first
to point out that the transition from laminar to turbulent
flow may occupy a definite range of values of the parameter
characterizing the rate of supply of energy. Within this
range, the flow has a regular (periodic or quasiperiodic in
time) structure which is established as a result of a nonlinear
limitation on the growth of the amplitudes of the first unsta-
ble modes. True turbulence, requiring statistical description,
arises in the course of a successive complication of regular
structures, and the attainment of exponential instability of
the evolving structure against arbitrarily small perturba-
tions.2 This type of instability does not set in for any quasi-
periodic state, so that the Landau mechanism cannot be used
to examine the transition to the long-term turbulent state.2'
However, Landau's ideas form the foundation for the ap-
proach to self-organization effects that is being developed
today.

From the general point of view, self-organization is a
property of open flux-type systems during the preturbulent
stage, when the quasiequilibrium (laminar) state has already
lost its stability, but macroscopic stochastization (transition
to true turbulence) has not yet been attained. In this connec-
tion, we note the analogy between the description of the ini-

2'Substantial advances in the understanding of the properties of such a
transition have been made only recently in connection with the study of
strange attractors.2-6-10
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tiation of turbulence in the Landau mechanism and the Lan-
dau theory of second-order equilibrium phase transitions. A
detailed discussion of this analogy is given by Haken.5

The most, important example of self-organization
among physical systems is laser generation. The transition
from noise to coherent generation as the strength of the
pump increases can be interpreted as a kinetic (or nonequi-
librium phase) transition.5 In hydrodynamics, self-organiza-
tion effects include the evolution of the regular structure of
convective flows in Benard's problem,6 Taylor vortices,7 and
so on. Systems in which chemical reactions take place exhib-
it a very wide range of self-organization phenomena.8 Self-
wave structures involved in the Belousov-Zhabotinskii reac-
tion have been investigated in greatest detail.9

The basic mathematical models of self-organization are
common to a wide class of physical, chemicl, and biological
systems. They are studied by using the methods of modern
theoretical physics, and are sometimes elevated to the status
of an independent subject for which Haken has coined the
name "synergetics" (from the Greek synergeia—working to-
gether). Synergetics is concerned with the study of critical
phenomena (i.e., instabilities and kinetic transitions), non-
linear waves, and stationary structures, as well as self-sto-
chasticity involved in cooperative behavior of highly non-
equilibrium systems of various origins.

In this review, we shall examine critical phenomena
such as the explosive instability and the "medium populat-
ing" kinetic transition in nonequilibrium systems with
breeding, decay, and diffusion. We shall illustrate our dis-
cussion by simple models which are particularly important
because of their generality. We shall consider the situation in
which breeding (described by the scheme X + A~^2X) is lo-
calized in particular spatial regions (breeding centers) that
appear randomly and independently in the medium at arbi-
trary times and have the same intensity, shape, and lifetime.
This occurs in parallel with the homogeneous process of de-
cay of the breeding material in the medium (the equivalent of
this process is the capture of reactive particles by traps dis-
tributed within the medium).

We shall not specify the systems studied in this review
to any greater extent. Breeding effects are observed in nu-
clear fission reactions,11 in chemical chain reactions,12 in
autocatalysis,9 in the behavior of biological materials,13 and
so on. Each particular case is characterized by its own speci-
ficity. However, it seems to us that it is important to concen-
trate our attention on typical general properties of such sys-
tems.

Breeding in a medium may be accompanied by the de-
velopment of explosive instability, i.e., an unlimited rise in
the amount of breeding material in the system. The thresh-
old for explosive instability is determined by competition
between breeding and decay.

When the rate of breeding or decay fluctuates, and the
breeding material is capable of diffusion, the determination
of the threshold for explosive instability becomes a compli-
cated problem that is quite close to the range of problems
investigated in the theory of disordered media and in perco-
lation theory.14-16

Actually, it has been pointed out17 that the transition
across the explosive instability threshold may be looked
upon as dynamic percolation in which there is a change in
the asymptotic behavior (in time) of the mean density n(t ) of
the breeding material as t— * oo . This type of behavior is possi-
ble in the discrete "directed percolation" models that have
recently been proposed.18 They are discussed in Section 2.2.

Explosive instability can be suppressed by post-thresh-
old nonlinear limiting mechanisms. A nonzero density of the
breeding material is then established above the threshold in
the medium, i.e., the medium becomes "populated" by this
material.

The system that we shall examine is an open system that
is not in equilibrium because of decay and the influx of ener-
gy into the breeding centers from outside. We are therefore
entitled to interpret the population of the medium above the
explosive instability threshold as a kinetic transition in the
system. Analysis (see Section 2.5) shows that, in many re-
spects (critical slowing down, correlation radius tending to
infinity), this effect resembles a second-order phase transi-
tion in equilibrium systems. At the same time, fluctuations
due to external agencies result in very unusual behavior.

Apart from critical phenomena in media with random
breeding centers, we shall also discuss (in Section 3) competi-
tion in fluctuating media. Competition effects are an impor-
tant feature of self-organizing systems. In fact, any spontan-
eously established macroscopic regular structure is a
consequence of competition between growing unstable
modes; the "surviving" mode suppresses other modes and
imposes its own structure on the system. Competition effects
play a special role in the evolution of biological and chemical
systems.

Diffusive random walks in a medium with randomly
distributed traps are discussed in Section 4.

2. SYSTEMS WITH RANDOM BREEDING AND DECAY

In the simplest case, such a system is described by the
stochastic differential equation

= -an+f(t)n, (2.1)

where a is the constant decay rate andf(t ) is the rate of breed-
ing with given statistical characteristics, which varies ran-
domly with time.

When the mean density (n(t)) evaluated over the en-
semble of realizations increases with time without limit, we
shall say that the explosive instability threshold has been
exceeded for the system (2.1). The density (n(t )} can be cal-
culated by direct integration of (2. 1):

(2.2)

The last factor in this expression is directly related to an
important characteristic of the random process/(r ), namely,
its generating functional

(2.3)

Comparison of (2.3) with (2.2) shows that
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The formula given by (2.4) is the solution of the problem
of explosive instability threshold for an arbitrary randomly
varying rate of breeding. For example, let us suppose that the
breeding process is the superposition of independent
"bursts" of length TO and intensity /. The "bursts" are pro-
duced at random times:

(2.5)

where cr(r) = 1 for 0 < r < r0 and a(r] = 0 for r < 0 and r > r0.
If m is the mean numbe of "bursts" per unit time, the

generating functional of the Poisson random process (2.5)
has the form19

0> [6 (t)]
t t'

= exp{-m j [l-exp (/ Sj a (t'— t") 6 (t") di") ] d*'} .
o ' o

(2.6)

Substituting 0(0=1in (2-6)>we nnd & (Ref-1)and hence the
law whereby the density averaged over the ensemble varies
with time:

= re0 exp ((m ( ) - a) t] . (2.7)

The explosive instability threshold is therefore reached
when the mean number of "bursts" per unit time is given by

mcrit=a(e^°-l)-'. (2.8)

When /r0< 1, the breeding "bursts" are weak and, as is
seen from (2.8), we then have mcrit = a/Jr0. Such an expres-
sion for the threshold can be readily obtained by equating the
mean breeding rate/= mJr0 to the decay rate a.

On the other hand, in the opposite limiting case of
strong "bursts," (/r0S:l), we have mcrit =ae~jT°. This
corresponds to equating the decay rate a to the relative in-
crease exp(/r0) in the amount of material per "burst," multi-
plied by the number m of "burst" per unit time.

A substantial part of our review is concerned with cal-
culations of the explosive instability threshold for systems
that generalize the model given by (2.1) to the case of distrib-
uted systems with diffusion.20"22

Let us suppose that the decay and breeding of a certain
material are possible in the medium, and that the rate of
decay a is homogeneous in space and constant in time,
whereas breeding is confined to certain specific breeding
centers that arise randomly in time at random points in the
medium, but have the same form, intensity, and lifetimes.
The corresponding mathematical model is

n = —an + / (r, t) n + D Arc, (2.9)

where « is the density of the material and D is its diffusion
coefficient.

The fluctuating field/(r, t} is the sum of identical pulses
(r,, tj) appearing at the random points g(r, t):

-** *-*,)• (2.10)

The mean number of pulses appearing per unit time per unit
volume is constant and equal to m. The function g(r, t} has
the form

g (r, t) = /x (r) a (t). (2.11)

The quantity J characterizes the intensity of the breeding
center and the function x (r) falls rapidly to zero for r > r0, so
that r0 is the spatial dimension of an individual center;
X (0) = 1. The lifetime of a breeding center is TO and the func-
tion a(t) is defined in (2.5).

In the ensuing analysis, we shall frequently use the di-
mensionless space-time concentration c of breeding centers,
defined by

c=mrfr0, (2.12)

where d is the dimensionality of the medium.
All breeding centers may be divided into strong and

weak, depending on the relative increase in density at an
individual center.

2.1. Strong and weak breeding centers

The increase in density at an individual breeding center
is described by

-n = — D&n — /x (r) n, TO, (2.1.1)

which is formally identical with the Schrodinger equation
with imaginary time and potential U = — Jx (r). Its general
solution is

n(r , t)= 'Sp, (r) + , (2.1.2)

where the sum is evaluated over the discrete and the integral
over the continuous spectra of the linear operator

L = Z)A + (2.1.3)

For breeding centers (/> 0), the eigenvalues [A,] in the dis-
crete spectrum are positive. They correspond [see (2.1.1)] to
negative energy levels of bound states in the "potential well"
t f ( r ) = - J X ( T ) .

Suppose that /10 is the largest of the eigenvalues in the
discrete spectrum. The breeding centers will be referred to as
strong when A0r0> 1 and weak when A0r0< 1. It is clear from
the general solution (2.1.2) that the increase in the amount of
material at a strong center is exponentially large.3'

The eigenvalue A0 can be related to the parameters /
and r0 characterizing the properties of individual centers.
This can be done by exploiting the analogy with the Schro-
dinger equation and recalling that /10 corresponds to the
lowest-lying level in the potential well U = — Jx. It is well
known23 that the order of magnitude of the lowest-lying
level in a deep well (/>D /r2,) is given by A0~J. In the oppo-
site limiting case (/>/> /r2,), which corresponds to a shallow
potential well, the estimate for A0 will depend on the dimen-

"We note that, since /I0r0 appears in the argument of the exponential, the
breeding centers are strong even for/l0r0~3 — 4.
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sionality d of the medium. For a one-dimensional medium

and for a two-dimensional medium

whereas, for a three-dimnsional medium, a shallow potential
well of this kind will not contain any discrete levels, i.e., all
the eigenvalues will be A < 0.

Thus, short-lived (r0< r^ /D ) centers turn out to be weak
if J<J*, where

=l, 2, 3. (2.1.6)

If, on the other hand, the centers are long-lived (r0>r£/Z>),
they will be weak for /<7 * where

d = l, (2.1.7)

d = 2, (2.1.8)

d = 3.. (2.1.9)

In the opposite limiting case J>J *, the breeding centers are
strong.

2.2. Explosive instability threshold for strong centers

The total increase in the amount of material at an indi-
vidual strong center during its life is

A./V, = w0rf (2.2.1)

where n0 is the initial density (constant in space) and r, is the
localization radius of the eigenfunction (p0(r) of the operator
(2.1.3) corresponding to the maximum positive eigenvalue41

r 1 = ( j< P o ( r )d r ) ' / ' i , Jq>:(r)dr- l . (2.2.2)

The explosive instability threshold is determined from
the condition that the rate of increase in the amount of mate-
rial at the breeding centers must be equal to its rate of decay
in a unit volume. If we neglect interactions between centers,
this may be written in the form m ANt = an0, so that the
critical concentration of centers is given by the following
simple expression:

(2.2.3)

This expression does not take correlation effects into
account. In reality, when two centers happen to be situated

4)The length r, can be estimated as follows: ri >ssra for •£ and

sufficiently closely to one another both in space and in time,
then in addition to the independent individual increase in the
amount of material at the two centers a pairwise increment
arises due to the fact that the exponential increase in density
on the second center does not begin from the average density
n evaluated over space at the particular instant of time, but
begins from the higher value (density spot) remaining after
the previous first center. There are also other possible contri-
butions due to clusters of three, four or more centers.

For clusters consisting of two breeding centers that ap-
pear at points TI and r2 at times f, and /2, the additional
paired increase in density is

q>0 (r - r2) q>0 (r' - rt) Gd

X(r-r' , Ij-tj-ToJ (2-2.4)

where Gd is the Green's function for the diffusion problem in
space of dimensionality d:

(2.2.5)

It was assumed in the derivation of (2.2.4) that the two
centers did not overlap along the time axis, i.e., t2 > 1 l + TO.

The average contribution due to the additional increase
in the amount of material on two-center clusters per unit
time per unit volume is

-T J T)dp'dr, (2.2.6)

where/* (p, r) is the probability density that the second cen-
ter will appear at a distance p after time T following the
appearance of the first. It is well known14 that, for indepen-
dently appearing centers, the distribution is

p (p, T) = m exp (—mVd-c), (2.2.7)

where Vd is the volume of a sphere of radius p in a space of
dimensionality d. The quantity AN 1>2 must be compared
with the mean increase at the individual centers.

To calculate the mean increase A N 1>2 , we must, in gen-
eral, know the explicit form of the eigenfunction <p0(r) which,
in turn, is determined by the specific shape of the breeding
centers. However, in the first instance, we are interested in
the limit of sufficiently low density of breeding centers, so
that the centers in a two-center cluster are well separated in
time. In that case, we may suppose that, during the diffusive
spreading after the operation of the first center, this center
leaves behind it a density spot that propagates to points at
distances much greater than the initial radus r,. When the
additional paired increase is calculated, we can neglect the
inhomogeneity of density in the region in which the second
center subsequently appears, so that the expression for
AN 1,2 becomes much simpler:

\ Gd (p, T) «— *d<«* dp dr. (2.2.8)

By evaluating this integral for media of different dimension-
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ality, we can readily show that the order of magnitude of
AN! 2 is given by

\d/(d+2)
(2.2.9)

Thus, the additional mean increase on two-center clus-
ters is small in comparison with the mean increase on indi-
vidual centers, provided

/mrl
(~L

1. (2.2.10)

This condition can also readily be derived from other,
simpler considerations. It is clear that mutual influence of
breeding centers can be neglected if the volume v of the
space-time region occupied by an enhanced-density spot due
to an individual center is much smaller than the volume oc-
cupied, on average, by one center:

1. (2.2.11)

Let us estimate the volume v. This is approximately
equal to the product of the time T* necessary for the increase
in density to become appreciable against the average back-
ground, by the volume of the region in space occupied by the
increase in n(r,t) during this time. The characteristic volume
occupied by the increase in density up to the end of the time
T* is determined by the diffusion length during this time, i.e.,
the quantity (Dr*)l/2. In view of this, let us rewrite (2.2.11) in
the form

(2.2.12)

The volume v can be found approximately by considering the
density at the center of the spot as a function of time. When
the center ceases to exist, the mean increase in the density in
its interior is

(2.2.13)

and the radius rl with which the spot is formed is determined
by the localization radius of the eigenfunction cp0 (r). As soon
as the center ceases to operate, the spot begins to spread out
in accordance with the diffusion law:

6re(r, t)= — r', t)8n(r', 0)dr'. (2.2.14)

It follows that the density change at the center of the core
can be approximately represented by

8n(t) (2.2.15)

The spot is appreciable against the mean background so
long as 8n(t) Z n, and this condition eventually yields the esti-
mate

(2.2.16)

Substituting this in (2.2.12), we conclude that the mutual
influence of breeding centers can be neglected if

TC«72T3-exp[-(1+4 (2.2.17)

Simple rearrangement then readily shows that this condition
is equivalent to (2.2.10).

The aim of our analysis is to determine the threshold
concentration of breeding centers. Comparison of (2.2.10)
with (2.2.3) shows that clusters play no appreciable role in
the evolution of the explosive instability threshold, provided
a<or* where

(2.2.18)

As the decay rate a increases, the contribution of two-center
clusters is found to increase. The expression for the explosive
instability threshold in the case of strong centers, including
the correction due to paired clusters, has the following form

(2.2.19),. _,-(0)r< v / —>
Ccrit— CcritL X ~~ 'd ( a* J

where

8 »

|'(T)(!

d = l,

d = ;

(2.2.20)

and F (x) is the gamma-function.
When a £a*, the threshold is substantially reduced in

comparison with cj.%. Clusters consisting of a large number
of breeding centers then play the main role in the determina-
tion of the threshold.

As noted in the Introduction, there is a similarity
between the problem of the explosive instability threshold
and problems in percolation theory. The "directed flow"
model18 appears to be the closest to our situation. According
to the model, the medium consists of elements located at the
sites of a regular lattice, which are capable of occupying a
state of rest or excitation. If, at a given time, an element is in
an excited state, it is found to return to its original state of
rest at the next (discrete) instant of time, but it can excite
each of its nearest neighbors in the lattice with a probability
p. This results in a random process resembling the propaga-
tion of infection with breeding of its carriers. It is clear that,
when the excitation transfer probability^ is very small, the
number of excited elements will decrease with time. In the
opposite limiting case, when the excitation transfer probabil-
ity is close to unity, the number of excited elements will rise
with time without limit. The critical value of the excitation
transfer probability,^, for which we have a finite probabil-
ity of unlimited growth in the number of excited elements for
a single initial excited element corresponds to the percola-
tion threshold.

It is clear that the critical probability pc depends on the
number of nearest neighbors in the given lattice, i.e., on the
coordination number z. The greater the number of elements
that are in contact with the "infected" element, the higher is
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the probability that the "infection" will breed. We note that
the coordination number increases with increasing dimen-
sionality d.

In the limit of high coordination numbers, the percola-
tion threshold can be determined in the mean-field approxi-
mation. Let us suppose that the fraction of elements in the
medium that are in an excited state at the «th instant of time
is/n. If the number z of nearest neighbors of each element in
the medium is large, we may suppose that there arez/n excit-
ed elements among its neighbors at the «th instant of time.
Consequently, the probability of finding the element in an
excited state at the next, (n + l)th instant of time is
1 — (1 — p ) z f " , since we have assumed that the probabilities
of excitation transfer from each of the excited neighboring
elements are independent. The quantity that we have ob-
tained gives the fraction of elements of the medium that are
in the excited state at time n + 1, i.e.,

,\2/71 (2.2.21)

Above the percolation threshold, the quantity/„ must
tend to a nonzero finite limit:

lim/„ = /*, (2.2.22)

which gives the number of excited elements in the steady
state, while below the percolation threshold, '^^/n = 0.

By examining the point transformation (2.2.21), we can
readily show that its attractors can only be stationary points,
with the loss of stability of a stationary point /= 0 and the
creation of a new stable stationary point/ =/* > 0 occuring
as the probability/; passes through the value

(2-2.23)

that determines the percolation threshold.
As the coordination number z is reduced, the mean-

field approximation ceases to be valid. Fluctuation effects18

then become important.
The expression given by (2.2.3) for the explosive insta-

bility threshold was obtained in the mean-field approxima-
tion for the model described by (2.9)-(2. 10), since it was as-
sumed in its derivation that the increase in the material at
each of the breeding centers began from the density averaged
over the volume at the given instant of time. When the rate of
decay a is small, this approximation is valid because the
critical concentration of breeding centers is low [(2.2.10) is
satisfied] and the next successive breeding center appears
outside the region that has been strongly perturbed by one of
the preceding centers.

As the rate of decay a increases, the critical concentra-
tion of breeding centers will also increase. The first fluctu-
ation correction to the explosive instability threshold (2.2.3),
determined in the mean-field approximation, is obtained by
taking into account the contribution due to two-center clus-
ters.

As the decay rate a passes through the value a*, there is
a transition to strong fluctuations for which the explosive
instability threshold is determined by the appearance of infi-

nite time chains of neighboring breeding centers.
These results may be interpreted as a reduction in the

effective coordination number with increasing decay rate in
the medium. This interpretation is confirmed by analyses of
the role of dimensionality of the medium in this problem. It
is well known that the coordination number increases with
increasing dimensionality d. One would therefore expect
that the mean-field approximation will be valid for media
with high dimensionality.

In fact, it follows from (2.2.18) that the critical decay
rate a* that determines the transition from the mean field
state to the highly fluctuating state increases with increasing
dimensionality d of the medium. We note also that, when
e?>l, i.e., when the dimensionality is very high,5' all the
centers become long-lived because the corresponding condi-
tion is Tf&r^/Dd. The quantity/ * that appears in the condi-
tion />/* which defines strong breeding centers is also
found to depend on the dimensionality of the medium:
J * ~dD //•£ for cf> 1. If we fix the intensity J of centers and
their size r0, we always arrive at the limit of weak breeding
centers because/* increases with increasing dimensionality
d.

2.3. Explosive instability threshold for weak centers

When the explosive instability threshold is calculated in
the case of weak centers (/<</*), we can take as the first ap-
proximation the condition that the mean breeding rate/over
the volume is equal to the decay rate a. Since the mean
breeding rate is

/ = m \ g (p, T) dp dT =

where

(2.3.1)

(2.3.2)

This gives us the following result for the dimensionless criti-
cal concentration of breeding centers:

<o, _«_ n i T,\
cnt J- r • \£*>J*3\

We emphasize at once that (2.3.3) will by no means al-
ways serve as a reasonable first approximation to the true
explosive instability threshold. Statistical correlation effects
reduce the explosive threshold, and this reduction may turn
out to be very appreciable. In this section, we shall establish
the limits of validity of (2.3.3) and will calculate the first
corrections to it for those cases for which they are small.

It follows from (2.1) that the rate of change of the mean
density evaluated over the volume is given by

n= — (a — /)re+(6/6»>, (2.3.4)

where Sf=f—fand Sn = n-n. It is thus clear that the ap-
proximate result given by (2.3.3) corresponds to the situation
5)Of course, the dimensionality of the medium will not exceed three in

physical problems. However, the analysis of diffusion in media of high
dimensionality is not altogether purely formal. Diffusion in spaces of
high dimensionality is encountered, for example, in mathematical mod-
els of biological evolution.
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where correlations between density and breeding-rate fluc-
tuations 8n and <5/can be neglected.

The rate of change of 8n is described by the stochastic
equation

dn= — (a — /)6n + DA6« + 6/(r, i)« + (6/6n-(6/6w».

(2.3.5)
Since, near the threshold, the mean density n increases or
decreases with time very slowly in comparison with the char-
acteristic "microscopic times," such as the lifetime of an in-
dividual center, the mean density n may be regarded as con-
stant in (2.3.5).

To calculate the corrections to the explosive instability
threshold in (2.3.3), we must use (2.3.5) to determine the cor-
relator (8f/8n) for fixed n. The diagram technique of per-
turbation theory as applied to random processes in Refs. 24-
27 provide us with a consistent way of calculating this quan-
tity. The various details of this procedure can be found by the
reader in Ref. 22. Here, we confine our attention to the prin-
cipal features of the application of this technique to our
problem.61

In (2.3.5), we can transform to the Fourier components
of the fluctuating fields, with the result that

g'J , (2.3.6)

(2.3.7)

where ?=(«, k) and

<3°=(-ico + a-7+

The formal solution of the integral equation (2.3.6) is
given by an infinite iteration series in powers of 8fq. Multi-
plying this infinite series by 8fq:, and averaging over the en-
semble of fluctuations 8f, we obtain the expression for the
correlator (8nq8fq, ) and, after integration, for the quantity
(<5/(r, t) 8n (r, t ) > . In graphical form, the first few terms of
the infinite series for this correlator are

<&f(r,t)f>n(r,t)>=n
(2.3.8)

A thin solid line with an arrow represents the function G °
whereas broken lines with points upon them represent irre-
ducible correlators (cumulants) of random fields 8fq.. In con-
trast to the Gaussian random fields, for which all the higher-
order correlators degenerate to pair correlators, the Poisson
random field (2.10) has nonzero cumulants of all orders. It
follows that several broken lines can converge ("pair") at a
given point.

A further feature of (2.3.8) is that it does not contain
weakly bound diagrams that decay when one of the lines is
cut. Such diagrams cancel out during the averaging proce-
dure because of the second term in the integrand in (2.3.6).

If we define the "self energy" function 2,q and the
Green's function Gq in the usual way, with these two func-
tions being related by the Dyson equation

Vi yr—1 __ /""lO"1 V1 /O "3 Q\

and if we use the function Gq to perform a partial summation
of the diagrams in the series for 2q, we obtain the graphical
expression

/"N S'T\ ^-^X^\ ^-'7^~^I \ , / | ^ . / J X ^ | /• / \ .̂ T

(2.3.10)

The threshold for explosive instability is given by

a = f+S 0 . (2.3.11)

The quantity 20 is thus seen to detrmine the fluctuational
shift of the explosive instability threshold.

Using the Dyson equation (2.3.9) and the formula given
by (2.3.7), we find that the Green's function is given by

It is clear that the Green's function has a pole at q = 0.
Analysis of the contribution of different diagrams in

(2.3.10) leads to the following results. All diagrams with irre-
ducible correlators of order higher than 2 [second and fourth
in (2.3.10)] are small with respect to the parameter/// * that
characterizes the extent to which the breeding centers can be
regarded as small. The more "hazardous" diagrams are
those in which broken lines cross [third in (2.3.10)]. Their
contributions are small in comparison with that of the first
diagram provided

c(/T0)-^-<l, (2.3.13)

which restricts the concentration of breeding centers.
When the lowest-order fluctuation correction to the ex-

plosive instability threshold is taken into account (it is deter-
mined by the first of the diagrams in the series for 2q), the
expression for the critical concentration of breeding centers
s

where the numerical coefficient is given by7

t,2

2£i

_k
^bl

£2
2£i

for

for

for

ro>*, -f-

r »/ -k
0 ' 431

7" *^> 7 =1

°^ ' 4n2

for

for

for

(2.3.14)

d=l,

(2.3.15)

c^t is given by (2.3.3), and / = ^Dr0.
The lowest-order correction is sufficient if the critical

concentration 4°1, satisfies (2.3.13). Substitution of (2.3.14)
in (2.3. 13) yields

«.-£«!, (2.3.16)

which shows the restriction imposed on the decay rate a.

'It would appear that these results can also be reproduced by functional
methods (Furutsu-Novikov formulas28).

7)The values given by (2.3.15) were obtained for the model in which it was
assumed that the intensity of each individual breeding center did not
remain constant within the interval TO but fell off smoothly in propor-
tion to exp ( — t /T0) from the instant at which the center was created.
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When (2.3.13) is violated, i.e., a £ J */Jr0, the contribu-
tions of all diagrams with crossing broken lines are the same,
or even greater, than the contribution of the first diagram.8'
In this situation, the determination of the explosive instabil-
ity threshold would require the summation of all diagrams
with crossings, which presents an exceedingly difficult prob-
lem. It is, however, possible to maintain that, when aZJ*/
JTO, one should observe a substantial reduction in the explo-
sive instability threshold as compared with the value of cj.̂ ,
deduced from simple considerations.

We shall show in the next section that the sharp reduc-
tion in the explosive instability threshold that accompanies
the reversal of the inequality given by (2.3.16) is due to the
fact that the main contribution to the onset of explosive in-
stability then begins to be provided by clusters of weak
breeding centers, the behavior of which is analogous to that
of an individual strong center.

2.4. Role of rare clusters

The condition given by (2.3.16), which ensures that the
fluctuational reduction in the explosive instability threshold
is small, can be obtained independently by introducing theo-
retical results on the spectrum of the Schrodinger equation
with a stochastic potential. This approach not only eluci-
dates the nature of the sharp reduction in the instability
threshold, but also enables us to analyze differences in the
fluctuational behavior of media of different dimensionality.

Let us suppose that the volume A V contains an isolated
cluster of weak breeding centers during an interval of time
At. The increase in the amount of material within this vol-
ume is then described by

re = /(r, t)n+D Are, (2.4.1)

where/(r, t) is the breeding rate field for the chosen cluster.
As noted in Section 2.1, this equation can be interpreted

as the Schrodinger equation with imaginary time and poten-
tial U(r,t)= -f(r, t) if we substitute tf/2m^-D. This is so
because for clusters of breeding centers/(r, t )>0, the poten-
tial corresponding to such clusters is a potential well that
varies in time. For each given instant of time, we can calcu-
late the spectrum of energies Et (t) corresponding to bound
states in this potential well. These energies are given by the
positive eigenvalues A, (t) = —E,(t] of the operator

L = DA. + f (r, t). (2.4.2)

Since the time in (2.4.1) is "imaginary" as compared with the
Schrodinger equation, the most rapidly growing contribu-
tion to the density n(r, t) is that corresponding to the lowest-
lying level in the potential well, i.e., the maximum eigenval-
ue A (t) = max A/ (t).

A cluster can be crudely characterized by the maximum
time-averaged value of A. and the lifetime T. When /tr<l,
such a cluster remains weak and its contribution is repre-
sented by the first few terms of perturbation theory, which
leads to (2.3.14). On the other hand, when/lr> 1, the increase
in the material on the cluster is exponentially large.

We note that, in the last case, the cluster must consist of
a large number of breeding centers localized in a small space-
time region. The condition AT> 1 can also be written in the
form r>A ~ *, from which it is clear that the potential U (r,
t) = —/(r, t) for this particular cluster is a slowly-varying
function of time as compared with the reciprocal "frequen-
cy" A -1. The adiabatic approximation23 is therefore valid,
and the total increase in the material on the cluster is given
by

A(

&N = n (0) exp j K (t) d^. (2.4.3)
o

If we describe an individual cluster by introducing the char-
acteristic parameter

+ 00

(2.4.4)

we find that (2.4.3) can be written as AN = n(0)e*, where n(0)
is the mean density in the medium just before the appearance
of the given cluster.

Suppose that/? =p(s) is the probability per unit volume
per unit time that a strong cluster with parameter s will ap-
pear in the medium. The average increase in density on
strong clusters per unit time is then

Are = AJV (s) p (s) ds.

The average rate of increase Q is therefore

(2.4.5)

(2.4.6)

The explosive instability threshold determined from the
condition that the decay rate a must be equal to the total rate
of increase in the amount of material, which includes contri-
butions of/and Q, is given by (2.3.14), provided Q<f.

The expression for the average rate of increase of the
material on strong clusters, given by (2.4.6), contains the
exponentially large factor e*. The quantity/cannot be ex-
ponentially large under the same conditions. Hence the con-
tribution of strong clusters must be negligible provided only
they are exponentially rare, i.e., provided p(s)
= exp ( — # (s)), where 4> (s)> 1 and .s> 1.

However, even this requirement will not completely
quarantee that the contribution of Q can be totally neglected.
In fact, in this situation,

exp (s— <!>(«)) ds. (2.4.7)

8)We note that it is clear from (2.3.14) that the correction associated with
the first diagram is always small if ///*•< 1.

and the order of magnitude of Q is determined by competi-
tion between two factors, namely, the fact that strong clus-
ters are exponentially rare and that the increase in the mate-
rial on each of them is exponential. We shall see that this
competition is of fundamental significance in three-dimen-
sional media.

The estimates of Q given below refer to the limit of high
concentration of breeding centers for which individual
centers exhibit considerable overlap (c> 1). The field/(r, t) in
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the medium can then be looked upon as Gaussian. Similar
considerations can be repeated in the more general case
where the field/(r, t) is Poissonian.

In the Gaussian limit, it is convenient to measure the
rate of decay from the mean breeding rate/= ̂ cJ, i.e., it is
convenient to define the new rate aeff = a — f. The function
/(r, t) can then be interpreted as the fluctuating component of
the breeding rate field 8f=f(i, t) —f, which is a Gaussian
random process with pair correlation function

t), (2.4.8)

where

f (r, t) = rodto1 ] x(r-r ' )x(»' ' )dr ' j a (t- t') a (t') dt'

(2.4.9)

is a dimensionless overlap interval. The intensity S of this
random process is

S = cJ*& (0, 0) = £2c/2,
./.,,. I2-4-10)

Its correlation radius is r0 and its correlation time is TO.
Since, in the Gaussian limit, the breeding centers show

considerable overlap, the phrase "cluster of breeding
centers" must be interpreted as describing rare strong posi-
tive bursts of the random field <5/(r, t ), due to an anomalously
high concentration of breeding centers.

Let A be the characteristic depth of the lowest-lying lev-
el in the "potential well" due to a typical field fluctuation
Sf(r, t ). To ensure that the fluctuational reduction in the
threshold is small, typical fluctuations must definitely be
weak, i.e., the condition Ar0-<l, must be satisfied for them
because the correlation time TO can be looked upon as the
characteristic lifetime of a typical fluctuation.

For strong fluctuations, s> 1 and, since s = AT, this con-
dition can be satisfied in two ways. Firstly, some of the fluc-
tuations with typical value A ~ A may turn out to be unusual-
ly long-lived so that their lifetime T is much greater than r0.
Secondly, very "deep" fluctuations for which A^A may ap-
pear and, since they are very rare events, their lifetime must
be of the order of TO.

The next step is to recognize that we have separately
estimated the contributions to the mean rate of growth of the
material that are due to strong fluctuations (clusters) of two
limiting types. It turns out that the most "hazardous" are
clusters of the second type which may be referred to as spa-
tial (in contrast to "temporal" clusters belonging to the first
type). It is precisely these spatial clusters that determine the
transition to the state with considerably reduced explosive
instability threshold.

The probability of appearance of temporal clusters with
lifetime r>r0 was estimated for the Gaussian random pro-
cess in Ref. 20, where it was found that

p ( r )~exp( — <P(T)), C P ( T ) ~ - for
(2.4.11)

The contribution of such fluctuations to Q is given by the
order-of-magnitude formula

oo

Q~ \ exp (tar— cp (T)) dr. (2.4.12)

It is readily noted that this cluster provides an exponentially
small contribution, provided A~r0<l.

When we consider the contribution due to spatial clus-
ters, we can use the results obtained in the theory of single-
particle spectra of the Schrodinger equation with a station-
ary random potential. In fact, for times of the order of
correlation time r0, the picture of the breeding field Sf (r, t} is
almost stationary. The "frozen" spatial distribution in this
case is Gaussian.

It is well known14'16 that exponentially rare low-lying
levels belong to the fluctuational part of the spectrum of the
Schrodinger equation with random potential. The probabil-
ity of finding such levels is p(A } = exp ( — <P (A )), where,
in the Gaussian limit, we have

?^
"25" for

(2.4.13a)

(2.4.13b)

The dimensionless coefficient a is of the order of unity. For
Ar^/Z)~ 1, the two expressions for <P (A ) agree to within an
order of magnitude. The formulas given by (2.4.13) have
been deduced from those given in Ref. 14 with allowance for
the fact that (2.4.1) reduces to the Schrodinger equation if
tf/2m-+D, V^-n, U(r,t)-^ -f(r,t ),£•-» - A. They are valid
only for exponentially rare levels, i.e., provided <t> (A )>1. We
recall that, according to (2.4.10), the intensity S is propor-
tional to the concentration c of the breeding centers.

The contribution of spatial clusters to the mean rate of
increase of the material is estimated by

(2.4.14)

where

(2.4.15)F (K) = JITO - d> (X).

Let us start by analyzing the situation where the breed-
ing centers are long-lived, i.e., r0>/^/Z>. In this case, there
are two regions for A £ TO"~ ' for which (2.4.13a) and (2.4.13b)
apply. The form of the functions f (A) for media of different
dimensionality is shown in Fig. 1.

In the one-dimensional case, the contribution of Q is
exponentially small if A = r0~' for the function F (A ) is nega-
tive and | F (A ) \ > 1. This requirement is actually equivalent to
the requirement that levels of depth A = TO~ ' should be ex-
ponentially rare. Using (2.4.13) for d = I, we find that this
condition is satisfied if

(2.4.16)
'o o

or, using (2.4.10) and (2.4.7), if
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FIG. 1. Change in the form of F (A,) as a result of transition to a situation
where the explosive instability threshold is determined by clusters of
breeding centers.
d = 1,2, 3—dimensionality of the medium;

When the contributions to the rate of increase due to
rare clusters are small, the explosive instability threshold is
given by a =/= cJ£i. Substituting cJ~a in (4.17), we arrive
at (2.3.16) which was obtained earlier from estimates of the
perturbation-theory diagrams. It defines the range of values
of the decay rate a in which the threshold exhibits only a
slight fluctuational depression.

The critical concentration increases with incresing de-
cay rate a and, eventually, the condition given by (2.4.17) is
violatd. Strong spatial clusters cease to be exponentially
rare, and it is precisely on such clusters that the main in-
crease in the amount of material in the medium occurs near
the explosive instability threshold.

Analysis of the two-dimensional case leads to analo-
gous conclusions. The only difference is that, when this anal-
ysis is performed, it does not reveal the logarithmic factor in
theexpressionfor/*givenby(2.1.8)fortf = 2. However, this
is not unexpected because the expressions given by (2.4.14)
are valid only with logarithmic precision [they do not take
into account the preexponential factor in the expression for
the probability/?^)].

The three-dimensional model presents a special case.
The violation of (2.3.16) is again connected with the expo-
nential increase in the contribution of rare strong clusters
but, in contrast to the one- and two-dimensional cases,
strong clusters with A ~ TO~ ' remain ineffective in this case
(cf. Fig. 1). As the decay rate increases, the most "hazard-
ous" clusters are those for which /l~Z)/^>r0~1. It is pre-
cisely for these clusters that the function F (A ) first reaches
zero as the intensity S of the breeding-rate field increases.
Estimates based on (2.4.13) show that this occurs for
S~D AO-TO. The intensity S is related to the concentration c
by the formula S = £2

CJ2> and tne threshold concentration
ccrit depends on the decay rate a. Up to the time at which the
contribution due to rare strong clusters is no longer expon-
entially small, the critical concentration is given by
ccnt = a/J$i- Comparison of th above expressions shows
that the contribution of rare strong clusters becomes domi-

nant for a S D /TQr^J. It is also readily seen that, by virtue of
(2.1.9), this condition can be given the formal a**, where
a** =J*/(Jr0). We thus again arrive at the criterion given
by (2.3.16).

It is clear from the figure that, in a three-dimensional
medium, there is a range of values of the decay rate a in
which the threshold is determined exclusively by exponen-
tially rare strong clusters. The probability of appearance of
such clusters is described by (2.4.13) which gives the level
density in the fluctuation region. Within this interval, in
which (Z)ro//i)3/2>-ln(a/a**)>Z)r0/^>.l, the threshold
concentration of breeding centers can be determined from
(2.4.14) by the method of steepest descents:

2 In (a /a**)
(2.4.18)

As can be seen, the linear relation ccrit ~a/J is replaced in
this interval by the much slower logarithmic relation. When
In (a/a**) S (Z)r,//^)3/2, clusters for which/l~r0~' cease to
be exponentially rare.

It may be shown that, in the case of short-lived breeding
centers (r0</•£//>), the relative reduction in the explosive
instability threshold when (2.3.16) ceases to be satisfied in a
medium of any dimensionality is always connected with the
fact that spatial centers with levels A~r0~' cease to be ex-
ponentially rare.

In conclusion, we emphasize once again that rare but
strong clusters of breeding centers can ensure a substantial
depression of the explosive instability threshold; this depres-
sion occurs when (2.3.16) ceases to be valid.

2.5. Kinetic transition of the "medium populating" type

Let us suppose that the medium supports a nonlinear
mechanism restricting explosive instability, so that (2.9)
must be replaced with

re = _are _ f,n* + f (r, t) n + DArc. (2.5.1)

The origin of the quadratic term in n may be different in
different cases. We note, to begin with, that this term ap-
pears in the kinetic equation when the coalescence reaction
(X + X^>X}, which is the reverse of the breeding reaction,
takes place. One would naturally expect that, in contrast to
the breeding reaction, the coalescence reaction does not re-
quire activation, and will therefore occur throughout the
medium. Moreover, there are possible situations where the
decay products enhance the decay rate (for example, for
some biochemical fermentation reactions29'30). If we suppose
that the restriction on the growth of density sets in for suffi-
ciently small values of n, we can expand the decay rate into a
series in powers of the density n and retain only the linear
and quadratic terms.

When the limiting mechanism is present above the ex-
plosive instability threshold, the unlimited growth in the
mean density within the volume is suppressed. Depending
on the amount Ac — c — ccrit by which the threshold is ex-
ceeded, a mean density n is eventually established in the me-
dium. It decreases with decreasing Ac, and vanishes for
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The appearance of nonzero mean density n for c>ccrit as
t—f- oo will be interpreted below as a kinetic transition of the
"medium populating" type.

In one particular respect, the asymptotically estab-
lished mean density n may be looked upon as an order pa-
rameter of the kinetic transition. In fact when it passes
through c = ccrit, the medium that we are considering ac-
quires an additional quantitative characteristic as £—»-oo,
namely, the density of the material populating it.9)

From the formal point of view, it is clear that the kinetic
transition of the "medium populating" type is accompanied
by a reduction in the symmetry of the asymptotic solution
established in the limit as t—> oo. Below the transition point,
when n = 0, the solution is clearly invariant under the group
of scaling transformations involving multiplication by an ar-
bitrary nonzero number. This invariance is lost above the
transition point.

We emphasize, however, that, in contrast to second-
order phase transitions in equilibrium systems, the above
symmetry under scaling transformations is valid only for
(asymptotic) solutions of the original equation given by
(2.5.1). The equation itself never exhibits this invariance.
This distinction must be borne in mind when we refer to n as
the order parameter of the kinetic transition under consider-
ation. We must also remember that (2.5.1) itself ceases to be
valid for limiting small concentrations n $ r<f d, for which the
concentration of the breeding material becomes so low that
only a few particles are present in an individual breeding
center. In the immediate neighborhood of a kinetic transi-
tion of the "medium populating" type, we must take into
account the discrete nature of the reactions. However, we
shall confine our attention to (2.5.1) which is valid in the
hydrodynamic limit.

Since the breeding rate is random, local density fluctu-
ations 8n persist in the steady asymptotic state with the sta-
tionary mean density n evaluated over the entire volume. In
this section, we shall examine mean square density fluctu-
ations (Sn2) in the steady state as we approach the kinetic
transition point.101

It is well known that, in second-order equilibrium phase
transitions, the order parameter rj vanishes as we pass
through the transition point, whereas the pair correlation
function for fluctuations Sn in the order parameter is non-
zero at the transition point. In this respect, the kinetic transi-
tion of the "medium populating" type exhibits an important
specific feature. Since, in this case, the analog of the order
parameter is a nonnegative quantity (the density n of the
breeding material), the fact that the mean density n within
the volume is zero implies that all these density fluctuations
must be zero:

= 0 -»- <6«2} = 0. (2.5.2)

"We know one further example of a transition with a nonnegative order
parameter. The order parameter can be looked upon as the relative frac-
tion of elements belonging to an infinite cluster as the percolation
threshold is traversed. Its magnitude is zero below the threshold where-
as, above the threshold, it is finite and increases with increasing prob-
ability of bonding.

D'We note that, since the density fluctuations Sn in our problem are due to
an agency that is external to the system, the correlator (Sn (r) Sn (0)}
need not diverge for coincident arguments.

Thus, the fluctuation behavior near the kinetic transition of
the "medium populating" type is very distinctive.

We shall now confine our attention to the situation
where the breeding centers are weak and (2.3.16) is satisfied.
The latter condition guarantees that the increase in the
amount of material on rare strong clusters of breeding
centers is exponentially small.

According to (2.5.1), the steady value of the mean den-
sity « is the stationary solution of the equation

(2.5.3)n = — are + fn — p>2 + <6/6re> — p (6«a>.

If we neglect the density fluctuations Sn in (2.5.3),
which is equivalent to the self-consistent field approxima-
tion in the theory of second-order equilibrium phase transi-
tions,31 the steady value of the mean ensity is given by

""crit

(2.5.4)

where cj^, is found from the condition a =f.
Inclusion of fluctuations leads to two effects. Firstly,

there is the fluctuation reduction in the explosive instability
threshold, i.e., the kinetic transition points, calculated in
Section 2.3. When (2.3.16) is satisfied, the fluctuation shift of
the transition point is small [see (2.3.24)]. Secondly, the
mean density n given by (2.5.4) may change because of the
presence in (2.5.3) of both the term/?«2 and the term/? (Sn2).
It is only when the condition

> « » (2.5.5)

is satisfied that the self-consistent field approximation, used
to obtain (2.5.4), will be valid.

It is well known that the self-consistent field approxi-
mation is always invalid in the theory of second-order phase
transitions in a sufficient proximity of the transition point
when the dimensionality of the medium is less than four. We
shall see below that the situation is different in the case of a
"medium populating" kinetic transition.

The density fluctuations Sn satisfy the stochastic differ-
ential equation

6n = — (a + 2p« — /) dn + Z)A6ra + 6/ (r, t) n

p (6ra2 - <6rc2)). (2.5.6)

We can again use the perturbation theory graphs to find
(Sn2) with the aid of this equation. Consider the function Uq

defined by

(8nqdnq-) = Uq8 (q+q') n2,

so that

UqAq.

(2.5.7)

(2.5.8)

Successive iterations in the equation for 8nq, obtained
by taking the Fourier transform of (2.5.6) with quadratic
terms in Sn discarded by virtue of (2.5.5), enable us to con-
struct a formal solution for Snq in the form of an infinite
series in powers of the random fields 8fq-. Multiplying two
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such infinite series for 8nq term by term, and evaluating the
statistical average, we obtain an infinite series of graphs for
the function Vq. Summation of this series of weakly coupled
graphs leads us to the integral equation

Uq=\Gq\*[S(q)+\S(q-q')U9.dq']. (2.5.9)

The function S (g) in this expression is given by the following
series of graphs:

(2.5.10)

The proportionality symbol indicates that we have discarded
numerical factors of the order of unity. The quantity
/ = ^Dr0 has a simple interpretation: it is the mean distance
traversed by a diffusing particle during the lifetime r0 of an
individual breeding center.

The expressions given by (2.5.14) and (2.5.15) involve
(with the exception of the three-dimensional medium) the
correlation length of density fluctuations:

(2.5.16)

which becomes infinite at the kinetic transition point at
which c = ccrit. This means that, for d = 1 and d = 2, the
quantity n increases as the critical point is approached,
whereas for the three-dimensional medium (d = 3), it be-

where S (q) is the Fourier transform of the pair correlator comes constant in the limit as c—»cci

Let us discard all the graph terms in (2.5.10), i.e., let us
approximately put 5 (q) = S (q). If we then introduce the new
function Zq defined by Uq = \Gq \

2Zg, we find that it must
satisfy the integral equation

Zg = S(q)+ ^S(q-q')\G,.\*Zq.dq'. (2.5.11)

Since the Green's function Gq has a pole at the thresh-
old when q = Q, the principal contribution to the integral
near the threshold is provided by the region of small values
of q. Taking S (q) out from under the integral sign, and per-
forming some simple algebraic manipulations, we find Zq

and then (8n2):

where

= f S (q)\Gq \* Aq.

(2.5.12)

(2.5.13)

Thus, the criterion given by (2.5.5), which ensures the
validity of the self-consistent field approximation, is satis-
fied if /*<!.

Calculations yield the following values of/u in media of
different dimensionality:

a) Long-lived breeding centers (r0>r£/Z>, or />r0, where

(2.5.14)I V l n ( r c / Q ,_ ,
|X~ ! In(//r0) ' a —

b) Short-lived breeding centers (I<r0):

(2.5.15)

The parameter y in (2.5.14) and (2.5.15) has the form

V=C(/TO)-^-. (2.5.17)

According to (2.3.13), it is small near the threshold (y<\],
provided we satisfy (2.3.16) which ensures that the fluctua-
tional shift of the explosive instability threshold is small.

By estimating the contribution of the different dia-
grams in the series given by (2.5.10), we can show that the
contributions due to diagrams with irreducible high-order
correlators [3, 4, and 6 in (2.5.10)] are small with respect to
the parameter ///*. When the contributions due to dia-
grams with crossing broken lines are estimated [1,2, and 5 in
(2.5.10)], we must distinguish between two situations, name-
ly, those involving long-lived and short-lived breeding
centers. When the lifetime of an individual center is long
(/>/•„), these graphs are small with respect to the parameter
y. On the other hand, when the centers are short-lived (/</•„),
the parameter y is replaced with the combination y(rg/l )2, in
which case the contribution of such graphs near the explo-
sive instability threshold is negligible, provided

^^r«l, (2-5.18)

which is a more stringent condition than (2.3.16).
In view of the foregoing, the steady value of the mean

density n of the breeding material is given by (2.5.4) with cj.̂ ,
replaced by ccrit (i.e., the fluctuational depression of the
threshold has been taken into account). The fact that this
stationary solution is stable can be verified by linearizing
(2.53) with respect to a small deviation from «st. Simple con-
siderations can then be used to verify not only that the solu-
tion (2.5.4) is stable, but also to exhibit the critical slowing
down effect, i.e., the fact that the characteristic time for a
change in n(t} becomes infinite at the transition point. The
corresponding formula for this time is given below.

Thus, the principal features of the "medium populat-
ing" kinetic transition that we have been considering are as
follows:

1) Critical slowing down is observed near the transition
point, i.e., the relaxation time increases in accordance with

(2.5.19)
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The onset of critical slowing down is connected with the
presence of the q — 0 pole in the Green's function at the
transition point.

2) It is clear from (2.5.16) that, like rc, the correlation
length rc becomes infinite at the transition point.

3) The fluctuation shift of the transition point (explosive
instability threshold) is independent of the specific mecha-
nism responsible for nonlinear limitation; the fluctuation
shift is small when (2.3.16) is satisfied.

4) According to the terminology adopted in the theory
of second-order equilibrium phase transitions, the region
near the transition point, in which the self-consistent field
approximation is violated, is referred to as the fluctuation
region. It follows from (2.5.14) that the fluctuation region is
completely absent from the three-dimensional medium for
long-lived breeding centers (/>/"0), provided (2.3.16) is satis-
fied. When d = 2, it is found to be exponentially narrow with
respect to the small parameter y, its width being given by

(2.5.20)

In the one-dimensional case, the width of the fluctuation
region is given by

(2.5.21)

Consequently, these fluctuations are much weaker than in
the case of the phase transition. They become more impor-
tant when the dimensionality of the medium is smaller. In
actual fact, the fluctuation region appears only in the one-
dimensional case, and not beginning with d = 3 as in the case
of second-order phase transitions.

5) For short-lived breeding centers (I<£r0), the condi-
tions ensuring that the fluctuation shift of the transition
point is small are insufficient to ensure that the self-consis-
tent field approximation will be valid for phenomena occur-
ring near this point. The analog of the Ginzburg number in
this case is the combination y(ro/l )2- When (/ /r0)

2 S y4l, the
shift of the threshold is small, and the threshold is given by
(2.3. 14), but the self-consistent field approximation is invalid
whatever the dimensionality of the medium. If, on the other
hand, y<(//r0)2<l, i.e., (2.5.18) is satisfied, the self-consis-
tent field approximation is valid at all points as close to the
transition point as desired, so that the fluctuation region is
absent for d = 3. The width of this region is exponentially
small for d = 2:

whereas for d = 1 we have

~-^)>m*=v(^. (2.5.23)

Renormalization-goup methods can probably be developed
for the description of phenomena within the fluctuation re-
gion in one-dimensional media and when (//r0)

2 5y<l.
We emphasize that we have left outside the scope of our

discussion all fluctuation phenomena during "medium po-
pulating" kinetic transitions in the case of strong breeding
centers and in the case where, even though the breeding
centers are weak, the condition given by (2.3.16) is violated,
so that the explosive instability threshold is determined by
rare strong clusters. Analysis of fluctuation phenomena in
these situations gives rise to serious difficulties.

2.6 Gaussian fluctuations in decay and breeding rates

To conclude this section, let us briefly consider calcula-
tions of the explosive instability threshold and analyses of
"medium populating" kinetic transitions in systems in
which the decay and breeding rates are subject to Gaussian
fluctuations.20

Let Kt(r, t} be the rate of decay of the diffusing material
at time t at the point r in the medium and K2(r, t) the rate of
breeding at the same point. The diffusion equation then
takes the form

n = —(K1 — K2)n + D Aw. (2.6.1)

Generally speaking, the quantities Kl and K2 depend on
the local concentration n(r, t) of the diffusing material. If we
confine our attention to low concentrations, we have the lin-
ear relation

js jf Z- z. i ft n &. i\A! — A2 = Ki — /c2 -p p/z. (^.O.Z)

We shall examine the situation where the coefficient /? is
positive, i.e., an increase in the concentration suppresses
breeding or increases the rate of decay.

In a closed system, breeding cannot continue indefinite-
ly and must come to an end when the substrate necessary for
it to occur becomes exhausted. We shall assume, however,
that the system is open and the rate of breeding is maintained
by the influx of substrates from outside.

In contrast to Sections 2.1-2.5, where breeding was
looked upon as localized at individual centers and the rate of
decay was constant throughout the medium, we shall now
examine the situation where breeding and decay occur over
all space, but the corresponding rates exhibit fluctuations.

Let us suppose that the reaction constants kl and k2

fluctuate in a given fashion in space and time (fluctuations in
)9may be ignored because the concentration n is low). We can
then separate the regular and the fluctuating components:

Ai .z = fci,2+6fei,2(r, t),

and rewrite (2.6.1) in the form

n = — Tn —

where

D An + g (r, t) n,

(2.6.3)

(2.6.4)

r = fc4 - *j, g ( r , t ) = 8k2 (r, t) - dk, (r, t). (2.6.5)

Henceforth, we shall suppose that the coefficient F is posi-
tive, so that the mean decay rate exceeds the mean breeding
rate. The random field g(r, t) is external in relation to (2.6.4)
because it is independent of the concentration distribution
n(r), t}. The mean value of this field is zero by definition, and
its pair correlation function will be assumed to be given by
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the following exponential function of position and time:
<g(r, t)g(T', i')> = -

(2.6.6)
We shall assume that the random field g(r, t ) is Gaussian.

In the absence of fluctuations in the decay and breeding
rates (i.e., when S = 0), the explosive instability threshold is
observed in the system when these two rates are equal (when
r = 0). Fluctuations reduce the explosive instability thresh-
old, and the following problem is therefore interesting. What
is the critical intensity 5CIit of the fluctuations for which the
system reaches the explosive instability threshold despite the
fact that the mean decay rate exceeds the mean breeding
rate, i.e., F>07 What is the behavior of the system for
S>Scrh when the nonlinear suppression of explosive insta-
bility is taken into account?

These questions were examined in Re. 20. We shall not
go into the details of this analysis which, in many ways, is
analogous to that given in Sections (2.3)-(2.5). We shall
merely reproduce the final results. ' "

Starting with the parameters F, D, r0 and r0 of the prob-
lem, we can construct three characteristic goupings with the
dimensions of length:

1) The diffusion length /-diff = ^D/F gives the mean
depth of penetration from the boundary of the medium in the
absence of fluctuations.

2) The stationary length / = V-D^o *s the mean distance
traversed by a diffusing particle in the characteristic lifetime
T0 of the individual fluctuation.

3) The correlation length r0 determines the characteris-
tic spatial size of an individual fluctuation in the decay and
breeding rates.

The critical fluctuation intensity 5crit for which the me-
dium attains the explosive instability threshold depends on
the relationship between the lengths rdiff, /, and r0. When
'difr >r0^l, the critical intensity Scrit is given by the following
expression for a medium of any dimensionality (d = 1,2, 3):

_ r— l (2.6.7)

On the other hand, when rdifl>/>r0, the expression for Scrit

turns out to be different for different dimensionalities:

oi/2 r / rdl» \
•Vit — i I ,1/2,1/2 I 'r i

,__.
a — i,

d=3.

(2.6.9)

(2.6.10)

When />rdifl>/-0, the explosive instability threshold is large-
ly determined by rare, strong, positive bursts of the random
field g(r, t } (compare this with the discussion given in Section
2.4); for this relationship between the characteristic lengths,
a simple estimate cannot be obtained for Sctit . Finally, diffu-
sion is unimportant for r0$>rdifr, and the problem reduces to

u'We draw attention to the fact that, as noted in Section 2.4, Eq. (2.5.1)
reduces to (2.6.4) in the limit of high concentration (c> 1) of weak breed-
ing centers. The correspondence rules are given by (2.4.8)-(2.4.10).

those examined in the introduction to Section 2.
When the nonlinear limiting mechanism described by

the term /9n2 in (2.6.4) is present, the medium is populated
above the explosive instability threshold. In the mean-field
approximation, the steady mean concentration n is then giv-
en by

0, s<s]fcrit

( IYP)( /—l) ,
^crit '

(2.6.11)

In the same approximation, the correlation length rc deter-
mined by the pair correlation function (n(r, t} n (r', t')) is
given by

' d i f f
-1/2

(2.6.12)

It becomes infinite at the kinetic transition point.
Analysis of the mean-field approximation shows that it

is valid for one-deminsional media outside the fluctuation
region defined by the inequalities

S . I I \2
c . * -«> ITTTTI) > rdift •
3 cnt \ ' d l f f /

rO. (2.6.13)

(2.6.14)

The fluctuation region is exponentially narrow [see (2.5.20)]
for two-dimensional systems, and can then be neglected. In
three-dimensional media, the fluctuation region is not pres-
ent when /'difr>/, /•„, and the mean-field approximation re-
mains valid up to the kinetic transition point itself.

3. Competition processes in fluctuating media

In this section, we examine a further example17'32'33 of
the "medium populating" kinetic transition that involves
the phenomenon of competition.

Competition and selection processes are frequently en-
countered in the behavior of highly nonequilibrium open
systems. It will be sufficient to recall the competition
between modes in a laser,5 chemical models of evolution,34

and models of competitive selection in ecology.35 In fact, the
very process of self-organization, i.e., spontaneous forma-
tion of ordered structures,5 may be looked upon as the result
of competition between a large number of unstable growing
modes leading to the establishment of the macroscopic am-
plitude of one of these modes and the suppression of all oth-
ers.

When the system is subject to the effects of external
noise, this may result in a qualitative modification of the
competition process, which alters the course of its evolution.
We shall not give a general analysis, and will confine our
attention to a simple example which is of major biological
significance.

As a specific model, we shall use the Lotky-Volterra
type equations that describe competition in ecological com-
munities and the effects of prebiological chemical evolution.
To be specific, we shall use ecological terminology. A refor-
mulation of the problem to the case of a set of chemical reac-
tions is given in Ref. 33. It will be clear from the ensuing
account [see Eqs. (3.6)] that the "ecological model" will
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serve as a prototype of a whole class of models of open sys-
tems in which the "medium populating" kinetic transition
can take place.

Consider a system consisting of two biological species
that compete for the same type of food. We shall suppose
that individuals of the weaker species are mobile (capable of
diffusion) and the rate of increase in the amount of food
available fluctuates in space and time. This system is de-
scribed by

t);

(3.1)

where N and n the population densities of strong and weak
species, and M is the food density. All the coefficients in (3. 1 )
are positive and it is assumed that A /B < a/b.

The first two equations in (3.1) are traditional: the rate
of increase of the populations is a linear function of the
amount of available food, and negative when there is no
food. The second equation in (3.1) contains the additional
diffusion term D An which represents the mobility of the
individuals of the weaker species. The third equation in (3. 1 )
describes the dynamics of the variations in the density of
food. Individuals belonging to the two species consume
amounts C and c of food per unit time, respectively. The food
itself "grows" at a constant rate Q and, even in the absence of
the two species, its maximum density is limited by some de-
cay mechanism represented by the term-GM in the above
equation. The random Gaussian force/(r, t ) represents fluc-
tuations in the rate at which the food grows in space and
time. We shall assume that the correlation function for this
noise is

(/ (r, t) f ( r , t') > = 2G0 exp (-ft, | r - r' |) 6 (t - t').
(3.2)

The parameter rf = kj~ ' determines the typical spatial size
of an individual fluctuation, whereas 0 characterizes the
fluctuation intensity. It can be shown using (3.1) that, when
individuals belonging to both species are absent (N = n = 0),
the mean square fluctuation in food density is

= 6. (3.3)

We note that the random process/(r, t } is asumed to be delta-
correlated in time. This means that its correlation time is
much shorter than all the characteristic times of the prob-
lem.

When there are no fluctuation (O = 0), the only stable
stationary solution of (3.1) is121

(3.4)

This is the classical result:35 competition results in the ex-
tinction of the weaker species. This is frequently formulated
as the Gause theorem, according to which two biological
species that totally rely on the same resource cannot coexist
in a stationary state.

The situation is radically different when the rate of
growth of the food supply fluctuates both in space and time.
The basic result then is that, beginning with a certain critical
noise intensity 0C, it is possible for two competing species to
coexist statistically in a stationary state, i.e., a new state is
established in which (n) ^0 and (N) ^0. The transition to
this state, which is accompanied by the appearance of a non-
zero average density (n) that is asymptotic in time and is
evaluated over the entire volume, is an example of a "medi-
um populating" kinetic transition.

By making a number of mathematical estimates, it is
possible to show33 that, when there is no diffusion (D = 0),
fluctuations in the rate of growth of food do not prevent the
asymptotic extinction of the weaker species so that, in con-
trast to Section 2.5, this particular kinetic transition is fun-
damentally related to the presence of diffusion.

Our conclusion is important from the standpoint of
mathematical ecology. Under the conditions of a fluctuating
environment, simple mobility turns out to be an essential
factor ensuring evolutionary advantage and the possibility of
coexistence with a stronger species. In reality, mobile indi-
viduals belonging to the weaker species survive because they
are capable of "eating up" the fluctuations!

It is now convenient to introduce the new variables
N

p = M — M1? 5=ln-^-, (3.5)

which describe deviations of the densities M and N from
their stationary values given by (3.4) in the absence of fluctu-
ations. We shall suppose that these deviations are small,13) so
that {/72)-<l and (q2)<gl. After linearization in/7 and q, the
model given by (3.1) reduces to the following three equations
in terms of the new variables:

g = Bp,

P= — G'p — vq — cn + f ( r , t),

n=b (p — p^n+'D&n,

where

A
B v=CNiMi.

(3.6)

(3.7)

2)We are assuming that Q > GA /B.

The parameter/), characterizes the deficiency of food in
the stationary state (3.4) for the propagation of individuals of
the weaker species. We shall assume that this parameter is
small, i.e., the mean square fluctuations in food density M
(and, consequently, in the quantity/? = M — M,) may exceed
p,. Hence, in the third equation in (3.6) we have both the term

— bp{n and the nonlinear term bpn.
The equations given by (3.6) describe a set of identical

damped oscillators of frequency &>Q = vB, located at each
point of space and interacting through the field «(r, t}. When
all the oscillators are in the unexcited state, this field decays
exponentially to the value « = 0. Excitation of the oscillators
by the random force/(r, t} provides us, however, with the
possibility of the "propagation" of this field. The spatial
structure of the propagation regions (in which/? >/?,) varies
randomly in space and time. A kinetic transition may take
I3)This assumption imposes definite restrictions on the intensity of noise
/(r, t ) , which will be discussed below.
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place if the increase in n in the propagation regions begins to
compensate the reduction in the field n outside such regions.

It is important to note that (3.6) has a much wider range
of validity than the original model (3.1) from which (3.6) was
obtained. Actually, these equations constitute an example of
a distinctive excitable medium that can undergo a transition
to a qualitatively new "organized" state under the influence
of external noise, where the field n that couples the oscilla-
tors is nonzero and decreases in time. This situation may
arise in different problems.

The analysis that follows is performed in close analogy
with the theory of second-order equilibrium phase transi-
tions. The field/(r, t) is looked upon as the order parameter,
and we perform an adiabatic elimination of the rapidly oscil-
lating variables that are subject to it. This eventually yields a
Ginzburg-Landau type equation for the slow component of
the order parameter.

It is readily seen that the spatial Fourier modes of the
field n with large values of the wave vector k are damped out
more rapidly than the corresponding modes with small k.
This occurs as a result of diffusion. There is also fast motion
of the oscillators (q, p), and this naturally allows us to per-
form a separation of fast and slow variables. The characteris-
tic "microscopic" scales in (3.6) with dimensions of the reci-
procal of time are bpi,G, a>0 and Ok*. Slow variables can be
determined as the time averages of n,p, and q within a time
interval T chosen so that (l/T)<bp1, G, co0, Ok*. In particu-
lar, we take

T|(r, t) = - T) dt = <« (r, (3.8)

and, similarly, q = (q)T,p= {/>)r. Fast variables are some-
times defined by 8n = n — rj, Sp =p —p, 8q = q — q.

Our aim is to obtain a closed equation for the slow com-
ponent r) of the order parameter n. We begin the derivation
by taking the time average (3.8) of the third equation in (3.6),
which yields

bpr\ + D AT) + b (dp 6n)T. (3.9)

The slow component p can be expressed in terms of r] by
taking the time average of the first two equations in (3.6),
noting that the averaging time Tis much longer than all the
"microscopic" time scales. In view of this, we find that

1 7 (3.10)

where the slow component/of the random force is defined
by/= <f)T.

The equations for the fast components have the form

(3.11)
6 p = — G d p — vdq—c6w + 6/(r, t),

5n = —b(pi — p) 6« + br\dp + D Afire

+ b (6re6p — (8ndp)T).
The slow variables rj andp must be looked upon here as given
external parameters, so that the quasistationary distribution
of fast variables adjusts itself adiabatically to the slow evolu-

tion of the variables 17 andp in time. The time average can
therefore be replaced with the statistical average (Sn Sp}^
evaluated with the stationary fast-variable probability distri-
bution that is established for given i] and p.

The averages (Sn2),, and (Sn Sp),, can be determined
by using an approximation analogous to the self-consistent
field theory for second-order phase transitions. If

(3.12)

the validity of which is verified below, the only nonlinear
term b (Sn Sp — (Sn Sp)) in (3.11) is, on average, small in
comparison with the term hi) Sp in the same equation, and
can be neglected.14' As a result, (3.11) reduces to a set of
stochastic linear differential equations for which one can cal-
culate both the stationary probability distribution and all the
correlation functions corresponding to it.

If we evaluate the correlator (Sn Sp)^ in this way, we
obtain it in the form of a certain function of rj. Since rj is
small near the transition point, we can expand (Sn Sp)^ in
powers of rj, retaining only terms up to the second order.
Substituting the expansion in (3.9), we obtain the Ginzburg-
Landau equation for the "medium populating" transition:

D Ar| + (D (r, t) T).

(3.13)

= —b (pt _

If we suppose that

Dk\ > co0» G » ftp, (3.14)

and that the medium is three-dimensional, we find that

H = -*i, (3.15)
OA-f v '

(3.16)
-4 Go>»/2 (DAf)3-'2

which are independent of/*,.
The random Gaussian force 4> in (3.13) is defined by

(3.17)

£')6(o>+lo)'), (3.18)

J^^̂ " ip 9

(3.19)

and its spectrum is

>, k)0(co', k')> =

>, k) =
0 N

where
h q-N -"3

8ltfcf

is the Fourier transform of the function exp( — kfr).
It is clear from (3.14) that, when the noise intensity

reaches the critical value given by

14)Further calculations show that, near the transition point, i.e., when the
fluctuations Sp are large in comparison with/),, we can actually neglect
the term b(pl—p) Bn in this equation, as well.
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Qc=P±Dki (3.20)

kinetic transition occurs in the medium. Near the transition
point, the volume average of the density of the weak species
is given by

o 1/4 / bpi \ ' / 2 / W0

-2 (3.26)

0, e<ec
(3.21)

We draw attention to the fact that the critical noise in-
tensity Oc is proportional to the diffusion coefficient D and
increases with increasing mobility.151 This has a simple ex-
planation. If the mobility is too large, weak individuals tra-
verse the breeding region in which P>PI very rapidly, and
cannot efficiently use the food excess available in the propa-
gation region. If we take (3.3) into account in (3.20), we may
also write

(3.22)

where / = (D /bp^12 is the average displacement by diffu-
sion during the extinction time (bpt)~

1 of the weak species in
the stationary state (3.4). Thus, at the transition threshold,
the root mean square fluctuation in food density ({<W2))m

is not simply equal to the food shortage />, for the weak spe-
cies, but exceeds it by a factor equal to the ratio of the diffu-
sion length / to the mean radius rf of an individual reproduc-
tion region.

At the transition point, the correlation length rc deter-
mined from the reaction of the system to the introduction of
the external source of density n is found to diverge:

e \ -
(3.23)

There is also the critical slowing down effect. We note that
(3.13) itself is valid only near the transition point, when the
characteristic relaxation time

e \- (3.24)

is much greater than the "microscopic" time scales of the
problem.

The above analysis was based on the assumption that
fluctuations in the density n were relatively small. Let us
now check the validity of this assumption. Starting with the
linearized equation (3.11), we can readily determine the
mean square (8n2)^. Near the transition point, when 77 is
sufficiently small, this mean square is given by 16)

to0 (Z)A-f)3
(3.25)

Substituting for 0 in this expression the critical noise inten-
sity 0C, we find that
15)The quantity D has a lower bound set by (3.14), and the expression given

by (3.20) was derived on the assumption that this condition was valid.
161 We recall once again that the fluctuations that we are examining are of

external origin, so that the correlator of the density fluctuations does
not diverge when the arguments are equal.

Consequently, when (3.14) is satisfied, the condition for
weak fluctuations (Ginzburg-Levanyuk criterion) is valid up
to the transition point itself. We arrived at a similar conclu-
sion in Section 2.5 when we discussed another example of a
"medium populating" kinetic transition in the three-dimen-
sional case.

The partially linearized equations (3.6) were obtained
on the assumption that {<?2}<1 and (/?2)<1. It is readily
verified that this is satisfied if 0C -^min(v/B, A /B}. The last
condition imposes a definite limitation on coefficients in the
original model.

4. DIFFUSION IN A MEDIUM WITH RANDOMLY DISTRIBUTED
TRAPS

In the preceding sections, we examined critical phe-
nomena in media in which either the breeding rates had ran-
domly fluctuating increments or the breeding process itself
occurred in randomly appearing breeding centers. We have
shown that explosive instability can occur in the medium
even if, on average, decay predominates over breeding. How-
ever, there are frequent situations where traps are randomly
distributed within a medium and can capture particles of the
diffusing material. Such problems arise when one examines
the trapping of excitons by impurities in crystals,38 in the
theory of diffusion-controlled reactions,37 and in a number
of other applications. We shall examine such problems be-
low, concentrating our attention on manifestations of ran-
domness in the distribution of traps in a medium.

Let us suppose that particles diffusing through a medi-
um can be captured by traps distributed randomly through-
out the medium, and are thus removed from the subsequent
diffusive random walk. In the continuum limit, the diffusing
material is described by the local particle density field «(r, t},
whose variation in time is described by

n = —a (r) n + D Are. (4.1)

The coefficient«is proportional to the local trap density and
characterizes the rate of loss of particles. Traps are located at
randomly distributed independent points { r t } in the medi-
um, so that

«(*)= 23 *('-**)• <4-2)j
The mean number of traps per unit volume is m.

We note that the model defined by (4.1)-(4.2) will also
describe a medium with randomly-distributed decay
centers.

Since there is no breeding, the mean density (n) of the
material, evaluated over the volume, tends to zero as time
increases. The problem is to find {«) as a function of time,
given that the initial particle distribution is homogeneous,
i.e.,«(r, 0) = n0.

It might be thought that the decay process will be expo-
nential and characterized by a mean decay constant (a):

< » ( / ) ) = «„ exp (-<«>;)• (4.3)
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However, this is not correct, as can be seen from the follow-
ing considerations.

When traps are distributed randomly, it is always possi-
ble to find regions that are free of traps. Particles found in the
interior of large empty regions will be lost only because the
diffusive random walk of any such particle will take it out-
side the limits of such a region. Hence, the number of parti-
cles originally found in the interior of sufficiently large emp-
ty regions will decrease very slowly. It is precisely these
particles that eventually determine the temporal evolution
of the mean density (n(t)}.

The importance of these rare "empty" regions that are
free of traps was first noted by Balagurov and Vaks,38 who
also proposed a method of determining the mean density (n)
as a function of time. This method was based on the analogy
with the quantum-mechanical motion of a particle in a ran-
dom potential. This problem has recently been examined in
Ref. 39, which is virtually a repetition of the derivation given
in Ref. 38.

If we write (4.1) in the form

—n = <3gn

with the linear operator

SB = — D\ + a. (r),

(4.4)

(4.5)

we reduce the problem, as in Section 2, to the study of the
properties of the Schrodinger equation with imaginary time
and random potential. However, in contrast to the situation
we have encountered in connection wih the explosive insta-
bility threshold in a medium with breeding centers, the po-
tential a(r) in (4.5) is nonnegative [see (4.2)]. From this, it
follows that all the eigenvalues E, of the equation

(4.6)

are also nonnegative, i.e., the spectrum of the operator 3f
has the lower limit E = 0. This property of the spectrum
persists for any random realization of the field a(r). Accord-
ing to the terminology adopted in the theory of the Schro-
dinger equation with a random potential,14 the value E = 0
gives the finite fluctuational limit of the spectrum.

The spectrum of the operator 2if is discrete near the
E = 0 limit. The eigenvalues E, lying near this limit are de-
termined by fluctuations of the potential for which a is close
to zero in large regions of space, i.e., by "empty" regions free
of traps. It has been shown14 that, for a Poisson random field
of the form given by (4.2), the probability of finding a fluctu-
ation with the lowest level E close to zero is exponentially
small and, apart from preexponential factors, can be estimat-
ed for a medium of dimensionality d from the formula

p (E) = exp (-

where

(4.7)

(4.8)

and ed is the ground-state energy in the rf-dimensional po-
tential well of unit radius and infinitely high walls.

The general solution of (4.1) can be written in the form
of an expansion171 in terms of th eigenfunctions of the above
operator:

n (r, 0 = 2 Cfa (r) exp ( -Elt ) + j C^ (r) «-*«' dl -
i

(4.9)

where the coefficients C, are determined by the initial condi-
tion n(r, 0) = n0:

(4.10)

Terms in 4.9) that correspond to the discrete spectrum with
E, close to zero decrease to zero more slowly than any other
terms. The eigenfunctions corresponding to such values of
E, are localized on individual fluctuations of the field a(r)
which constitute large regions free of traps. Because they are
rare, such fluctuations must be considered separately. Apart
from the preexponential factor, the mean density (n) evalu-
ated over the entire volume can be estimated from the fol-
lowing expression as ?—»-oo:

(4.11)

where the probability p(E} is given by (4.7).
Evaluation of the integral by the method of steepest de-

scents yields

(n (t)) - na exp [ - (4.12)

where vd is a numerical factor that depends on the dimen-
sionality of the medium.

Thus, inclusion of the contribution due to empty re-
gions leads to the replacement of the simple exponential law
(4.3) with (4. 12) which is characterized by a slower falling off
with time. Detailed analysis shows that (4.12) is valid for

.
The mean square displacement of a particle in a time t

was estimated in Ref. 39 in the limit of large t, and it was
shown that

I Dt\l~) (4.13)

It was assumed in the calculation that, if a particle is cap-
tured by a trap, its coordinates remain constant. The mean
square displacement increases with time because some parti-
cles do not reach a trap in time t. Long displacements corre-
spond to particles found in the interior of large regions free
of traps.
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A numerical simulation of this system was also per-
formed in Ref. 39. The authors investigated the random
walk on a square lattice with traps occupying one-eighth of
the total number of lattice sites. Particles were allowed to
jump to one of the four nearest-neighbor sites in successive
instants of time. Having hit a site occupied by a trap, the
particle was absorbed and computer simulation of the pro-
cess showed that, for large t, the mean square displacement
(^(t)) and the logarithm of the mean number of free parti-
cles were proportional to the square root of time. This is in
agreement with predictions given by (4.12) and (4.13). At the
same time, a considerable discrepancy was found between
the numerical coefficients and the theoretical results. The
dimensionality d of the medium plays an important role in
the case that we have considered, as it does in any diffusion
problem. It is clear from (4.12) that |ln (n(t)) | ~td/^ + 2> .This
is why the result |ln (n(t})\~t obtained in the mean-field
approximation reappears in the formal limit18) as d—> <x>. The
reason for this is that, as the dimensionality of the medium is
increased, diffusion becomes increasingly more effective,
and the probability that a particle will remain in the interior
of a region free of traps for a sufficiently long interval of time
will decrease. In the same limit, the mean square displace-
ment (4.13) offer a long time will eventually cease to depend
on time.

It has recently been noted40 that statistical configura-
tion effects similar to those discussed in this section play an
important role in the long-term asymptotic behavior of the
kinetics of two-body reactions of the form A + S—>-C.

5. CONCLUSION

From the mathematical standpoint, the problems that
arise in connection with studies of critical phenomena in
media with random breeding are no less interesting and pro-
found than classical problems in the theory of stationary
disordered media. We have attempted in this review, with
the aid of a number of simple models, to demonstrate the
specificity of these problems, and have carried out a classifi-
cation of qualitatively different types of critical behavior in
such systems. There are many unsolved problems, and in
fact only the simplest questions have been answered. Many
interesting results are expected when the renormalization
group and the ^-expansion are applied to these problems.
The construction and analysis of discrete percolation-type
schemes providing a closer approximation to the phenom-
ena observed in continuum models with random breeding
would be exceedingly interesting. Finally, the specificity of
many particular applications will require partial modifica-
tion of the models that we have discussed.
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