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The use of two of the most often employed forms of the Hamiltonian describing the interaction of
atoms and molecules with an electromagnetic field is examined using the example of spontaneous
emission. It is shown that formally the same initial state corresponds in the cases of different
Hamiltonians to physically different initial conditions: a stationary Coulomb field exists in the
initial state in one case and a nonstationary field, arising upon sudden excitation of the atom,
exists in another. The differences in the initial conditions determine the differences in the photon
spectra arising upon subsequent emission. The choice of initial conditions in real situations can be
made by making a physical analysis of the excitation process. The Hamiltonian is transformed
from one form to another. It is emphasized that the Hamiltonians are equivalent only if the states
are correspondingly transformed. The Lamb-Retherford experiment is analyzed qualitatively.
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1. INTRODUCTION

Quantum electrodynamics developed primarily as a
theory of scattering, i.e., the initial conditions in the theory
were imposed in the limit f~> — oo . There exists, however, a
wide range of problems in which the initial condition must
be imposed at some definite moment in time, for example, at
t = 0. The role of initial conditions in the problems of emis-
sion from atoms and molecules or, more generally, in prob-
lems of quantum electrodynamics, has not been adequately
studied. In this paper we call attention to one aspect of this
problem, related to the choice of one of two different forms
of the Hamiltonian describing the interaction between atoms
and the electromagnetic field.

The first form of the Hamiltonian is as follows

the leading (linear with respect to e) term of the atom-field
interaction in the Coulomb gauge is equal to

-— pA(r) .
m

The second form of the Hamiltonian, which we shall not for
the time being write out completely, is as follows

-

As we can see, the unperturbed part in the second form is the

same as in the first form, but the term describing the interac-
tion of the atom with the field is equal to

-erE-L. (3)

Already in 1931 Maria Goeppert-Meyer1 examined the ca-
nonical transformation of the Hamiltonian (1) which leads to
the interaction of atoms with a field in the form (3). This
transformation was performed only in the dipole approxi-
mation and with an unquantized field. It was later examined
in Ref. 2, where the advantages of the second form, involving
the elimination of some low-frequency divergences, were
pointed out. Then, in Ref. 3, based now on the quantum
theory, a unitary transformation corresponding to the classi-
cal canonical transformation was established:

H' = S-*HS, (4)

where S is the transformation operator (see below). Based on
the existence of the canonical transformation from one form
to another and on the fact that both forms follow from Max-
well's equations and the equations of motion of the electron,
there was complete confidence in the equivalence of the two
forms of the Hamiltonian, when in 1947-1948 W. P. Lamb
showed, in a well-known series of papers4 on the measure-
ment of the Lamb shift, that some of the spectral distribu-
tions which he measured are described better theoretically if
the form (3) of the interaction Hamiltonian is used. This
demonstrated for the first time that the two "theoretically
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equivalent" forms of the Hamiltonian used in ordinary
quantum-mechanical calculations, for example, in calcula-
tions of the shape of a spectral line, lead to different results
and that these results agree with experiments only for one of
the forms, namely, for form (2). In essence, a paradox, which
gave rise to a series of papers5"8 expressing a wide spectrum
of opinions about its nature, appeared.

The paradox is easily resolved, at least in the case when
both the field and the atoms are described quantum-me-
chanically. Indeed, in quantum mechanics the Hamiltonian
describes the variation of a state with time:

(5)

where ]i/>0) is the initial state of the system. As long as spon-
taneous emission is studied, as in this paper, |^0) = \b, 0)
refers to the excited_state of the atom \b ) and the vacuum
state of the field, i.e., zero photons |0). In order that relation
(5) be valid over long time intervals At, both the Hamiltonian
and the state are usually described in the interaction repre-
sentation. For our purposes, however, this circumstance is
not important and we shall ignore it.

The probability amplitudes of the transitions are ob-
tained if the relation (5) is multiplied on the left by the state
<«| belonging to some complete set of orthogonal states:

Evidently, the transition probability amplitudes M do not
change if the entire equality (6) is subjected to a unitary
transformation:

As we can see, under a unitary transformation described by
the operator S, both the Hamiltonian (4) and the states

UO = S-'l1>o>, < n ' | = < n | S , (7)
must be transformed. This resolves the paradox, since the
states, and in particular the initial state \if>0), are not trans-
formed according to (7) (see Ref. 4) and the untransformed
states are used. Naturally, in this case, the unitary equiv-
alence of the Hamiltonians breaks down and different com-
putational results are obtained.

The resolution of the paradox does not however, ex-
haust all problems. Indeed, the reluctance to transform the
states, and in particular the initial state, can be understood
as follows. Since the operator S, as will be evident below,
contains the photon creation and annihilation operators, the
transformed states correspond to the presence of photons in
the initial state but not in the vacuum state. Since we are
studying spontaneous emission, i.e., the process of photon
creation, the presence of photons in the initial state seems
illogical. On the other hand, it seems natural to take as the
initial state the vacuum state of the field, i.e., the untrans-
formed initial state.

The use of untransformed states with the transformed
Hamiltonian means that the quantity

where

HO = S |1>o>, (n"\=(n \ S-i, (8)

is calculated, i.e., it may be regarded that the old Hamilton-
ian is used with the new initial conditions. The question of
the representation of the Hamiltonians in two forms there-
fore reduces to a change in the initial conditions, and it is
important to clarify the nature of the state S \i[/0) and how it
differs from \if>0).

A second question of interest is: how should the pho-
tons in the state \if>'0), which is equivalent to the state |^0>
with no photons, be interpreted? As we shall see, both these
questions have essentially a single answer. In Sec. 2, we shall
study the state |$,' )• f°r this, we will have to find the average
value of the electric field in this state.

2. TRANSFORMATION OF THE ELECTRIC FIELD

We shall assume that the states | $>' ) and | ̂ o) are repre-
sented by the average values of some observables in these
states. In particular, we will be interested in the average val-
ue of the electric field E. Naturally, the average values of
observables by no means exhaust the states \i/>o). and IV'o).
For example, a knowledge of the average value of the field
says nothing about the average value of the square of the
field, etc. As we shall see, however, the average values of the
field will already clearly demonstrate the difference between
the states |$,') and \i/>0).

In the Coulomb gauge, as always, the electric field con-
sists of transverse E1 (R) and longitudinal E11 (r, R) parts (the
longitudinal part is a function of the coordinates as well as of
the point of observation R). We shall first examine the trans-
verse field in the state |$,' )• Its average value equals

E1 (R) |

We can therefore first transform the field

and then average it over the old state }i/i0).
The unitary operator S has the form1'-3

(R) S I

S = exp lie j dxP (r, x) A (x)],

where

P(r, x) = r l — -

(9)

(10)

(the operator V refers to differentiation with respect to x and
A(x) is the vector potential. The form of the operator S is
obtained in Ref. 3 from the condition that the transforma-
tion (4) give the same result as in the canonical Goeppert-
Meyer transformation.1 The vector field P(r, x),2) which de-
pends on the position vector of the electron r as a parameter,
can be represented in the form

= -nr<«"|ff K>,

"The sign in the exponent of the operator £ in the paper by Power and
Zienau is not correct (Ref. 3, p. 450).

alt is incorrectly stated in the paper by Power and Zienau that the field
P(r, x) satisfies the equality j = P(r, x), where j(r, x) is the current.
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P(r, x) =

X V(r, x )= r [F ( r , x) — V (t, x — r)], (11)

where f is the unit vector corresponding to the direction of r
and V (r, x) is determined by the condition

(rv) V (r, x) = 6 (x).

The function V (r, x) can also be represented as

and

V (r, x) = 0 (x i ! )6

where

x = x» S x» || r, X-LJ_

The last expression for V (r, x) permits giving a simple phys-
ical description of the field P(r, x) which we have not en-
countered in the literature, making it possible to perform
calculations without using multipole expansions. The field
P(r, x) is nonzero (equal to infinity) in a narrow (infinitely
narrow) tube, which is oriented away from the origin of co-
ordinates toward the point at which the electron is located,
and is oriented along the tube (Fig. 1). This field must be
viewed as a generalized function of x; it can enter into the
final expressions only as an integrand in an integral over x.

The field P(r, x), just as, in general, any field, can be
decomposed into rotational and irrotational parts. An im-
portant property of the field P(r, x) is that its irrotational
part coincides to within a factor of — 4we with the total
Coulomb field of the nucleus and of the electron, when the
former is located at the origin of coordinates and the latter is
located at the point r:

E» (r,| R) = —4jteP« (r, R). (12)

To separate out the longitudinal part of the field P(r, x),
we shall use the well-known relation

Pi (r, R)= J

where

FIG. 2. The field P11 (r, x).

(10) and integrating by parts, we obtain

which coincides to within a factor of — 4ire with the Cou-
lomb potential of a nucleus located at the origin and of an
electron located at the point r (Fig. 2). We now have enough
information to carry out the transformation of the field:

E^' = S-1E*- S .

For this, we shall use the well-known operator relation

e*Be-* = B+\A; B]+±-\A; [A; B]]

+ -5J-M; [A; [A; B}]]+ ... (13)

and we shall calculate the first commutator in this expres-
sion for the case under study:

-ie dxP(r, x)A(x) ; E1(

I x—R

Since the commutator in the last expression is equal, to with-
in a factor of 4vn' to the so-called transverse 8 function
<5^(x-R)wehave

is the so-called longitudinal S function. Substituting here ~~4ne 2 } dxF>- ( r> x) 6^ (x —R)

FIG. 1. The field P(r, x).
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= - 4neP1 (r, R) = - 4ne [P (r, R)-P!i (r, R)];

the field Pi(r, R) is shown in Fig. 3. It is evident from here
that all higher-order commutators in (13) vanish, and the
transformed field therefore has the form

E1'=EJ-(R) — 4jie[P(r, R)

-P" (r, R)l- (14)
We shall now examine the Coulomb field. The Coulomb
field is not described by a Hamiltonian. Under quantization
it is eliminated in the transformation from the Lagrangian
description to the Hamiltonian description,9 since it is not a
real Hamiltonian variable (the momentum conjugate to the
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adding (14) and (16), we obtain the transformation of the
total field

E' (r, R) = S-*E (r, R) S = - 4rteP (r, R). (17)

FIG. 3. The field P^r, x). .

Averaging this field over the vacuum state and over the ex-
cited state of the atom (for example, over the p state), we
obtain the field pattern shown in Fig. 4b. The average field in
the transformed state, as already mentioned, equals the Cou-
lomb field (Fig. 4a), since due to the nonlinearity with respect
to_ the creation and annihilation operators we have
<E1)=0.

We thus see that the average field in the states
|^0> = \b, 0) (Fig. 4a) and |^> = S \b, 0> (Fig. 4b) differ in
an essential way. The transformation under study actually
eliminates the external part of the Coulomb field, and the
remaining part of the field transforms in such a manner that
Gauss's theorem would be satisfied. It should be noted that
with respect to the operators aj^ and ow the operator 5 has
the form

Coulomb potential equals zero). However, the elimination of
the Coulomb field from the Hamiltonian apparatus by no
means indicates that this field does not exist physically. Ac-
tually, the equations following from the Hamiltonian must
be supplemented by an independent equation for the scalar
potential

(15)Aq> =

or, if the electron is assumed to be a point particle,

E" ,(r, R) = — grad <f = e gradR - — e grad -r-R|

where the first term represents the Coulomb field of the elec-
tron and the second term represents the Coulomb field of the
nucleus. The Coulomb field of an atom (it is also the average
total field in the transformed state) in the/7 state is shown in
Fig. 4a. Since this field depends only on the coordinates of
the electron and therefore commutes with the exponent in
(9), under the transformation

(16)Er(r , R) = S-1E11 (r, R)5 = E" (r, R)

it remains unchanged. According to (12),

E" (r, R) = -4neP« (r, R);

FIG. 4. The electric field in the states \b, 0> (a) and5 \b, o) (b). \b > is the/>-
state of the excited atom.

i.e., it creates a coherent state of the field from the vacuum
state. This is entirely natural, since the created field must
compensate the unquantized longitudinal field. Therefore,
emission when the initial state is |̂ j| > = S \b, 0) begins with
a nonstationary Coulomb field, in contrast to the case when
the initial state is |^0) = \b, 0), in which the Coulomb field
is stationary. The situation here is the same as in the case of
the free motion of an electron. V. S. Ginzburg10 showed that
if the equilibrium field is chosen as the initial state for the
free electron, then the electron does not radiate; with a non-
stationary field, however, the electron does radiate at the
initial moment, as if it were enveloped by a stationary field.
In the case under study the electron radiates in both cases,
but, as will be shown in Sec. 5, it does so differently.

Thus the main difference between the states |^0) and
|^o) = S |^0} has been clarified and the answer to the first
question posed at the end of Sec. 1 is clear. The answer to the
second question is also clear. Indeed, the state |^o)
= S~l\if>0), which is equivalent to the state | \l>0) , must con-

tain a packet of photons forming a rotational field, which
together with the field — 47reP leads to the same stationary
Coulomb field as in the state |^0) with the untransformed
operators.

3. INSTANTANEOUS EXCITATION OF AN ATOM. NATURE OF
THE FIELD P(r, x)

We shall examine the problem of the instantaneous ex-
citation of the atom. This analysis will clarify the nature of
the field P(r, x). Let the atom, which is in the ground state
\a) at time t = 0, experience a strong sudden perturbation,
as a result of which it is excited and subsequently radiates,
returning to the state \a). The Hamiltonian of the system
atom -f- field + source-of-instantaneous-action depends on
the time:

ffl = H + K (t),

where H is the time-independent part of the Hamiltonian
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and describes the atom, electromagnetic field, and their in-
teraction (1) and K (r, t) is the part of the Hamiltonian that
describes the action of the external field on the atomic elec-
tron. We transform to the representation

W (t) = eiHt K (t) e-"1' .

Then the evolution operator has the form11

where

Y1(t)=\dtiWi, Y z ( t )

J d t j2!

We choose the following specific form of the operator

K(t)= — m(ur)

u = const.

At g r a d r K ( t ) = — d6(r)

The field created by the external perturbation in the vicinity
of the atom is spatially uniform and its time-dependence fol-
lows that of the derivative of the 8 (t } function with respect to
time (Fig. 5). The quantity Y^t ) is easily calculated:

eiH<. (ur)
t' f

= im[H; ur] = u (p — eA (r)).

Calculating Y2, we obtain an infinite quantity, which, how-
ever, is a C-number, and not an operator, and makes a contri-
bution only to the unimportant phase of the state. Neglect-
ing higher order terms, we find that the evolution operator,
arising due to the "instantaneous" action, has the following
form:

We shall examine the state of the system after the in-
stantaneous action, but before the onset of emission. As be-
fore, we shall describe it by the average values of some quan-
tities in this state. In particular, we shall calculate the
average value of the electric field. To calculate the average
value of the quantity O in the state

FIG. 5. The perturbing potential as a function of time.
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|i |>> = G | a, 0>
>*v

the quantity 0 must be transformed according to the rule

6G = G-IOG
and the resulting expression must be averaged over the ini-
tial state

(60) = (a,O\ G-1OG | a, 0).

We shall examine the transformation of different opera-
tors under the action of the unitary operator G. We shall first
examine the transformation of the coordinates of the elec-
tron:

To = g;u(p-cA(r)) fg-'- p-cA(r)) = r _j_ u _

This transformation is easily obtained, if one makes use of
the expansion (13) and takes into account the fact that it is
truncated at the second term, since a C-number vector u is
already obtained in this order:

— eA(r)); r] = i = u,

which makes all subsequent commutators vanish. Thus the
instantaneous action leads to a displacement of the charge
distribution by the vector u. This reveals the physical mean-
ing of the vector u. The vector potential at the point of obser-
vation R remains unchanged under the transformation being
studied, since it does not depend on the coordinates of the
electron and, therefore, commutes both with p and with A(r).
The transformation of the transverse field E1 (R) is more in-
teresting. We again use the expansion (13) and examine its
second term:

»[n(p-cA(r)) ; Ex (R)] = - ie [uA (r);

The commutator of the components of the vector potential
and its time derivative is known and equals the so-called
transverse S1 (r — R) function, multiplied by 4iri. Therefore,

E1 (R)] = -

(19)

All subsequent commutators in the expansion (13) are now
easily calculated with the help of the relation

i[u(p-eA(r)); F (T

For the first term from ( 1 9) all commutators of the expansion
(13) can be put into the form

Replacing differentiation with respect to r by differentiation
with respect to R, we obtain

= — 4neP(n, R — r)
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0 *,
FIG. 6. The region where the field P(u, R — r) differs from zero.

which is the field P with which we are already familiar. Rep-
resenting this expression in the form

— 4neP(u, R —r)

= — 4jteu[F(u, R-r) —F(u , R-r-u)],

where u is the unit vector oriented along u, it is easy to verify
that the field P(u, R — r) differs from zero in the region
marked by the dashed line in Fig. 6.

The second term in (19) can be expressed in terms of the
Coulomb field of the electron

E"( r , R)=-VR(p=-eVr . r * ,

if we take into account the fact that

(uV,)E»(r , R) = -^-Se^J

AH
Then the sum of the commutators of the expansion (13) for
the second term from (19) has the form

E11 (r, R ) = E » (r, R)-E» (r + u, R),

Therefore, the transverse field transforms as follows:

E^ = E1(R)-4jieP(u, R-r)-Ei! (r + u, R) + E!i (r, R).
The longitudinal field evidently transforms as

(E» (r, R)+E'lucl(R))G = E11 (r + u, R) + EJUci(R).

Thus the total field after transformation assumes the form

EG(r, R) = EL.i (R)+E" (r, R) + E1(r, R)
— 4jieP(u, r — R).

Averaging this expression over the state \a, 0) we verify that
the average field in the state G \a, 0} , obtained from a, 0} as
a result of the instantaneous perturbation, consists of the
Coulomb field corresponding to the initial state \a, 0} and
some additional field differing from zero only along the tra-
jectory of motion of the charge. It is physically completely
obvious that the changes in the field occurred only along the
trajectory of the charge, since the changes at a point outside
the trajectory arrive from points along the trajectory with a
finite velocity, whereas the trajectory itself arises instanta-
neously.3' On the whole, the average of the field with respect

3)The displacement of the charge with a velocity exceeding the velocity of
light in vacuum, in particular, with an infinitely large velocity, does not
conflict with the theory of relativity. Such a displacement can occur, for
example, with the creation of a set of electron-positron pairs along the
trajectory with subsequent annihilation of the electrons and positrons
with neighboring positrons and electrons, respectively.

FIG. 7. The electric field in the excited state G \a, 0). |a> is the ground s-
stateof the atom.

to the state G \a, 0) has the form shown in Fig. 7.
The examined problem permits interpreting the field

— 4ireP(u, R, — r) as an electric field which arises when the
charge is instantaneously displaced from the point r to the
point r + u.

Returning now to the state | if>£ ) = S \b, 0} , examined in
Sec. 2, it can be shown that the field in this state (17), illus-
trated in Fig. 4b, may be assumed to arise as a result of the
instantaneous (occurring with infinite velocity) displace-
ment of the charge from the nucleus into a distribution cor-
responding to \b ), since the rectilinear lines offeree of this
field are determined precisely by the field P. Naturally, this
process cannot occur in reality, if for no other reason than
that the electron cannot be concentrated at the nucleus by
virtue of the uncertainty principle, For this reason, the ini-
tial state |$>') =S\b,Q) can reflect practically realizable
states only with some degree of uncertainty. In addition,
such an instantaneous displacement of the electron from the
nucleus into the distribution b ) is not the only way that the
state |^o) can arise.

4. CANONICAL POWER-ZIENAU TRANSFORMATION

We shall now find the complete second form of the Ha-
miltonian.41 For this, aside from transforming the electric
field, it is also necessary to transform the magnetic field and
the electron velocity operator:

As far as the magnetic field is concerned, it should be noted
that because it commutes with the exponent in (9) the vector
potential does not change under the transformation being
examined; all its spatial derivatives also remain unchanged
at the same time, in particular, the magnetic field

H = rot A

does not change. In order to transform the electron velocity
operator, we shall once again use the expansion (13) and we
shall calculate in it the first commutator, keeping in mind
that vector potentials evaluated at the same moment in time
commute:

-- £-[JdxP(r, x)A(x); p] = ^-Vr J dxP(r, x)A(x).

4)In the paper by Power and Zienau, the canonical transformation is not
correctly performed. The electric field in the Hamiltonian was replaced
by the operators ~ *ES — 4ire?L = S~lEiS — 4ireP. The correct substi-
tution is S - 'E(r, p)5 = E1 (H) - 4ireP(r, R).
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Since this expression depends only on the vector potential
and the coordinates of the electron, all subsequent commu-
tators in the expansion (13) vanish. Therefore,

dxP(r, x)A(x)l . (20)
J

Averaging both the transformed and untransformed veloc-
ity operator over the state \b, 0) gives zero. Analogously, we
can verify that the average values of the transformed and
untransformed current operators in this state are identical.
As pointed out above, however, the average value of the op-
erator does not exhaust all characteristics of the state, since
the average values of powers of these operators can differ.
These differences can also reveal the difference between the
states |$>'} and \ifi0).

Using the first terms of the multipole expansion of
P(r, x)(10)andA(r),

A (r) = A (0) + (ry) A (0) + . . .,

we obtain the following approximate expression for the ve-
locity operator:

We now perform the canonical Power-Zienau transfor-
mation (4). We first transform the atomic part of the Hamil-
tonian. For this, we note that the potential energy of the
electron U (r) does not change under the transformation (4),
while in order to transform the part containing the momen-
tum, it is sufficient to square the expression (2) and multiply
by m/2:

-^-[p-eA(r) + eVr \ dxP(r, x)A(x)]2 .
&m, j _i

To transform the field part of the Hamiltonian, it is sufficient
to replace the field E(r, R) in the integrand in the Hamilton-
ian by the expression (17). As a result, we obtain

S - ' r ^ J d R ( E M r , R ) + HMR))]s

— e j dRE-1- (R) P (r, R) + 2ne2 j dRP2 (r, R).

The term in the middle gives precisely the interaction of the
atomic electron with the electric field in the form (3). Indeed,
retaining the first two terms in (10), we obtain

— e\ dRE1(R)P(r , R)

S£ - erE1 (0) - 4- e (rVR) (rE1 (R))R=0 + . . .

On the whole, the Hamiltonian assumes the following form:

H ' = S^HS

dxP(r, x) A ( x ) 2 + U (r)

_ j dR [Ex2 (R) + H<> (R)] - e j dRE1 (R) P (r, R)

r, R). (21)

Using the multipole expansions indicated above, the Hamil-
tonian approximately equals

= p2 + u ( -sr 5 dR (
a=o—

dRPs(r, R), (22)

where

= ~ er">-rv.

is the nondiagonalized quadrupole moment of the electron
and L = [r, p] is the orbital angular momentum of the elec-
tron. This form of the Hamiltonian is interesting in that the
total interaction of the atom with the field is split into the
interaction with the field of elementary moments: electric
dipole, electric quadrupole, magnetic dipole, etc.

We emphasize once again that the Hamiltonians (1) and
(21) are equivalent only in the case when all states are trans-
formed as in (7).

5. PHOTON SPECTRA IN CALCULATIONS WITH DIFFERENT
HAMILTONIANS. THE LAMB-RETHERFORD RESULT

We shall examine the spontaneous emission of an excit-
ed atom, using the different forms of the Hamiltonian. As is
obvious from the preceding text, the physical difference
between the Hamiltonians reduces to the difference in the
initial conditions. We shall now be interested in the conse-
quences of these differences.

Thus we shall examine a system described by the Ha-
miltonian

H = H0 + V,

where //0 is the unperturbed part of the Hamiltonian and Fis
the perturbation. The evolution operator of the system can
be represented in the form

where R (z) = (z — H )~ l is the resolvent operator12 and the
contour lies some distance above the real axis. We shall take
the initial condition in the form \b, 0} and we shall be inter-
ested in the probability that a photon with wave vector k and
polarization /I appears and the atom drops down into the
ground state \a). This probability is characterized by the
amplitude

) = <«, ihK\U(t)\b, 0}

(23)

The matrix element of R (z) can be approximately represent-
ed in the form

—yq, AX; b, 0

(«-*» .--.-
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P(ta)

FIG. 8. The frequency distribution of photons emitted under different
initial conditions, described by relations (24) and (25).

The expression in the second pair of parentheses in the de-
nominator of this expression is approximately equal to
z — tieo0 + ifiy/2, where

4 «X . ._. ..

and thus has a pole in the lower half-plane (we ignore the
Lamb shift in this case, making the assumption that it is
small). In calculating the integral in (23) only the residue at
z = fuo need be included, since the residue of the second pole
decays with time. As a result, we obtain

The square of the modulus of the matrix element of V as-
sumes different values for the Hamiltonians in the forms (1)
and (2). In the first case, it is equal to

whereas in the second case it is given by

The second expression is obtained from the first one if it is
multiplied by the ratio ((o/(o0)

2. In fact, the difference in the
frequency distributions of the photons reduces to this factor;
there is also a negligibly small difference in the damping
constants (or transition probabilities), which we shall not
take the time to discuss here. The photon frequency distribu-
tions finally assume the following forms (Fig. 8):

do,

for Hamiltonian (1) and

n . , , 2 «2
Q)3 I (r) 1' -dco

(24)

(25)

for Hamiltonian (2). It is easy to see that the last expression
(25) does not decrease as eo—* oo. This should not surprise us;
after all, the initial state in this case corresponds to the un-
likely process of an instantaneous (with infinitely high veloc-
ity) appearance of the distribution |* > from the nucleus. Any
real physical process can correspond only approximately to
such an initial state. For this reason, the distribution (25)
must be cut off for frequencies somewhat greater than <u0 and
an appropriate normalization factor must be introduced.

It should be noted that the distributions (24) and (25)
were presented in the paper by Power and Zienau3; in addi-

tion, the first of these distributions was described as being
incorrect and the second was described as being correct. As
is evident from the above presentation, these assertions of
Power and Zienau are not correct. Both distributions are
correct, but they correspond to different initial states. We
can say that the first distribution corresponds to emission
from a state with a stationary Coulomb field, whereas the
second one corresponds to emission from the state with a
nonstationary Coulomb field.

The choice of Hamiltonian or of the corresponding ini-
tial condition in a specific physical situation can be made
only by analyzing the process of atomic excitation. If the
initial condition must be known exactly, then the excitation
process must be included in the quantum-mechanical prob-
lem under study; of course, this will return us to scattering
theory. In many experimental situations this is quite difficult
to do.

It should be noted that for narrow spectral lines the
question of the form of the Hamiltonian is entirely unimpor-
tant. Indeed, for narrow lines (in most cases the true widths
of the lines in relative units is less than 10~7-10~8) the factor
(a)/co0)

2 equals unity with a high degree of accuracy. How-
ever, there are exceptions. In this content, it is interesting to
examine the Lamb-Retherford experiment.4

Unfortunately, our investigation is not directly applica-
ble to the analysis of the Lamb-Retherford experiment. In-
deed, the analysis above referred only to a two-level system,
while a three-level system was used in the Lamb-Retherford
experiment. They worked with stimulated and spontaneous
emission. Finally, spin played an important role in the
scheme that they investigated. Our investigation can there-
fore only hint at the reasons that the Hamiltonian in the form
(2) must be used to obtain a theoretical explanation of their
results.

First of all, why was their experiment sensitive to the
form of the Hamiltonian at all? This is easily understood if
we take into account the fact that they investigated the low-
frequency transition 3—>-2 (Fig. 9), whose width is deter-
mined by the short lifetime of the level 2, since the transition
2—»•! is allowed. It turns out that the relative width of the
transition 3-»2 is of the order of 0.1 (Fig. 8). Naturally, the
factor (ea/o>0)

2 can give in this case corrections of up to 20%,
which in the precision experiment of Lamb-Retherford was
already an appreciable quantity.

Second, it would appear that under electron-impact ex-
citation of the state 3 it is possible that in their experiment
there was not enough time for the Coulomb field to be estab-
lished. Indeed, the electron impact time is of the order of
10~ 15-10~1Ss, which is much shorter than the period I0~9s
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of interest to us (correspondingly, in the Coulomb field the
components tens of centimeter long are important). Third,
the state 3 is excited from the ground \s state, lying close to
the nucleus. When the distribution corresponding to the ex-
cited state 3 is formed, the atomic electron appears to be
knocked out of the nucleus by the external electron. These
circumstances indicate the advantage of the second form (2)
of the Hamiltonian in interpreting the Lamb-Retherford ex-
periment. We recall that they observed that the Hamiltonian
(2) gives a better description of the experimental results. This
is all that we can in fact say about the Lamb-Retherford
experiment. Of course, it would be desirable to investigate
this experiment in greater detail. Perhaps it will be possible
to do so in the future.

6. CONCLUSIONS

In this paper we investigated the role of the initial con-
ditions in radiation problems, when both the atom and the
electromagnetic field are described quantum-mechanically.
In addition, we investigated the aspect of the problem relat-
ed to the two forms of the Hamiltonian describing the inter-
action of atoms with an electromagnetic field that are most
often used in theoretical calculations.

We showed that the transformation from one form of
the Hamiltonian to the other leaves the character of the
physical process unchanged only when such a transforma-
tion is accompanied by a corresponding change in the states,
in particular, of the initial state. It is worth emphasizing that
only the form of the initial state changes; the physical con-
tent of the state remains unchanged. Using different forms of
the Hamiltonian with the same form of the initial condition
is equivalent to analyzing the emission process with physi-
cally different initial conditions.

We showed that in the initial state \b, 0) the Hamilton-
ian (1) describes the emission from a state with a stationary
Coulomb field; with the initial state of the same form the
Hamiltonian (2) describes emission from the state with a
nonstationary Coulomb field. The situation here is com-
pletely equivalent to that of the free motion of an electron,
first analyzed by V. L. Ginzburg.10 Generally speaking, both
states can be realized in practice to some degree of accuracy.
The selection between these states can be made only as a
result of a physical analysis of the conditions of excitation.
For narrow emission lines, the differences in the form of the
Hamiltonian have virtually no effect on their line shapes.

It should not be thought that the state with the station-
ary Coulomb field is in any way distinguished. The excited
state of the atom is itself not stationary and the requirement
that it be accompanied by a stationary Coulomb field has no
logical foundations.

It should be noted that there exists an infinite number of
unitary operators which transform the Hamiltonian from
one form to an other. Amongst these operators, the Power -
Zienau operator is distinguished only by the simplicity of the
interpretation of the corresponding initial state.

Generally speaking, cases are possible when the results
of the calculations with different Hamiltonians do not de-
pend on whether or not the states used are changed. This

occurs for those quantities for which the width of the level is
not important or which refer to the center of the line. For
these quantities the photon frequency entering into them can
be replaced by the transition frequency of the atom or mole-
cule. An example of such a quantity also occurs in this paper:
the probability of the transition from the excited state into
the unexcited state or the damping constant of the upper
level. The existence of quantities that are insensitive to the
change in the states is not accidental: it arises due to the fact
that the matrix elements of both Hamiltonians coincide if
the frequency of the photon equals the transition frequency.
One of these important particular cases is examined by F. V.
Bunkin.13 He showed that the probability of two-quantum
decay of the excited state can be calculated in the dipole
approximation with the help of either of the Hamiltonians
without a change in the states (the use of the Hamiltonian (2),
in this case, has only computational.advantages). To identify
such particular cases, it is important that the system of un-
perturbed states be complete in a number of cases, the qua-
dratic term e2A2 be included in the Hamiltonian (1). There
are also papers on analogous particular cases, but their dis-
cussion falls outside the scope of this paper. These are parti-
cular cases; in the general case, the use of the unchanged
states with different Hamiltonians will lead to different re-
sults—which is what this paper points out.

The difference in the forms of the Hamiltonian can also
lead to different physical results in the classical theory, if the
transformation of the form of the Hamiltonian is not accom-
panied by a transformation of the form of the initial condi-
tion. For example, assume that the initial momentum of the
system equals zero in one form of the Hamiltonian. Under a
canonical transformation the momenta also change and the
new momentum does not necessarily equal zero in the same
state. Therefore, the form of the initial condition must
change under the canonical transformation.

Of course, the same considerations concerning the ini-
tial state of the system also apply to the analysis of stimulat-
ed emission, i.e., a change in the Hamiltonian without a
change of the initial state, which, in this case, is equivalent to
a physical change of the initial conditions. In this case, how-
ever, there arises a question which we did not consider and
which deserves special attention. This is the question of the
representation of the interaction of atoms with an unquan-
tized and, correspondingly, macroscopic electromagnetic
field. This question is discussed in a number of recently pub-
lished papers.6"8 In our opinion, this question can be re-
solved by passing to the limit from a quantized field to an
unquantized field, while artificial recipes or conjectures will
hardly lead to the solution.
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