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This review presents the current advances in the theory of collision of slow electrons with mole-
cules. First the fundamental experimental results are reviewed. Then main attention is paid to the
semiphenomenological and modeling approaches to the problem. The adiabatic approximation
and its application to calculating elastic scattering cross-sections and cross-sections for rotational
transitions are treated. The long-wavelength approximation (effective-range theory) is presented
in greater detail. The problem is discussed of taking account of rotation in the collision process. In
particular, a mechanism is revealed of formation of dipole resonances in the scattering of an
electron by a rotating polar molecule. Different semiphenomenological methods are treated for
calculating the resonance vibrational excitation of simple molecules. The quasiclassical represen-
tation for the cross-sections for vibrational transitions in the theory of Herzenberg is discussed.
This representation is applied to analyze the process of dissociative recombination. The model is
treated of emergence of a term into the continuous spectrum and it is applied to explain the
threshold resonances in the vibrational excitation cross-sections of certain molecules. The role is
discussed of dipole interaction in forming these resonances. The results of the theoretical calcula-
tions are compared with the experimental data.
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INTRODUCTION In MHD converters the fundamental problem involves
determining the transport cross-section for collisions of elec-

From the applied standpoint, the most important fields trons with polar molecules. The electric resistance of the
of the physics of electron-molecule collisions are at present plasma is considered to be mainly determined specifically by
gas lasers and MHD (magnetohydrodynamic) energy con- these collisions. The fundamental contribution to the trans-
verters. In high-power electric-discharge CO2 lasers, vibra- port cross-section conies from the peripheral elastic (or al-
tional-rotational excitation of CO2 and N2 molecules arises most elastic, i.e., rotationally inelastic) collisions of electrons
from these collisions; the N2 molecules transfer their excita- with molecules having very large cross-sections owing to the
tion in a resonance process to the asymmetric vibrational long-range nature of the interaction forces,
mode of the CO2 molecule to create an inverted population. In describing the process of electron-molecule collision,
Thus the physics of gas lasers requires information on the it is convenient to distinguish three time scales. The electron
cross-sections of inelastic vibrational-rotational transitions. shell of the molecule reacts most rapidly to the action of the
Here the list of interesting molecules is already rather large incident electron (characteristic time rel). The vibrational-
and is continually expanding. rotational subsystem reacts more slowly (characteristic
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times rvib and rrot):

Tel < Tvib < Trot.

If the characteristic time of collision of the electron with the
molecule proves to be substantially shorter than the vibra-
tional time of the nuclei rvib, then the nuclei may be treated
as being immobile in the course of the collision (fixed-nuclei
approximation). In this case the entire physics of the process
generally resembles the physics of collision of an electron
with an atom. The fundamental difference is that the charac-
teristics of the scattering become dependent on the nuclear
coordinates. Since the experimental situation corresponds
usually to a random distribution of the orientation of the
molecules with respect to the direction of motion of the elec-
tron beam, in a theoretical treatment of the problem the ef-
fective scattering cross-section is averaged over all orienta-
tions of the molecules. Here one takes the internuclear
distance as the equilibrium value. The obtained result is not
the cross-section for pure elastic scattering, but corresponds
to a summation over all final rotational states and yields no
information on the cross-sections for vibrational excitation.
However, one can calculate the amplitude of the vibrational-
rotational transition by the formula

/»v».v. = <wv I/({»«,}; k, k0)|rt0Y0>, (LI)
Here y0 and j are the set of rotational quantum numbers
characterizing the initial and final states of the molecule, «0

and n are the vibrational quantum numbers, j Ra j ,
a = 1,. . . , N, are the nuclear coordinates, and ko and k are
the initial and final momenta of the incident electron (here
and below we use the atomic system of units).

Equation (I.I) is called the impulse or adiabatic approx-
imation1"4 and it permits one to derive a set of important
consequences: the cross-section summed over the final rota-
tional states is independent of the initial rotational state5;
relationships exist between the cross-sections of different
transitions.6-7

One must not neglect the vibrational dynamics in two
cases: first, at energies of the electron close to the excitation
threshold, at which the time of the process becomes compar-
able with rvib, and second, in the case of formation of an
intermediate resonance state of the negative ion. The lifetime
of such a complex is often comparable with the period of
molecular vibrations (as, e.g., occurs in the case of the mole-
cules N2, CO, and CO2), while it considerably exceeds this
period in the O2 molecule. An oscillatory structure in the
cross-sections has been found in studying processes of this
type.1'150'166 Experimental study of the processes of reso-
nance vibrational excitation involves the following difficul-
ties:

1. Highly monokinetic electrons are required to resolve
the vibrational-rotational structure.

2. It is difficult to identify the initial and final states of
the target in studying transitions between excited vibration-
al-rotational states.

3. Most experiments do not yield absolute values of the
cross-sections (or yield them with high error).

4. Many molecules of practical interest from the stand-
point of MHD generation are chemically active in the gas
phase, and experiments with them are difficult.

The theoretical description of resonance vibrational ex-
citation is based on introducing the complex potential,
which describes the capture of the electron into an interme-
diate state. This potential can be calculated from first princi-
ples (the theory of Bardsley11) or determined by semiempiri-
cal considerations (the model of Herzenberg12). An
alternative approach is the R -matrix method,10 in which the
intermediate complex is calculated by the methods of quan-
tum chemistry.

If the time of collision is comparable with the period of
rotation of the molecule, then the rotational dynamics also
becomes essential. In particular this pertains to polar mole-
cules, owing to the long-range nature of the electron-mole-
cule interaction. The most suitable apparatus for studying
the problem is the theory of transformation of reference
frames.8'9 This field of study is as yet inaccessible to experi-
ment, owing to the need of very highly monokinetic electron
beams. Nevertheless, rotational transitions substantially in-
fluence the low-energy part of the distribution function of
the electrons, and hence the study of these processes seems
very important.

Below we shall review the fundamental experimental
and theoretical methods of studying electron-molecule colli-
sion processes. The theoretical methods can be classified
into three fields:

1. Ab initio calculations, which start directly with the
many-particle Schrodinger equation in the Hartree-Fock
approximation and with certain supplementary assumptions
(pseudopotential allowance for exchange, static approxima-
tion with semiphenomenological allowance for the polariza-
tion interaction, etc.).

2. Semiphenomenological methods, which pose as their
fundamental problem the reconstruction of certain quan-
tum-mechanical characteristics of the process from a small
number of experimentally available data, with subsequent
calculation of the cross-sections of the experimentally un-
measurable processes.

3. Development of exactly solvable models which,
along with relative mathematical simplicity, preserve var-
ious essential features of the physical situation and allow one
to elucidate the role of the different physical assumptions
adopted in the semiphenomenological approach.

The current literature contains several reviews1^1 on the
first—and to a considerably lesser degree—the second lines
of approach. The studies along the third line have practically
not been treated in review form. Without belittling the role
of the first approach, let us point out, however, that such
studies involve the development of several generations of
complex programs that require high-power computers to
realize them. We shall not discuss these studies in this re-
view, while focusing attention mainly on the more physically
lucid studies of the second and third approaches.

Being mainly interested in the fundamental side of the
problem, we shall not be able to present all the theoretical
and experimental results that have been obtained, but shall
restrict the treatment only to illustrative material. We shall
not treat processes involving electronic excitation and parti-
cipation of positive molecular ions.
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1. EXPERIMENTAL METHODS

Let us first take up the fundamental problems of the
experimental methodology of determining the collision
cross-sections of electrons with molecules. The following
sections will present a detailed comparison of theory with
experiment. Since this review does not treat processes with
rearrangement of the electron shell, accordingly we shall not
treat the problems involved with the study of optical excita-
tion functions.

a) Beam experiments

1) The Ramsauer method

From the chronological standpoint, we should first
touch upon the method of Ramsauer (see the review13),
which essentially consists in determining the degree of at-
tenuation of the intensity of an electron beam after it has
passed through a chamber containing the gas being studied.
The total cross-section for scattering of the electrons by mol-
ecules of the gas is found from the relationship

ond—is related to the differential cross-section by the for-
mula

I = /„ exp (—atrw:). (1.1)

Here /0 is the initial electron current, / is the current of un-
scattered electrons, n is the density of the gas, and x is the
path length over which the scattering of the beam occurs.
The method has made it possible to measure the total scat-
tering cross-sections of molecular hydrogen,14'15 carbon
dioxide,13'16"18 and methane.14 An advantage of the method
is that it follows one relatively easily to obtain absolute scat-
tering cross-sections, while its main defect is that it is appli-
cable only to those molecules that exist in the gas phase at
room temperature and are not chemically active.

To determine the differential scattering cross-sections
requires introducing an electron analyzer into the apparatus
to measure the current of electrons scattered at a given angle
(see the review19 and the references contained therein). Here
the measurements yield only the relative differential cross-
section, owing to difficulties of determining the effective
path length.

The Ramsauer method gives large errors at low energies
of the incident electron (5 0.1 eV) involving impaired energy
resolution. In this region the time-of-flight methodology20 is
more effective; it reconstructs the energy spectrum from the
electron time spectrum. The electron-scattering cross-sec-
tions of the CO molecule have been measured by this meth-
od.20

2) The method of crossed beams with analysis of the electron
spectrum

A more refined method, which first became widespread
in experiments on electron-atom scattering, is the crossed-
beam method (for detailed discussion and references see the
review19). Its advantage is the possibility of performing ex-
periments with chemically active molecules. The measure-
ments reduce to determining the spectrum and angular dis-
tribution of the scattered electrons as a function of their
energy. The experimentally measured quantity—the num-
ber of scattered electrons detected at the angle G per sec-

Here K (E)is the transmission efficiency of the detector, VM

is the velocity of the molecules in the beam, and S (6} is a
geometric correcting factor that amounts to the overlap inte-
gral between the flux of electrons and the flux of molecules in
the collision volume. Although the dependence of Son 6 has
been studied rather well, it is highly difficult to determine its
absolute value at low energies. Therefore the measurements
usually yield relative cross-sections, while the absolute
cross-sections are sought indirectly—by integrating the
measured differential cross-sections and normalizing the ob-
tained integral cross-section to the value found from another
experiment or by theoretical calculation. Another method of
normalizing consists in determining the ratio of the differen-
tial scattering cross-section at a given angle for the target
being studied to that for a target for which it is well known.21

Another drawback of the crossed-beams method is the
impossibility of measuring the elastic scattering cross-sec-
tions at small and large angles, and consequently, measuring
the total elastic scattering cross-section. Hence one resorts
to extrapolation in the region of small (< 20°) and large
(> 130°) angles. In the former case one can do this by using
the Born approximation, which works well for small-angle
scattering when long range forces contribute substantially to
the scattering. Extrapolation of the cross-sections into the
high-angle region constitutes a more difficult problem.
However, the large angles usually make a small contribution
to the total cross-section.

The method has been employed to determine the differ-
ential cross-sections of "elastic" (summed over all final rota-
tional states) scattering by the molecules LiF,22 HCN,21

KI,23 CsCl,24 and others and the vibrational-excitation
cross-sections of the molecules H2, N2, CO, NO, O2,

166 HF,
HC1, HBr, H20, H2S, CH4, and SF6.

185-188 In the case of the
lightest molecule—H2—analysis of the spectrum of scat-
tered electrons enables one also to resolve the rotational
structure and to obtain the cross-sections for the rotational
and vibrational-rotational transitions.25 In the case of hea-
vier molecules one can observe only the broadening of the
central peak associated with elastic scattering. It is a rather
complicated problem to extract information from this on the
cross-sections of rotational transitions, and this is impeded
by the fact that the molecules in the initial state have differ-
ent rotational angular momenta owing to the finite tempera-
ture. The first data26'27 have recently begun to appear on
resolving the rotational structure in the excitation of heavier
molecules—N2, CO, and H2O.

3) The method of recoil of a molecular beam

In the beam recoil technique,28 one does not measure
the electron flux, but the flux of molecules deflected from the
initial direction of motion by collision with electrons. The
method allows one to obtain absolute cross-sections rather
easily. However, it has a substantial defect involving the
need to recalculate the differential scattering cross-section
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of the molecules into the differential cross-section in the sys-
tem of the center of mass. This procedure is very unstable,
owing to the small deflection of the molecular beam in the
laboratory system. In turn the latter involves the small ratio
of the mass of the electron to the mass of the molecule. We
should consider the attempt to determine by this method the
differential cross-sections for electron scattering by the
CsF,29 CsCl,30 and KI31 molecules not to be very successful,
since the recalculation of the cross-sections from the labora-
tory system to the center-of-mass system was quite incor-
rect.2 If reliable methods of recalculation can be developed,
this method holds good promise.

According to Ref. 29, yet another advantage of the
method of molecular-beam recoil consists in the possibility
of directly measuring the cross-sections of rotational transi-
tions for heavy molecules. However, the preliminary results
on rotational excitation of the CsF32 molecule have not been
subsequently published, and thus apparently they are incor-
rect.

b) Experiments with fluxes of thermal electrons (swarm
experiments)

The methodology of beam experiments does not allow
one to make measurements at very low energies of the inci-
dent electron (~0.01 eV). Therefore, for determination of
the interaction cross-sections of molecules with electrons of
thermal energy, one resorts to a different approach that con-
sists in measuring the transport coefficients of the molecules
under study in a weakly ionized gas (electric conductivity,
heat conductivity, diffusion coefficient, etc.).

As the solution of the Boltzmann equation in the diffu-
sion approximation implies, when one takes account of only
the elastic collisions of electrons with gas molecules, the
transport coefficients are related by an integral transforma-
tion to the diffusion cross-section ad (v), where v is the veloc-
ity of the electron. For example, we obtain the following
expression for the drift velocity of an electron in an electric
field:

oo

(1.3)_ 4n F f i;« d/ ,
r~N } ~5T(T~3»

Here F is the applied electric field, N is the concentration of
molecules, and/is the velocity distribution function of the
electrons.

If we can consider/ to be Maxwellian, then we can re-
construct crd (v) from the experimental temperature-depen-
dence of w (or any other transport coefficient). Since the di-
rect solution of the integral equation (1.3) is difficult, one
usually uses here a given analytic crd (v) relationship (e.g.,
that following from the Born approximation or the effective-
range theory) and reduces the problem to finding the param-
eters that enter into this relationship.

If there are no grounds for assuming that the distribu-
tion function is close to Maxwellian, then one must solve the
Boltzmann equation taking into account various inelastic
processes (as a rule, these are rotational and vibrational exci-
tation) and calculate the transport coefficients from the
found/. Here crd and the cross-sections for the inelastic pro-
cesses are found by fitting the calculated values of the trans-

port coefficients to the experimental. Thus the diffusion
cross-sections and the cross-sections for rotational and vi-
brational excitation have been determined for the H2, N2,
O2, CO, and CO2 molecules (see Refs. 33-35 and the refer-
ences cited there).

However, in any case the applicability of the method is
limited by the fact that Eq. (1.3) (and analogous formulas for
the other transport coefficients) takes into account only elas-
tic collisions. In the case of nonpolar molecules this approxi-
mation is reasonable. However, in the case of polar mole-
cules the cross-sections for rotational transitions with
change of the rotational quantum number by 1 or 2 are very
large, and the assumption of dominance of elastic processes
is inapplicable. Therefore the described method for polar
molecules is applicable in the region of energies (and corre-
spondingly, of temperatures) that are either small in com-
parison with the rotational constant or large in comparison
with it but small in comparison with the vibrational energy
of the molecules. In the latter case, an approximation adia-
batic with respect to rotation holds, and one must take as ad

the cross-section summed over all the final rotational states.
This type of approach has been employed in Ref. 36 in pro-
cessing the experimental data37 on drift velocities of elec-
trons in polar gases.

2. ELASTIC SCATTERING
a) Model potentials in the theory of elastic scattering

In proceeding to analyze the problem theoretically, we
shall first treat the scattering of an electron by a molecule in
the fixed-nuclei approximation. The problem is further sim-
plified by assuming that the nuclei and electrons of the mole-
cule give rise to a certain effective potential in which the
incident electron moves, while the effect of the latter on the
electrons of the molecule is neglected. This approximation is
called the static approximation (or exchange-static, if one
takes into account the exchange between the incident elec-
tron and the electrons of the molecule). The strong-coupling
method has been developed38"40 to allow for the polarization
of the target under the action of the incident electron in the
theory of electron-atom collisions. Systematic application of
the strong-coupling method to the theory of electron-mole-
cule collisions offers far greater difficulties of calculation.
Therefore in this case one usually employs a simpler meth-
od—introduction of the semiphenomenological polarization
potential. For example, in the case of a linear molecule it has
the form

Here we have

while OH andai are the principal values of the polarizability
tensor of the molecule. Without sufficient justification, the
parameter s is usually taken equal to 6, while rp is deter-
mined semiempirically, e.g., from the requirement that the
resonance energy found theoretically must coincide with the
experimental value.41'42 Some more refined approaches are
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the method of polarized orbits43"46 and allowance polariza-
tion by using the Feynmam diagram technique.47'48 We
point out also Refs. 49-5 1, in which a polarization potential
was used that contained no adjustable parameters.

As regards the static potential, one can calculate it in
principle if one has the wave functions of the molecule. How-
ever, in the first stage of the treatment of the problem, it is
convenient to have it in such a form as to obtain the solution
analytically or at least to simplify substantially the numeri-
cal solution. Let us proceed to examine potentials of this
type.

Let us assume that the interaction of the electron with
the molecule is substantially different from zero only inside
nonoverlapping spheres surrounding each nucleus. This ap-
proach is called the method of finite-range potentials (muf-
fin-tin potential). The model allows an exact solution under
the condition that one knows the scattering amplitudes at
each of the spheres.52'53 When applying the model to elec-
tron-molecule collisions, one can take these amplitudes from
data on electron-atom scattering. The model of zero-range
potentials (ZRP), which is obtained by letting the radii of the
spheres approach zero, has enjoyed greater popularity. Evi-
dently this approximation holds if, first, we can neglect the
long-range component of the interaction (this requirement
yields a lower bound on the energy of the incident electron)
and, second, if the electron has an energy that makes the de
Broglie wavelength large in comparison with the character-
istic dimensions of the atoms contained in the molecule (this
requirement yields an upper bound on the energy).

Scattering by a diatomic homonuclear molecule has
been studied by the ZRP method by Subramanyan.54 Ex-
change was taken into account by the method of Smirnov
and Firsov.55 Application of the ZRP method to more com-
plex molecules and various generalizations of it have been
discussed in detail in the book of Demkov and Ostrovskii.56

In the ZRP approximation each well (atom) is charac-
terized by one parameter. In order to make the model more
flexible, one introduces potentials called separable poten-
tials.56 The superposition of a finite number of separable po-
tentials has the form

Here the \q>j ) are Hilbert-space vectors.
The model of separable potentials belongs to the ana-

lytically solvable class, since the corresponding Schrodinger
equation reduces to a linear algebraic system. The T-matrix
method57 is a further generalization.

One can also attain a substantial simplification by treat-
ing potentials that allow separation of the variables for the
Schrodinger equation in some curvilinear system of coordi-
nates.

First let us examine the potential of a point dipole:

v(r)=_^Sl. (2.2)

This can be used to study the scattering of an electron by a
polar molecule.

In view of the long-range character of the potential in
(2.2), the scattering by it is well described by the Born ap-

proximation.58'59 The Born differential cross-section over
the directions of the dipole-moment vector is

g(0)= , 2D° (2.3)
Oft> (1—COS TT)

Here •& is the angle between k0 and k, where k0 and k are the
initial and final momenta of the electron.

This implies that the diffusion cross-section (the cross-
section for momentum transport) equals

while the total cross-section diverges. This divergence, as
well as the approach of <7d to oo as k2— >-0, stem not from the
Born approximation, but from the long-range character of
the interaction.60-61 They appear in all theories that treat
scattering by a nonrotating polar molecule.

The treatment of the Schrodinger equation with the po-
tential of (2.2) given in Ref. 65 leads to the appearance of
additional features of the scattering by a point dipole. First a
D = Dcr =0.6395 exists such that, when D>DCT, the scat-
tered particle is incident on the center (the same situation has
been studied in Ref. 60 for the case of the spherically sym-
metrical potential a/r2). This feature of the problem arises
from the nonphysical behavior of the potential of (2.2) as

When D > Z>cr , another effect arises — an infinite num-
ber of bound states arises in the field of (2.2) that concentrate
toward E = O.62"64 This effect involves not the behavior of
the potential at zero, but, just like the divergence of the total
cross-section, the long-range character of the potential.

In treating the problem with D > Z)cr , one often intro-
duces a potential that reduces to (2.2) when r>r0 and is a
certain nonsingular function when r < r0. The first calcula-
tions of electron scattering by polar molecules were per-
formed in this way.66"69 Moreover, one can introduce the
potential of an impenetrable sphere for r<r0.

70Jl All these
methods have the defect that the result depends on r0 and on
the method of approximating the potential when r<r0.

There is also an entire class of potentials that allow sep-
aration of the variables in the Schrodinger equation in pro-
late spheroidal coordinates. They were employed in the early
calculations of scattering by the H2, N2, and O2 mole-
cules.72'73 A general theory was developed by Abramov and
Komarov.74 An important special case is the potential of a
finite dipole. Scattering by such a potential with allowance
for symmetry, which allowed separation of the variables in
prolate spheroidal coordinates, has been studied in Ref. 75.
Here one obtains all the features of the problem of scattering
by a dipole involving the long-range character of the poten-
tial.

b) The long-wavelength approximation (effective-range
theory)

In the effective-range theory (ERT), the long-range part
of the interaction is taken into as exact account as possible,
while the account taken of the short-range action reduces to
introducing a small number of parameters of the type of the
scattering length and radius. This approach is valid if the de
Broglie wavelength of the electron is large in comparison
with the range of the short-range forces, i.e., the dimensions
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of the molecules. Hence the region of application of the ERT
on the high-energy side is narrower in the case of nonpolar
molecules than the region of application of the ZRP method.
However, on the low-energy side the region of applicability
of the ERT method is far broader. Moreover, the ZRP meth-
od is generally inapplicable to the case of polar molecules.

The behavior of the phases and amplitude of scattering
by a short-range potential at low energies is well known.
Now let us examine how these rules are modified when we
take account of the long-range action. For simplicity we
shall restrict the treatment to a linear molecule. Then the
interaction potential of an electron with the molecule at
large distances has the form

F(r). DPi(cosQ)
r? î - TT + ia-MMcose). (2.5)

Here D is the dipole moment and Q the quadrupole moment.
The exchange potential falls off exponentially toward

infinity, and hence is not taken into account in the expansion
in (2.5). We can consider the terms of the multipole expan-
sion of higher order to be effectively short-range.

1) Nonpolar molecules; comparison with experiment

For nonpolar molecules we have D = 0, and we must
construct the low-energy expansion of the scattering ampli-
tude for a potential that is equal to the following for r > r0:

F(r)=-(-^ + -|r7)/>2(cos 6)--!£.. (2'6>

As is well known, the contribution of the potential of
(2.6) to the scattering amplitude at low energies can be found
using the Born approximation.76"78 Hence the differential
cross-section averaged over the directions of the molecular
axis has the form

(2.7)

Here & is the scattering angle, and a is the scattering length.
In connection with the given result, we note that one

can give a double definition of the scattering length: first,
as — linifc^o (tan<50/&). where <50 is the phase of the spherical-
ly-symmetrical scattering, and second, as Vo"o/4l7"> where cr0

is the scattering cross-section at zero energy, while the sign
of the scattering length in the latter case is the same as in the
former. When Q ̂ 0, these definitions do not coincide, since
all the higher partial waves contribute to the cross-section at
zero energy. In Eq. (2.7) and below we shall use the first
definition.

We obtain the following expressions for the total and
the diffusional cross-sections:

(2.8)

(2.9)

Ifg<0, then the cross-section falls off with increasing
energy near zero, and a minimum is observed at some k (the
Ramsauer effect). Since usually we have 2ce0}a}$-a2\Q |/15,
the existence of a Ramsauer effect is governed, as in the case
of scattering by an atom, by the sign of the scattering length.

To obtain the higher-order terms in the ERT expansion
requires methods based on phase analysis of the amplitude.
For the phase of scattering by the spherically symmetric po-
tential — a0/2r4, O'Malley et a/.79 have obtained

tan S0 = - ka - £ a0k
z— -|- aaak* \nk + 0 (h»). (2.10)

From this we find that the next term of the expansion (2.7)-
(2.9) is not of the order of k2, but of k2 In k. The behavior of
the phases for an angular momentum of the electron /> 1
depends only on the long-range action and is given correctly
by the Born approximation60:

(2.11)tan6ran uj -

The low-energy expansion of the reactance matrix K for
the potential of (2.6) has been studied in Ref. 60. This type of
expansion can be usefully employed in extrapolating the K-
matrix into the region of very small energies, e.g., in order to
determine the scattering length and to monitor the accuracy
of numerical calculations. For example, processing of the
results of the exchange-static calculations81"83 yields respec-
tively 1.83 and 2.17 for the scattering lengths for the mole-
cules N2 and H2. Figure 1 shows the eigenphases and partial
cross-sections for symmetry 2g in the case of scattering by
the nitrogen molecule. The ERT data agree well with results
of an exchange-static calculation81 up to energies of 0.15 Ry
(2eV).

Now let us examine the results for the total and diffu-
sion cross-sections. Figure 2 shows the data on scattering by
the hydrogen molecule. The scattering length was deter-
mined by normalizing the expansion (2.8) to the result of the
exchange-static calculation with allowance for polarization
in the form of (2. 1)46 for E = 0.2 eV; it proved equal to 1 .07.
Thus, allowance for polarization diminishes the scattering
length for H2 by a factor of two. Just as in the case of the
partial analysis, ERT yields good results up to 2 eV. The
ZRP models and separable potentials yield a cross-section
correct in order of magnitude, but do not reproduce the cor-

FIG. 1. Eigenphases and partial cross-sections (symmetry
-£g) for e — N2 scattering in the exchange-static approxima-
tion. Solid curves—data of Ref. 81, dotted curves—ERT re-
sults.80
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FIG. 2. Total elastic-scattering cross-sections of the H2 molecule. 1, 2—
exchange-static calculations with allowance for polarization in the form
of a semiphenomenological polarization potential46 and an optical poten-
tial50; 3—ERT [Eq. (2.8)]; 4—separable-potential approximation84; 5—
ZRP approximation56; dots—experimental data.15

rect energy-dependence. This involves the lack of allowance
for long-range action in these models.

Figure 3 shows the differential scattering cross-sections
for the hydrogen molecule. The experimental data are nor-
malized to the calculation46 at t? = 90°.

Figure 4 gives the diffusion cross-sections for the nitro-
gen molecule. The ERT data are normalized to the experi-
mental data85 for k2 = 0.01. Naturally, the ERT does not
reproduce the resonance of the form of symmetry 77g at
k2 = 0.2 that has been observed experimentally and ob-
tained theoretically in an exchange-static calculation with
allowance for polarization.86 This resonance had been de-
tected even in the early calculations of Stier72 and Fisk.73

Figures 5 and 6 show the total and diffusion scattering
cross-sections for the CO2 molecule. The ERT data are nor-
malized to an experiment34 with E = 0.01 eV. A scattering
length of - 7.39 is obtained for Q = - 3.86.42 Therefore a
Ramsauer minimum is observed in the cross-section. The
terms linear in k in the expansions (2.8) and (2.9) do not
suffice for describing the behavior of the cross-section near
the minimum. However, although the coefficient of K2 In k
depends only on Q and a, the coefficient of the term of order
k2 depends also on the short-range force, and another adjus-
table parameter arises. Singh87 has used this type of expan-
sion for the CO2, N2O, and CO molecules. For CO2 he ob-
tained a = — 7.2. The large absolute value of the scattering

FIG. 3. Differential elastic-scattering cross-sections of the H2 molecule at
£ _ i ey. Solid curve—calculation of Henry and Lane46; dotted curve—
ERT; dots—experimental data25 normalized to the calculation46 at
d = 90°.

50

Z0>

10

10'^ 0,02 0,05 10 ' 0,2 E,Ry

FIG. 4. Diffusion cross-sections for the nitrogen molecule. Solid curve—
exchange-static calculation with allowance for polarization86; dotted
curve—experiment85; dot-dash curve—ERT.

length of CO2 was attributed to the existence of a virtual
state near zero energy.88

We note also that a Ramsauer effect is observed in scat-
tering by the methane molecule.14 It has been reproduced in
the calculations of Refs. 89 and 51.

In closing, let us present the data on quadrupole mo-
ments, polarizabilities, and scattering lengths for certain
simple molecules as obtained by processing the best theoreti-
cal and experimental results by the ERT formulas. The re-
ferences point out the source from which the cross-section
data were taken (for the CO2 molecule the results on scatter-
ing lengths were taken directly). The data on quadrupole
moments and polarizabilities were taken from the same
sources. We recall that the scattering length is related to the
cross-section at zero energy by the formula CTO = 4ir
(a2 + 402/45)(seeTableI).

2) Polar molecules

In order to construct an ERT for scattering by polar
molecules,90'91 one should take the solution of the Schro-
dinger equation with the potential of a point dipole (2.2) in
the outer region, and then fit it to the inner solution by using
the boundary conditions. In the simplest approximation the
dependence of the scattering amplitude on the short-range
force reduces to a single parameter analogous to the scatter-
ing length in the ordinary ERT. This approximation corre-
sponds to reducing the short-range force to a zero-range

10-

0,03 10'' 2 3 E, eV

FIG. 5. Total scattering cross-sections for the CO2 molecule. Solid
curve—exchange-static calculation with allowance for polarization42;
dotted curve—ERT; crosses—experimental data.13-16'18
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FIG. 6. Diffusion scattering cross-sections for the CO2 molecule. Solid
curve — calculation42; dotted curve — experiment34; dot-dash curve —
ERT.

potential. The ERT formulas allow one also to obtain the
following corrections.

The contribution of the quadrupole and the polariza-
tion interactions proves substantial when the parameters Qk
and a0k

 2 become comparable with D. The case in which the
increment to the dipole potential is spherically symmetric
has been studied in Ref. 91, where a procedure was devel-
oped that makes possible a low-energy expansion of the 5*-
matrix.

Calculation of the scattering cross-section of a polar
molecule requires departing from the framework of the
fixed-nuclei approximation. Therefore the results of the cal-
culations will be examined in Sec. 3. In closing this section,
let us examine the problem of bound states in the field of a
polar molecule within the framework of the ERT.92 When
D<DCI, the existence of a bound state depends on the mag-
nitude of the short-range potential. When D > Dcr , there is
an infinite number of bound states whose energies are given
by the formula

(2.12)

Here p depends on D, while a is the sole parameter of the
theory that depends on the short-range force.

We have dropped negative values of n, since the corre-
sponding En values do not satisfy the condition of applicabi-
lity of the ERT. On the side of energies of low absolute mag-
nitude, the number of roots is restricted by the lack of
applicability of the fixed-nuclei approximation. According
to the criterion of Crawford and Garrett,93 a bound state
actually exists if the affinity energy calculated in the Born-
Oppenheimer approximation is larger than (I/ 12-17
10) X2?r , where Br is the rotational constant (under the con-
dition that the rotational angular momentum of the negative
ion is zero).

One can find the parameter a by Eq. (2.12) from the
experimental value of the energy of the bound state of the
negative ion; this allows one to determine the scattering am-
plitude. According to Ref. 94, this procedure can be called a
generalized quantum-defect theory for the interaction of the
electron with the polar molecule. However, it often turns out
that not a single bound state exists at all, even when D > Z>cr

(e.g., in the case of the HF and H2O molecules). Then it can
prove useful to calculate theoretically the electron affinity
energy of the molecule, as reproduced formally in the Born-
Oppenheimer approximation.

3. ROTATIONAL TRANSITIONS

a) The long-wavelength approximation for nonpolar
molecules

In principle all the methods presented in Sec. 2 can be
used for calculating the cross-sections for rotational transi-
tions by Eq. (I.I). The application of the ZRP method has
been examined in the book of Ref. 56. The cross-sections of
rotational transitions with excitation of electronic states of
the molecule have also been studied by this same method.95

Since the ZRP method does not take the long-range force
into account it becomes inapplicable at low enough energies
of the electron. At the same time, the long-wavelength ap-
proximation yields a result whose applicability as k—+Q is
limited only by the adiabatic approximation.

For simplicity, we shall treat everywhere below the case
of a linear molecule in a 2, state. Then the rotational wave
functions reduce to spherical harmonics. A generalization of
the theory of rotational transitions to nonlinear molecules
has been given in Ref. 96.

The cross-section for rotational excitation differs from
zero only for transitions/„ + 2*—j0, and it has the form

15 (3.1)

According to (3.1), the cross-section increases or falls
off with increasing energy near the threshold, respectively if
Q> 0 or <2<0. In the latter case a minimum is observed in
the cross-section.

Figure 1 shows the data on the differentia] cross-sec-
tions for the !•<—1 transition in the H2 molecule forE = 1 eV.

In order to generalize Eq. (3.1) into the energy region
where the adiabatic approximation is inapplicable, one must
calculate the Born integral with allowance for the change in
the absolute magnitude of the momentum of the electron in
the collision process. As a result we have98"100-77

TABLE I.

Molecule

H2
N2
C02
CH4

Q

0,48
—0,935
—3,86

0

<xo

4,52
11,9
17,9
17,5

«r

1,38
4,2
9,2
0

°theor

1,07"
0,75 86

— 6,17 8S

a«xp

1,12"
0,55 8b

-7,2"
—3,1-: 3,351
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FIG. 7. Differential scattering cross-sections for the hydrogen molecule in
the state withy = 1 at E = 1 eV. The data are given from Ref. 56 with
addition of the ERT results (dot-dash curve). Solid curve—calculation in
the ZRP approximation; dotted curve—static approximation with
allowance for polarization97; symbols—experimental data.14'25

10'' 10' 10' k1, a.u.

FIG. 9. Cross-sections for rotational excitation of the nitrogen molecule
(transition/ = 0->2). Curves R = 1.75; R = 1.80—calculations in the dis-
torted-waves approximation102 with different choices of the cutoff param-
eter in the long-range potential; GS—Eq. (3.2) with a2 = 0; DM—with
a27^0 (data taken from the review of Ref. 1).

ki8n (?„ +!)(/„ +2) fn2 *'
<?#„ = -7T- /9,- i < \ / O T -t-^ V "ITlo (<JJo + 1/ l4/o+ •*' L. "j, 16

1 1024 "
*0

/ = /„ + 2. (3.2)

The expression (3.2) for a2 = 0 is called the Gerjuoy-
Stein formula,98 and the Dalgarno-Moffett formula for
a27^0." In contrast to (3.1), it is not asymptotically exact in
nature, but is a reasonable extrapolation into the region of
small kj. For example, the excitation cross-section ap-
proaches zero at the threshold, in accord with the Wigner
law.101

Figs. 8 and 9 illustrate the application of Eq. (3.2) to
processes of rotational excitation of H2 and N2 molecules.
Since Q < 0 for N2, the cross-section passes through a mini-
mum.

b) Scattering by polar molecules at energies greater than the
rotational constant

1) Regulation of the total cross-section90

By applying Eq. (1.1) to polar molecules, one can obtain
the amplitude and differential cross-sections of rotational
transitions. However, the total cross-section fory =y'0± 1
diverges. This involves the already mentioned inapplicabil-
ity of the impulse approximation. In order to eliminate this

divergence, let us first examine expansion of the total cross-
section in partial waves having different projections of the
angular momentum of the electron:

(3.3).(m)"

In order to elucidate the nature of the convergence of
this series, we can calculate o<m) in the Born approxima-
tion3,,36,90.

(">) ) — 2 | m | — 1],

Here ^' is the derivative of the digamma function.
This implies that the series in (3.3) diverges as a har-

monic series. Classical considerations imply that the fixed-
nuclei approximation becomes inapplicable at \m \ > k 2/jBr

(wheny = 0, the denominator contains a quantity of the or-
der of 5r). On the other hand, the Born approximation be-
comes applicable when \m\> JD ~. Hence, when k 2 >jBr JD,
one can use the Born approximation with allowance for rota-
tion to remove the divergence of the series in (3.3). The result
has the form

= S ) - O^ (0)]

Here alja (Br ) denotes the scattering cross-section of a mole-
cule having the rotational constant BT and the angular mo-
mentum y'0 in the initial state:

The expression for <j) in the Born approximation has the
form103

3 **„ 2/0
In

k; —
Jo

(3.4)

10'z 10

Here we have/ =j0 ± 1, andy^ = max (/0,y).
Equation (3.4) indicates a logarithmic divergence of the

total cross-section as Br-+0, i.e., approach to the impulse
limit.

An alternative procedure for regularizing the total
FIG. 8. Cross-sections for rotational excitation of hydrogen molecules cross-Section consists in an analogous subtraction of the dif-
(transition; = 0-*21 HL—exchange-static calculation with allowance for . ° . ""
XKtai"; GS-Eq. (3.2) with a2 = 0; DM-Eq. (3.2) with a2^0; ferential cross-sections when integrating them over the scat-
dots—experiment35 (data taken from the review of Ref. 1). tering angle.2
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2) Classical and semiclassical methods

The classical method enables one to derive relatively
simple formulas for the scattering cross-sections of electrons
by model potentials. Since the classical approach is valid
when a large region of impact parameters contribute to the
cross-section, it has been applied mainly to the problem of
scattering by polar molecules.

Dickinson and Richards104 have treated transitions in a
polar molecule for 14/1 = 1 in the impact-parameter approx-
imation. They use the model of Seaton105 with account taken
of unitarity and of the finite dimensions of the molecule. The
following expression was obtained for the diffusion scatter-
ing cross-section at low energies106:

n& i QJT \ f-i e\
a* = T6ftM19Z)- — )• ' '

F. T. Smith and his associates107"109 have employed the
method of the classical S-matrix theory110 for scattering by
dipole and quadrupole potentials. The method enables one
to obtain the cross-sections for transitions between states
having different rotational quantum numbers. However,
since the molecule is treated classically, the expressions for
the cross-sections are valid only at large enough/'. The semi-
classical approach11u 12 lacks this defect; according to it one
treats the classical S-matrix in the fixed-nuclei approxima-
tion, and then employs the adiabatic approximation (I.I) for
calculating the matrix elements. This implies the following
expression for the total cross-section for rotational excita-
tion:

(3.6)
3k1 (/-I)/( / + «(/ +2)

3/e2

When/' = 1, one can regularize the cross-section by the
same methods as for the quantum-mechanical cross-section,
i.e., examine the region of large impact parameters with ac-
count taken of rotation.

An oscillating dependence on the parameter D sin (i? /2)
appears in the differential cross-section owing to interfer-
ence of the classical trajectories. An analogous effect arises
in calculating the Glauber scattering amplitude by the sta-
tionary-phase method.

Equations (3.5) and (3.6) are simple enough and at the
same time yield a non-zero result fory'^0 (in contrast to the
Born approximation).

3) Results and comparison with experiment

Let us examine the results of calculations for certain
molecules.92'113 The electron-affinity energy of the LiF mol-
ecule is 0.33 eV.144 Then Eq. (2.12) implies that a = 2.42,
and that there are two more bound 22 + states of LiF" hav-
ing energies of 0.495 X 10~2 and 0.74X 10~4 eV (the latter
energy is of the order of Br and hence must be calculated
with allowance for rotation). The different methods of calcu-
lating the total cross-sections for rotational transitions have
been compared in Refs. 2 and 84. The results of the different
approaches agree rather well with one another, which indi-
cates the applicability of the simple methods (the semiclassi-

160 •a-

FIG. 10. Differential scattering cross-sections for the LiF molecule. Solid
curves—ERT data"3; dotted curves—exchange-static calculation2;
dots—experimental data.22

cal and ERT methods) for calculating the scattering by mol-
ecules having a large enough dipole moment.

Figure 10 shows the total differential scattering cross-
sections of LiF at E = 0.544 eV and 5.44 eV, and gives the
comparison with experiment.22 Figure 11 presents the data
on scattering by the HCN molecule. An estimate of the elec-
tron-affinity energy of HCN in the Born-Oppenheimer ap-
proximation115 implies that 3.8 <a <4.55. As we see from
Fig. 11, this agrees well with the experimental data on the
differential cross-sections.21

In principle the ERT can be applied to all polar mole-
cules for which one knows the electron affinity as calculated
in the fixed-nuclei approximation. For example, although
bound states of the HF~ and H2O~ ions do not exist, esti-
mates are known of the affinity energy as calculated in the
Born-Oppenheimer approximation,115 They can be used to
calculate the scattering cross-sections of the HF and H2O
molecules.92

On the other hand, if a molecule possesses a large dipole
moment (£ 3), then the total and diffusion cross-sections de-
pend weakly on the parameter a, and one can obtain good

FIG. 11. Ratio of the differential scattering cross-section for the HCN
molecule to the Born scattering cross-section for this molecule at E = 3
eV. Curves—ERT data113; solid curve—for a = 4.64; dotted curve—for
a = 5.30. Dots—experimental data.21
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estimates for the cross-sections without fixing the value of
this parameter more precisely.90 For example, we obtain the
following expressions for scattering by CsF at E = 1 eV (in
units of TOO):

105 < 0d < 125,
2287 < at < 2297, / = 41,

on the other hand, the Born approximation yields crd =350
and crt = 2681, while the strong-coupling method yields
ad = 117and<7t =2276.

c) Theory of transformation of reference frames

All the methods described above rest on the approach of
the molecular frame of reference (MFR) (molecular frame or
body frame in the English-language literature), in which a
vector rigidly fixed to the molecule is taken as the singled-
out direction (e.g., in a linear molecule it is the internuclear
vector). The calculation of the collisional dynamics is per-
formed in this frame, while the transformation to the labora-
tory frame of reference (LFR) is performed either by Eq. (1.1)
or by averaging the cross-section over all orientations of the
molecule. In the latter case one obtains a cross-section
summed over all final rotational states.

The above-described regularization of the integral
cross-section for scattering of an electron by a polar mole-
cule has required going outside the framework of the MFR
approach. In general, when one goes outside the framework
of the adiabatic approximation, the LFR approach is more
suitable. The most general method consists in expanding the
total wave function of the electron-molecule system in the
rotational states of the molecule and then solving the system
of strong-coupling equations.'16

However, the LFR representation possesses a number
of defects, though permitting one relatively simply to allow
for rotation of the molecule. First, the structure of the
strong-coupling equations in the LFR representation is far
more complex than in the MFR representation. Second, the
calculation of the matrix of exchange integrals in the LFR
representation involves considerable difficulties. Upon tak-
ing this into account, Fano and Chang8'9 have proposed a
theory of transformation of frames of reference. Here one
introduces the radius r{ such that, when ;•</•„ the interac-
tion of the electron with the molecule is far larger than the
rotational constant. Then, when /•</•„ one can neglect the
rotational splitting and solve the system of equations in the
MFR representation, while using the fixed-nuclei approxi-
mation. When /•>/•, one must take the rotational splitting
into account and solve the problem in the LFR representa-
tion. The fitting of the functions in the different regions is
carried out by using the unitary matrix found by Fano.8

Since we usually have rl > /•„, where r0 is the range of the
short-range force, then, when r> rlt the system of equations
in the LFR representation has a relatively simple form, and
its numerical integration presents no substantial difficulties.

One can also transform the frames of reference in angu-
lar-momentum space. This procedure has actually been
done in regularizing the integral cross-section for scattering
by a polar molecule (Sec. 3b,l).

d) Scattering by a polar molecule at energies of the order of
and less than the rotational splitting

Let us study the scattering by a polar molecule at ener-
gies of the order of and less than the rotational splitting//?,..
The interest in this region arises in part from the fact that
dipole resonances can occur in it above the threshold that
usually do not arise in theories not allowing for the rota-
tional splitting.117 This problem has been studied by using
the LFR approach throughout all space.118'119 However, as
we have pointed out above, this approach has a number of
defects that are removed by transforming the frame of refer-
ence. Let us study the application of this method within the
framework of the ERT. 12° Since this is a multichannel prob-
lem, it is convenient to introduce the sum of the eigenphases
<5sum for analyzing the results.

Further, we shall assume that D > Dcr. Then, in the
fixed-nuclei approximation an infinite number of bound
states exists. Accordingly 8sam increases without bound as E
approaches zero, by increasing by IT an infinite number of
times. On the other hand, when E<£Br, the adiabatic approx-
imation is inapplicable, and elastic scattering in the channel
j = 0 is described with good accuracy by the polarization
potential — ad /2r4.121 Here ad is the effective dipole polar-
izability arising from the coupling of the states j = 0 and

7=1,
o2

Then the tangent of the scattering phase approaches
zero as E—>0 according to (2.10) and (2.11). Consequently,
when E = 0 we have <5sum = NTT, where N is an integer.

Equation (2.10) implies that, when / = 0 and a <0, 8
increases, starting with E = 0. At some value of E that de-
pends on BT and the total angular momentum J, it undergoes
a jump, while "adjusting" itself to the adiabatic value 8 ̂ m.
In the region of the jump the phase increases in resonance
fashion, owing to scattering by the virtual level.60 When /> 1,
the resonance behavior of the phase arises from scattering by
a quasidiscrete level. The corresponding resonance is a shape
resonance. Its existence involves the presence of a dipole in-
teraction in the inner region and a centrifugal barrier in the
outer region.119 Finally, when / = 0, a > 0, the phase rapidly
decreases, and we have resonance scattering by a bound
state.60

One can approach the same problem from the stand-
point of the analytical theory of the S-matrix. When BT = 0,
the 5-matrix has a finite number of poles that lie on the real
negative semiaxis of the complex energy plane and are deter-
mined by Eq. (2.12). When Br ^0, almost all the poles leave
the real axis and lie on a nonphysical sheet of the Riemann
energy surface. (This process has been discussed in Refs. 122
and 123 for the case of scattering by a helium atom). If/ = 0,
then the poles lie on the real axis of the nonphysical sheet and
correspond to virtual states, while when />!, the poles are
complex and correspond to quasidiscrete states. Several
poles can remain on the physical sheet, which corresponds to
the conservation of bound states. According to the Craw-
ford-Garrett criterion,85 the states are conserved for which
^ad >(1/12-1/10) Bt, where fad is the energy of affinity of
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FIG. 12. Sums of eigenphases (apart from a term Mr) for scattering by the
LiF molecule. The numbers denote the value of/. The dotted curve indi-
cates Smm in the adiabatic approximation. The arrows indicate the thresh-
olds for excitations of rotational states.

the molecule toward the electron whenfir = 0. If this migra-
tion causes some pole to be close to the positive real semiaxis
of the physical sheet, it yields a resonance contribution to the
scattering.

What we have said is illustrated by Figs. 12 and 13,
which show the sum of the eigenphases for scattering by the
LiF and HF molecules. When / = 0, the behavior of <5sum for
LiF arises from a bound state with the energy 0.235 X 10~5

eV. We can conclude from this that the LiF' ion has three
22 + states with binding energies of the electron of 0.33,
0.495 X 10~2, and 0.235 X 10~5 eV. When J = 1 and J = 2,
relatively broad shape resonances occur. For HF, three
groups of curves are given that correspond to different val-
ues of a, since a sufficiently exact value of the electron-affin-
ity energy in the Born-Oppenheimer approximation is not
known. In the case/=0 with ^ad = 10~5and 10~4eV,one

FIG. 13. Sums of eigenphases (apart from a term N-rr) for scattering by the
HF molecule. Solid curveW = 0; dots—/ = 1; dot-dash W = 2; dotted
lines—adiabatic approximation, / = 0. For each / the lower curve corre-
sponds to the case $"> = 1CT5 eV, the middle curve to the case
%•& = 10"4 eV, and the upper curve to the case 0>ad = 10 3 eV. The
arrows indicate the thresholds for excitation of rotational states.

observes scattering by a virtual state with energies
0.38 X KT3 and 0.14X 10~4 eV. When fad = 10~3 eV, the
Crawford-Garrett criterion is fulfilled, and a bound state
exists with an energy of 0.56X 10~3 eV. In the cases J = 1
and J = 2, shape resonances exist, which are sharpest when
%*d = 10-3 eV.

The studied resonances have a width of the order of 0.1
B,. Hence they cannot be observed in scattering experiments
with the existing experimental technique. However, one can
observe them in photodetachment experiments, owing to the
large resolving power of the laser. Experiments of this type
have already been perfomed for the negative ions of the sodi-
um halides124 and the ions of organic molecules.125 In the
latter experiment resonances were observed that apparently
are of dipole type.

4. VIBRATIONAL EXCITATION

We can naturally divide the processes of collision of
electrons with molecules that alter the vibrational state into
two classes: nonresonance and resonance. To describe the
former the impulse approximation usually suffices (e.g., this
approach has been applied in Ref. 126); analysis of the latter
presents great difficulties. From the physical standpoint,
one can represent resonance processes as occurring in three
stages: in the first stage the incident electron is captured by
the electron shelll of the molecule and forms the state of an
intermediate molecular ion. In the second stage the nuclei
move in the field of the electron shell of this ion, while the
decay of the ion in the course of this motion constitutes the
third stage of the process. This qualitative picture enables
one directly to reveal the role of the potential curve Wl (R ) of
the molecular ion and the amplitudes for capture and de-
tachment of the electron V(R } in the description of the reso-
nance processes. We note that the analysis of the fundamen-
tal time parameters of the process shows that, although the
lifetime of the intermediate state in the case of sharply
marked resonances exceeds the period of vibration of the
nuclei, nevertheless it proves to be considerably smaller than
the rotational period. Therefore we can consider the direc-
tion of the internuclear axis to be fixed in the course of the
collision.

The best-known example of an intermediate resonance
is the 2/7g state of the N2~. We have mentioned this reso-
nance in Sec. 2b, 1. The first ab initio calculation of this state
was performed in Ref. 127. The results obtained in Ref. 127
are of great qualitative interest, and hence we shall take them
up in somewhat greater detail. The calculation of the 2/7g

resonance was performed within the framework of the self-
consistent-field method, and the test functions were com-
posed of Gaussian packets. When the width of these packets
were restricted within limits of 5 A, a local minimum was
found of the variational functional at a function with the
symmetry 2/7g (Nf): I^lorj2c^2o^l^3^2lffl-g. Compari-
son of the \irg orbital of this state with the lwg orbital of the
excited state of the N2 molecule (1IJ );
la2- la2,2CT2. 2al lir* 3crg lirg showed that, when r<2 A (ris the
radial coordinate of the electron), these orbitals are similar,
while when 2 A < r < 4 A, the orbital of the ion has an addi-
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tional maximum interpreted as a manifestation of the decay
of the state. An attempt to find a resonance associated with
other excitations of the molecule, e.g., the '^u

+ state
(lazier;; 20^20-;; Iff4 3crg3cru), failed. We can conclude from
this study that the localization of the electron in the reso-
nance state involves the existence of a centrifugal barrier for
the smallest orbital angular momentum /min allowed by the
symmetry of the resonance (for the liri orbital /min = 2, and
forthe3o-u orbital/min = I). If the vacant orbital is localized
inside this barrier, it can give rise to an intermediate reso-
nance in electron scattering, whereas Rydberg states of the
molecule localized solely by the Coulomb field and concen-
trated outside the centrifugal barrier, as, e.g., the 3cru orbital
of the N2 molecule, cannot give rise to such a resonance.

The mechanism of formation of a resonance described
above, which is called a shape resonance in the literature, is
not the sole mechanism. Resonances also exist (at larger en-
ergies of the electron) involving excitation of one of the elec-
trons of the shell of the molecule (similarly to doubly excited
states of atoms), and called in the literature Feshbach reson-
ances.

Ab initio calculation of the parameters of intermediate
resonances with fixed nuclei is the topic of a large number of
studies, which constitute an entire field in modern computa-
tional quantum physics. We can crudely classify the calcula-
tions into "collisional," employing the integration of sys-
tems of strong-coupling equations,l>136>'37 and the method of
the /{-matrix, which was developed in Refs. 128-135. A
number of problems arises when one uses the method of
strong coupling of channels, involving allowance for ex-
change and dynamic polarization interaction. Therefore the
method of the /{-matrix currently seems more promising.
With this we shall close the discussion of calculations in the
fixed-nuclei approximation, and shall consider all the char-
acteristics of the system in this approximation to be known.

An attempt to calculate the dynamics of motion of the
nuclei "from first principles" has been undertaken in a series
of studies. 138~140 However, this attempt, which rests on ex-
panding the wave function of the system in the vibrational
functions of the molecule, proved hardly successful. The rea-
son for failure has been pointed out by Schneider14': the mo-
tion of the nuclei in the molecular ion is determined by the
potential curve W, (R ), which substantially differs from the
potential curve U0 (R ) of the molecule. Naturally, a correct
description of this motion requires a large basis of vibration-
al functions of the molecule. A calculation by using the
method of the /{-matrix, including in the treatment the mo-
tion of the nuclei,10'142 has proved considerably more suc-
cessful among the calculations "from first principles." On
the whole, ab initio calculations are rather complex, and a
semiphenomenological approach is widely applied in the
current literature that rests on the theories of Bardsley and
Herzenberg. We shall proceed to the description of the lat-
ter.

a) The theory of Bardsley

The most complete theory of resonance collisions of
electrons with diatomic systems is the theory proposed by

Bardsley11; a similar approach has been developed also in
Refs. 143-145. In essence the theory of Bardsley is a natural
generalization of the resonance theory of Feshbach and
Fano146'147 that allows one to take into account the quantum
motion of the nuclei. Let us describe briefly Bardsley's ap-
proach, while mainly having in mind the introduction of the
notation.

First of all we note that Bardsley's theory is most suited
for studying Feshbach resonances. Such a resonance is de-
scribed by the vector |res; q,R } (q is the set of electronic
coordinates, and R of the unclear coordinates), which one
can construct in the usual way from orbitals (occupied and
vacant) of the molecule. This state is quadratically integra-
ble, and we shall consider it to be normalized to unity with
respect to the electronic coordinates. The state |res) is mixed
with the scattering states of the electron by the molecule
having an unexcited electron shell |k,q,/?), as characterized
by the momentum k of the incident electron. These states
can be constructed by solving the problem of scattering of
the electron by the molecule with fixed nuclei. We can as-
sume that the states |res) and |k) are orthogonal in the elec-
tronic coordinates and depend weakly on R. We can take
into account the mixing of these states by seeking the ejgen-
function of the Hamiltonian H = TN (R } + Hd (q,R } (TN is
the operator for the kinetic energy of the nuclei, and //e, is
the Hamiltonian in the fixed-nuclei approximation) corre-
sponding to the eigenvalue E in the following form:

!(/?) |res>+2 J d k M k ) c p n ( f l ) l k > . (4.1)
n

(Here <pn is the wave function of the nuclei in the state n
having the energy En.} The coefficient functions g (R } and
bn (k) are determined by the variation principle. As a result
one obtains the following equation for the function g ( R ) :

R)2M

X d/?'F(k, (4.2)

Here M is the reduced mass of the nuclei, n0 is the initial
vibrational state, k0 is the momentum of the incident elec-
tron, and E (k) is the energy of the state k. The energy of the
resonance state Ed (R } is defined as the mean value of the
electronic Hamiltonian in this state. The quantity F(k R )has
the meaning of the capture amplitude of the electron:

F(k, #) = <n»; q, R\HA(q, R) |k; q, R). (4.3)

We must point out that the derivation of (4.2) presupposes
using the adiabatic rule of differentiating with respect to R ",
in which the dependence on R of the states jres) and |k)is
not differentiated.

One can find the coefficients bn (k) and calculate the
transition cross-section for n0, k0-^-n, k from the known
function g ( R ) :

do 16n>
(4.4)
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(Here k is the momentum of the electron in the final chan-
nel.) Thus a calculation of the cross-sections for vibrational
transitions within the framework of Bardsley's theory re-
quires that we know the functions Ed (R ) and V (k, R ). Yet
one can find these functions only by using calculations that
lie at the limit of contemporary computational potential.

b) The theory of Herzenberg

In contrast to the theory of Bardsley, the theory of Her-
zenberg, which was first proposed in Ref. 12 and is known as
the "boomerang model," is more adapted to describing
shape resonances. Herzenberg's approach has been devel-
oped in Refs. 149 and 151, and the most refined form of the
theory is presented in Ref. 152.

In Herzenberg's theory one assumes that the wave func-
tion of the incident electron near the molecule is proportion-
al to a quasistationary state function having the complex
energy Wl-U0 (U0 is the potential energy of the molecule),
while at large distances this function is represented by the
sum of the incident and outgoing electron waves. The mo-
tion of the nuclei in the resonance state is described by the
wave function J" (R ), which satisfies the equation

"o (R) • (4-5)

(Here Fis the capture amplitude of the electron.) The cross-
section of the transition n0—+n is calculated from the func-
tion I" (R ) just as in the theory of Bardsley [see (4.4)].

The cross-sections for vibrational excitation have been
calculated by using Herzenberg's theory for a number of
molecules:^2,

12'149-151-152CO,153'I54N20,158andC02.
155-157

In these calculations the energy curves of the ion and the
molecule were parametrized by using Morse potentials. The
width F of the intermediate state was determined from the
penetrability of the centrifugal barrier having the lowest or-
bital angular momentum admissible by the symmetry of the
resonance (in this connection we shall be speaking below of/-
dominance). The amplitude of electron capture F (R ) is de-
termined in Herzenberg's theory from the width F (R ) by
using the optical theorem.52

Despite the crudeness and not always sufficient justifi-
cation of the representations of F (R ) and V (R ), it was. possi-
ble in the above-cited studies to obtain very good qualitative
agreement with experiment by adjusting the parameters
(within reasonable bounds). It remains not fully clear
whether one must seek a refinement of the representations of
F (R ) and F (R ), or whether such refinements will exceed the
accuracy of the Herzenberg theory itself.

It is important to note that Herzenberg's theory enables
one to determine also the differential cross-section for vibra-
tional excitation151:

d<dfT -g^"gw-
Here, e.g., in the case of the 2/7g resonance of the N2 mole-
cule, we have

£(0)==_L-H.(i_3cos2'& + -^cos4'&). (4.6)

Here t? is the scattering angle (the representation (4.6) has
been discussed in a number of studies).

Equation (4.6) is based only on the assumption of /-
dominance and matches the experimental results well.
Traces of/-dominance can be found also in studying inelastic
vibrational-rotational transitions.1 The theory of such pro-
cesses resembles the hybrid theory developed here: vibra-
tional excitation can be described within the framework of
the Herzenberg theory, and rotational transitions studied by
using the impulse approximation. We note that such an anal-
ysis is difficult for super-longlived resonances (e.g., the O2~~
molecular ion), for which the lifetime of the intermediate
state is comparable with the period of rotation of the mole-
cule.150

c) Comparison of the theories of Bardsley and Herzenberg

The problem of the relation between the theories of
Herzenberg and Bardsley has not been finally elucidated. It
is usually stated,100 following Bardsley's founding study,11

that the integral equation of Bardsley becomes local at large
values of the energy E of the system. However, this is not the
sole argument. Let us turn attention to three aspects of the
topic under discussion.

First, both theories are approximate. Hence the prob-
lem is correctly posed as: does the difference between the
results of calculations within the framework of these theor-
ies exceed the accuracy of the theories themselves. There is
as yet no answer to this question.

Second, in the limit of infinitely heavy nuclei, when
their motion ceases to play a role, the state used in the theory
of Bardsley mixes with the continuum, acquires a width, and
goes over into the quasistationary state of Herzenberg's the-
ory. Therefore we can naturally expect that both theories
will give similar results in the quasiclassical limit. This prob-
lem has been discussed in part in Ref. 211, but there is as yet
no detailed analysis.

Third, we should not forget in comparing the theories
that they describe somewhat differing physical situations—
one of them is adapted to describing Feshbach resonances,
and the other to describing shape resonances. The question
remains open in comparing the theories of the error associat-
ed with this circumstance.

d) Quasiclassical approximation

The attempts at an analytical solution of the equation of
Herzenberg (4.5) and calculation of the cross-sections in (4.4)
undertaken in Refs. 180, 184, and 160 are of interest. The
former studies will be discussed below. Reference 160 em-
ployed a representation of the energy curves of the molecule
U0 and the ion Ut using Morse potentials, while the width of
the intermediate state was taken into account within the
framework of perturbation theory. Representations for the
cross-sections were obtained in the form of multiple series;
use of these representations enabled a good match of the
"high-energy" region of the experimental curves.

As we have already mentioned, in deriving the funda-
mental equations of the theories of Bardsley and Herzen-
berg, one applies the rule of "adiabatic differentiation,"
which is based on the fact that the mass of the nuclei is larger
than the mass of an electron. It is of interest to try to use this
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fact also in constructing solutions of these equations consist-
ing in representing the cross-sections by the principal term
of their asymptotic expansions in terns of the appropriate
large parameter. Such a representation, as constructed with-
in the framework of Herzenberg's theory, 161~163 made it pos-
sible to obtain compact and pictorial formulas for the cross-
sections that generalize in a natural fashion the generally
accepted assumptions associated with the Franck-Condon
principle. The numerical calculations performed in Refs.
161-163 showed that the quasiclassical formulas yield a
good approximation, both to the known experimental data
and to the results of exact integration of Herzenberg's equa-
tions, even when the formal conditions for applicability of
the quasiclassical approximation are violated.

The quasiclassical representation of the cross-sections
for the vibrational transition have the following form:

(4.6')

Here we have

Further, Oj and b l are the turning points for a molecular ion
having the energy E (generally these points are complex),
while the quantities/n<j and/ have the form of Franck-,Con-
don factors, and are determined by the behavior of the wave
functions in the neighborhoods of the transition points Rna

and Rn, which satisfy the generalized Franck-Condon prin-
ciple

E - Wi (Rh) = Eh-U0 (Rh), k = n, n0.
Here Ek is the energy of the k th vibrational state. Equation
(4.6') has a considerable heuristic value is confirming the
division of the process of vibrational excitation into three
states. Thus, the factor |/no ~ does not depend on n, and
amounts to the probability of capture of the incident electron

into the resonance state, whereas |/n |2 is the probability of
decay of this state. The role of the denominator \Q \2 is espe-
cially large when the width F is small. Then, at energies close
to the roots of the equation

dz = n (n -|--|-),Pi

which determines the quasiclassical levels of the molecular
ion, the cross-sections have sharp Breit-Wigner maxima. As
the width of the term increases, these resonance maxima
broaden, and in the case of the N2, CO, and CO2 molecules,
the denominator Q \2 ceases to play the determining role in
the energy-dependence of the cross-sections. For these mole-
cules, the stated dependence is determined by the interplay
of the factors In<i \

2 and \In j2. Here the former factor is re-
sponsible for the "low-frequency" part of this dependence,
while |/n |

2 determines the "high-frequency" oscillations
(Fig. 14).

Numerical calculations performed within the frame-
work of the quasiclassical approximation yielded results
agreeing well with the data of Ref. 152 for the N2 molecule
(Fig. 15). In the case of the CO molecule, the quasiclassical
calculation matches the results of Refs. 153 and 154 only
qualitatively, while the absolute values of the cross-sections
differ by a factor of about two. However, we must point out
that in Refs. 153 and 154 the absolute values were deter-
mined by fitting to the experimental data.165 As was pointed
out in Ref. 166, the latter have an accuracy comparable with
the deviation between the data of Refs. 153 and 154 and
experiment.163 The latest data on this process (total cross-
section) were obtained quite recently,216 and the measured
resonance cross-section exceeds the data of Ref. 153 by a
factor of about 1.5. Thus, the discrepancy between the re-
sults of Refs. 153, 154 and Ref. 163 cannot be grounds for
mistrusting the quasiclassical method.

II!

0,2

0.3-

2,0 2,5 2,5 3,0 3,5 f,eV

FIG. 14. Dependence of the factors entering into Eq. (4.6') on
the energy of the incident electron for the «„ = l-»n = 2
transition in the N, molecule.
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FIG. 15. Cross-sections of vibrational transitions in the
N2 molecule, a) Vibrational excitation from the ground
state: dots—experimental data164; solid curve—quasi-
classical calculation; dotted curve—calculation of Ref.
152; b) cross-sections for resonance elastic scattering:
dots—quasiclassical calculation by Eq. (4.6'); solid
curve—quasiclassical calculation by the improved formu-
las163; dotted curve—calculation of Ref. 152; c) cross-sec-
tions of vibrational transitions between excited states; the
coding of the curves is the same as in b).

3,0

1,8

0,6

1,5 2,5 3,5 4,1 ea,e\ c) 1,5 2,5 3,5 4,f£,eV

e) Dissociative recombination

The dissociative recombination

(AB)n.+e--*A + B-

is a process related to vibrational excitation. While compet-
ing with the latter, it occurs at energies of the system exceed-
ing the threshold value £th (Fig. 16). In this case the interme-
diate state formed after capture of the electron can either
decay into the final vibrational state by losing the electron or
can "survive" to the point R = /?stab that separates the re-
gion of instability of the intermediate system from its region
of stability. In the latter case the electron is localized on one
of the atoms in the course of the further separation of the
nuclei. The described pattern allows one to apply methods to

describe the process that were developed to study vibrational
excitation. Thus, the motion of the nuclei in the intermediate
state is characterized by the wave function g ( R ) , which satis-
fies either Eq. (4.2) or Eq. (4.5), depending on the model
adopted to describe the process, together with the boundary
condition as /J—*-<x>:

(4.7)

The cross-section for vibrational transitions is determined as
before by (4.4), while the cross-section for dissociative re-
combination (DR) must be calculated from the flux of the
function £ (R ) at large internuclear distances:

(4.8)
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H + H

S K, a.u.

FIG. 16. Energy curves of the lower states of the hydrogen molecule and
the corresponding molecular ion. The curves have been employed in Refs.
168 and 169 to calculate the process of dissociative recombination.

The formulation of the problem has been known for a long
time, 170,171,211 but until recently no quantitative calculations
of the process had been performed. (We must note a new
approach to the process developed in Refs. 172-175 and
based on the methods developed to study the three-body
problem.) Recently, in connection with the growing experi-
mental interest in DR, calculations have appeared for the
molecules F2,

148'167 and H2, HD, and D2.
168-169 The most

"powerful" calculation of DR-in the F2 molecule-was per-
fomed in Ref. 148 by using the nonlocal approach of Bards-
ley [Eq. (4.2)] to describe the dynamics of the nuclei. Here
the wave function of the intermediate state was calculated ab
initio. This precision calculation reproduces the experimen-
tal data only qualitatively, whereas the semiempirical calcu-
lation167 based on the local approach of Herzenberg (4.5)
enables one to obtain results agreeing well with the experi-
mental data. We note that there is a qualitative difference
between the results of Refs. 148 and 167 at low electron ener-
gies, which has been discussed in Ref. 148. We must bear in
mind the fact that neither theory nor experiment are reliable
enough in this region.

The DR calculation for the H2, HD, and D2 molecules
perfomed in Refs. 168 and 169 is semiempirical and is based
on a local variant of the resonance theory (4.5). The potential
curves of the system are shown in Fig. 16. The calcula-
tion168'159 took into account both the two final channels of
the reaction (xl2 g

+ and b *2 u
+) and the two intermediate

states of the molecular ion X22 u
+ and B 22 g

+. We should
note that the results obtained in these studies do not agree
sufficiently well with experiment. This indicates an insuffi-
cient accuracy, and to a certain extent contradictory quality,
of the experimental data; this problem has been discussed in
detail in Ref. 169.

It is of interest to apply the methods developed for vi-
brational excitation and based on the quasiclassical approxi-
mation to describe DR processes. Such a description has
been discussed earlier and all the fundamental formulas de-
rived.170 The quasiclassical approach made it possible to
draw a number of useful conclusions, especially with regard
to the isotopic dependence of the cross-sections,171 which
have been confirmed experimentally.176 However, numeri-

cal calculations of DR had not previously been performed
within the framework of the quasiclassical approximation
(the calculation performed in Ref. 177 started with a classi-
cal description of the motion of the nuclei and hence is insuf-
ficiently exact). Let us give the fundamental formula for the
DR cross-section in the quasiclassical approximation:

\In (4.9)

Here we have
"stab

—Im I pI(z)dz\.

"i

As we have already said, the factor |/BO
 2 has the meaning of

the probability of electron capture, while the factor^ can be
naturally called the survival factor of the system in the inter-
mediate state to the point /?stab. For hydrogen molecules, the
width F (R ) of the term of this state proves to be large and
enables one to transform Eq. (4.9):

.PR _ « I ?(*„„) I1

/_dJ /o___
( AR

M
f - £ ) ( £ - W l («„.))

AR I \R=Rna

''0

x S e x p ( - 2 I m j /2M [Ena-U0 (z)} dz) , (4.10)

"stab

— 2Im (4.11)

Here an<> is the left-hand turning point for a molecule in the
initial state. Physically this approximation is explained as
follows. In line with the Franck-Condon principle, the cap-
ture of the electron occurs at the point Rna , while the inter-
mediate system conserves the direction of motion of the nu-
clei. Naturally, only capture of the electron while the nuclei
are separating leads in the case of a large width to DR. It is of
interest to compare (4. 1 1 ) with the classical representation
(with respect to the motion of the nuclei) of the survival fac-
tor:

(4.12)

(In this formula, which can be used for describing the
process of recombination with the ground vibrational state
of the molecule, R0 is the equilibrium distance between the
nuclei.) Correspondence between (4.11) and (4.12) is estab-
lished by expanding Im /^ab/»i (z) dz in (4. 1 1) as a series for
small r. One can say that the difference between (4. 1 1) and
(4. 12) is substantial when the width is large.

Reference 178, which we discussed above, quantitative-
ly compared (4.10) with the results of integrating Eq. (4.5)
(Fig. 17). It is of interest to study the isotopic dependence of
the DR cross-section — a problem that has become tradition-
al following Ref. 171. It was shown178 that, in line with
(4.10), the quantity
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FIG. 17. Cross-sections for dissociative recombination for
the molecules H2 (a), HD (b), and D2 (c) as functions of the
energy of the incident electron. Solid curves—calculation of
Ref. 168 for Fig. a), and of Ref. 169 for Fig. b); dot-dash
curves—quasiclassical calculation with the parameters of
Ref. 168; dotted curves—quasiclassical calculation with the
parameters of Ref. 169 (we should note that Refs. 168 and 169
employed slightly different representations of the width of
the intermediate state).

In (aH</aHD)
q~ ln(aHt/aDt)

is close to the classical value q0 = (2 —
— 0.374. Experiment yields 0^0.38.

f) Exactly solvable models in the theory of vibrational
excitation

Exactly solvable models occupy a special position in
developing the theory of various physical phenomena. To
avoid confusion, let us point out immediately that the exact
solvability of a model does not presuppose the existence of an
analytic solution expressing the physical quantities in terms
of known special functions; it is quite sufficient to have a
computer algorithm that enables one to perform calcula-
tions of any characteristics of the system. As an example
explaining this statement, let us present the problem of two
Coulomb centers.179

On the other hand, exactly solvable models enable one
to test different physical hypotheses, and on the other hand,
they make it possible to find hidden features of the processes
and help in forming new concepts and pictures. Therefore
such models must, first, be sufficiently specific (in order to be
solvable), and second, yield a broad enough region of vari-
ation of the parameters (in order to yield a representation full
of content for the processes being studied). In a number of
cases, exactly solvable models developed to solve certain
problems have proved useful also in other fields of physics.
Therefore we hope that the models given below are of a cer-
tain general physical interest.

1) The model of Domcke and Cederbaum

The model to be discussed in this section was first pro-
posed in Ref. 180 and subsequently discussed in a series of
papers.181"183 The first publication employed the field-theo-
retical language of second quantization, which is not neces-
sary in the given problem, as we see it. We shall formulate the
model in the language more natural in the given case of the
Feshbach-Fano theory.

We treat the interaction of the discrete electronic state
\d) and the electron continuum \k) ( { d \ d ) = l,
(k\k')=8(k-k '), (d\k) = 0; all the states are independ-
ent of the internuclear distance R ) that are described by the
Hamiltonian

'wl(k, k')\k)(k'\

, R)\k)(d\). (4.13)

Here w(k ) has the meaning of the state energy of the contin-
uum, iu(0) = 0, w > 0 when k > 0; U0(R ) amounts to the po-
tential energy of the molecule for the Hamiltonian of (4. 13);
t/0 is the lower bound of the electron continuum. One can
eliminate the interaction among the states of the continuum
Wi by diagonalizing the Hamiltonian in the space of contin-
uum states. Hence we shall assume below that w^kfi ') = 0.
Within the framework of the model being discussed, one can
obtain formally exact representations for the transition am-
plitudes between the initial state n0, k0 and the final state n,
k, Ano,n, but one can use these representations to obtain nu-
merical results only in certain special cases. The reason for
this is that the given model is an exactly solvable formulation
of the theory of Bardsley, and hence is not specific enough.

In order to elucidate the physical meaning of the model,
we should examine the limit for fixed nuclei. The position of
the resonance level in this approximation is determined from
the equation

) , R)

Here we have

(4.14)

(4.15)
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Equation (4.14) often (especially in the presence of long-
range interaction) proves to be nontrivial, and its solution
has been discussed in Refs. 182 and 183.

On returning to the expression for the amplitudes An^n,
let us discuss the possibility of informally calculating it. Two
cases are known in which such a calculation is possible.

1. Fd (k,R } does not depend on R,U0(R ) = Mco2R 2/2,
A (E,R } - iF(E,R )/2 = yR + 8. In this case a closed expres-
sion has been obtained180 for the amplitude in the form of a
single series in Laguerre polynomials. We must say that this
result has been derived by a more elegant method in Ref.
184.

2. yd(k,R ), A (E,R ), and r(E,R } do not depend on R.
It is assumed that the F (E} relationship is determined by the
threshold law, while the/1 (E (relationship is found fromT" (E}
by using (4.16); U0 = Mco2R 2/2, and v(R ) = v0 + kR.ln this
case, in order to determine the transition amplitude, one
must solve the three-term recursion relationships.181""183

Let us list the fundamental results obtained by studying
the models being discussed.

1) It was shown in Ref. 180, just as in Ref. 184, that
under the conditions 1 one can qualitatively reproduce the
energy-dependence of the cross-sections for vibrational exci-
tation of the nitrogen molecule. The lack of anharmonicity,
the insufficiently realistic picture of the dependence of the
width of the resonance on R, and the coincidence of the fre-
quencies of the molecule and the ion did not allow a quanti-
tative match with experiment with sufficient accuracy.

2) It was shown181 by using variant 2 that taking ac-
count of the nonadiabatic coupling of the motion of the elec-
tron and the nuclei leads to narrowing of the resonance
maxima (for a small width of the resonance) as compared
with the adiabatic Breit-Wigner formula.

3) In Refs. 182 and 183 variant 2 was applied for study-
ing the effect of the long-range dipole interaction between
the electron and the molecule on the viabrational excitation.
They showed that taking account of the long-range interac-
tion can substantially change the behavior of the cross-sec-
tions for vibrational excitation near the threshold. In princi-
ple it can lead to sharp threshold features, which have been
found experimentally.185'188 In addition to the dipole inter-
action, Refs. 182 and 183 have treated also the effect of an
intermediate virtual state. However, the analysis in these
studies, as we see it, is narrowly modeling in type, and hence
it does not allow drawing conclusions associated with exper-
iment.

2) The model of emergence of a term into the continuous spectrum

The concept of the emergence of a term of the interme-
diate state into the continuous spectrum as an adiabatic
mechanism of detachment of an electron has been widely
employed56 in the theory of collisions of heavy particles at
sufficiently high energies at which the description of the mo-
tion of the nuclei in terms of classical mechanics is applica-
ble. A more complete theory of such processes is the model
of Demkov and Osherov.189~194 This model allows general-

ization to the case of quantum motion of the nuclei in the
absence of interaction between them,190-192-194 and a con-
crete special case of this problem has been treated in Ref.
195. However, in collision of electrons with molecules, one
must take into account the interaction of the nuclei196; the
case in which this interaction is characterized by a constant
force has been treated in Ref. 197. A more important repre-
sentation of this interaction is the case of a harmonic poten-
tial, which has been studied in a series of papers. 19S~203 We
shall study specifically this model here, taking up in detail
the physical assumptions of the model and the results ob-
tained, and omitting the details of the mathematical solution
of the problem.

Let us examine a system described by the Hamiltonian

H= -
2M

(4.17)

Here the internuclear distance R is measured from the equi-
librium position of the molecule. Hence it is convenient to
assume that R & ( — 00,00), while the radial coordinate of the
electron r e [0, oo), V (r), characterizes the long-range interac-
tion of the electron with the molecule, and their short-range
interaction is described by a separable potential. The Hamil-
tonian (4.17) is a natural generalization of the Demkov-
Osherov potential.56'189-194

In the fixed-nuclei limit, the Hamiltonian (4.17) has a
continuous spectrum in the electron coordinate, with the
minimum eigenvalue of the Hamiltonian (corresponding to
zero momentum of the electron) equal to Mco2R 2/2, and the
discrete state is

(4.18)

Its energy T(R ) is determined from the equation

r (fl) = 2

where we have

2A+(e (4.19)

Evidently, when/? < 0, e(R ) increases to zero with decreasing
R, and then becomes complex — the term T(R ) crosses the
boundary Mco2R 2/2 of the continuous spectrum and
emerges into the continuum.

A simpler case is that with V(r] = Q,<p (r) = S(r), which
has been treated in Refs. 199-201. In this case we have

We see that, when |/3 | < ̂ Mo2, T(R } increases without limit
with increasing^? (Fig. 18a), i.e., the intermediate molecular
ion is vibrationally stable (as occurs in the case of the O2

molecule). When \0 | > VMu2, T(R )-* - <x as /?->«> {Fig.
1 8b), and the vibrational instability of the ion is expressed in
the possibility of the process of dissociative recombination.

A very important property of the model is that all its
physical characteristics are expressed in terms of the func-
tion R (e), which is determined by Eq. (4.19). This function
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FIG. 18. Energy curves of the model of (4.17). a) The intermediate state is
vibrationally stable; b) the intermediate state allows a channel of dissocia-
tive recombination.

can be called the Franck-Condon function, since when e > 0,
it determines the internuclear distance at which an electron
with the energy £ is formed by decay of the intermediate
state. Evidently, when e > 0, we have Im R (e) > 0, and when
£ < 0, we have Im R (e) = 0.

Another variant of the model of emergence of a term
into the continuous spectrum has been discussed in Ref. 201,
which treated a system having the Hamiltonian

,5.
ZM OR*-

(4.20)

In contrast to (4.17), the boundary of the continuous spec-
trum for (4.20) is asymmetric, while the parameter / that
characterizes this asymmetry does not necessarily involve
the rotational motion of the nuclei, although the Hamilton-
ian of (4.20) allows one in principle to take account of this
rotation. The quadratic nature of the dependence of the sep-
arable-interaction constant on R is not physically essential,
since when R—*0, the eigenfunction of (4.20) must fall off
rapidly.

For the Hamiltonian of (4.17), we seek the solution of
the problem for the eigenfunctions in the form of an expan-
sion in Hermite functions, while for (4.20) this expansion is
carried out in Laguerre functions. One uses the three-term
recursion relations to determine the coefficients of these ex-
pansions.1"-201

Let us proceed to describe the results obtained within
the framework of these models. We note as a preliminary
that the value of exactly solvable models is not determined
by obtaining results close to the experimental—for this the
models may prove to be too crude—but by the possibility of
formulating a "mathematical experiment" that reveals the
effect of varying the parameters of the system on its physical
characteristics. Precisely from this standpoint should we
treat the study of the role of the virtual intermediate state
that has been adopted as the basis of the models being dis-
cussed.

A virtual state is formed in potential-scattering prob-
lems when, as the depth of a potential well decreases, the
energy of a level localized in it passes through zero. If a
barrier is present, then the level goes over into a quasistation-
ary state. If there is no barrier, then the level becomes virtual
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(antibound204). We have already discussed an analogous
phenomenon above in Sec. 3d in connection with the motion
of the poles of the 5-matrix upon varying the rotational con-
stant. We can naturally assume that, if the symmetry of the
orbital occupied by the incident electron allows the orbital
angular momentum to be / = 0, then the intermediate state
will be specifically virtual. Study of the effect of a virtual
state on vibrational excitation by the method of Herzenberg
(Sec. 4b) is apparently quite impossible, while study by the
method of Bardsley (Sec. 4a) is difficult, since one must solve
an integral equation in which the role of the nonlocal terms is
decisive. In this connection the value rises sharply of study-
ing exactly solvable models which involve no substantial dif-
ference between quasistationary and virtual intermediate
states. The first such study was undertaken in Ref. 198. Al-
though its authors speak of the role of the dipole interaction,
in essence they studied the problem of a virtual intermediate
state. The complete solution of the model (4.17) for V= 0
and f>(r) = 5[r) was obtained in Ref. 199. In this study calcu-
lations were performed on the probabilities of vibrational
transitions, dissociative recombination, and associative de-
tachment for a certain randomly chosen set of parameters of
the model. During the calculations resonances were found in
these probabilities involving vibrational states of the molec-
ular ion (these resonances have subsequently also been found
in Ref. 202, where they were called Feshbach resonances), as
well as a resonance involving tunneling through an activa-
tion barrier. In Ref. 202 the Feshbach resonances were dis-
cussed in connection with the study of threshold features in
the vibrational excitation of the HC1 molecule. However,
this treatment was qualitative in character, since the poten-
tial curve of the molecular ion in Ref. 202 increases with
increasing R, whereas ab initio calculations have shown205

that this curve very rapidly becomes practically horizontal.
A calculation was performed in Ref. 203 of the probabilities
of vibrational excitation of HF and HC1 molecules that
methodologically almost coincide with Ref. 199. The proba-
bilities of occupation of different vibrational states of the
molecules upon associative detachment were found203 as
functions of the energy. It is important to note that the pa-
rameters of the model were chosen on the basis of calcula-
tions of the terms of the system: Ref. 205 for HC1 and Ref.
206 for HF. The comparison of the results of Ref. 203 with
the experimental data on the distribution of energy over the
vibrational states of the molecule as a function of the tem-
perature207 showed that the accuracy of the model is quite
satisfactory (Fig. 19).

Within the framework of the model (4.17) with V— 0
and (p = S (r), one cannot take correct account of the motion
of the poles of the adiabatic ^-matrix: this model has no
virtual pole that moves upward with decreasing R along the
negative imaginary axis in the fc-plane (k = Je) to meet the
pole corresponding to the bound state. Actually, in meeting
at the negative imaginary axis, these poles, in separating
practically parallel to the real axis, form a "cross" character-
istic of the theory of theS-matrix.56-204 Evidently, if the point
of merging of the poles is close to the real axis, then the
intermediate state will be quasistationary in character rather
than virtual. An attempt to take into account the effect of a
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FIG. 19. Relative occupancy of the final vibrational states in F + H
collisions with a Maxwellian energy distribution. Cited from Ref. 203. 1 —
200 K; 2—300 K; 3—600 K; 4— experimental results,207 T= 300 K.

second virtual pole on the processes being discussed has been
undertaken in Ref. 201, where the following equation was
chosen for determining the Franck-Condon function R (e):

(This is precisely the form of the coupling of £ and R in the
case of the separable potential of Yamaguchi.208) Evidently
ik0 is the merger point of the roots of this equation in the k-
plane. The parameter a determines the rate of motion of the
poles with changing R, and R0 is responsible for the position
of the point /Jstab of emergence of the term into the contin-
uous spectrum: R 2

tab = R I + k2
0/a. In the calculation of

Ref. 202, the parameters of the model were chosen as fol-
lows: /= 1 and a = 0.58 were taken arbitrarily, while the
parameters k0 and R0 were varied in such a way as to fit the
experimental data on vibrational excitation185 and dissocia-
tive recombination209 with the results of numerical calcula-
tion205 of the energy curves for the HCI molecule. The agree-
ment obtained could be described only as qualitative (Fig.
20), especially in connection with the considerable shift of
the maximum in the cross-section of the 0— »1 vibrational
excitation from the threshold. Perhaps one must take into

e, a.u.

0,8
b)

£,eV

FIG. 20. Results of calculations of the processes of vibrational excitation
and dissociative recombination for the HCI molecule. The calculations
were performed201 on the basis of the mode of (4.17) for three different
values of the parameters of the model. The symbol RL indicates the posi-
tion of the maxium of the cross-section observed experimentally.185-'88

account the dipole interaction between the electron and the
molecule to obtain the experimental results at the threshold.

g) Effect of dipole interaction and a virtual intermediate state
on processes of vibrational excitation

The methods that we have treated appear to be useful in
studying the relatively simple and general properties of the
processes under discussion. As the most important for study,
we note two problems associated with processes of vibration-
al excitation and dissociative recombination:

1. The effect on these processes of long-range dipole
interaction.

2. The role of virtual intermediate states.
As experiments185-188 have shown, both these problems

are rather vital: both mechanisms have been discussed in
connection with the HCI and HF molecules, while a virtual
state is apparently responsible for the processes in the SF6

and CH4 molecules.
We must bear in mind the idea that the role of dipole

interaction in the processes being discussed can be double.
First, the dipole interaction alters the threshold behav-

ior of the ^-matrix. This behavior near the threshold of the
transition n0 = 0-^n = 1 is determined by the following for-
mula117 in the impulse approximation with respect to rota-
tion, with a dipole moment D>Dcr:

ckf

ia) ' ' ' '

Here /z and a are the same parameters as enter into Eq.
(2.12), while kl is the momentum of the departing electron,
and c is a certain constant. Equation (4.22) shows that the
energy-dependence of the cross-section near the threshold
has an oscillating structure. However, this structure does
not make a sharp resonance contribution: when
Z>cv < D S 5/>cr, fj. is small, while the period of the oscilla-
tions is so great that two successive maxima do not lie simul-
taneously in the region of applicability of the theory, while
when D > 5£>cr, the factor exp (TT/J,) proves to be so large that
the oscillations are not manifested. Taking account of rota-
tion in the final state has been studied in Ref. 120 (some
discussion of this analysis has been presented in Sec. 3d),
where it was shown that, in principle in this case, a resonance
can appear near the threshold, but its width is so small that it
may not be manifested experimentally. Similar resonances
have been obtained in certain calculations within the frame-
work of the strong-coupling method,212'213 and have been
identified, erroneously as we see it, as corresponding to the
experimental data.185

Second, the dipole interaction can substantially alter
the threshold behavior of the width of the resonance, as has
been pointed out in Refs. 182, 183, and 210, and thus affect
the threshold behavior of the cross-sections to a consider-
ably greater extent than the interaction in the final state dis-
cussed above.

Apparently a virtual intermediate state is not a rarity,
especially for heteronuclear molecules for which no restric-
tions on parity are imposed on the orbitals. However, the
influence of a virtual state on the process of vibrational exci-
tation will not always be appreciable. The point is, as we
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have already pointed out, that, along with the virtual prolon-
gation of the bound state, a virtual pole of the adiabatic S-
matrix must exist in the system, which meets with this state
on the negative imaginary semiaxis. If the point of this meet-
ing is close to zero, then the virtual character of the state is
manifested in the cross-sections only in the immediate vicin-
ity of the threshold. At higher energies, when the behavior of
the term of the intermediate state becomes essential far from
its point of emergence into the continuous spectrum, this
state can be treated as quasistationary. Nevertheless, cases
apparently exist in which the virtual character of the inter-
mediate state is manifested over a broad energy range. This
statement is confirmed by experiments188 in which rather
sharp maxima were observed near the thresholds for a num-
ber of molecules. In the case of a quasistationary intermedi-
ate state, such sharp maxima could arise only with a small
width, while then, as we see it, they must give rise to an
oscillatory structure in the cross-sections similar to that ob-
served for the N2, CO, and CO2 molecules.

In closing we should point out some studies of collisions
of slow electrons (energy < 1 eV) with CO2 molecules. It has
been noted88'214-215 that a virtual state arises in such colli-
sions. The method applied in Refs. 214 and 215 can be con-
sidered intermediate between ab initio calculations and the
modeling approach. Despite the complexity of the system
being treated and the semiphenomenological assumptions
adopted concerning the interaction of the electron with the
molecule, the cited studies have reproduced a series of ex-
perimental results. In particular, they have shown that a vir-
tual state leads to a sharp increase in the elastic cross-sec-
tion88 and the cross-section for the transition
(0,0,0)-*(1,0,0)214-215 near the threshold.

CONCLUSION

On the basis of the material presented above, we can
note that, although the physics of electron-molecule colli-
sions is far richer and more complex than the physics of
electron-atom collisions, substantial progress has been made
recently in qualitative understanding and quantitative de-
scription of the processes of electron-molecule scattering.
However, a large number of problems remains, involved
both with perfection of the experimental technique and the
theoretical methods of calculation with the aim of obtaining
more accurate quantitative characteristics, and with the
qualitative understanding of the physics of certain processes.

We believe that the following are the key problems at
present. In the experimental measurements one must deve-
lop a methodology of obtaining and working with monokin-
etic beams of slow electrons and substantially increase the
accuracy of measuring the final channels. In the theoretical
studies, the most vital problem is that of elucidating the role
of the long-range dipole interaction in the formation of near-
threshold maxima in the cross-sections for vibrational exci-
tation of the hydrogen halides. Along with these problems,
one must obtain the most reliable information, both experi-
mental and theoretical, on the processes of collision of elec-
trons with molecules of practical interest.

The authors thank G. F. Drukarev for his interest in
this paper that has been the stimulus for writing it, and B. M.
Smirnov for useful remarks.
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