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A new approach to the eigenvalue problem in quantum mechanics is proposed. This approach is
based on three propositions: 1) a perturbation theory which does not require knowledge of the
entire eigenvalue spectrum of the unperturbed problem and which uses a "nonlinearization"
procedure (leaving some latitude in the choice of a zeroth order approximation); 2) a relationship
between the perturbation theory and a variational principle, namely that any variational calcula-
tion is none other than the first two terms of some nontrivial perturbation theory which, when
developed further, can reveal the accuracy of the variational calculations and can refine them by
an iterative procedure; 3) "Dyson's argument," which serves as a criterion for the "reasonable-
ness" of the choice of a zeroth order approximation (the unperturbed problem). The realization of
this perturbation theory in a ̂ -dimensional space is equivalent to the solution of a /c-dimensional
electrostatic problem with a variable dielectric permittivity. In the one-dimensional case and in
cases which reduce to the one-dimensional case, all the corrections are written in quadratures. It
is shown that the construction of an ordinary perturbation theory (in which the zeroth order
approximation is an exactly solvable problem) within the framework of this perturbation theory is
a purely algebraic procedure, which reduces to the solution of some simple recurrence relations.
An approximation analogous to the leading logarithmic approximation of quantum field theory is
constructed. Some standard problems of quantum mechanics—the anharmonic oscillator, the
Zeeman effect, and the Stark effect—are treated as examples. It is shown that this new approach
makes it possible to develop systematically a theory for strong coupling and large perturbations.
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1. INTRODUCTION One of the most important and most cpmmon manifesta-
tions of the difficulties which arise is the zero convergence

Since Schrodinger wrote his celebrated equation back radius of the perturbation theory series.
in 1926, many different methods have been developed to The strong coupling problem is a central problem in
solve it, in particular to find the eigenstates of various quan- many of the physical sciences. Essentially wherever it has
turn mechanical systems. This effort continues today. The been found possible to go into the region of strong coupling,
existence of a few exactly solvable problems stimulated the some nontrivial phenomena have been discovered. It is thus
development of various perturbation-theory approaches. an important and timely problem to develop regular meth-
This work led iri turn to the problem of large perturbations, ods for studying the large-perturbation region. From this
or, in other terms, the problem of strong coupling, since real standpoint we will attempt to evaluate the present state of
physics usually involves the region of large perturbations. affairs in quantum mechanics and quantum field theory. For
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the discussion below it is more natural to begin with quan-
tum field theory.

One of the methods which has been worked out in most
detail for studying field theory problems which are not ex-
actly solvable is a standard technique based on the use of
Feynman diagrams. This approach uses the theory of the
free field as a zeroth order approximation and usually makes
it possible to study the region of weak coupling and small
interaction constants. This approach is not effective in the
region of large perturbations, since in addition to the purely
technical difficulties which arise in attempts to evaluate
multiloop diagrams there is trouble of a fundamental nature:
a zero convergence radius for the resulting perturbation the-
ory series in the coupling constant for quantities of physical
importance. The qualitative explanation of this pheno-
menon is quite simple and is based on "Dyson's argument"1:
In strong fields the Lagrangian of the interaction becomes
"greater" than that of a free field, regardless of the particular
dependence on the interaction constant. To get to the heart
of this difficulty, we pose a question which is by no means of
purely academic interest: Has the problem been solved if we
know an arbitrary n-term of the perturbation theory series?
As surprising and slightly paradoxical as it may sound, the
answer is no, the problem has not been solved! Even if we
know an arbitrary term of the series in the coupling constant,
we still have to deal with the problem of how to sum this
series. Since its coefficients increase factorially with the in-
dex, and the sum has a zero convergence radius, the problem
of carrying out this summation is extremely ambiguous.
Roughly speaking, any answer can be generated for a given
coupling constant. In order to decide which method to use to
sum the resulting series, we must study the structure of the
singularities of the function of interest near the zero of the
interaction constant. One possible way to solve this problem
is to study the analytic structure of such a nontrivial con-
struction as a functional integral. Just how complicated this
structure can be has been demonstrated by Bender and Wu2>3

and Simon4 in an example from a one-dimensional field the-
ory: the anharmonic oscillator V(x) = m2x2 + gx4. The cor-
rect summation method in this example turns out to be Bor-
el's method.5 The terms presenting the greatest danger in the
summation are those which may be nonanalytic in the per-
turbation parameter and which make vanishing contribu-
tions to the coefficients of the perturbation theory series. At
the moment there are rather few problems for which the
correct summation method is known.

In practice we usually know only a finite number of
terms of the perturbation theory series, although in some
cases this number may be quite large. To go beyond the range
of applicability of perturbation theory use is made of one of
various approximation methods: Fade approximants, a re-
fined perturbation theory, the Pade-Borel method, confor-
mal transformations, etc. [See Refs. 6 and 7, for example.
These methods have recently been refined substantially fol-
lowing the studies by Lipatov (Ref. 8; see also the review by
Bogomolny et al.\ who proposed a method for finding the
asymptotic behavior of the coefficients of the perturbation
theory series.] When such methods are used, however, it is

almost never clear at the outset whether they will converge
to the correct results.11

In nonrelativistic quantum mechanics the situation is
slightly better, if still far from satisfactory. Below we will
discuss the situation in the case of bound states, so we will
briefly review the methods which are ordinarily used in solv-
ing problems of this type, focusing on their shortcomings
under the assumption that their merits are well known.

1) The Rayleigh-Schrbdinger perturbation theory. ̂ This
approach is one of the best known and the most widely used.
In order to take this approach one needs to know the entire
eigenvalue spectrum of the unperturbed problem and all the
matrix elements. The zeroth order approximation is thus an
exactly solvable problem. One usually has to deal with diver-
gent perturbation theory series and all the problems dis-
cussed above.

2) The variationalprinciple and its various modifications
(the Hartree method, the Hartree-Fock method, etc.). The
variational approach is the only tool we have for solving
multidimensional problems of any degree of complexity at
all, in particular, problems of atomic physics. The basic
shortcoming of this approach is that we have no way of esti-
mating the accuracy of the results. All possible lower bound
estimates on the accuracy of variational calculations, such as
Temple's estimate (see Ref. 12, for example), are usually very
crude. To refine them is a complicated problem. Further-
more, we have no really rigorous criteria for choosing trial
wave functions which would lead to the necessary accuracy
in the shortest possible time. Yet another difficulty is that,
since the energy of a state is a rather crude characteristic of a
system, a high accuracy in terms of the energy does not guar-
antee accuracy in terms of other, more subtle characteristics.
Serious difficulties can arise in the construction of trial wave
functions for excited states (the orthogonality problem).

3) The semiclassical approximation (the WKB method).
This approach has a rather restricted range of applicability
(usually, highly excited states), although this range has been
expanded significantly by, for example, the modification of
this method proposed by Marinov and Popov.13 In order to
study low-lying states it is necessary to appeal to higher or-
ders of the semiclassical approximation) which can be found
only with serious difficulty (see Ref. 14, for example). We
might add that the semiclassical approximation has been
worked out in detail only for one-dimensional and spherical-
ly symmetric cases.

4) Numerical methods. Although many people have the
impression that any problem can be solved on a decent com-
puter, this is far from being the case. In the realm of eigenval-
ue problems, numerical calculations have so far provided
reliable results only in the one-dimensional case. Even the
two-dimensional problem is very complicated for numerical
calculations, and as a result contradictory results have been
found (more on this below).

This ends our brief review of the standard and familiar
approaches to the solution of the steady-state Schrodinger

"See Refs. 10 for an example in which the Fade approximants converge to
an incorrect limit.

2)See, for example, Ch. 6 in Ref. 11.
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equation. The mathematical side of the matter and some oth-
er subtleties are described in the monographs by Morse and
Feshbach15 and Courant and Hilbert,16 among other places.
Many modifications of these approaches have of course been
developed although we have not mentioned them here; some
of these modifications are quite general, while others are
suitable for the solution of a specific problem.

Before we take up the approach which is the subject of
this review, we will take a brief look at the present state of
affairs in several standard quantum-mechanical problems—
problems which are mentioned in essentially any text on
quantum mechanics and which we will be discussing below
as examples of the application of the approach described
here.

a) The hydrogen atom in a static electric field (the Stark
effect). In this problem the region of strong coupling begins
at fields ̂  ~0.1 a.u. in the case of the ground state. Several
calculations of the energy and width of the ground state in
the region of strong fields have been reported: both numeri-
cal calculations and calculations by the approach described
in this review. Essentially none of the numerical calculations
for if £ 0.15 a.u. have yielded the same results (see Ref. 17
and the bibliography there), and in some cases the results
differ in order of magnitude.

b) The hydrogen atom in a static magnetic field (the Zee-
man effect). The problem of classifying the states has not
been resolved for this problem.31 In principle, the problem is
simpler than that of the Stark effect, since there is no tunnel-
ing. A rather large number of calculations have been report-
ed (see Ref. 18 and the bibliography there), restricted to the
few lowest-lying states. The energies calculated for the fields
of 10n-1012 G which are encountered in astrophysics and
semiconductor physics differ by several orders of magni-
tude.

c) The hydrogen atom in crossed fields. Again in this
case, the states have not been classified. Actually, we have
only a qualitative theory.19-20 In the strong coupling region
we do not even know the first cross term of the perturbation
theory, of the order of &2^2, for the ground state.

The approach which is the subject of this review is a
combination of perturbation theory and a variational meth-
od. It may be classified as a variational-iterative method.
From the perturbation theory standpoint it is an attempt to
develop a regular method for studying the strong coupling
region and large perturbations, and formally it contains no
small parameter. The approach actually consists of three
parts:

1) A perturbation theory which does not require knowl-
edge of the complete spectrum of the unperturbed problem.

2) A representation of the variational calculations as the
first two terms of some perturbation theory.

3) A comparison of the potentials of the original and
unperturbed problems in the light of Dyson's argument.

An important technical point is that we speak in terms
of potentials instead of wave functions on the basis of the
trivial assertion that any normalizable function is an eigen-

function of some state in some potential. It thus becomes pos-
sible to assess the "quality" of the variational calculation (or,
equivalently, of the unpertubed problem, in terms of a per-
turbation theory) by comparing the potential corresponding
to the variational trial function with the potential of the
original problem, in contrast with a comparison of a trial
function with an implicit actual wave function. Here we have
the physically meaningful criterion of reasonableness based
on Dyson's argument.

A perturbation theory which does not require knowl-
edge of the spectrum of the unperturbed problem was pro-
posed a rather long time ago. It was apparently first worked
out in 1954 by Price22 and slightly later by ZePdovich23 (see
also Ref. 24) for the ground state in the one-dimensional
case. Price used a transformation from the Schrodinger
equation to a Ricci equation, while Zel'dovich found the
Green's function of the Schrodinger equation explicitly. All
the corrections were expressed in the form of explicit qua-
dratures. This perturbation theory was later rediscovered by
Kirzhnits,25'26 who used it to calculate the correction to the
Hartree-Fock approximation in a calculation for two-elec-
tron atoms. Dalgarno, Lewis, and Steinhammer developed a
slightly different approach to perturbation theory, which
also yielded quadrature expressions.27 These approaches
and closed expressions for the perturbation theory correc-
tions have subsequently been rederived repeatedly by var-
ious investigators,28"32 who have demonstrated the advan-
tages of these expressions over the standard expressions.4' In
particular, Dolgov and Popov30 constructed an example of a
rapidly converging iterative scheme for solving the anhar-
monic-oscillator problem. As was shown later, this scheme
also reduces to the perturbation theory which we are discuss-
ing here. A recipe for constructing converging perturbation
theory series was first formulated in Ref. 32. As an example,
a perturbation theory was constructed for the low-lying
states in the potential V(x) =x2" This method was studied in
detail in Ref. 33.

A generalization of the approach to the case of excited
states in one dimension was proposed by Polikanov34 and
later by Aharonov and Au31; a generalization to the case of
arbitrary states was made in Refs. 33 and 35.

A multidimensional generalization of this approach
was formulated by Au and Aharonov36 and, independently,
by the present author.37 The relationship between perturba-
tion theory and the variational principle was described in
Ref. 35. It was shown that the results of variational calcula-
tions are actually the first two coefficients of a perturbation
theory series, so that calculation of the subsequent coeffi-
cients of this series reveals the accuracy of variational calcu-
lations and makes it possible to improve the accuracy by an
iterative procedure. It was also found in this study that the
recipe which had been given earlier32 for constructing con-
vergent perturbation theories is none other than a list of the
usual requirements which must be met in order to construct
a class of trial wave functions for variational calculations. In

3>Very recently, significant progress has been achieved in classifying high-
ly excited states.21

4)This process of rediscovery continues today. After the present review
was written, Imbo and Sukhatme'00 published a paper discussing the
development of a new (I) and very convenient perturbation theory,
which reduces to the perturbation theory which we are discussing here.
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particular, the recipe proposed by Dolgov and Popov30 is a
particular case of the general recipe—one which applies only
to non-negative potentials which are increasing at infinity.
The approach was also generalized to excited states in the
multidimensional case in Refs. 33 and 35. Furthermore, it
was shown that when a standard perturbation theory can be
realized this approach becomes a purely algebraic procedure
which reduces to the solution of recurrence relations.38

At present this approach is being developed rapidly.
Essentially all the familiar problems of quantum mechanics
are being reexamined both from the standpoint of studying
ordinary perturbation theory and for an analytic study of the
region of arbitrary perturbations: the anharmonic oscillator
(see, for example, Refs. 30-33), the Stark effect (Refs. 17 and
39, for example), the Zeeman effect,18'40 the screened Cou-
lomb potential (Ref. 41, for example), the hydrogen atom in
crossed fields,42 etc. We might add that a perturbation the-
ory which does not require knowledge of the entire eigenval-
ue spectrum of the unperturbed problem has been given var-
ious names in the literature: a "perturbation theory in
quadratures,"22"26 "Dalgarno's /-"-function method,"27 the
"logarithmic perturbation theory,"36 and the "nonlineariza-
tion method."3233'35-36-38 We will use the last of these names
here.

Despite the rather long history and intense develop-
ment of the problem, there has been no coherent exposition
of the method. The one review on the topic27 dealt with the
/•"-function method and referred to perturbation theory
alone. It contains essentially no examples. We are attempt-
ing to fill this void here.

2. PERTURBATION THEORY

We preface the construction of a perturbation theory
with some general comments.

The wave function of an arbitrary bound state in a
smooth potential can obviously be written in the form

i|> (*)=/(*) erp l-f (*)], I2-1)
where the functions/(x) and <f> (x) have no singularities at real
x € R*. Representation (2.1) is of course ambiguous. We will
discuss the resolution of this ambiguity below, but that pro-
cedure is unimportant at this point. We now assume that the
potential of the problem consists of two parts, an unper-
turbed part V0 and a perturbation F,:

V = V. + XVlt (2.2)

where /I is a formal parameter. We wish to solve the initial
problem by a perturbation theory in the parameter A,. There
are several ways to construct a perturbation theory, by using
various expansions of the wave function in series" in A:

a) *(z)-0, /(*) = S **/.(»>.
n

This is none other than the standard Rayleigh-Schrodinger
perturbation theory (see Ch. 6 in Ref. 11). Another possibil-
ity is

"The index 0 specifies the unperturbed problem.
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This procedure is called Dalgarno's F-function method.27 In
particular, this method has been used successfully by Banks,
Bender, and Wu to study one- and two-dimensional anhar-
monic oscillators.2'3'43'44 A third possibility is

c) # (i) = S *"#»(*). /(*)

I in the case of the ground state,
f0(x) in the case of excited states with known positions
of the node surfaces,

A, "/„ (x) in the general case of excited states.

The contents of the present review are basically to construct,
study, and use this form of perturbation theory, which is the
most general form for representation (2.1).

We begin with the case of a ground state whose wave
function does not vanish at the end points.

a) Ground state

Looking at the method from a slightly different angle,
we can say that it essentially consists of (a) a transformation
procedure, which we call a nonlinearization,36'37 which is
used to transform a ^-dimensional Schrodinger equation, a
linear second-order equation,

+ (E — V) i|) = 0, (2.3)

into an equation which is nonlinear but which is of first order
and has a right side and (b) the construction of a perturbation
theory specifically for this equation. The transformation
which implements this procedure in the case of the ground
state is61

(2.4)

where A and V are the ordinary &-dimensional Laplacian
and gradient operators, respectively. Using (2.3) and (2.4),
we find the equation

divy —>» = £ —F, (2.5)

which is equivalent to the original Schrodinger equation if
the field y is a potential field, i.e., if

y = (2.6)

where <f> (x) is a scalar function. In other words, the cross
derivative must vanish:

diVi — diUi = 0- (2.6')

Equation (2.5) with conditions (2.6) or (2.6') is the basic equa-
tion which is used to construct our method. In the one-di-
mensional case, this equation becomes the Riccati equation
(see, for example, Kamke49). We will discuss the boundary
condititions on (2.5) below.

6|This transformation has been used previously in a variety of physical
situations: by Wentzel, Kramers, and Brillouin in deriving a semiclassi-
cal approximation; by Rytov in the theory of oscillations (see the discus-
sion in Ref. 45); and by Bijl,46 Bogolyubov and Zubarev,47 and Penrose
and Onsager48 in problems in statistical physics.
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We now proceed to construct a perturbation theory
after having made the following. The potential V(x) of inter-
est obviously can always be written as a sum (2.2) or in the
general case as

n

where A is a formal parameter introduced for convenience.
The equation

o + (Et - F0) to = 0 (2.7)

has an explicit solution. Alternatively, the problem could be
formulated as follows: we take any sufficiently smooth func-
tion if>0(x) e L2(R

k) and find the potential

T7 p A^Q /2 Jl\

which corresponds to it. The perturbation potential F,(x) is
then the difference (V - V0). It should be noted that

v =_y°
!*• (2.8)

This point will prove very useful below. We turn now to the
construction of a perturbation theory for the ground state.

As mentioned above, for sufficiently smooth potentials
the wave function of the ground state vanishes nowhere.
This means that the vector function y contains no pole singu-
larities at real values of7'*. We now expand E and y in Taylor
series in the parameter A,:

oo

. • ' . n=0

E = E0 + IEi + A-2£2 + ... = 2 *-"£*: (2-10)
n=0

where E0 and y0 are given by (2.7') and (2.8), respectively.
Subsituting (2.9) and (2.10) into (2.5), and collecting terms
with like powers A", we find the following equation for de-
termining En and yn:

n)=(En-0n)e (2.11)

(2.11')

or, equivalently,

divyn-2y0yn = £„-<?„.

The vector field yn must also satisfy potential condition (2.6)
or (2.6'). Here

Q1=Vi, <?„= — 2 y iyn- i> n^2. (2.12)

We wish to emphasize a curious fact: To find the nth correc-
tion we must solve the same equation, (2.11), but with differ-
ent right sides. Consequently, Qn for « > 1 may be thought of
as an effective perturbation potential. Equation (2.11) along
with the condition under which the field yB is a potential
field is the equation of ordinary (but multidimensional) elec-
trostatics, in which ̂  and yn serve as the dielectric permit-
tivity and the field, respectively, while (En - Qn)$> is the

"Here and below we will streamline the notation and write simply x,
which is to be understood as a point in the space R* with the coordinates
(*1F*2, ...,**).

charge density.
We turn now to the boundary conditions. Since we are

interested in the bound-state problem, we can write the
boundary condition in our initial equation (2.5) as the condi-
tion that there must be no current of particles at infinity:

0 as (2.13)

For Eq. (2.11) we can write the boundary condition in the
following form, working from condition (2.13):

as (2.14)

Since the wave functions of bound states usually decay ex-
ponentially at infinity, (2.14) means that the vector field yn

must not increase more rapidly than a power function at
large distances. This boundary condition can be understood
from the physical standpoint: If the perturbation potential is
zero, all the corrections £„ and yn are identically zero; i.e.,
the solution of the homogeneous equation (2.11) or (2.11')
must be identically zero.

Condition (2.14) can be quickly converted into informa-
tion about the corrections En. For this purpose we integrate
(2.11) over the entire space and transform the integral on the
right side into a surface integral, using Gauss's theorem. Us-
ing condition (2.14), we then find33'35'37

R*

i-l (2.15)
R*

Expression (2.15) gives us an arbitrary correction to the ener-
gy level of the ground state of the unperturbed problem. The
expression for the first correction, Elt is the same as the stan-
dard expression of the Rayleigh-Schrodinger perturbation
theory.11 The second correction,

£2=-$?'
-I

is always negative, as it should be.
In order to evaluate the various corrections En for n > 2,

however, we need to solve the electrostatic problem (2.11);
equivalently, we must solve an elliptical equation of the gen-
eral form

± div ft; grad£n) = £»-< (2.16)

with boundary condition (2.14), where yn = grad^n, and En

is given by (2.15). The operator

_L JL ;' 1 2 9 \
ijpj dxt \™ dxt Idxt

on the right side of (2.16) is the Laplacian in a curved space
with a conformally plane metric; \jj0 serves as the determi-
nant of the metric tensor. The problem of constructing a
perturbation theory is thus equivalent to one of finding the
Green's function of a Laplacian in a conformally plane space
with a special type of metric.

The problem of calculating the corrections is thus not
an eigenvalue problem (£„ and Qn are assumed to be known
from the preceding iterations), so the problem of finding the
corrections En and, correspondingly, yn is much simpler
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from the standpoint of numerical calculations than that of
solving the original Schrodinger equation. Furthermore, the
equivalence of this problem to the electrostatic problem
means that we could in principle use analog computers.

We now seek more concrete expressions for the correc-
tions yn. A solution of Eq. (2.11) with the auxiliary condition
that the field must be a potential field, (2.6), is

itfyB(*)= J (2.17)

where G* (x^x1) is the Green's function of Eq. (2.11) with aux-
iliary condition (2.6), and the index k specifies the dimen-
sionality of the space. In the general case in which i/% is an
arbitrary function such that ^0 e L2(R

k), the Green's func-
tion is not known and apparently cannot be constructed ex-
plicitly. In several particular cases, however, it can be. First,
for spherical ̂  and PI tne Green's function is

ftv ' ' <"> I*-*'I* (2.18)

where crk = 2ir*/2 /F(k /2) is the area of a fc-dimensional
sphere of unit radius. After we integrate over the angular
variables, we can then write the solution (2.17) as

(En ~ Qn) Ar't

(2.19)

We wish to emphasize that this expression also gives the
general solution in the one-dimensional case. Second, the
problem can be solved explicitly even when the dielectric
permittivity is Gaussian:

( — ax2).

The general solution of Eq. (2. 1 1 ) is

Rft

X exp [ — (yT x — Yt + a. x')2] (yTx — y"f + ax'),

(2.20)

and is derived in the Appendix. Although we know no other
explicit Green's functions, a perturbation theory can be con-
structed explicitly for the perturbed two-particle Coulomb
problem by virtue of the phenomenon of "algebraization"
(Section 3), despite the lack of an explicit expression for the
Green's function. If a spherically asymmetric potential con-
tains a finite number of harmonics, the procedure for con-
structing a perturbation theory also simplifies considerably.
The zeroth order approximation is taken to be spherically
symmetric, and the corrections are sought as finite expan-
sions in the harmonics. The coefficient functions of the har-
monics are found from the solutions of one-dimensional
equations. This approach has been used to study the problem
of a two-dimensional asymmetric anharmonic oscillator.35

Numerical methods are generally necessary for solving Eq.
(2.11).

b) Excited states

We turn now to excited states. There are several reasons
why they must be treated separately. First, nonintegrable
singularities arise in integrals (2.15) in the case of excited
states since the zeros of the excited wave functions transform
into pole singularities of the vector function y, and the inte-
grals (2.15) depend on the quantities Qn .which are quadratic
forms of y,. It has been shown34 for the one-dimensional case
that by moving the integration contour into the complex
plane in order to avoid these singularities one can obtain
correct results. This method is technically complicated; fur-
thermore, its generalization to the multidimensional case is
not clear. We will describe a simpler method33'35 in which
the dimensionality of the space does not play an important
role. Second, there has been essentially no analytic study of
the question of excited states in the multidimensional case.
In particular, we do not have a solution of the state classifica-
tion problem.8' This circumstance seriously aggravates the
situation.

It thus seems plausible that the wave function of an
excited state can be characterized by some set S0 on which it
vanishes. The wave function can thus be written in the form
(2.1):

1)3 (x) = / (x) exp [—<j> (x)],

where/(x) and (f> (x) contain no singularities at finite x e R*;
f(x) increases no more rapidly than a power function as

x\—>oo; and f(x) = 0 and V/(x)^0 for9' xeS. In other
words, we explicitly single out a function/(x) which em-
bodies information on the node surfaces, where the original
wave function vanishes. This procedure is ambiguous. To
eliminate the ambiguity, we impose a minimality condition,
requiring that/fx) contain a minimum of information which
does not pertain to the node surfaces. We will explain the
essence of this requirement using a one-dimensional exam-
ple. We know that the wave function of the / th excited state is
characterized by / zeros. We thus require that/)*) be a po-
lynomial of degree / with real roots. We now introduce the
vector g = V^ (x), so that the vector function y in (2.4) be-
comes

_ v»j) _ vy n T\\
y~ ^r" g T~ • l^-^i)

We have thus explicitly singled out that part of the vector
field y which contains the singularities associated with the
vanishing of the wave function. Substituting (2.21) into (2.5),
and multiplying the result by/(jc), we find the equation3335

/Vg-/g2-A/+2gv/=(£-F)/. (2.22)

This equation is the foundation of the entire approach. If
g = 0, this equation becomes the ordinary Schrodinger
equation, while iff(x) = 1 it becomes Eq. (2.5).

We now begin to construct the perturbation theory. We
assume that the potential is of the form in (2.2') and that i/>0 is
the wave function of Eq. (2.7) written in the form in (2.1). The

8)Korsch102 reviews the present state of this problem.
"At self-intersections of the node surfaces, where branching occurs, the

condition Vf(x) = 0 must hold.
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set 50 on which ^0(jc) vanishes is determined by the condition
f0(x) = 0. We now expand in series in A not only E and g [see
(2.8) and (2.10)] but also the function/)*), which character-
izes the set of zeros and their deformation101:

71=0

(2.23)

We collect the terms of first order in A; after some simple
mathematical transformations we find

div (2.24)

where the index 0 specifies the zeroth order approximation.
Integrating (2.24) over the entire space, and using condition
(2.14) (with y replaced by g), we find an expression for El

which is the same as (2. 15) in the case n = l.Ifwesetg, =0,
we find that Eq. (2.24) becomes the Dalgarno-Lewis equa-
tion (see the review by Hirschfelder et al.21} The general solu-
tion of Eq. (2.24) can be written

0-/oV/l)= J <
R*

(2.25)

where Gex(x,;t') is the Green's function of Eq. (2.24). The
expression ̂  (7ex (x,x') must satisfy the potential condition
(2.6) or (2.6') in terms of the variable x. Another condition
imposed on the Green's function is that the right side of
(2.25) must be a vector directed along 4/o for x 6 S0. The
deformation of the set S0 is thus characterized in first order
in A by the condition

(2.26)
(V/o)2exP[-2<M*)]

Equations for determining the higher-order corrections
are found in an analogous way. These other equations are
structurally similar to (2.24), differing from it only by their
right sides:

(/BV/o -/oV/B)l - (En - Qn) (2-27)

or, equivalently,

A/n-2g0V/n-2gnV/o . f A/0-2g0V/0

/o ~ l ~ ' n /I

= £„-<?„,

where

(2.28)

10)In the one-dimensional case, S is a discrete set of points, and /is the
polynomial

where m is the number of zeros. In principle we can thus directly expand
the positions of the zeros a, in series in A; i.e., we can write a, = 2 /t*~
aik , as suggested in Refs. 3 1 and 34. This method, however, cannot be
generalized to the multidimensional case (as discussed below). Further-
more, it is not efficient, since the accuracy is exceeded in the coefficient
of the exponential function: The corrections/, A" contain contributions
from higher orders. In other words, in order to construct a perturbation
theory it is superfluous to know how the fragments of the node surfaces
deform; it is sufficient to know how the overall picture changes.

<?n=

n-l

— 2 gjgn-i

i=0
n-\

2 2 gfcV/»-h], (2.28')

The correction to the energy is found on the basis of the same
arguments as in the case of the ground state. It is similar in
form to (2.15):

E, = \ dx Qntyl ( \ Ax if>5 I , ,- _-,
J \ J i (*••*•*)

where Qn for «>2 is given by (2.28'), and Qt = F,. Recalling
that the field g is a potential field, we see that, as in the case of
the ground state, the problem of finding the corrections re-
duces to one of solving the electrostatic problem with a vari-
able dielectric permittivity. In this case the role of the elec-
tric field vector is played by the quantity [gn — V(fa //„)].

We can write the solution of Eq. (2.27) in the same form
as the solution of Eq. (2.24):

(2.30)

with the same Green's function Gex (*,*') as in (2.25). Infor-
mation on the higher-order corrections fn, characterizing
the deformation of the set of zeros, is found from

(2.31)

It might thus appear that we have everything we need in
order to construct a perturbation theory for the excited
states. However, this is not quite the case, as we will now
show.

The problem is that we need to know the properties of
the node surfaces. If we can guess their positions on the basis
of considerations of one sort or another, there is no difficulty
in constructing a perturbation theory, because the problem
actually reduces to that in the case of a ground state, since

/» =0-

and thus111

1,

n-l

„ = <?„=-S (2.32)

A situation of this type arises, for example, in a study of
levels with a zero radial quantum number in a spherically
symmetric problem, in the case of zero parabolic quantum
numbers in the Stark effect, and for certain states in the Zee-
man effect (more on this below).

In the general case, on the other hand, the situation is
quite indefinite, since in order to find the deformations of the
manifold of zeros /„ (x) we need to appeal to additional con-

1 "The correction £2 is always negative, as in the case of the ground state.
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siderations in order to continue/„ (x) from the region x e S0

[see (2.31)], in which they are denned, to the entire space R*.
In the one-dimensional case, this additional information is
given by the oscillation theorem (§21 in Ref. 11).

In the multidimensional case we do not have additional
information of this type, since we do not have at this point a
multidimensional analog of the oscillation theorem. All that
is known about the node surfaces is that the node surfaces of
level n partition the space into no more than n parts16 (see the
discussion in Ref. 102). This difficulty reflects the absence of
a classification of states in the multidimensional case. Before
we construct a perturbation theory we must therefore solve
the classification problem. The classification problem can be
solved technically, through the solution of a secular equa-
tion, in certain particular cases (in which the unperturbed
problem is exactly solvable). In principle, this difficulty can
be circumvented by using a variational principle and keeping
track of the orthogonality of the trial wave functions.

c) One-dimensional case

We now take a more detailed look at the one-dimension-
al case, since here the perturbation theory can be construct-
ed completely. For the ground state, Eq. (2.5) converts in the
one-dimensional case into the well-known Riccati equation,
and condition (2.6) or (2.6') holds identically. It is easy to
show that a solution of Eq. (2.11) is given by (2.18), which can
be put in the form22

J (En-Qn)1rl(x')Ax',
(2.33)

where (?„ is defined in (2. 18). The energy corrections £„ are
again given by (2.15).

In the case of excited states, a solution of Eq. (2.27) of
the form in (2.30) transforms to a solution of the form33'35

gnn (x) = (If- ) + If? J (£„-&) to* d*'- (2.34)

while the deformation of the manifold of zeros/, is given by
(2.31). Since the set S is the set of several points on a straight
line in the one-dimensional case, the quantities determining
the deformations of their postitions are

*\

— DO

Xxi£S0, i = l I , (2.35)

where / is the index of the level under consideration, and Qn

is given by (2.28). To find the deformations of the manifold of
zeros/, (x) we appeal to the oscillation theorem (see Ref. 11,
for example), which can be summarized as follows: The coef-
ficient f ( x ] of the exponential function is a polynomial of
degree equal to the index of the level of interest, so that the
corrections /„ (x) must be polynomials of degree no higher
than the level index. The problem of finding the corrections
/„ (x) thus reduces to one of determining the coefficients of a
polynomial of degree (/ — 1), P (l

n ~
 l](x], specified at the points

x?(P(
n'~ " (x?) =/„ (x?)). This problem can be solved by solv-

ing a system of/ linear equations with /unknowns, which are
the coefficients of the polynomial, a} ( P ( l ~ l ] ( x ) = 2,Ji:o

djXj). This is a standard problem of linear algebra. Its solu-
tion is given in Ref. 50 (Section 3), among other places. We
wish to emphasize that when we are dealing with the first
excited level the corrections /„ (x) are constants, and the
equations are the same as those given in Ref. 31. It is also
worth mentioning that the corrections gn (x) have no singu-
larities on the real axis.

Equations (2.33)-(2.35) are modified in the obvious way
in the case of a multidimensional spherically symmetric
problem. For the ground state, these equations are given in
Refs. 23-26 and 30. We wish to call attention to an impor-
tant circumstance: It is a particularly simple matter to con-
struct a perturbation theory for excited states with a zero
radial quantum number, since the node surfaces are not de-
formed, and the problem essentially reduces to the ground-
state case.

In our approach, we find the nth correction to the wave
function and the (n + l)th correction to the energy after n
interactions. Polikanov28'34 and Au51 have shown that in the
one-dimensional case the convergence of the iterations in
this method can be accelerated significantly by some slight
modifications: The nth iteration can yield the (2" — l)th cor-
rection to the wave function and that to the energy. As be-
fore, all the corrections are expressed as explicit quadra-
tures. To demonstrate the approach we consider for
simplicity the ground state, following Ref. 51. We assume
that we have found the first correction, yl. What potential
corresponds to the function (Vo + AVi)? Substituting
(y0 +Ayi) into the Riccati equation (2.5), we find that this
potential is V0 + A Vl — A 2y\ . We now go through the first-
order perturbation-theory calculation, with a zeroth order
approximation y{^ = y0 + Ayt and a perturbation potential
— A, 2 y\ . As before, we adopt y^ ' + A 2 y,1' =y(^ as a zeroth

order approximation. The perturbation potential is then of
the order of A. 4; specifically, it is — A. 4 j^1'2. The corrections
in the preceding step were accordingly of the order of A, 3.
After the nth iteration, the perturbation potential is evident-
ly of the order of A 2" , so that the nth iteration is of the order
of A 2" ~ ' . The generalization of this procedure to excited
states is quite obvious.34 We should emphasize that the alge-
braization is lost in the course of this procedure (Section 3
below).

d) Relationship with standard perturbation theory

How is this perturbation theory related to the standard
Rayleigh-Schrodinger perturbation theory? The relation-
ship is easy to trace by comparing the expansion of the wave
function in the standard approach,

with that in the approach of the present paper:

(2.36)

= (2A."7m)«~2'TV <2-37)

We recall the expressions for if>m and Em in the standard
approach (see, for example, §38 in Ref. 11), and we compare
them with the corresponding expressions in our approach

675 Sov. Phys. Usp. 27 (9), September 1984 A. V. Turbiner 675



[the exponential function in (2.37) must be expanded in a
series for this purpose].12' We then find two families of sum
rules (for brevity, we reproduce here only a single member of
each family)13':

= j ( j W')2 d* ) (2.39)

where the subscript specifies the order of the correction, and
the superscript the index of the particular level. The fact that
sum rules of this type arise has been pointed out in many
places.23-28-30"37 These sum rules were constructed explicitly
for the ground state in the one-dimensional case in Refs. 31
and 37. In particular, Aharonov and Au31 proved (2.39) di-
rectly, while expansion (2.38) was essentially proved in the
pioneering paper by Zel'dovich.23 Studies of these sum rules
yield information on the spectrum of the unperturbed prob-
lem.

We have formulated a nonstandard perturbation the-
ory. In constructing it we have nowhere made use of knowl-
edge of the entire eigenvalue spectrum of the unperturbed
problem. We have had to call upon our knowledge of only
that level to which the correction is being sought. The situa-
tion can be explained particularly simply in the one-dimen-
sional case. Let us asume that we know $,"', the unperturbed
wave function of the n-th state, with an energy E = E£\
which is the solution of a linear second-order diiferential
equation (which is what the Schrodinger equation is). Fur-
thermore, if we know one solution, then we can construct a
second, linearly independent solution by means of quadra-
tures. Consequently, since we know two linearly indepen-
dent solutions, we can construct a Green's function for a
fixed energy E = E(£\ On the other hand, the Green's func-
tion which appears in all the perturbation-theory equations
is that for the energy E = E {,"', since the equation for the wth
correction is

AV™ + (E™~V0)V™ = F(E?\ tln>), i<m. (2.40)

For this reason, all the equations can be written in quadra-
tures, as was actually shown by Zel'dovich.23 Unfortunately,
no corresponding procedure has been developed for con-
structing the Green's function in the multidimensional case.

3. ALGEBRAIZATION OF THE PROCEDURE FOR
CONSTRUCTING A PERTURBATION THEORY

In the preceding section we described the general struc-
ture of the perturbation theory. We now begin our discussion
of some more specific problems. The subject of this section is
a situation in which a standard Rayleigh-Schrodinger per-
12)Once we have found the first m correction in the expansion (2.37), we

can reproduce not only the first m corrections in the expansion (2.36)
but also some of the contributions from higher orders.

15>For simplicity we consider only the case in which the problem has no
continuous spectrum and no degeneracy. Incorporating these factors
does not alter the right side of the resulting sum rules.

turbation theory can be constructed, i.e., a situation in which
the unperturbed problem is exactly solvable. We will show
that in this case the construction of our perturbation theory
is a purely algebraic problem, which reduces to one of solv-
ing some rather simple recurrence relations. In this case it is
possible to analyze the structure of an arbitrary correction of
the perturbation theory series for arbitrary perturbations of
a polynomial type; we will find certain substructures of this
correction explicitly. In the course of doing so we find an
algebraic method for calculating various matrix elements
based on the use of sum rules of the type in (2.38).

a) The harmonic oscillator as the unpertubed problem
1) General discussion

The zeroth order approximation potential, correspond-
ing to a harmonic oscillator, is

d
vo= .S a^l aj>0, (3.1)

while the perturbation potential is a polynomial potential:

l max* * * d max

The requirement that the perturbation be a polynomial form
does not restrict the generality of our discussion, since the
potential could otherwise be expanded in a Taylor series, and
(3.2) could be treated as an infinite sum. For simplicity we
assume that the harmonic oscillator is spherically symmet-
ric, i.e., a, = 1. We will show below that this condition is
unimportant. We will also assume that the problem of the
classification of the excited states has been solved.

Before we go into detail, let us see why an algebraization
arises. We write, say, the first correction of the ordinary
Rayleigh-Schrodinger perturbation theory:

The unperturbed wave function $,fc) is a Hermite polynomial
(or a combination of Hermite polynomials) multiplied by a
Gaussian function. On the other hand, we know (see Ref. 11,
for example) that if a perturbation is of polynomial form
there is a bounded number of nonvanishing transition matrix
elements14' Vnk. This assertion in turn means that a series in
intermediate states contains a finite number of terms and
that the expression for the correction is a superposition of
Hermite polynomials with certain weights, multiplied by the
same Gaussian function. The coefficient of the exponential
function is thus a finite polynomial. Analogous arguments
can be made for an arbitrary correction $"'; this is the expla-
nation for the algebraization phenomenon. This pheno-
menon was first pointed out and used by Bender and Wu,2'3

who worked in the formalism of Dalgarno's F-functions.
They wrote recurrence relations which they used to calcu-
late 75 coefficients in the expansion of the ground-state ener-
gy of a one-dimensional anharmonic oscillator, and they
found the asymptotic behavior of these coefficients. Along
14lThis is a trivial consequence of the properties of the Gaussian integrals

which arise in this problem.
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with Banks,43'44 they pursued an analogous procedure for
the ground state of a two-dimensional, asymmetric anhar-
monic oscillator. The algebraization formalism under dis-
cussion in the present paper was used for the ground state in
the one-dimensional case in Refs. 30 and 52 and in the two-
dimensional case in Ref. 33. An algebraization of the pertur-
bation theory for the ground state was advanced in Ref. 38
for an arbitrary polynomial perturbation in the multidimen-
sional case. This approach is presently being developed in-
tensely in the direction of the use of both Dalgarno's F-func-
tion method (and its modifications) and the method of the
present paper (see Refs. 39-42 and 53-55, for example).

Let us examine Eq. (2.28). The first remarkable feature
that we find is a cancellation in the combination

-£ (A/.-2goV/0) = - 2* -*£-, go = x, (3.3)

since in this case/) is a multidimensional Hermite polyno-
mial or a linear combination of such polynomials,56 and k is
the "principal quantum number." For example, if/0 = Hki

X (.*,). . . Hk , where fft{y) is an ordinary Hermite polyno-
mial, then we have

k = *, + k2 + . . . + kd. (3.3')

Equation (2.28) with (3.3) then becomes

(3-4)

(3.5)

Now making use of the potential nature of the field,

we finally find (go = x)

(3-6)

If/o is a Hermite polynomial with a principal quantum num-
ber k, the expression in parentheses vanishes.

We can now formulate the basic assertion of this subsec-
tion.

Theorem 1. The construction of a perturbation theory
for a harmonic oscillator in the case of a polynomial pertur-
bation potential is an algebraic problem. This means that <^n

and /„ are multidimensional polynomials, whose coeffi-
cients can be found from the recurrence relations which fol-
low from (3.6). In particular, if the highest power of the vari-
able jc, in the perturbation potential is /, , then the highest
power of this variable in an arbitrary correction $„ lies
between («/, — 2« + 2) and «/, , depending on the particular
perturbation potential (3.2).

Proof. The proof in the case of the ground state is actual-
ly given in Ref. 38. We consider the more general case here,
assuming that the classification problem has been solved,
i.e., that/0 is some multidimensional polynomial which is a
superposition of multidimensional Hermite polynomials
with a given principal quantum number. The proof is by
induction.

We consider the equation for the first correction:

(3.7)

Obviously, ^j is some multidimensional polynomial which
contains the same combinations of powers {/i/2 . . . id } as
the potential V\ (since the operator x V is a uniform operator)
and also similar combinations of powers.15' One condition
for finding the correction/! is the requirement that the frac-
tion in (3.7) cancel out, since the correction <^l must not have
singularities at finite values of x (see the discussion in Sub-
section 2b). We can thus write

(3.8)
to

where R1 is some polynomial which we are to find. Equiv-
alently, we could write

AA - 2xVA + 2A/J = 2v^iV/o - RJo- (3-9)
We recall that/0 is a superposition of multidimensional Her-
mite polynomials with a principal quantum number k and
that/0 satisfies the homogeneous equation (3.9). We expand
the right side of (3.9) in a series in multidimensional Hermite
polynomials,16' and we require that this expansion contain
no terms with principal quantum numbers larger than or
equal to k. From this condition we can immediately deter-
mine the coefficients of the polynomial Rt. It is then a
straightforward matter to find a solution of (3.9) as a series in
Hermite polynomials. It should be noted that R, contains
the same combinations of powers as ̂ ,, with the natural re-
striction that not all the/>, can vanish simultaneously.

In the first step we thus find recurrence relations for the
coefficients of R ^ In the second step we find recurrence rela-
tions for the coefficients of <f>t which follow from the equa-
tion

A£i - 2xVtf>j. + /?:=#! — V,,. (3.10)

We introduce the function Rn as a generalization of /?,.
Since n > 1, the function Rn will have a contribution from
the right side of (3.4), i.e., from Qn, which includes terms
with/0 in the denominator:

n-l

-2 {/,[-<
i=i n_, + (En-i -

(3.11)

Alternatively, noting that the expression in (square) brackets
is /?„_, , we can write

(3.12)
n-l

15)"Similar combinations of powers" are combinations which contain
powers (/', — 2p,, j2 — 2p2 ..... ld — 2pd ), where p,,p2, . . . ,pd are posi-
tive integers, and the condition (;', — 2p, )>0 holds for arbitrary /.

16>The right side will of course have a finite number of terms, and the
leading term will be characterized by the quantum number

M = + sa ax — 2.
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The equation for/,, thus takes a form analogous to that of
(3.9):

i=0
(3-13)

We now assume that (j>, ft , and Rt for / < n are polynomials
and that / contains Hermite polynomials with principal
quantum numbers less than or equal to k, by analogy with
the assumptions used for/, . We find first Rn and then/, . We
then find recurrence relations for $„ from the equation.

= £„- <?„, (3.14)

where Qn = — 2,"=,' g, gn _, , since Eq. (3.14) has a polyno-
mial solution, because its right side is a polynomial by con-
struction, as we have been required to prove.

The discussion above cannot of course be regarded as
rigorous proof; it would be more accurate to say that these
arguments are very similar to those of the actual proof.

Finally, we note that an analysis of the higher powers of
the correction <!>„ does not require knowledge of R, and/,
since they do not contribute to these higher powers. These
coefficients are thus independent of the particular level, de-
pending on only the higher powers in the perturbation po-
tential V\. These coefficients can be found explicitly, as will
be done below.

2) One-dimensional anharmonic oscillator

We now take up our first specific example: the familiar
problem of a one-dimensional anharmonic oscillator,

V = (3.15)

We will construct a perturbation theory in the coupling con-
stant g. In this case the unperturbed wave function of the k th
level is

(3.16)

where Hk (x) is the k th Hermite polynomial; i.e.,/0 = Hk (x).
Equation (3.4) then becomes

Alternatively, recalling definition (3.12),
n-l

(3.18)

we can write this equation in the more convenient form

where Ql = K, and Qn = - 2^/ <t> ,' <* '„ _ , i . We begin with
the first-order calculation. Clearly, g, = ^ J is a third-degree
polynomial which contains only odd powers (by virtue of the
symmetry of the problem), while the function R , is a polyno-
mial of the form ax2 + 0. Substituting R , into the right side
of (3. 1 8), and expanding in a series in Hermite polynomials,
we obtain an expansion containing the polynomials Hk + 2 >

Hk,Hk_2,Hk_4. We set the coefficients ofHk + 2 andHk

equal to zero; in this manner we can determine the polyno-
mial /?,. We now substitute .R, into (3.19), and then we can
immediately find ̂ ,. We have now determined the right side
of the equation for the correction/, [see (3.9)]. We seek/, as a
superposition ofHk_2 and Hk_4. Since Hk is the solution
of the equation for the correction, it can appear with an arbi-
trary coefficient in/,. We set this coefficient equal to zero,
since it fixes the normalization of the wave function, which is
of no importance here. The final expression for the first cor-
rection is

/! = *-
ft! kl

The second correction can be found just as easily and simply:

85 1.2 3 t 9

"32 "32" K~T
If

*-2

(A -4)1

k 7 \
T "24 J

U k]
(fc-6)! 32 (fc— 8)1

16 (3.21)

The expression for Et and E2 are the same as the standard
expressions (see Ref. 57, for example). The coefficients/, and
/2 contain polynomials of degrees lower than that in Hk .
Lowering 0, and 02 from the exponential function, i.e., ex-
panding the exponential function in a series, we can recon-
struct all possible transition matrix elements Vmk . We note
that Ej gives us a diagonal matrix element. We have thus
algebraically found relations between different matrix ele-
ments (see the discussion in Subsection Id }.

It is easy to show on the basis of (3.17)-(3.19) that an
arbitrary correction has the functional form

= 2 a|»'*«+a,
i=0

S <
i=0

(3-22)

and in practice there is no particular difficulty in finding the
leading coefficients in (3.22), by explicitly solving the recur-
rence relations, going from top to bottom (from the highest
coefficient to the lowest). For tf>n we find

ttn =
(2n-2)l

—1)1'
C* 1Q\ /i"» (— I)"*1 p ! i / t i 1 \ (2n—1)1 I(3.19) an., = ——-|_T+(fe + Tj 22nn|(n_1), J ,

3.22n+ ! (n

> (3-23)

and for/, we find
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. < n >
•"•t-n. ==

1 k\
2ann! (ft—4n)l

k\
(3.24)

The succeeding coefficients can be found in an analogous
way, but the calculations become rapidly more tedious for
each successive coefficient. This problem can be solved easi-
ly on a computer with the help of symbolic programming
languages which can be used to carry out analytic calcula-
tions. We note that the leading coefficient in (3.23) does not
depend on the particular index, and it should not. This coef-
ficient was first calculated for the ground state in Ref. 30.

Let us briefly analyze the properties of the coefficients
cJTL,- and A £>_ , [see (3.22)]. The coefficient A £>_,. has a
factor of k \/(k — 4n + 2i)\. The rest of the expression is a
polynomial of degree / in k. In the case of the first excited
state, k = 1, the coefficients are A {"}=0, while for k = 2 the
correction /„ is a constant determined exclusively by the
index n. The coefficient a(

n"L, is a polynomial of degree / and
k; in particular, the coefficient of the lowest degree of x in the
correction <f>n is a polynomial of degree n in k. At large val-
ues of n, we find a(^_, ~»'. Accordingly, while these coeffi-
cients vary with the power at small values of i, their growth
becomes factorial at i~n. In principle, an analysis of the
recurrence relations can yield expressions describing the
asymptotic behavior of the coefficients a("L, and A (

2"J _ , and
thusof/i,,.

A similar procedure could be used to construct a pertur-
bation theory for a system of d coupled harmonic oscillators
perturbed by a polynomial potential. Although the calcula-
tions become more laborious, the first few corrections can
still be found explicitly, and the functional structure of an
arbitrary correction can be analyzed. This program was car-
ried out in Ref. 63 for the case in which the perturbation
potential is a multidimensional polynomial of fourth degree.
One of the results which we wish to emphasize is the appear-
ance of nontrivial phenomena in the transition to an infinite
number of oscillators.

b) Coulomb system perturbed by an arbitrary static multipole
interaction

1) General discussion

In the preceding subsection we considered a harmonic
oscillator perturbed by a polynomial interaction. We dem-
onstrated the algebraization of the procedure for construct-
ing the perturbation theory. In the present subsection we do
the same for a Coulomb system described by the potential

Fn=- (3.25)

(the parameters a and N are introduced for convenience)
perturbed by an arbitrary static multipole potential contain-
ing a finite number of harmonics,

(3.26)

under the restriction

= 2 (3.27)

The algebraization of the construction of a perturbation
theory for the Coulomb problem was mentioned in Refs. 38
and 58 and has been used by various investigators; see, for
example, Ref. 41 (the problem of the screened Coulomb in-
teraction), Ref. 39 (the Stark effect), Ref. 40 (the Zeeman
eifect), and Refs. 38 and 42 (the hydrogen atom in crossed
fields). Excited states have been considered as well as the
ground state. It has been demonstrated in all these studies
that the use of this method makes it a simple matter to find
essentially any desired number of coefficients of the pertur-
bation-theory series.

We begin our discussion of this problem by noting that,
as in the case of a harmonic oscillator, a cancellation occurs
in the expression

-jr (3.28)

where N is some combination of quantum numbers; the par-
ticular combination is determined a little later. If ^0 is a
Coulomb wave function in spherical coordinates (we are not
concerned with the normalization here), given by

(3.29)

(3.29')

then

/<"> = r'£Br,, (2ccr) 17 (6, q>), go = « -f,

where ̂ BM (2ar) is the Laguerre polynomial, and

cos m<p,

are spherical harmonics in the normalization of Bateman
and Erdelyi.56 In this case the parameter N is given by

N = nT + I + 1 (3.30)

and has the meaning of a principal quantum number [see
also (3.25)]; the radial quantum number nr gives us the num-
ber of zeros of the Laguerre polynomial. If we use parabolic
coordinates we can write

N = n, + n2 + 1, (3.31)

where nt and «2 are parabolic quantum numbers. Using
(3.28), we can rewrite (2.28) as

2gnV/0-(A/n-2g0V/n
-*)

= £„-<?„.

We note that/If' from (3.29') satisfies the equation

(3.32)

(3.33)
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2gnV/0- [A/n-2g07/n+

and we state a theorem analogous to Theorem 1.
Theorem 2. The construction of a perturbation theory

for a Coulomb problem with the interaction (3.26)-(.327) is a
purely algebraic problem. The corrections <(>„ and/n contain
a finite number of harmonics with coefficients which are
polynomials in r and which are determined from the recur-
rence relations which follow from Eqs. (3.32) and (3.34).

Proof. We will go through all the details of this proof,
which is very similar to the proof of Theorem 1. We simply
review the most important aspects.

The correction /„ is found from an equation analogous
to (3.13) which follows from (3.34):

n-i

i=0
(3.35)

The right side of this equation can be expanded in a series in
functions of the type/If1 [see (3.29')] with various values of
nr and /. The function Rn is found by requiring that this
expansion contain no terms with Nf > N, where A ,̂- = n'r
+ 1' +1. Once the function Rn has been found, it is substi-

tuted into the equation

We seek a solution of this equation as a series in spherical
harmonics,

.
!, m

(3.37)

It is easy to see that this expansion contains a finite number
of harmonics with coefficient functions <f> £'(r) which are
polynomials in r. The coefficients in (f> Jjf are found from the
obvious recurrence relations QED.

We thus see that the phenomenon of algebraization also
arises in the perturbed Coulomb problem. Since we know
that algebraization occurs for the perturbed harmonic oscil-
lator, however, this fact should perhaps not be surprising:
The Coulomb problem is equivalent to a four-dimensional
harmonic oscillator (see Ref. 59, for example).

We will now demonstrate how algebraization works for
Coulomb problems, considering the Zeeman effect as an ex-
ample.

2) The hydrogen atom in a static magnetic field (the Zeeman
effect)

The study of the deformation of the spectrum of the
hydrogen atom upon the application of a static magnetic
field is one of the oldest problems in quantum mechanics.
Since the problem is substantially three-dimensional, how-
ever, its solution is still far from complete: Even the problem
of classifying the states has not been solved. Only the low-
lying states of the spectrum have been analyzed regularly
(see the review by Garstang60 and the bibliography there).
This problem has recently attracted considerable interest be-

(3.34)

"cause of possible astrophysical applications, and a steady
stream of papers is being published (see, for example, Refs.
18, 40, 60, and 63 and the bibliographies there).

We will look in detail at the situation in the case of a
weak field for a certain class of states, including the ground
state, and we will calculate the coefficients of the perturba-
tion-theory series up to terms ~^* inclusively. For simpli-
city we assume that the atom is spinless.

The problem of the classification of states has not yet
been solved for a hydrogen atom in a static magnetic field.
Consequently, we do not know even the first correction to
the energy for the quadratic Zeeman effect in the general
case. There are, however, several classes of states which are
not degenerate (and which therefore do not mix). In particu-
lar, these states include the extreme and near-extreme com-
ponents of Coulomb multiplets for a zero radial quantum
number:

nr = 0, m = ±1, - 1), (3.38)

where m is the magnetic quantum number (see Ref. 62, for
example). Let us examine this class of states.

The energy expansion is

(3.39)
where 3f is the magnetic field (in dimensionless units),
which is directed along thez axis. The perturbation potential
(3.26) is Y! = <%^(x2 +/)/4, and a = l/N. We wish to find
Elt E2, and E3.

The coefficient of the exponential function for this class
of states, (3.38), is

, 9), (3.40)

and does not change when perturbation are imposed, i.e., we
have/,, = 0 for n > 0. In the exponential function, an arbi-
trary correction contains a finite number of harmonics171:

i=o "'
Using (3.40), we can rewrite Eq. (3.32) for the correc-

tions (f>n as

VftnV/o _E _Q (342)

where Qn is given by (2.13). By virtue of theorem 2 the coeffi-
cient functions are polynomials, and their functional form

2n+l

n, 21 = Jj On, 2i,*r (3.43)
*=max(2,

can be found easily by analyzing the recurrence relations
which follow from (3.42). It should be noted that the polyno-
mial preceding the highest-order harmonic, Y°n, contains
only two terms; that of the next highest, Y°n _ 2, contains
17)This assertion applies to any level of interest, since only the coefficients

of the exponential functions are mixed.
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only four; etc. As in the case of a perturbed harmonic oscilla-
tor, we can find the coefficient functions for the higher har-
monics. Explicit expressions for these functions are given in
Refs.40andl8.

The calculations of the first few corrections in the per-
turbation-theory series are quite simple and are easily forma-
lized for numerical solution. We have used the REDUCE-2
analytic calculation program. Here is the series found for the

1 Rtenergy :

1 108

®LN— /513433
 V4 i 8626423

" 3 I 68040 ~*~ 249480

25985163
"T" 748 440

24851

N-

2785715
49896

183 107
24948

A'2

)*
756

" • . (3.44)

where TV is the principal quantum number (TV = / + 1), and

O for m=±l,
for m =+(/-!)•

A few words are in order regarding the general struc-
ture of the correction En . It can be shown that an arbitrary
term of series (2.10) has the functional form

En = (_i -« (N + 1) P2n-i (3-45)

where P2n _ t (N) is a polynomial of degree 2n — 1. The coef-
ficient of the highest power of this polynomial, N2n ~ ', does
not depend on m, the angular momentum projection, i.e.,
does not depend on the number k, and is positive. At the
nonphysical points N = 0, — 1 the contribution to the ener-
gy from the quadratic Zeeman effect is zero. We wish to
emphasize that En vanishes at N = 0 not only for the states
under consideration here but also for any other states. All the
corrections tj>n also vanish at this point. The nature of this
phenomenon is not clear, but it should be recalled that a
similar situation arises in a study of the anharmonic oscilla-
tor V(r) = r2 + gr* in a ̂ -dimensional space, in which case all
the corrections to the energy vanish at a nonphysical dimen-
sionality of the space, d = — 1 (Ref. 30). In this situation it
turns out to be possible to find an exact solution of the Schro-
dinger equation for the ground state with d = — 2, and an
attempt .has been made to construct a perturbation theory in
the dimensionality of the space, i.e., in the quantity
e = d +2. Unfortunately, it has not been found to solve the
Schrodinger equation with N =0 or N = — 1 in this case.

We turn now to expression (3.44). In the case N = 1 (the
ground state) this expression is the same as the results of the
standard calculations, which are given in Ref. 61, among
other places. With N = 2 and / = 1, however, there is a slight
numerical discrepancy with the result calculated in Ref. 64.
The coefficient of the J%^ term for arbitrary N agrees with
that which has been found elsewhere (see Ref. 60, for exam-
ple).

Let us discuss expression (3.44) and the type of informa-
tion which can be extracted from it. We know that perturba-
tion-theory series (3.44) is divergent; its coefficients increase
factorially, and it has a zero convergence radius.61'62 For
highly excited states, the coefficients of the perturbation-
theory series also depend in a power-law fashion on the prin-
cipal quantum number; they grow. As a result, the range of
applicability of the perturbation theory contracts rapidly
with increasing N. The range of applicability can be estimat-
ed quite simply for JV> 1:

(^Hpr^-tfT- (3.46)

This estimate means that for states with A/^ 30-40 even
standard laboratory fields of 2-4 T are "strong," the pertur-
bation theory is inapplicable, and the situation becomes in-
definite.

c) Conclusion

To conclude this section we discuss the algebraization
of the procedure for constructing a perturbation theory for
other exactly solvable problems. We begin by noting that
essentially all such known problems have the property that a
polynomial which gives the positions of the node surfaces
can be factored out explicitly. This polynomial is usually
given by some hypergeometric function. The factorization
process is carried out in some special coordinates. For exam-
ple, for the Morse potential V(x)=A(e~2a* -2e~a*} the
new coordinates are g = e ~ ax (Ref. 11). The factor which
remains in the wave function after the polynomial has been
factored out, however, is not always an exponential function
of the type in (2.1). This is the situation for the potential
V(x)= — V0/ch2ax. In other exactly solvable problems,
however, this factor is an exponential function in terms of
certain coordinates. It can thus be concluded that if an exact-
ly solvable problem allows a representation of the wave func-
tion in the form in (2.1), and if the potential of the perturba-
tion is a polynomial in the coordinates in which
representation (2.1) is possible, then the procedure for con-
structing a perturbation theory is purely algebraic. This is
the case for the following potentials63:

(3.47)

(3.48)

(3.49)

In (3.47)-(3.49) we have also listed the coordinates in which
the perturbation should be of polynomial form.19' We see

""The calculations were carried out on an ES-1060 computer.

19lBurenin'01 has recently demonstrated explicitly that the procedure for
constructing a perturbation theory for (3.48) is algebraic.
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that, with certain modifications, a polynomial form of the
perturbations will lead to an algebraization in other exactly
solvable problems also. In particular, when the wave func-
tion cannot be written in the form in (2.1), an algebraization
can be carried out in an implementation of Dalgarno's F-
function method.

This concludes our examination of problems in which
the zeroth order approximation is an exactly solvable prob-
lem.

4. ARBITRARY PERTURBATIONS: PERTURBATION THEORY
AND THE VARIATIONAL METHOD

In the preceding section we demonstrate the applicabi-
lity of our approach in situations in which the standard
method, based on the Rayleigh-Schrodinger perturbation
theory, can be used, and we demonstrated the advantages of
our own approach in comparison with the standard method.
Much more common and attractive, however, are applica-
tions in which the standard method cannot be used since the
zeroth order approximation is not an exactly solvable prob-
lem. We have not yet made any use of a powerful property of
our approach: It does not require knowledge of the entire
eigenvalue spectrum of the unperturbed problem. In the
present section we will make use of this property. It allows us
to construct a procedure which converges for an arbitrary
perturbation parameter, choosing the zeroth order approxi-
mation potential almost arbitrarily. On the other hand, it
allows us to evaluate the accuracy of variational calcula-
tions! Furthermore, we have at our disposal a criterion for
judging the "reasonableness" of a particular choice of zeroth
order approximation (trial wave functions) in variational
calculations based on Dyson's argument.1

In this section we describe a regular method for study-
ing the strong-coupling region in quantum mechanics. As
examples we consider several standard problems in quantum
mechanics which serve as test cases for any method.

a) The variational method from the standpoint of
perturbation theory

Since we hve an iterative procedure for finding the
eigenvalues of a Schrodinger operator without knowing the
entire eigenvalue spectrum of the unperturbed problem, we
have a great deal of latitude in the choice of a potential for
the unperturbed problem. We can exploit this flexibility to
write the potential under study, V, as a sum V0 + V\ in essen-
tially any way we wish, so that we can construct a converging
perturbation theory which establishes the relationship
between the perturbation theory and the variational princi-
ple.

We preface the discussion of this question with an ob-
vious comment: Any sufficiently smooth function
i/>0 e L2(R*) is an eignfunction of some state in a potential V0

given by

F0 — £0 = -^-, (4.1)

where E0 is the energy of this state. We now assume that we
wish to find the position of some level in the potential Fby
means of a variational principle and to construct for this

level a class of trial wave functions20' if>0{A )• To determine
how these trial functions correspond to the poentials V0(A ),
we use (4.1). Let us examine a variational calculation from
the standpoint of perturbation theory. The variational ener-
gy is

(4.2)

here H (H0) =p2+V( V0], H0f0 = E0i/,0 and E, = /
X$0(V' — V0)i[>0 is the first correction to the energy level in
the case in which the perturbation potential V\ is V — V0. We
thus find that a variational calculation gives us the first two
terms of the perturbation-theory series [see (2.10)], in which
the perturbation potential is equal to the deviation of the
initial potential from that corresponding to the trial function
i/>0(A ) [see (4.1)]. Evaluating the succeeding terms in pertur-
bation theory series (2.10), E2, E3,..., we find that we can
evaluate the accuracy of the variational calculations, and we
can refine them by an iterative method.21' Furthrmore, by
comparing the potentials Fand F0 we can see just how rea-
sonably the class of trial functions has been constructed (this
point will be explained below).

b) Dyson's argument. How can a converging perturbation
theory be constructed?

We turn now to the equation of the convergence of the
procedure described above, i.e., to the question of just when
series (2.9), (2.10), and (2.23) converge. We will first deter-
mine why perturbation theory series usually diverge.221 As
an example we consider the anharmonic oscillator
V = x2 + gx4 (y0 = x2, V, = x4). Ifg> 0 (Fig. la), there are
an infinite number of bound states in the potential, while at
g<0 (for arbitrarily smallg; Fig. l(b) tunneling occurs; i.e.,
the level energy E (g) changes from real to complex. This as-
sertion means that the function E(g) has a singularity at
g = 0, and since the perturbation theory series is an expan-
sion at the origin, i.e., right at the singularity, the perturba-
tion theory series has a zero convergence radius. This is the
explanation for the divergence of the perturbation theory.
This phenomenon was first analyzed rigorously by Vamsh-
tein65 using the example of an anharmonic oscillator and by
Langer66; they showed that a cut begins for the ground-state
energy at the point g = 0, and they calculated the discontin-
uity at this cut in the limit g—> — 0.

We now understand that one reason for the divergence
of a perturbation theory series is that the perturbation poten-
tial is more singular at infinity than an unperturbed poten-
tial. In this case, there is a fundamental change in the struc-
ture of the eigenvalue spectrum upon a variation of the
perturbation parameter g: A level may become quasistation-

20)Here /I is a set of parameters with respect to which a minimization is
performed. For the discussion below, however, it is unimportant
whether this minimization is performed.

21llf, of course, the perturbation theory series converges.
22)The arguments below are usually called "Dyson's instability argu-

ment."1 He has proved in a similar way that a perturbation theory series
in a diverges in quantum electrodynamics.
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, V(x)

FIG. I. The anharmonic oscillator potential V(x] = x2 +gx4. a—g>0;
b—g < 0. The horizontal line in each part of the figure is a representative
position of one level.

ary, as in the example just described, and it may go into the
continuum. The general recipe for obtaining a convergent
perturbation-theory series then runs as follows32'33'37:

A zeroth order approximation wave function is construct-
ed in such a manner that the potential V0 to which this
wave function corresponds [see (4.1)] reproduces as
many of the characteristic properties of the potential of
interest, V, as possible. Of particular importance is that
all the singularities and the asymptotic behavior of the
original potential be reproduced.
In terms of wave functions, this means that ^0 must

embody as many properties of the true wave function ift as
possible: the behavior at infinity, the behavior at the origin,
the behavior near singularities of the potential, information
about the zeros, etc. It is not difficult to see that this recipe
(in terms of wave functions) is actually the same as that
which is ordinarily followed in constructing a class of trial
functions in the nonlinear Ritz variational method (see
Chapter 9 in Ref. 15 and the excellent monograph by Ep-
stein67).

We turn now the the convergence question, and we state
the following theorem regarding the ground-state case33:

Theorem 3. If the first correction, y,, is a bounded vec-
tor function, i.e., if (1) the condition |yj| <a, holds; if fur-
thermore (2) the condition \i/>^2\S\G(x,x')if'l>\dx<A, holds;
and if (3) we have a\A < 1/8, then series (2.9) and (2.10) con-
verge.

Proof. The proof is by mathematical induction. It fol-
lows immediately from conditions (1) and (2) that all the cor-
rections are bounded vector functions,

n-l

|yil<2Aj] a.o,,.! —a,, n>2,

with

(4.3)

(4.4)

where the number an is a bound on the modulus of the vector
function yn. To find the convergence region of series (2.9)
and (2.10) we evaluate the sum

Using (4.3), we can easily show that

2AS* + fll = 5.

(4.5)

(4.6)

The solution of (4.6) which we want is

„ 1-/1-Moi (4.7)

We have thus constructed majorizing sequences for yn and
En, which converge if

8,4% < 1, (4.8)

proving the theorem.
This theorem is a rather feeble assertion and can be

strengthened considerably. It is nearly obvious that in the
case in which |y0| is an increasing function in the limit
\x —mo, the satisfaction of condition (1) is sufficient for the
convergence of series (2.9) and (2.10). It should be noted that
an analogous theorem can be proved for excited states, in
which case we would replace condition (1) of the theorem by
the condition that the vector function g^ must be bounded.
We note that in Section 3, where we considered problems for
which it was known at the outset that the perturbation the-
ory series diverge in all cases, condition (1) did not hold.

In summary, we wish to emphasize that the question of
the convergence of perturbation theory series is a rather sub-
tle and delicate one. Unfortunately, we know of no construc-
tive results in this field with anything approaching rigor.

c) Examples

We now consider some examples in which the use of
Dyson's argument, along with an appropriate choice of ze-
roth order approximation wave functions, yields highly ac-
curate results quite simply and rapidly.

1) One-dimensional anharmonic oscillator

Let us consider the anharmonic oscillator described by
the potential

V (x) = (4.9)

with n = 2. At sufficiently small values of g we can use ordi-
nary perturbation theory in powers of g, so we will begin by
looking at the region of extremely strong coupling, g—* oo;
i.e., we examine the spectrum problem in the potential

F = (4.9')

That potential (4.9') describes the region of extremely
strong coupling can be seen easily from the rescaling relation
(see Ref. 4, for example) for the spectrum:

(4.10)

where k is the level index.
One of the simplest ground-state functions which sa-

tisfy the requirments listed in Subsection 4b is, for exam-
ple,32

(4.11)

where the subscript specifies the order of the approximation.
This function is the wave function of the ground state in the
polynomial potential
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(4.12)

where the parameter a will be specified below.
We digress somewhat to emphasize an important point:

The exact wave function for the ground state for the polyno-
mial potential (4.12) is given by (4.11). Furthermore, it is
clear that any exponential function of a polynomial with a
negative leading coefficient is the exact wave function of the
ground state for some polynomial potential with definite re-
lations between coefficients. The generalization to the case
of excited states is quite straight-forward: The wave function
must be taken in the form of a polynomial multiplied by an
exponential function of a polynomial; the potential will then
contain poles, which can frequently be removed through an
appropriate choice of the coefficients of the polynomials in
the argument of the exponential function and in the coeffi-
cient of the exponential function. It might appear at first
glance that some new exactly solvable problems could be
sought in this way, but it has not proved possible to find more
than one state for a given potential except in the well-known
exactly solvable cases! Apparently this is an indication that
the other wave functions of the spectrum do not factorize
into an exponential multiplied by another function. All this
activity in searching for exact solutions for polynomial po-
tentials apparently began with Refs. 32 and 68. It continues
at a high level even now (see, for example, Refs. 69 and 70
and the bibliographies there). In particular, eigenfunctions
hve been found for polynomial potentials in the form of defi-
nite integrals.

1.1) The potential V(x)=x2" We assume that the pa-
rameter g is equal to 1 in (4.11) and (4.12). There is an impor-
tant fact to be noted here: Withg = 1, potential (4.12) repro-
duces the behavior of the potential of interest at infinity, so
that it is reasonable from the standpoint of Dyson's argu-
ment. A perturbation potential which is the difference
between the potential under study and potential (4.12) is giv-
en by

' i \x) \n I x I /fl I 2J I ^ a a: . r''!^)

We now substitute (4.11) and (4.12) into (2.15) and (2.33) and
evaluate the corrections yk and Ek. Table I shows the cor-
rections Ek (k = 1,2) found in this manner for the case a = 1
(Refs. 32 and 37). The convergence of the method is seen to
be quite good, especially for the x2 potential. Incorporating
E3 leads to an accuracy better than 1%, even in the worst
case of the x4 potential.

We now minimize the expression (E0 + Et) with respect
to the parameter a (Subsection 4a). As a result we find the
variational value of the ground-state energy with trial func-
tion (4.11). Calculating E2 for a = cmin, we can immediately
evaluate the accuracy of the variational calculation, which
turns out to be at the level of 1%. After determining the
correction E3, we see that the absolute accuracy of the calcu-
lation is ~ 10~4 in terms of the energy (Table I).

We now calculate the energy of the first excited level.
We take the trial function for the zeroth order approxima-
tion in the form

t"' = 3*|>i0), (4-11')

since it must vanish once. It is clear from the symmetry of the
problem (x—* — x) that this vanishing occurs at x = 0. The
perturbation potential is

"-1—2a|zr+1) — < (4.13')

In this case we will not perform a minimization with respect
to a; we give the results calculated for a = 1 (Table I). As in
the case of the ground state, the results are worst for the x4

potential. The reason is that the perturbation potential is
"higher" than in the*6 case. A minimization with respect to
the parameter a greatly improves the accuracy of the calcu-
lations and eliminates the "prominence" of the x4 potential.

1.2) Anharmonic oscillator. The anharmonic oscillator
is one of the oldest problems in quantum mechanics. The
one-dimensional anharmonic oscillator has been studied

TABLE I. Calculated energies of the ground and first excited states in an x2" (n = 2,3) potential.

Potential

Approximation

0

1

2

3

£„ o — <»mln

£1
E0 + E1

-E,
^0 + ̂ +^2

-E»EV+E^+EZ+ES

•^exact

lereamin is that value of the
The values of £raact were four
of the Schrodinger equation.

Ground state

V (x) = x*

1

0. 13359
1,13359
0.04841
1 .08518
0.01542
1.06976

0.47

0,598448
I! 068448
0,007720
1.060728

0.000304
1.060424

1,060362

>arameter a [see (4. 1 1 )]
d by M. S. Marinov an

V (x )= x«

1

0,158409
1.158409
0.010936
1,147473
0,002033
i;i45440

0.85

0,302627
1,152627
0.007319
1.145308
0.000406
1,144902

1.14480246

at which the minimum c
i V. E. Shestopal throug

First excited state

V ( x ) = x"

3

0.94939
3.94939
0.10458
3,84482

3,7996732

>f (E0 + £,)
ti a numeric

Y(x) = x«

3

1.35903
4:35903
0.01927
4. '33976

4.338599

s reached,
al solution
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TABLE II. Ground-state energy for an anharmonic oscillator.

.'
0.1

1
10

100

1000

The norms

' mln

0.77
1.2380
0.86
2,4416
1.41
8.23
2.82

35.146
5.98

160.3500

«,'

0,561738
0,55914111
0:809320
0 8038481
1 ,'51622
1,505310
3.15516
3.132241
6. '74521
6.696134

-AE2'

0.002569
0,00000278
0.005607
0.0000764
0.001150
0.000332
0. '02438
0. '000841
0,05230
0.001877

•i

0.559169
0,55914634
0,803113
0.8037717
1,50472
1 ,504978
3.1307S
3.131399
6.69291
6 i 694257

lization of £ andg is the same as in Ref. 81.(£" = E/2, g' = g/2). The

E' (Ref. SI)

0.559146

0,803/71

1.5U497

3.13138

6 , 69422

upper row corre-
spends to approximation (4.1 1), and the lower row to the analog of the leading log approximation,
(4.40).

most comprehensively and in most detail by Bender and
Wu.2'3 The list of papers on this problem is extremely long.
There has been particular interest in this problem in the past
decade, for many reasons: First, for all its apparent simpli-
city the anharmonic oscillator is not a trivial problem, and it
is frequently used to test new spectrum calculation methods.
In particular, the anharmonic oscillator has very recently
been discussed in connection with various methods for sum-
ming perturbation theory series71"73; modifications of semi-
classical,74'75 variational,76 and moment77 methods; various
perturbation-theory and iteration methods30'33'78"81; etc. A
second reason for the hightened interest in this problem is
that the anharmonic oscillator is a one-dimensional field
theory2 which embodies many problems inherent in realistic
four-dimensional field-theory models. It thus seems impor-
tant to attempt to study these problems on the example of a
rather simple model. Third, the anharmonic oscillator has
important applications in atomic and molecular physics and
also in solid state physics.

Semiclassical methods were used in Refs. 2, 3, 65, 66,
and 82 for a detailed study of the structure of the perturba-
tion theory series in the coupling constant. Simon4 and
Crutchfield82 studied the analytic structure of the Rieman-
nian energy surface as a function of the coupling constant g
and found it to be rather complicated. We will show below
how to construct one version of a converging perturbation
theory for an anharmonic oscillator by the approach of this
paper. We will follow Ref. 33 in this discussion. Various
versions of converging perturbation theories have been pro-
posed previously in several places23' (Refs. 30, 33, 35, 37, 78,
and 104).

As a trial wave function of the zeroth order approxima-
tion for the ground state we take the function (4.11) with
n = 2. The perturbation potential is then

the series

... = a

= m'x* -r^v g i x i vi — ux-) — a,-*-. ,4 j4>

We now develop a perturbation theory, substituting (4.11)
and (4.14) into (2.15) and (2.33). For the energy we then find
23)The converging iterative procedure proposed by Dolgov and Popov30 is

a particular case of the approach of the present paper: the case in which
the unperturbed potential is V0 = V — V'JV/2, and the perturbation
potential is accordingly V\ = V'JV/2 (Ref. 37).

( [(m2 — a*)x*+2 /g*(l — aza)]exp ( — ax* — Z 3 **)

(4.15)

It is easy to see that series (4.15) incorporates many proper-
ties of the actual energy function, and although the expan-
sion for g = 0 contains not only integer powers of g there is
also a cut in the g plane which runs from 0 to — oo. The
discontinuity at this cut becomes exponentially small as
g-^-o.

We now minimize with respect to the parameter a,
evaluate E2 and compare the results with the results of the
numerical integration of the Schrodinger equation. In can be
seen (Table II) that the accuracy of this method is such that
even the simplest trial function, (4.11), can reproduce several
decimal places at both small and large values of the coupling
constant g. Expression (4.15) can be used to study the analyt-
ic structure of the energy as a function of the coupling con-
stant. The incorporation of the higher-order corrections
does not alter the structure of the singularities.

2) The hydrogen atom in static fields. The case of electric field (the
Stark effect)

The behavior of the hydrogen atom in a static electric
field is the first multidimensional problem which we will
discuss. In weak fields, ^50.1 a.u., the level shift is de-
scribed well by a perturbation theory in powers of the field
W, and this theory has recently been analyzed in some de-
tail.83"85'39 However, since the perturbation theory series are
divergent and of constant sign,85 attempts to go beyond the
range of applicability of the perturbation theory by appeal-
ing to various methods for summing the series have been
unsuccessful.

Consequently, calculations on the Stark eifect outside
the range of applicability of perturbation theory are carried
out primarily by various numerical methods,86"89 which,
however, yield inconsistent results on both the level shift and
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FIG. 2. Shift of the ground state energy (e0 = — 1/2) as a func-
tion of the electric field. 1—Calculations from Ref. 87: 2—Ref.
89; 3—Ref. 17.

the level width at fields $ i£ 0.15 a.u. An analytic calculation
for the ground state was carried out in Ref. 17 by a nonlin-
earization method, which was the same as the perturbation
theory within the latter's range of applicability and agreed
with the results of Ref. 87 outside this range. To illustrate
this procedure, we will follow Ref. 17. The various ap-
proaches to the Stark effect are reviewed in detail by Dam-
burg and Kolosov90 and also in a recent paper by Korsch and
Mohlenkamp.103

The Schrodinger equation for a hydrogen atom in a stat-
ic electric field is

where e is the level energy, and % is the electric field, in
atomic units. Transforming to the parabolic coordinates
g = r + z, ij = r — z, and introducing if> = F{§ )G (ij)
X(tft)~in, for the ground state,24' we find the following sys-
tem of equations (see Ref. 11, for example):

where the separation constants a and P are related by the
condition

o + p = 1. (4.18)

The quantities G and & are the analytic continuations off
and a, respectively, along the parameter %:

An important point is a transformation from Eq. (4.17)
to a Riccati equation through the substitution/= F'/F [cf.
(2.4) and (2.5)]:

jr+.i._*|.+ « 0. (4-2°)

We will construct a perturbation theory for this equation. As
a zeroth order approximation we choose a function which
correctly describes solution (4.20) in the limits £—*•<» and

(4.21)

We construct a perturbation-theory series in the deviation
24lThis transformation is required to reduce the problem to a "nearly"

one-dimensional problem, for which a perturbation theory can be real-
ized in quadratures (Subsection 2c).

from./!,:

/©-/o© = S /.©, «= 2 «», e= 2 «„• <4-22>
n=l n=l rt=l

The quantities /„ (g), an, and En are determined in each
successive order by means of a system of recurrence relations

(4.23)

where xn = — (2en + Snl )/4 and <PI= —•

(4.16) -- r. Here 0>, serves as a perturbation potential;

at n > 1, we have <pn = 2,V,I/i(£ Vm_,g).
A solution of Eq. (4.23) which decays as £—»-oo is

xB-q)B— ̂ -), (4.24)

where /ST (f ) = (— ) ( 1 + f f )3/2. From the condition |/"(| )
\3^/

— >0 as I'-̂ O we find

(4.25)

where

Using conditions (4.18) and (4.19), we can expand the
energy eigenvalue:

(4.26)

where 5nl is the Kronecker delta, and the superior bar
means the analytic continuation from % to — gP.

The quantities xn in (4.3) are complex and determine
both the shift and width of the hydrogen ground level. A
reexpansion of 2.xn is powers of ̂  reproduces the series of
the ordinary perturbation theory. The imaginary part of x1 is
exponentially small in the limit &—>0 and differs from the
semiclassical expression91 only in the coefficient of the expo-
nential function. In strong fields we find from (4.26)

[1+0 (g (4.27)

wherec, = - (l/2)(3/2)2/3/r(4/3) andc^O.^. If the se-
ries 2cn converges, then the result in (4.27) contradicts Ref.
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FIG. 3. Width of the ground state as a function of the electric
field. 1—Calculations from Ref. 87; 2—Ref. 89; 3—Ref. 17.
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85, where x ~ <^2/3ln^ was found. It can be shown that our
procedure converges in weak fields, and it appears likely that
it also converges in strong fields.

We have calculated the energy shift and width of the
ground level of hydrogen from the first two orders of this
perturbation theory; the results are shown in Figs. 2 and 3.
Figure 4 shows the ratio of the second-order contribution to
the first-order contribution for the real and imaginary parts
of the energy. We see that the second-order contribution is
small in comparison with the first-order contribution every-
where, demonstrating the numerical accuracy of the meth-
od. These ratios increase in strong fields &, but expression
(4.27) shows that they do not exceed 0.2 in the limit &—*•«>.

3) The hydrogen atom in an arbitrary static magnetic field (the
Zeeman effect)

We discussed the case of weak magnetic fields in Sub-
section 3b2 and showed that the range of applicability of the
ordinary perturbation theory describing the behavior of hy-
drogen in a weak field depends strongly on the degree of

0.4

0.3

0.2

0.1

tiB £

tot
FIG. 4. Ratio of the second-order contribution to the first-order contribu-
tion to the level shift and the level width as functions of the electric field.

excitation of the atom. In the present section we will demon-
strate that our approach can be used to study this overall
problem in a field of arbitrary strength. We will actually
restrict the discussion to a "correct" variational calculation
with a trial wave function which is reasonable in the spirit of
Dyson's argument. We will discuss only the states in (3.38).

A zeroth order approximation wave function which is
reasonable for arbitrary fields should thus correspond to a
potential which has a Coulomb behavior near the origin and
which reproduces the potential of a two-dimensional har-
monic oscillator at long range. The simplest wave function
which satisfies the requirements and which describes states
(3.38) is18

(4.28)

(4.29)

(4.30)

The corresponding potential is

and the energy is

N

n

where the parameter a will be set equal to unity. We immedi-
ately see that his choice of a wave function is a good one: The
deviation of V0 from the actual potential is small not only in
the asymptotic regions but also at intermediate values of r,
and the magnitude of the deviation falls off with increasing
index of the state. Furthermore, the energy E0 in (4.30) re-
duces to the energy for a Coulomb spectrum in weak fields,
while in strong fields it converts into the Landau formula
describing the spectrum of an electron moving in a static
magnetic field.11

We now develop a perturbation theory in the deviation
of potential (4.29) from the original potential. The perturba-
tion potential is

Vi = V — V0 - — cej#r sin2 Q-N~l. „ 3],

From the standpoint of Dyson's argument this is a converg-
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TABLE III. Energies (in atomic units) of the Is and 2p+
tions of the magnetic field.

levels as func-

3K,
a.u.

0
0.1
1
5

20
100

is

Brand! »*

—1
A

15,68
92,74

Kascblev "

-0.999957
—0,66228

2.2396
15,59
92.5223

Gallndo «

-0.99505
-0.66331

2,21382

92,4045

Expres-
sion
(4.32)
with
a= 1

-1
—0.9916
—0,6056

2.392
15.95
93.65

(4.28)
with
minims.

—1
—0,9932
—0,6201

2.387
15.79
92,20

2p+l

daude "

-0,10169
2,08682

13.28*

294,7*

Galindo «

-0,10039
2.37576

14.3397

299.33

(4.32) with
a=\

—0.25— o:o89?i
2,1402

13.453
57.586

296i20

Asterisk denotes results obtained by Larsen.96

ing perturbation theory; the convergence accelerates with
increasing principal quantum number. The first correction
to the energy, E1,, can be reduced to the following form18:

dT, -2

(4.32)

We recall that N is the main quantum number, and
0, \m\=l,
1, |ira| = Z-l.

The expression for (E0 + £,) embodies many characteristic
properties of the actual energy of the level: In weak fields %f
it gives a correct description of the linear Zeeman effect,
although the coefficient of ̂  differs from the actual coeffi-
cient by a factor of two. In the limit SSf—»-oo, in which the
Coulomb part of the potential is unimportant, it gives a cor-
rect description of the spectrum of an electron in a static
magnetic field, adding to it some corrections logarithmic in
the field. In the case 3%^ = 0, there is a singularity which
leads to a divergence of the perturbation theory series in the
field. As in the case of an anharmonic oscillator, there is a cut
in the complex 3^ plane, running from §V^ = 0 to — oo.
Avron62 has calculated the discontinuity at this cut in the
limit S^^- — 0 and has found it to be exponenetially small.
Expression (4.32) also contains a cut [0, — oo); the discontin-
uity is exponentially small in the limit J^—»• — 0, although

the coefficient of the exponential function does not agree
with that derived by Avron.

In addition to its advantages, the expression for
(E0 + £\) has some disadvantages. Odd powers of J?" arise in
the expansion of this expression in powers of 9F, but an a
priori inspection of the situation indicates that they should
not. It can be shown, however, that incorporating the follow-
ing corrections (E2,E3, etc.) successively eliminates these odd
powers. In the limit <^—»oo an asymptotic term ~ln2^
following the leading terms does not appear, and the expan-
sion begins with the term ~ln^. This defect is also elimin-
ated by the higher-order corrections. Nevertheless, expres-
sions (4.30) and (4.32) give a highly accurate description of
the situation at any value of 3F. Table III shows results cal-
culated from these expressions for states with N =\ and 2
and with nonnegative angular momentum projections. In
strong fields the field dependence of the energy becomes
nearly linear, but none of the states considered goes into the
continuum; i.e., their energies remain below the energy of a
free electron in a magnetic field. Table III compares the re-
sults with the calculations by other investigators; there is a
fair agreement. We will discuss the accuracy of our calcula-
tions below; at this point they may be regarded as variational
calculations with trial wave function (4.28).

How are the Coulomb states (weak fields) related to the
states to a two-dimensional harmonic oscillator (strong
fields, the Landau regime)? Expressions (4.30) and (4.32) im-
mediately tell us which states correspond to which. There is
a complete agreement with the correspondence scheme giv-
en in the review by Garstang60 for the first few excited states.
Our analysis yields some more general results. An obvious
result is that all the low-lying components of multiplets with

TABLE IV. Crossings of various levels found from expression (4.32)

id1;,1
3d+2
4f+2
4f+s

3d_z

0.062

3d_i

0,090

4f-3

0,087
0.015
0.011

4f-2

0,119
0,021
0,013

5g-4

0.105
0.023
0.016
0,0042
0,0035

5g-3

0,137
0.030
0.019
0.005
0,0040
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m = — I, — I + \ go into the zeroth Landau band, while the
upper components go into various Landau bands. Accord-
ingly, all possible level crossings occur. In particular, all the
levels with m = —I, — I + 1 at />2 (N>3) cross the 3p+l

level; at />3 (7V>4) they cross the 3d+2 and 3c?+1 levels; at
/>4 (7V>5) they cross the 4/+3 and 4/+2 levels; etc. There is a
true crossing of levels, since the levels have different symme-
tries by virtue of the conservation of magnetic quantum
number. Table IV shows the positions of the first few cross-
ings. The crossing of the 2p + l and 3d_2 levels occurs in
fields on the order of 108 G.

Since the projection of the angular momentum is an
exact integral of the problem, the upper and lower compo-
nents of the multiplets are related by the obvious condition

(4.33)

which holds for all fields. Condition (4.33) yields another
exact relation:

A£;r = A£r-A£r^1=6+EI^6-CI = 2^, (4.34)

where S + E, = E f — E ™ " ' is the distance between the up-
per components, and 8 — Et=E j~ m + ' is the distance
between the lower components, for states (3.38). The right
side of (4.34) does not depend on the principal quantum
number N. The quantities S ± E, may prove useful for identi-
fying spectral lines. It is easy to see from (4.30) and (4.32)
how these quantities depend on the field: While they are
essentially equal in weak fields, 8+Et =S^E,, since the
splitting is proportional to the field, a deviation from this
equality sets in with increasing <%"-. S+Ei >S~E, . At ̂ ^ 1
we find S+E, = 2^-O(\n^]. This effect has been ob-
served experimentally,92 particularly clearly for states with
N = 2. The situation is shown schematically in Fig. 5.

The situation at large values of the principal quantum
number is quite interesting. A study of expressions (4.30) and
(4.32) yields the following expression for the extreme compo-
nents a

(4.35)

where e = 2.718 . . . . At large values of N the Landau re-
gime thus sets in quite rapidly. Since the correction to the
Landua formula is negative, the levels never go into the con-
tinuum. The levels approach the continuum boundary in a
power-law fashion, more rapidly, the stronger the field. We
wish to emphasize that taking the limit of strong fields does
not commute with taking the limit of high excitations.

How accurate are these results? We have used the first
two terms of the perturbation series everywhere above; this
approach is equivalent to carrying out a variational calcula-
tion (as discussed above). Since Dyson's argument gives us
faith in the convergence of the perturbation series, the calcu-
lation of E2 not only gives us a term in this series but also
allows us to evaluate the accuracy of the variational calcula-
tion with trial function (4.28). There is an important circum-
stance to be noted here: Since the node surfaces do not be-
come deformed, the second correction to the energy is
always negative [see (2.32)], so that our results on the state
energies (E0 + Et) are upper limts. To calculate E2 we need
to know the correction ^, [see (2.29)]; i.e., we need to solve
the electrostatic equation (2.24). To do this we use the fol-
lowing iterative procedure: We find the asymptotic expres-
sions for the function

and we construct the interpolation function

Pi ~9.t9.N + 1) I + 2 ( 2 N + i) N (I— | ft |)J ' (4-37)

FIG. 5. Distance between the upper and lower components of the multi-
ple! in weak fields (a) and strong fields (b).

Adopting (4.37) as a zeroth approximation, we substituted it
into (2.24). After one iteration we see that it is small in com-
parison with (4.37). Substituting (4.37) into expression (2.29)
for E2, we find an estimate of E2. Carrying out this procedure
for JF = 1, we find that the relative accuracy of our calcula-
tions is of the order of 10 ~ N.

A detailed variational calculation can be carried out by
using (4.28) as a trial function and leaving a as an adjustable
parameter. Table HI shows the results of a minimization for
the ground-state energy. We note that a should be under-
stood as a parameter which is a measure of the screening of
the charge of the proton. The screening increases with in-
creasing field.

5. QUANTUM-MECHANICAL ANALOG OF THE LEADING LOG
APPROXIMATION

In this section we would like to propose a new method
of continuing the results which hold in the weak-coupling
region into the region of strong coupling and large perturba-
tions. This method is radically different from the Fade,
Pade-Borel, and other methods which are ordinarily used in
these situations; it is essentially a close analog of the leading
log approximation of quantum field theory. Accordingly,
before we construct and discuss this approximation, we will
briefly review the leading log approximation itself.

The leading log approximation is one of the methods
most commonly used for studying renormalizable models in
quantum field theory. It can be summarized as follows: The
contribution of any n-loop perturbation-theory diagram is
represented by a polynomial in the logarithm of the momen-
tum plus power-law terms. The leading log approximation is
the sum of the highest powers of the polynomials. The range
of applicability of the leading log approximation is estimated
by requiring that the term in the polynomial with the next-
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TABLE V. Calculated values of the first four levels for an x4 potential with the analog of the leading
log approximation used as the zeroth order approximation [see (4.40)]

Level

Approximation

0

i

2

¥Z>at

h(*)
EI

— Et
El + E*

*«,

Zeroth

1.003960
1
0
0
1,0606687
0,0003010
1,0603677

1,06036211

First

1.431950
x
0
0
3,8002786
0,0006056
3.7996729

3,79967315

Second

1.800056
2. 997103- x*— 1
0'

0.007604
7,4567270
0,0010410
7.4556860

7,45569862

Third

2,1223
x (1,166267 -x>— 1)
0

0.004420 x
11,6463337

0,0016802
11,6446535

11.6447475

to-highest power be small in comparison with the term with
the highest power. In all the calculations carried out to date
the sums over the leading powers of the logarithm have a
finite convergence radius,251 although we know quite well
the perturbation theory series in the same theories diverge,
having a zero convergence radius. The leading log approxi-
mation thus singles out a converging subseries from a diverg-
ing series with factorially increasing coefficients. It can be
suggested that the divergence of a perturbation theory series
is manifested in a divergence of the sums over the lower pow-
ers of the logarithm. Here, however, we have the question of
whether it is legitimate to change the order of the summation
and just how valid the approximation itself is. At present we
do not have ironclad answers to these questions.

This has been the situation regarding the leading log
approximation in quantum field theory. In quantum me-
chanics we do not have a direct physical analog of the lead-
ing log approximation of quantum field theory, but it is pos-
sible to construct an approximation which is mathematically
similar to it. Since quantum mechanics is much simpler than
quantum field theory, this approximation can be studied in
detail.

The approximation is based on the phenomenon of the
algebraization of the procedure for constructing a perturba-
tion theory in the weak-coupling region (Theorems 1 and 2 in
Section 3). We have already seen that the corrections $n (x)
are polynomials, and there is no particular difficulty in find-
ing the coefficients of the higher-order powers for essentially
arbitrary perturbations. The perturbation theory series
which incorporate only the highest powers turn out to con-
verge. The idea of the approach is to use these sums as zeroth
order approximations for a perturbation theory. All this will
be explained on a simple example.

We consider a one-dimensional anharmonic oscillator,
(4.9), with n = 2. It was shown in Subsection 3a2 that the
correction <f>n (x) is a polynomial of degree 2n + 2 [see (3.22)],
which we write in the form

2i=0 (4.38)

where the coefficients a(?,a{?_ l , and a(?_ 2 are known [see
(3.23)]. It is easy to find a sum of the perturbation theory
series over the higher powers of the polynomials:

(4.39)

This series converges if \gx2\ < m2, and the approximation of
the higher powers of the polynomials is meaningful if x £ 1.
Consequently, if we understand (4.39) as the analytic con-
tinuation along x of the sum of a series of a perturbation
theory in the higher powers into the region \gx2\>m2, then
0 (x) should be a correct approximation of (ft (x) in this region.
This is what we actually find. Furthermore, ^ (x) reproduces
the correct asymptotic behavior in the limit x—*0.

As a zeroth order approximation wave function for the
k th level we thus use

ifo*' = Ph (x) exp [ — $ (x)], (4.40)

where Pk (x) is a polynomial of degree k, which has k real
roots. The potential corresponding to function (4.40) is

(4.41)

where g0(x) = (m2 + gx2)1'2. Potential (4.41) obviously gives
a correct reproduction of the asymptotic behavior of the
original potential as|x|—>-oo. The perturbation potential is

_

25lAs do the sums over some of the powers of the logarithm following the
leading powers.

(4.42)

At first glance, the perturbation potential K(*' looks terrible:
It contains simple poles. However, precisely the same poles,
with the same residues, are incorporated in V(£\ They ac-
cordingly cancel out. Nowhere in the construction of the
perturbation theory do divergent integrals arise. The poten-
tial V(o\x) reproduces the behavior of the original potential
V(x) in the limit |je|—*•<». Consequently, the perturbation
theory series converges from the standpoint of Dyson's argu-
ment.

We will refer to this procedure of using construction
(4.39) and developing a perturbation theory in the potential
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TABLE VI. Energy of the second level of an anharmonic oscillator, with the analog of the leading
log approximation used as a zeroth order approximation [see (4.40)]. The normalization is as in
Table II; x0 and A ,x0 are the position and deformation of the zero of the wave function.

«

0.1
1

10
100

1000

amln

1.4817
3.6945

14.009
62,200

286,555

xo

0,6306
0.4902
0.3469
0.2383
0.1626

— AIXO

0.0010
0,0013
0.0014
0,0009
0,0006

El

3.1386452
5,179652

10.34831
21.90991
47.02409

-Es

0.0000269
0.000452
0,00175
0,00371
0.00745

Ei + Ea

3.1386183
5.179200

10,34656
21,90619
47.01663

fromRef. 81

3.13862
5,17929

10.3471
21^9069
47.0173

of the zeroth order approximation, (4.41), everywhere as the
"analog" of the leading log approximation.

We have calculated the energies of the first four levels of
the oscillator (4.9); Table V shows the results calculated for
the potential V(x] = x4 [an oscillator in the region of ex-
tremely strong coupling; see (4.10) and the discussion in Sub-
section 4cl]. We see that El (from the variational calcula-
tion) gives us an absolute accuracy of ~ 10~3-10~4, while
the incorporation of E2 (the correction to the variational cal-
culation) leads to an absolute accuracy of ~ 10~5-10~6. An
estimate of the accuracy in the spirit of Theorem 3 shows
that incorporating E3 improves the absolute accuracy to
~ 10~7-10~8. We wish to point out that the absolute accura-
cy of the calculation depends only weakly on the level index.
Tables II and VI show results calculated for the zeroth and
second levels for various values of the parameter g by the
first two approximations. The results agree with the results
calculated in Ref. 81. The absolute accuracy of the calcula-
tions is essentially independent of g, oscillating around
10~6-10~7. Table II can be used to compare the results cal-
culated for the ground state in this approximation with the
results calculated in the approximation based on the use of
wave function (4.11). The analog of the leading log approxi-
mation is obviously preferable.

We conclude this section with a few words about the
analog of the leading approximation in the case of a multidi-
mensional, spherically asymmetric problem. Here we imme-
diately run into some difficulties, which we will demonstrate
using the example of the Zeeman effect. It has been shown
earlier that the correction $„ is of the form in (3.41). We use
(3.43) and write (3.41) in the form

= S n SB,. ,.,8111*8. (4.43)

To construct the analog of the leading log approximation we
must calculate the double sum

00 00

T ^J • " n *

and we immediately encounter a problem. On the one hand,
it is a straightforward matter to find the first few ordinary
sums, e.g.,

nan, „. 2n+1 sin*" 8 = -g- sin' 6,

(4.45)

1 _9i —
<gg4'"8 sin' e1 i

but it can be shown rigorously that !j>n _ l cannot be written
in finite form.26' The function ̂ 0 has the correct behavior at
r—»0—the same behavior as that of a Coulomb function. In
this limit we can ignore the contributions from ^,,^2, etc. In
the limit r—* co we find ^0—*J%?(x2 + j>2)/2\T, corresponding
to a two-dimensional oscillator, but its strength is smaller by
a factor of 1/VT than that inthe original potential. It can be
shown that the sums $, and ̂ 2 are of the same order of mag-
nitude as ̂ 0 in the limit r—xa.

The only constructive way out of this situation is to
modify 00 to reconcile it with the oscillator, writing

or

1(2) 2r ./. aagV - 4 9
==~N~V i + lftF^8111 °«

(4.46)

(4.47)

Either version is acceptable. If we carry out a variational
calculation with N as an adjustable parameter, the accuracy
will be much higher than in a calculation with the function
(4.28) (see Table VII).

We can thus draw the following conclusion: When an
analog of the leading log approximation can be constructed,
the calculations will be quite accurate. If it is a difficult mat-
ter to construct an analog of the leading log approximation
completely, this approach will suggest an appropriate trial
function.

6. CONCLUSION

We have described an unconventional approach to the
problem of the eigenvalue spectrum in quantum mechanics,
an approach which might be considered a strong-coupling
theory. It has many advantages: Its implementation is sim-
ple and transparent, it does not require knowledge of the
entire eigenvalue spectrum of the unperturbed problem, it
reveals the accuracy of variational calculations, and in some
cases it leads to an algebraization of the procedure for con-
structing the perturbation theory. The idea of comparing
potentials—the original potential with that corresponding
to the zeroth order approximation trial function—instead of
comparing wave functions proves extremely useful. We thus
acquire a means for judging the reasonableness of the zeroth
26)The procedure is as follows: Working from the recurrence relations, we

write an equation for </>„ _,, which turns out to be a Riccati equation
which does not fall in the class of equations whose solutions can be
expressed in finite form.
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TABLE VII. Energy of the Is state for <#* = 1 according to calculations from (4.28)
and (4.46) without and with minimization with respect to a.

Eq. (4.28)

a = l
—0.6056

a = amln = 0,879
-0.6201

(4.46)

a = l
-0.6352

« = «mm = 1,1359
-0,6543

Ace.
Ref. 93

—0.6623

order approximation. The many examples above have dem-
onstrated the power of this approach, for all its simplicity,
and in essentially no case have we found negative results.
Two-center problems have also come under study recently:
the hydrogen molecular ion and the hydrogen molecule in a
static magnetic field.105 The simplest trial functions, which
are obvious generalizations of (4.28), have led to a unified
description of the entire range of fields which occur in na-
ture, up to 1012-1013 G. The results are in excellent agree-
ment with earlier calculations (for the H2

+ ion), carried out
by far more complicated and refined methods, while for the
H2 molecule the results are the first available at fields above
109G.

I believe that this approach has an important feature. It
could be applied to the more complicated many-body prob-
lems, and an attempt might be made to take a look at field
theory from the stand-point of quantum mechanics. In parti-
cular, it would be interesting to analyze the three-body prob-
lem in terms of perturbation theory by this approach. Rela-
tivistic generalizations have now been proposed to both the
case of the Klein-Gordon equation and the case of the Dirac
equation.97'98 It would clearly be interesting to look at scat-
tering problems by this formalism. We should also empha-
size the attempts made in Refs. 106 and 107 to develop a
similar approach to problems in field theory, where the
original action S is broken up into a nontrivial sum S0 + S,,
and a perturbation theory in Sl is developed. An important
condition on the partitioning here is that it be reasonable
from the standpoint of Dyson's argument.

There are, of course, many difficulties. In practice, for
the Laplacian in a curved, conformally planar space which
even comes close to being one of the nontrivial Green's func-
tions we do not know a single Green's function which we
need for a nontrivial realization of this procedure in the mul-
tidimensional case. For complicated problems, the proce-
dures for constructing the zeroth order approximation wave
functions are far from simple, especially in multiple dimen-
sions. There are also some purely mathematical problems. In
particular, it is totally unclear how to construct zeroth order
approximations for the excited states in multidimensional
problems and how to go beyond the limits of variational cal-
culations, since the state classification problem has not been
solved. In this connection it would be interesting to study at
least a very simple problem in which a level quasicrossing
occurs, e.g., the two-dimensional anharmonic oscillator.

I would like to express my indebtedness to V. L. Ginz-
burg for suggesting this review. I also wish to thank K. G.
Boreskov, A. D. Dolgov, Ya. B. ZePdovich, A. B. Kaidalov,
Yu. A. Simonov, and especially K. A. Ter-Martirosyan for
useful discussions and interest in this study.

APPENDIX
Electrostatics with a Gaussian dielectric permittivity

To solve the electrostatic problem with a Gaussian di-
electric permittivity

/ A i \

we use Eq. (2.12), in which we immediately incorporate the
potential condition (2.6). Recalling that y0 = 2ax, we find
that the original equation transforms to

(A.2)

where qn (x) is some function which is related in an obvious
way to the charge density, and <f>n(x) is a polynomial
(yn = V(f>n; for convenience, we will omit the index n below).
There are various ways to solve this equation, but the sim-
plest and most elegant is as follows: We adopt the similarity
transformation x—*xt, and we note that the operator

is homogeneous. Equation (A.2) then becomes

(A.3)

(A.4)

we seek a solution of this equation which has the form of a
function of the product xt. To find this solution, we use
Fourier transforms in the variable x. As a result we find the
equation

dt
(A.5)

where/? is the variable which is the conjugate of x, and ̂  and
q are the Fourier transforms of the function being sought and
of the right side of Eq. (A.4), respectively. After some simple
and not very lengthy calculations, we find that the solution
of Eq. (A.2) is

(i+a)<*~2)/2

-

(A.6)

0 (*)= Ax'q (x') dt
b

X exp [ - ( /ix -

The electric field corresponding to this potential is

y= Ax'q (x') df
o

x'), (A.7)

and gives us the expression which we are seeking, (2.20).
The equations derived here are interesting from several
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points of view. First, they give us a solution of a nontrivial
electrostatic problem. Second, from the standpoint of gravi-
tation, this is a conformally planar world which is closed,
since the integral of the metric tensor converges. Third, the
equations with the dielectric permittivity (A.I) may be useful
for constructing a perturbation theory for quasistationary
states in which a plays the role of a parameter for the regu-
larization of the resulting integrals (see the paper by Zel'do-
vich" and the monograph by Baz' etal.,24 §6 in Ch. 7). Final-
ly these equations are of course important for implementing
the approach described in the present review.
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