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Delocalization of excitation in a system of disordered but uniformly distributed centers, its
quenching by alien admixtures, and self-quenching by cross relaxation by pairs of identical parti-
cles are considered. It is shown that the direct transfer of excitation from an initial center to its
neighbors becomes sequential and transforms into diffusion. However, quenching is seldom diffu-
sive. As a rule, it follows a singly-acting hopping mechanism. Different theories of this mecha-
nism are discussed and compared. The transformation from the diffusive to the hopping mecha-
nism is described, and criteria for both are examined. Theoretical considerations are illustrated by
applications to the kinetics and rates of concentration quenching of electronic, vibrational, and
spin excitations in solid and liquid solutions. This is based on data on the selective and nonselec-
tive luminescence of rare-earth ions, picosecond absorption by dye molecules, and the decay of
the electron spin echo signal due to hydrogen atoms in irradiated hosts.
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INTRODUCTION form of alien impurities that are effective quenchers. As the
concentration of donor centers increases, the separation

Concentration quenching is encountered in connection between them is reduced, and the interaction responsible for
with different systems such as crystals and glasses activated resonance energy transfer is enhanced. This accelerates the
by luminescing impurity ions, liquid solutions of dyes, and migration of excitation and reduces the time required to
paramagnetic solid solutions. The problem may be formulat- reach an acceptor to which the energy is transferred irrevers-
ed in a very general manner in terms of the dissipation of ibly. The net result of all this is that the excitation lifetime
excitation energy in the course of its migration over a system decreases monotonically with increasing concentration of
of impurity centers that exhibit resonance interaction. The centers that are being excited.
transfer of excitation bet ween identical impurity centers that Electronic excitation of atoms and ions, singlet and
are randomly but uniformly distributed in a solid or liquid triplet states of excited molecules, their vibrational excita-
medium facilitates its delivery to energy acceptors in the tions, and spin excitations in dilute solutions of paramagnet-
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ic particles all exhibit concentration quenching. Depending
on the nature of the excitations, their transfer is accom-
plished either by long-range (multipole) or short-range (ex-
change) interaction between centers. As a rule, the interac-
tion is weak enough to ensure that energy transfer between
two centers may be regarded as noncoherent, i.e., as occur-
ring with constant probability that is quadratic in the inter-
action. If the interaction is a given function of separation,
and is different for donor-donor and donor-acceptor trans-
fers, we have to answer two questions, namely, what is the
rate at which the excitation migrates and how is quenching
forced by this migration?

To answer the first question, we must consider the delo-
calization of excitation in a system of randomly disposed
identical centers. For a long time, there was a dispute as to
whether this process was equivalent to diffusion and, if this
were so, what was the corresponding diffusion coefficient. It
is only relatively recently that an affirmative answer has
been obtained to this question, and the concentration depen-
dence of the diffusion coefficient was determined for both
multipole and exchange interactions.

However, the possibility of diffusion of excitation to
large distances does not mean at all that its quenching is
necessarily diffusive. The quenching zone around an accep-
tor may be so narrow that the excitation can enter and leave
it again in a single displacement rather than in a sequence of
small steps that is equivalent to continuous diffusion. It is
well-known that, in this situation, the quenching of coherent
excitons occurs within the limits of one free path and is char-
acterized by the scattering cross section of the acceptor.' On
the other hand, when one is concerned with noncoherent
excitons, that undergo hopping transport over the donor sys-
tem, single-step quenching is referred to as hopping quench-
ing. Like diffusion quenching, it is characterized by an effec-
tive radius of the quenching sphere, but both the radius and
the rate constant are defined in a different way. As a result,
the rates of diffusive and hopping quenching have different
dependence on donor concentration or, at least, a different
dependence on the microparameters of excitation transfer to
donors and acceptors, and this enables us to discriminate
between these mechanisms.

In the ensuing review, we shall examine in detail both
theoretical and experimental evidence for the hopping
mechanism of quenching, which is probably the dominant
effect in dilute solutions. Experimental data derive from ki-
netic studies of the concentration quenching of electronic,
vibrational, and spin excitation in solid and liquid solutions.
Such studies have become possible because of the advent of
microsecond, nanosecond, and picosecond techniques.

1. PHENOMENOLOGY

The deactivation of excited states produced under the
influence of radiation can be examined by either stationary
or nonstationary methods. The most common among the
latter are studies of decay after 5-pulse excitation. Having
investigated the kinetics of excitation decay in pulse-type
experiments, one can predict the nature of the decay when a
continuous pump is turned off, and then calculate any sta-

tionary parameter of the process, e.g., the yield or duration
of luminescence.1^* We shall therefore consider the problem
in the following formulation: a particle D to which we shall
refer as the energy donor suddenly takes up an excited state
D * at t = 0, and thereafter the probability &(t) that it will
remain in that state decreases with time from 1 to 0. This
process may be due to the natural decay of excitation in the
interior of the center in a time rD, which occurs by direct
radiation or by radiationless internal conversion of energy.
As a rule, however, it occurs much more rapidly because of
impurity quenching in which the excitation is irreversibly
transferred from the donor to an acceptor A in which it is
dissipated into heat or light quanta. With rare exceptions,5

decay in the interior of the center may be regarded as expo-
nential: exp( — t /TD ). On the contrary, impurity quenching
is a complicated multistep process N(t), the rate of which is
determined by the migration of excitation over donors. In
other words,

\ Tfj / \ ' I

where N ( t ) contains the acceptor and donor concentrations
C = [A ] andp = [D] as parameters.

When the donor concentration is vanishingly small, ex-
citations vanish within the centers in which they arise. This
is called static quenching. Static impurity quenching devel-
ops nonexponentially because the decay probability W de-
pends on the proximity of acceptors, and nearest-neighbor
donors decay first, whereas those that are in random isola-
tion decay last. For moderate acceptor concentrations, the
kinetics of static quenching is described by an exponential
function3'4-6'7 of c:

N0 (t) = exp [~c <?(«)], (1.2)

where Q (t) is a monotonically increasing function of time.
Resonance transfer of energy between donors becomes

established as the donor concentration increases. This leads
to the migration of excitation, which accelerates its delivery
to points of effective energy sinks, i.e., donors with shortest
life. This mechanism of removal of excitation readily com-
petes with static quenching of long-lived centers, but is insig-
nificant for short-lived centers. The process as a whole is
thus seen to be complicated. Initially, short-lived centers de-
cay statically and, at the end, long-lived centers decay by
losing their excitation as a result of migration to more effec-
tive sinks:

N0(t), i->-0, (i.3a)
exp( — ckt), t-*-oo, (1.3b)

where ck is the rate of the process in its stationary stage and k
is a constant independent of time.

From the formal point of view, N(t) satisfies the equa-
tion

N = — k (t) cN, (1.4)

in which k (t) decreases with time from its maximum value k0

to the minimum value k (Fig. 1). It is only in the concluding
stationary stage, in which k(t)-^-k = const, thatthisequation
is equivalent to the law of mass action. It is only then that
quenching can be looked upon as a Markov process in which
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FIG. 1 . Time-dependence of the instantaneous rate of quenching ck (t } for
different concentrations of donors responsible for static (1), migrationally
accelerated (2), and kinetic (3) quenching limits.

ck is the excitation decay probability that is constant in time.
However, in general ( 1 .4) is a non-Markov process and k (t ) is
not at all the rate "constant" of the usual equations of chemi-
cal kinetics. As the donor concentration p increases, the
fraction of excitations lost during the static nonstationary
stage of the process with k (t ) = Q (t ) becomes increasingly
smaller, whereas the fraction lost at constant rate becomes
increasingly greater. At the same time, the rate constant in-
creases monotonically with/? and, when the process becomes
entirely exponential, the rate constant reaches its upper limit
k0 which is referred to as the "kinetic" constant (Fig. 1 ). This
is the essence of concentration quenching: it involves the
accelerated loss of excitations with increasing concentration
of particles being excited.

There is a number of concentration quenching mecha-
nisms. When the migration of excitation over a disordered
set of donors may be looked upon as continuous diffusion
with diffusion coefficient D (p}, we have8"1 '

. (L5)

The effective diffusion quenching radius R s determines the
size of the "black sphere" drawn around the acceptor and
such that excitation entering it is inevitably lost. The diffu-
sion mechanism prevails when the migration step A.~p~ 1/3

is small enough. When it is not, and one step is sufficient to
enter the black sphere of radius R w , we have the hopping
mechanism12"15 and

(1.6)
ST

where rip) is the mean time between hops.
The difference between these mechanisms cannot be

wholly accounted for by modifying the definition of k. It is
reflected in the particular increase in k (p} with increasing
donor concentration as a result of the increase in D and 1/7,
respectively. This difference persists until we reach the ki-
netic limit k0 of the rate constant, which is independent of
the rate of migration and consequently of p. The kinetic limit
corresponds to the "total mixing" model (also that of a con-
tinuous medium) in the terminology of the monograph by
Agranovich and Galanin,1 or the so-called "ultrafast migra-
tion," which can be either hopping or diffusion migration.13

Our problem in this review will be to specify more pre-
cisely the above functional relationships and the overall pic-
ture of the phenomena. In Section 2, we shall examine static
quenching and establish the connection between its kinetic
behavior N0(t) and the type of interaction responsible for
quenching. In Section 3, we shall interpret more precisely

the mean hopping frequency 1/r and the diffusion coeffi-
cient D as functions of donor concentration. In Section 4, we
shall examine diffusion quenching and, in Section 5, hopping
quenching, and will determine the functions #s(£>) and
Rw (T), respectively. In Section 6, these mechanisms will be
compared by considering the examples of exchange and di-
pole-dipole transfer. Finally, in Section 7, we shall compare
theoretical predictions with experimental data drawn from
optical and magnetic spectroscopy.

2. STATIC QUENCHING

The probability of quenching of a donor by an acceptor
at a distance r = |r| from it depends on the interaction re-
sponsible for energy transfer. For multipole interactions,
this probability is1-3

where CDA is the transfer microparameter and m is the mul-
tipolarity index equal to 6 for the dipole-dipole interaction, 8
for the dipole-quadrupole interaction, 10 for the quadru-
pole-quadrupole interaction, and so on. However, it some-
times happens that transfer is forbidden in all orders, for
example, in triplet-triplet energy transfer. When this is so,
the only interaction that remains is the exchange interac-
tion16
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where £ is the spatial scale of overlap of the donor and accep-
tor wave functions, and R0 is the distance of their closest
approach. Since L is considered to be sufficiently small
(L < 1 A), the preexponential power function is assumed con-
stant. Dipole-dipole and exchange interactions may be
looked upon as limiting cases corresponding to long-range
and short-range interactions.

When deactivation of the donor is exclusively due to its
interaction with the acceptor, the quenching kinetics for ex-
citation produced at t = 0 is described by

n (r, t) = exp [— w (r) t]. (2.2)

The quantity n(r,t ) is the probability that the donor will be
excited up to time t if a single acceptor is present at a distance
r from it. In other words, after the time t, excitations survive
only on donors in whose neighborhood there are no accep-
tors up to a distance R *. The spherical region around the
donor that is free of acceptors must increase with increasing
t. Its radius is denned by

w (R*) t = 1, (2.3)
from which it is clear that it increases monotonically with
time. Simplifying the picture of the phenomenon somewhat,
we may suppose that all excitations have vanished within the
"black sphere" of radius R * whereas, outside this sphere,
they have survived. This approximation is described by the
step approximation to (2.2), where the position of the step is
denned by (2. 3).

The idea of black spheres is very convenient in the inter-
pretation of results and semiquantitative estimates. In the
language of this model, the function Q (t } in ( 1 .2) is none other
but the volume of the black sphere. The probability that this
sphere will be entered by any of the N acceptors that are
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uniformly but randomly distributed in the volume V'v&Q/V.
When there is only one acceptor, the probability that the
donor remains excited is 1 — ( Q / V ) . When there is a large
number of donors, and they are distributed in space indepen-
dently of one another, the probability that none of them will
enter the black sphere is [1 — (Q /V}]N . It is only in this case
that the excitation will survive at time t . The probability of
this event in a sufficiently large specimen is

V, 2V-»o
(2.3a)

where c = N/V= inv. It is clear from this derivation of (1.2)
that this formula is the solution of the many-body quenching
problem in which one donor is quenched by an ensemble of
acceptors in the specimen.

A more rigorous derivation of (1.2) is based on the fact
that acceptors quench excitations additively, i.e., the total

N

probability of deactivation is W = Y wk, where wk is the
*= i

probability of the transfer of energy to the k th acceptor. In
that case,

(t) = (exp (- Wt)) = <exp ( - (2.4)

where the angle brackets represent averaging over all the
possible distributions of acceptors around the donor. Each
acceptor is distributed uniformly in space with probability
d 3rk /V, and these distributions are independent if the solu-
tion is so dilute that

cva <1, (2.5)
where v0 is the intrinsic volume of the acceptors. In the oppo-
site case (CVQ ~ 1), we have alignment and at least short-range
order appears. On the other hand, when (2.5) is satisfied, the
set of acceptors is disordered and the probability of any of its
configurations is given by the product of the single-particle

AT

probabilities J| (d^rk/V). Since the expression that is aver-

aged in (2.4) is also multiplicative in the acceptors, calcula-
tions are elementary and, in the limit of an infinite specimen
(jV—>oo, V—* oo, c = const), we again have (1.2) with

= [l-i»(r, i)]d3r, (2.6)
Ho

where n(r,t) is given by (2.2).
It is clear from (2.6) that the static quenching kinetics is

different in the initial and concluding stages of the process.
The latter occurs when

w( (2.7)

It is described quite well by the black-sphere model. The
radius of these spheres is then so large that R * >.R0 and hence
the volume is Q = (4/3)wJ? *3. Using (2.1) and (2.3), we find
that/? * = (CDA t )I/m formultipolequenchingand.R * = (L /
2)ln(w;0r) for exchange quenching. It is readily verified that
the function Q (t) estimated in this way differs from the re-
sults obtained from (2.6) for R0 = 0 by a numerical factor of
the order of unity.

Using the exact result in (1.2), we find that, for the mul-
tipole quenching,7

AT0 (i) = exp [ - J£- cF (1 - JL ) (CDAt)3/™] . (2.8)

In particular, when m = 6, we have the Forster "root-type"
kinetics

N0 (t) = exp (—V'qi), (2-8a)

where q = I6ir3/9CDAp2. If, on the other hand, we have ex-
change-quenching, then4

Clearly, the nonstationary character of long-term static
quenching kinetics is explained by the fact that there is
strong quenching in the interior of the black spheres and
weak quenching elsewhere, and the latter becomes even
weaker as the spheres expand.

However, for times shorter than t, for which the inequa-
lity (2.7) is reversed, the black sphere is inaccessible
(R * < R0) and quenching is weak in all space. Let us expand
(2.2) into a series in terms of the small parameter w(r)t and
evaluate (2.6) in the first order of this expansion. This readily
yields (1.3b), but with a constant rate

0= J (2.10)

Consequently, during the initial stage of decay, which is
sometimes referred to as the "ordered stage,"17'18 the pro-
cess develops exponentially. It is only for times satisfying
(2.7) that it becomes "disordered" in the sense that we have
the successive loss of excitations that are in increasing isola-
tion from the acceptor environment.

It is useful to note that interaction with the nearest ac-
ceptor predominates over other interactions only for

cQ(t] <1. (2.11)
In other words, static quenching is binary only during the
initial stage when, instead of (1.2), we have

0 ~ ~ V ' (2.12)
The interpretation of this formula is that the "black spheres"
surround the acceptors but not the donor. The quantity N0 is
then simply the probability of finding an excited donor out-
side these spheres, which is therefore unquenched. However,
the probabilities of entering the black spheres are additive
only when the spheres are separated in space. The binary
description of quenching ceases to be valid when, as they
expand, the black spheres eventually begin to overlap. The
process does not occur only if the migration of excitations
stops the expansion of the black spheres and stabilizes the
rate of quenching.

3. DELOCALIZATION OF EXCITATON

Let us now consider the migration of excitation over
identical donors in the total absence of acceptors. This type
of migration does not reduce the excitation lifetime if the
decay of all the donors in the interior of a center is the same
(TD = inv). It only facilitates spatial delocalization of excita-
tion which, having appeared on some center, is transferred
to its neighbors until it is distributed over the entire system.
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The question whether this process may be looked upon as
diffusion, and what is the diffusion coefficient, is relatively
complicated. The uniformly but randomly distributed do-
nors form a disordered system in which the lifetime of excita-
tions on different centers is different, and the transition
probability is correlated with the center separation (migra-
tion step). When the excitation density on the /th center is
Nf = n, exp( — t /TD ), the kinetic equations describing non-
coherent migration in the balance approximation are as fol-
lows:19

unnh (3.1)

where un =un =u(rtl} is the probability of transition
between donors i and / separated by the distance rn

= r, — r, |. The equations are valid when the number of
excitations is so small that encounters between them can be
neglected. They describe the delocalization of excitation
produced in a center over all the other centers that are not
initially excited.

The mean density n(r,t} of excitations per unit volume is
calculated from the recipe

i

in which the angle brackets signify averaging over all the
possible dispositions of donors in space. If the excitation is
initially localized at the point r', the subsequent density is
given by

n (r, t) = R (t) 8 (r - r') + P (r - r', t), (3.3)

where R (t) represents the "outflow kinetics," i.e., the depar-
ture of excitation from the center on which it was produced,
and P (r — r', t) represents its delocalization in space. It is
clear that

i—ft(t)=(p(r, t) dsr. (3.4)

Since in isotropic and homogeneous space everything is in-
dependent of the starting point, we have placed the origin at
r' and will continue to do so.

A. Escape of excitation

Initially, outflow kinetics develops in the same way as
static quenching because the escape of excitation predomi-
nates over its return. In other words, during the initial stage,
the process may be looked upon as irreversible and can be
described by the same expression as N0(t), namely,

R0 (i) = exp 1-pQ (t)}, (3.5)

where Q (t) is given by (2.6) and u(r) must be used in (2.2)
instead of w(r). The outflow kinetics at this stage differs from
(2.8) and (2.9) only by the definition of the parameters.

In particular, for the dipole-dipole mechanism of mi-
gration over point centers, we have

(3.6)R0 (t) = exp ( - |/-|- ) = J e-v<G (U) AU.

This expression reveals the significance of "static" or single-
step stage of outflow of excitation. So long as the excitation is
localized on the initial center, it will leave it at the rate

10 v

FIG. 2. Distribution of donors with respect to the probability of escape
from a center.

U= £«,/, which depends on the disposition around it of
/

other unexcited donors. Some excitations leave rapidly, oth-
ers more slowly, and the depletion of the entire ensemble is
described by (3.6). The distribution of donors over the out-
flow probabilities in the case of the dipole-dipole transfer is
known:20

(3.7)

The quantity l/r0 corresponds to the maximum of this prob-
ability (Fig. 2). It is given by

(3-8)

where CDD is the donor-donor transfer microparameter that
is analogous to CDA . The probability averaged over this dis-
tribution is found to diverge, but the mean lifetime in a given
center is finite and given by

(3-9)

For the dipole-dipole transfer, T = r0/3, whereas, for ex-
change transfer, (u = u0 exp ( — 2r/l ))21

r. <3-9a>
where 77 = irpl 3/2.

B. Effect of return

Strictly speaking, reverse transitions returning the exci-
tation to the initial center can be neglected only when n(r,t} in
(2.6) is close to unity, i.e., when U(r)t4,\. This means that
(3.5) describes correctly the outflow kinetics only during the
ordered stage, for which Q = k0, and R0(t) ~ 1. In the disor-
dered stage, the description must be modified by allowing for
the reversible nature of excitation transfer between the ini-
tial center and its partners.

The return of excitation to the initial center from its
nearest-neighbor donor is the simplest to take into ac-
count.22-23 When there are only two centers, the excitation
transferred from one to the other is eventually equally dis-
tributed between them, so that its density on the initial cen-
ter is given by

1 1

583 Sov. Phys. Usp. 27 (8), August 1984 A. I. BurshteTn 583

"T



The return of excitation from the nearest-neighbor cen-
ter to the initial center will be exactly taken into account if
we use this expression in (2.6) instead of exp[ — u(r)f], and
the probability that two or more centers are equally close to
the latter center in dilute solutions is small. So far as more
distant centers are concerned, they are, in any case, de-
scribed by n(r,t ) & 1 — ut, so that with reasonably good preci-
sion we find from (2.6) and (3.10) that

fl(t) = «p[— |-J[l-«p(-2a*)ld«r]. (3.11)

Whatever the form of u(r] in this expression, the kinetics of
the process will not differ from the "static" kinetics, but
corrections applied to the numerical coefficients result in a
considerable improvement in the agreement between theory
and computer experiments.22'23

For example, for multipole transfer u(r) = CDD/r",and

(3.12)

The argument of this expression is smaller by the factor
2i-(3/n) as compareci with that obtained from (3.5) for
n = exp( — ut ) [cf. (2.8)]. This is the extent to which the re-
turn of excitation slows down the depletion of the initial
center. There is a corresponding increase in the average time
spent on this center f . In the same way as r is expressed in
terms of R0(t ), this average time can be expressed in terms of
R{t):

(3.13)

(3.13a)

where yH = 6[(2w/3)T(l - (3/n))]n/3/n/>/3). In particu-
lar, Ye = 4ir3/9, so that, in the dipole-dipole case

t = - t R ( t ) A t = R(t)dt.
0 0

For multipole transfer (3.12), we have

For exchange interactions,

(3.14a)

(3.14b)

Thus, the definition of R (t) given by (3.11) enables us to
describe not only the "ordered" but also the "disordered"
stage of outflow of excitation that takes place in a nonsta-
tionary manner. Excitations leaving the initial center first
transfer to the nearest neighbors, and then to more distant
centers, with probability 1 — n(r,t}. However, the more dis-
tant the donor, the more probable it is that it will receive
excitation not by direct transfer from the initial center but
through intermediaries (Fig. 3). This means that the "direct
transfer" approximation (3.11) is limited in time, and for
large values of t the dominant process is "sequential trans-
fer", via a large number of successive transitions that effec-
tively constitute diffusion in space.

C. Delocalization kinetics

Let us now consider the spatial distribution of excita-
tion that has left the initial center. This can be done by sub-

FIG. 3. Schematic diagram explaining the delocalization of excitation
over donors: a — with return from nearest neighbors via (3.10), b — true
sequential transfer of excitation over the system.

stituting (3. 1 1) in (3.4) and then expanding in powers of^>. In
the approximation that is linear in donor concentration, we
have

P(r, *)=p(l-n)=-g-p{l-«p[-2u(r)t]}.

This is the spatial distribution of donors excited by direct
transfer. It expands with time, but not in accordance with
the laws of diffusion. The variance of this distribution is24

(r* } = \ r*P (r, t) dV

and increases nonlinearly with time, contrary to the well-
known Einstein law, and the corresponding "effective diffu-
sion coefficient" is given by25

' d'r (3-15)

and decreases monotonically to zero. This was first demon-
strated by Sakun,19 who found that, for dipole-dipole trans-
fer,

•'DD
,1/6

(3.16)

This conclusion was subsequently extended with the aid of
(3.15) to interactions of arbitrary multipolarity, and to ex-
change excitation transfer.25

Of course, direct transfer of excitation must eventually
be replaced by the sequential process. This leads to the stabi-
lization of the diffusion coefficient, and thereafter the delo-
calization process proceeds as in ordered systems. In fact, it
has been shown26 that the long-term asymptotic behavior of
R ( t ) i s

Still earlier, Vugmeister15 showed that, for large values of
the time t, the density n(r,t} satisfied the usual diffusion equa-
tion

n = D A n , (3.18)

where D is independent of time. If this is so, then it is well-
known that

re(0, *) = • i and (r2): ,
(3.19)

if the excitation starts at the origin. Since, in the diffusion
approximation, the density n(r,t) is identified with P (r,t), it is
clear that P (Q,t )/p decreases with time in the same way as
R ( t ) . This was to be expected because, for large t, the number
of excitations that have not left the initial center is smaller
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than the number that have returned after migration over the
system. The net result of this is that the center ceases to be
"special" in comparison with the neighboring but initially
unexcited centers that have received excitation by means of
migration.

0. Diffusion coefficient

All that remains is to provide an interpretation of the
coefficient of diffusion of excitation over a disordered sys-
tem. It is clear from physical considerations that this coeffi-
cient can be denned by

z> = 4- r) d3r. (3.20)

The only non trivial aspect of this formula is the choice of the
lower limit of integration. In an ordered crystal or other
medium consisting of a continuous distribution of donors,
this limit is, of course, the lattice period27 R0, or the distance
of closest approach,28 respectively. If this is still valid for
dilute solutions, as is indeed the view of some authors,29'30

the coefficient of diffusion should be a linear function of the
donor density. However, it is clear from (3.15) and (3.16)
that, in the approximation that is linear in p, the diffusion
coefficient is not a constant. On the other hand, if the lower
limit is chosen as in (3.20), then V(p] is a nonlinear function of
density because the migration step is A = (3/4irp)1/3.

As far as we know, this definition of D was first put
forward in Ref. 12 well before it was firmly established that a
disordered system did, in fact, have a time-independent dif-
fusion coefficient. This coefficient was subsequently estimat-
ed in precisely the same way by other authors.31"33 If we
define it in this way, we can start with the assumption that
the transfer of excitation to large distances, even though it
has low probability, does facilitate the spatial propagation of
excitation, whereas transitions between nearest neighbors
(however frequent) are totally ineffective in this respect.

Nevertheless, some doubts persist34 about the validity
of the diffusion description of migration. It is clear from
(3.15) that the basis for this is the theory that is linear in/?. To
extend its range of applicability, Vugmeister used the decou-
pling adopted in the theory of continuous random walks
(Refs. 21, 35-39). He used this procedure not only to repro-
duce the diffusion equation (3.18), but also to show that the
coefficient D in this equation can be defined in the usual way
in terms of the ratio of the variance of hop length to hop time:

D = — f r*/ (r)'d3r.
6? -'

(3.21)

The only unusual feature of this definition is the hop length
distribution

m

f / (r) = pu (r) J exp [ - u (r) t] R0 (t) dt, (3.22)

used in the definition of variance. For large distances, it de-
creases as u(r), but is finite for r-^0 (Fig. 4). Since it is free
from the divergence exhibited by the multipole transfer
probability, an artificial cutoff procedure such as was ap-
plied in (3.20) is unnecessary here.

0,8

0,6

0,2

0,2 0,4 0,6 0,8 p1/*r

FIG. 4. Hopping length distribution for dipole-dipole transfer ( I ) com-
pared with the distribution of distances to nearest neighbors (2).

Godzik and Jortner,40 who also used continuous ran-
dom-walk theory, have recently confirmed the definition
and suggest that it could be corrected by taking into account
the back transfer of excitation that was partially taken into
account in (3. 1 1). To achieve this, it is sufficient to replace r
with T in (3. 21) and, instead of (3.22), use the distribution40

(3.23)/ (r) = pu (r) exp [ - 2u (r) t] R (t) At.
o

Proceeding in this way, we can readily show that

where T is defined by (3. 1 3). It is clear that the constancy of D
is ensured by averaging D ( t ) as defined by (3.15) over the
normalized distribution of times.

For the dipole-dipole migration mechanism, all three
formulas (3.20), (3.21), and (3.22) yield

D = «CDDp4/«. (3.25)

The only difference is in the numerical value of a, which is
3.38, 3.42, and 2.72, respectively. As can be seen, the last of
these is greater by the factor 21/3 than the result calculated
without taking into account the back transfer process. Simi-
lar values have been obtained by other methods.24'41'42 They
are discussed and compared in Ref. 43. According to (3.20),
for interactions of arbitrary multipolarity,33

D GO CDnp(»-»V», (3.26)

and for exchange transfer,25

0 ««-*.„,« exp (-^J^Qxpf-JL,.), (3.27)

where /?= 1.2 if A = (4i7p/3)~1/3. The last result is con-
firmed by percolation theory of hopping conductivity ac-
cording to which44 the exact value is/3 = 1.7.

E. Summary

Thus, diffusive delocalization is preceded by direct
transfer which is characterized by a diffusion coefficient that
is linear in the concentration, for example, that given by
(3.16). It is clear that neither in the linear nor even in the
quadratic (in p) theory34 is it possible to establish how the
transition from (3.16) to (3.25) is accomplished. When the
theory is constructed by expanding into a power series in p,
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FIG. 5. Dependence of D on T= t/r0 for 4vR i/j/3 = 5 in the case of
dipole-dipole transfer u = (Rf/r)6/TD). Calculations based on the linear
(1) and quadratic (2) approximation, and the two-particle (3] and three-
particle (4) variant of the self-consistent method41 and the random-walk
method40 with (5) and without (6) reverse transfer of excitation.

the transition from D (t) to D can be followed only by sum-
ming this series.

This problem has been solved41 by partial summation of
the series in two versions of the self-consistent method,
namely, the two-particle and the three-particle versions. It is
clear from Fig. 5 that both methods demonstrate the stabili-
zation of the diffusion coefficient in time, but the second is in
better agreement with both linear and quadratic approxima-
tions (Fig. 5).

Similar results are obtained in the continuous random-
walk theory,40 either with or without allowing for back-
transfer in outflow kinetics. Roughly speaking, the separa-
tion boundary between direct and sequential (diffusive)
delocalization coincides with the time limit of the linear the-
ory.

More precisely, this limit (?D) can be established by
equating the derivatives d In R /d In t of the opposite asymp-
totic forms of R (t), for example, (3.12) and (3.17). This yields

n/3
(3.28)

When this inequality is reversed, direct transfer is replaced
by diffusive transfer, by which time the initial center is prac-
tically depleted. Even for n = 6, we have
« = 6R (fD)sexp( — V* D/?) = e~3<l.Thisiswhy only the
direct transfer process could be seen experimentally. It is
only quite recently that it was first shown45 that the long-
term kinetics of the delocalization process is described by
(3.17), i.e., the process is in fact diffusive. It has also been
confirmed that the concentration dependence of the diffu-
sion coefficient is described by (3.26) for dipole-dipole trans-
fer.

4. DIFFUSION QUENCHING

So far, we have examined static quenching and diffusion
of excitations separately. We shall now takeinto account the
fact that diffusion can affect quenching by forcing the loss of
excitations that have arisen well away from energy accep-
tors. It will be convenient to use (2.6) and (2.2) in order to
write k (t) = Q (t) in the form

3r. (4.1)

During the static stage of quenching, the density n(r,t} is
determined by

n = —w (r) n, (4-2)

which must be solved subject to the initial condition
n(r,0) = 1. However, when resonance of excitation takes
place, the function n(r,t} is also influenced by migration
which tends to smooth out spatial inhomogeneities that arise
during the quenching process.

In particular, when migration is equivalent to diffusion,
and can be described by (3.18), we have from (4.2)

n = —w (r) n + D An. (4.3)

The initial condition remains the same as before, but is aug-
mented by the boundary condition

- -dr = 0. (4.4)

The latter reflects the fact that the excitation cannot ap-
proach an acceptor to a distance less than R0, and quenching
is accomplished at the rate w(r) throughout, including the
point r = R0. Up to a certain definite instant of time, the
difference between (4.3) and (4.2) is insignificant and the pro-
cess develops statically. However, the stationary distribu-
tion of excitation n(r, oo) = n(r) is eventually established
around the acceptor and is a solution of the equation

D An = w (r) n. (4.5)

The solution of this can then be used in (4.1) to calculate the
stationary diffusion-accelerated quenching constant k.

This method of calculating the constant is a substantial
advance on the phenomenological theory in which station-
ary quenching is assumed to be possible only when the exci-
tation comes into contact with the "gray sphere" or radius R
(Ref. 46). The quenching efficiency on the boundary of the
gray sphere is introduced via the boundary condition

•£•» = **»(*> (4.6)

for the equation DAn = 0, which differs from (4.3) in that it
completely ignores distant quenching. This is equivalent to
assuming that quenching is possible only within the gray
sphere, i.e., in a spherical layer of thickness 8 = R — R0<R0,
in which it may be assumed47 that w = const. The kinetic
rate constant &0 = wAirR 2S is a phenomenological param-
eter of the gray-sphere model, in which it is assumed that
ID—*oo and <5—*0, which ensures the instantaneous loss of
excitation inside the layer. The static stage of quenching is
thus not present in this model and the diffusion-accelerated
quenching constant is given by

(4.7)

Energy transfer is assumed to be kinetically controlled when
&~&0<& D. On the other hand, when the reverse condition is
satisfied, the process is controlled by diffusion, and its rate is
described by the constant &~&D = 4TrRD. Since/? = const,
quenching is linearly accelerated as the diffusion coefficient
increases.
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FIG. 6. Quenching of excitation by "white" (a) and "black" (b) acceptors.
Lower thin line represents the gray-sphere model and the broken line the
kinetic limit.

The true situation is more complicated than in the gray-
sphere model. For distant quenching, the dependence ofk on
D is nonlinear during the diffusion-controlled stage. The ef-
fective quenching radius R s in ( 1 . 5 ) itself depends on D, and
the problem for the theory is to identify this relationship.
This requires the solution of (4.5), which can then be used to
calculate k from (4. 1). It is clear from Fig. 6 that the differ-
ence between the distant-quenching and gray-sphere radii
increases as diffusion slows down.

Taken together, (1.4), (4.1), and (4.3) form a closed for-
mulation of the distant-quenching theory that is capable of
describing the entire process, ranging from static to station-
ary diffusion quenching. After the first, unsuccessful, at-
tempt to construct this theory,48 three groups of authors
managed to develop it simultaneously and independent-
ly.8"10 They have, in fact, found a connection — through the
formula given by (4.1) — between the macroscopic equation
(1.4) describing the quenching of a donor by an ensemble of
acceptors, and (4.3) which describes how a single acceptor
will quench excitation distributed in its ambient space. The
latter problem had already been solved,49 but its connection
with macrokinetics was established in a different way, for
example, by the Wigner-Seitz cell method.50 The validity of
this reduction of the many-body problem to a binary prob-
lem subsequently became clear5 ''52 and was assured by the
binary character of the distant-quenching theory. It was as-
sumed that the acceptors were sufficiently distant from one
another. The condition that the spheres of radius R s drawn
around them do not overlap is

,, o\
l. I4-8)

It is clear that this condition is more stringent than (2.11),
since R *(t }<^R s . It is also clear that, when it is satisfied, the
fraction of excitations lost during the static stage of the pro-
cess is small (it is approximately equal to c-4irR 3/3). Com-
puter simulations show that, so long as this fraction does not
exceed 0. 1, the binary approximation provides a satisfactory
description of the kinetics of the entire process.53

Acceptors are sometimes looked upon as gray spheres
in the theory of distant quenching. This is appropriate only
when long-range but weak quenching is replaced by some
stronger mechanism at short distances. For example, in the
case of direct contact, the dipole-dipole interaction gives
way to the more effective exchange interaction. The short-

range interaction can be taken into account phenomenologi-
cally in order to keep the spatial function w(r) as simple as
possible. This is done simply by replacing the boundary con-
dition (4.4) with (4.6). On the other hand, when quenching on
direct contact with an acceptor is so strong that it unavoida-
bly leads to the loss of excitation, the sphere may be regarded
as black, and this corresponds to the boundary condition

n (/?„, t) = 0. (4.9)

This boundary condition was used in Refs. 53 and 54 to solve
the distant quenching problem. The kinetic stage is not pres-
ent in this formulation of the problem, and the quenching
radius is always greater than R and tends to Rs for D—>-Q.
However, below, we shall look upon acceptors as "white" in
accordance with (4.4). The justification for this is that the
kinetic stage is reached in the case of concentration quench-
ing and is interpreted without introducing additional param-
eters.

A. Stationary quenching

To calculate the rate constant for stationary quenching,
it is convenient to eliminate w(r) from (4.1), using (4.5). This
yields8'55

where

(4.10)

(4.11)

is none other than the parameter of the asymptotic expres-
sion

Q
n (r) = 1 -- for • oo . (4.12)

In this formulation, the problem may be solved even when
the quenching of a donor by an acceptor cannot be charac-
terized by the transition probability w(r) and is described by a
set of equations for the density matrix of the resonating
states.55 In this general form, the theory describes the trans-
fer not only of energy but of polarization as well, including
magnetic (spin exchange)56'57 and electric (dephasing of mo-
lecular oscillations) polarizations.58 Moreover, it enables us
to describe the forces of electrostatic interaction between the
donor and acceptor when they are charged.59

We are interested here in the simplest case of uncompli-
cated counterdiffusion of particles between which energy
transfer occurs with probability w(r). Quite general solutions
can be obtained for this case both for multipole and exchange
quenching. The solution becomes very simple in the limiting
cases of kinetic (a) and diffusion (b) control:

(4.13a)
(4.13b)
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The kinetic rate constant k0 is defined by (2.10). As far as the
effective radius Rs of the black sphere is concerned, it is
given by7'8'60'61

(4.14)
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in the case of the multipole mechanism and by54'55

(4.15)

in the case of the exchange mechanism, where v = \/(m — 2)
and C = 0.577 is Euler's constant.

It is clear from these results that Rs increases monoton-
ically as diffusion slows down (Fig. 6). On the contrary, the
rate constant remains constant during the kinetic stage, but
begins to fall with decreasing D as we enter the diffusion-
controlled region. This result is qualitatively the same as the
result obtained in the gray-sphere model (4.7). However,
quantitative agreement with the latter is possible only for the
short-range exchange interaction, and only within restricted
limits55'62 with R Q <R0 + L.55'62

B. Quenching layer

Since, in the diffusion limit, quenching occurs on the
boundaries of the black sphere of radius Rs, this radius can
be approximately determined from

w (Ks) 6* _ „
D

(4.16)

The quantity /3 (r), which is the analog of action, character-
izes the quenching force at a distance r from the acceptor,
and S 2/D is the time spent by the excitation on this bound-
ary. It is clear that quenching is weak for r>Rs and strong
for r < /?s. It is also clear that the strong-quenching region is
present only so long as Rs > R0, as indicated in (4.13b). When
this condition is not satisfied, the region is inaccessible and
quenching is weak throughout, and is therefore kinetically
controlled.

Since quenching is ineffective at large distances from
the black sphere, whereas in its interior there is nothing to
quench, it is clear that the loss of excitation occurs largely in
a spherical layer of radius Rs, where 5 is a measure of its
thickness. When the layer is so thin that it may be regarded
as flat, S 2/2D is the time at which it is crossed in the diffusion
process. However, the quenching time is not necessarily
equal to this quantity because the layer may be crossed sever-
al times and quenching may not be uniform within the layer.
A physically reasonable estimate can be obtained for this
quantity on the basis of indirect considerations. The point is
that/? (R0) must be equal to the intrinsic parameter /?m of the
general theory, which is used to distinguish between kinetic
(/?m 41) and diffusion (fim $> 1) stages of quenching. Since /?m

is determined to within a numerical factor, it is readily
shown with the same precision that63

, J v*., (4-17a)
> = \ L / 2 (4.17b)6 =

for multipole and exchange interactions, respectively. Using
(2.1) and (4.17) in (4.16), and solving the resulting equation
for Rs, we can readily reproduce (4.14) and (4.15) to within
numerical factors where, in the multipole case, the differ-
ence decreases with increasing m.

For a high degree of multipolarity and for sufficiently
small L, the layer may be looked upon as thin in the sense
that <5</?s and, consequently, quenching is accomplished as
the layer is crossed rather than in the interior of the black

1,00-

0,60 -

0,20-

6,0

FIG. 7. Distant quenching during diffusion. Broken line shows the reduc-
tion in the current of excitations to the acceptor [/(/•)//'( oo)) as the acceptor
is approached. Solid curve shows the distribution of excitations over the
locations of their extinction. Distances are measured in units of R0—the
distance of closest approach; m = 10, (3m = 100.

sphere. However, in the dipole-dipole interaction, the layer
is so diffuse that one can accept the definition64'33 5 2 = R2/
3, which identifies the quenching time with the total time
spent in the interior of the sphere. The deficiency of this
definition appears only for large m and for exchange quench-
ing for which it gives an incorrect form for Rs (L). The fact
that excitations do not penetrate the interior of the black
sphere can also be verified by direct determination of the flux
j = — 477V2 (dn/dr)Z> as a function of r. This flux vanishes
rapidly on the boundary of the black sphere and its deriva-
tive characterizes the distribution of excitations over the
points at which they disappear. Both are shown in Fig. 7,
from which it is clear that excitations vanish without suc-
ceeding in coming into direct contact with the acceptor even
for moderate /?m.

The manner in which the boundary of the black sphere
is crossed is of fundamental importance. The time spent in
the quenching layer can be estimated as 8 2/D only when the
motion through the layer may be looked upon as diffusion.
When motion is accomplished by migration with a step A, it
can only be so regarded in a spatial interval <5 such that

6>*,«p-V». (4.18)
For multipole quenching, we can use this in conjunction
with (4.17a), (4.14), and (3.26) to show that

0(n-m)/3(m-2) <- f_ *
^ L (m-(m-2) (4.19)

where z = CDA/CDD is an important parameter of the the-
ory, since it is a measure of the relative strength of irrevers-
ible and reversible energy transfer between the impurity
centers. When the latter is due to interaction between donors
characterized by a higher degree of multipolarity than the
interaction with acceptors (n > m}, the diffusion mechanism
prevails only for low donor concentrations for which
quenching is essentially static. Diffusion-accelerated
quenching at high donor concentrations is possible only in
the reverse situation when quenching is of a shorter range
than transfer (m>n). If, on the other hand, n = m, it may
occur for any concentration, but only if

z>l . (4.19a)
Finally, for exchange quenching, we find that, according to
(4.17b) and (4.18), the diffusion mechanism occurs for

>2. (4.20)
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C. Concentration dependence of k

Within the limits established above, the rate of diffu-
sion-accelerated quenching depends on p, as follows. For
multipole quenching, forced by multipole migration with
diffusion coefficient given by (3.26), we have from (4.14)

k ~ 4nfls£> <*> C^lm-2)cLV)/(m~ Vn-2)(m-3)/3(m-2^

In the important case of dipole-dipole quenching and energy
transfer (n = m = 6), this estimate can be improved in accor-
dance with (3.25):

(4.21)

For exchange quenching and dipole-dipole diffusion,

and, when the exchange interaction is responsible for both
quenching and diffusion, we find from (4.15) and (3.27) that

p-^ (4.23)

These formulas show that dipole-dipole quenching in dipole
transfer is exceptional in the sense that it is only in this case
that the rate of concentration quenching increases linearly
with the donor density p. When quenching is accomplished
by interaction of higher degree of multipolarity, the function
k (p} become irrational, whereas for exchange quenching it is
given by (4.22). However, it is only in the case of exchange
diffusion that quenching is turned on exponentially rapidly,
as in (4.23), for concentrations approaching the maximum
value.

D. Nonstationary quenching

We note in conclusion that the stationary stage of
quenching does not, in general, follow immediately after the
static stage. This emerges from the example of the rectangu-
lar model of a quenching layer. It corresponds to
w(r) = w = const for R0^r^R0 + S = R and w(r) = 0 else-
where. In this model, static quenching takes the form

N0 (t) = exp {—c4n#J8 [1 — exp (—wt)}} .

This is experienced by only a limited number of donors occu-
pying the quenching layer at the time of excitation. At the
end of this stage, i.e., for ?> l/w, diffusion quenching devel-
ops and its rate is given by1-11'46

(4.24)

It is nonstationary for l/w < t < R 2/Dir and reaches the sta-
tionary limit with A:D = <brRD for t^-R 2/trD.

Exactly the same situation prevails for the extended in-
teraction. The nonstationary stage corresponds to a change
in the profile n(r,t) from the initial value equal to unity in all
space to the stationary level with the asymptotic form given
by (4.12). In the case of exchange quenching, the static and
stationary stages are actually separated from one another,
and the kinetics of the entire process can be described only
by solving (4.3). In principle, this is also valid for multipole
quenching.60'65 However, the more long range it becomes,

the more difficult it is to divide the process into successive
stages. Replacing R in (4.24) with the effective radius of
strong dipole-dipole quenching,
may be shown that66'67

=0.7 (CDA/Z))1/4, it

7*
(4.25)

Although the diffusion coefficient has disappeared from the
second term on the right, and its dependence on time and
CDA is quite similar to the static Q (t) obtained from (2.8) for
m = 6, it is not right to suppose that the two are identical.
We are, in fact, dealing with a fortuitous coincidence which
does not occur for other values of m. Nevertheless, it is in-
structive in the sense that it shows that the time scale of
diffusion and of static nonstationarity is the same for the
dipole-dipole quenching, so that the two cannot, in princi-
ple, be separated. In the context of this paper, there is little
point in considering the nonstationarity of diffusion quench-
ing for the further reason that, as explained in the last sec-
tion, diffusion is also a nonstationary process at the initial
stage and must be described quite differently from that in
(4.3).

5. HOPPING QUENCHING

We shall now suppose that excitation reaches the black
sphere in a single hop and leaves it in precisely the same way.
The radius of the sphere is then defined as the distance
between the acceptor and donor over which excitation is lost
in one lifetime:

U 7 ( f l w ) T = l. (5.1)

If both quenching and energy transfer are due to the multi-
pole interaction, we find from (5.1) together with (2. la) and
(3.13a)that

™ n/lm (5 21p-?l/dm_ \->'^!

Excitation reaches the interior of this sphere in a single hop
(or leaves it in a single hop) if

(5.4)

or, in other words,

n(n-m)/3m-

It is clear that (4.19) and (5.4) constitute opposite inequal-
ities. This means that, for n > m, the diffusion mechanism
operates at low donor concentrations, whereas the hopping
mechanism prevails at higher concentrations. Conversely,
when n<m, concentration quenching is at first accom-
plished by the hopping mechanism asp increases, but it sub-
sequently relies on the diffusion mechanism. Finally, when
n<m, the hopping mechanism prevails for any concentra-
tion provided only

(5.4a)

Hopping quenching differs from diffusion quenching
not only by the different definition of the black-sphere radi-
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us, but also by the functional dependence (1.6) of the quench-
ing constant on this radius. The structure of this dependence
is such that the quenching rate can be interpreted as follows.
The excitation changes its location in hops, on average at
intervals of time r, so that the black sphere of radius Rw

drawn around it covers different regions of space in succes-
sion. The total volume (per unit time) covered in this way is
equal to k, and the number ck of hops that are fatal to the
excitation is equal to the number of acceptors located in this
volume. This is, in fact, the rate of hopping quenching that
was first estimated in Refs. 12 and 1 3. Using (5.2) and (3. 1 3a)
in (1.6), we obtain

k « - - (5.5)

It is clear that the dependence of k on donor concentration
is, in general, irrational and can be linearized only for
n = m = 6. In that case (and as always for n = m), the depen-
dence becomes functionally indistinguishable from its diffu-
sion analog (4.21). The only difference is in the dependence
of A: on the transfer microparameters CDA and CDD .

The hopping rates of any other variants of transfer can
be calculated by analogy with (5.5). In particular, for ex-
change quenching accelerated by exchange excitation trans-
fer, we have from (1.6), (3.9a), (3.14b), (5.1), and (2.1b)

x

where 77 = (ir/2] pi 3. This result is essentially different from
its diffusion analog given by (4.23) in which k~exp[ — (4-rr/
rj)1'3]. The reason for the difference is that the diffusion coef-
ficient does not duplicate the concentration dependence of
1/r that dominates (5.6). However, the choice of r as a mea-
sure of the quenching time is still largely arbitrary. For ex-
ample, the authors of Ref. 68 replace r with rh defined by
R (7-h ) = \/e. For multipole transfer, the quenching time in-
troduced in this way differs from f only by a numerical fac-
tor. In particular, for dipole-dipole transfer, (3.12) and
(3.14a) show that rh = r/2 = r. However, for the exchange
interaction

as can be seen from the asymptotic form of R (t) that is ob-
tained from (2.9) by substituting c—*p/2,w0-^-2fj,0 and L—»•/.
The use of rh instead of T brings the estimate of the hopping
rate closer to the diffusion rate although it does not totally
remove the differences between them. On the other hand, rh

is no more rigorous than r because there is little to distin-
guish either when very approximate estimates are made. The
ensuing ambiguity can be overcome only by the more rigor-
ous theories discussed below.

A. Markov model

It is clear from the foregoing that the hopping mecha-
nism of quenching is the natural alternative to the diffusion
mechanism although the latter has for long been regarded as

the only possibility. The necessity for the transition to the
hopping description of the process occurring in a relatively
narrow quenching zone has not as yet been finally accepted.

And yet, there are a number of fundamental arguments
in favor of the hopping mechanism, the first of which was
given in a previous paper.13 It relies on the assumption of
uncorrelated replacement of the acceptor environment in
the course of the random walk of excitations over a disor-
dered system. This enables us to look upon the probability of
quenching, which undergoes a discontinuous change in each
hop, as an uncorrelated and purely discrete Markov process
W(t), while the excitation density

*
Nftt) = (exp;[ - j W (f) At' ]) (5.7)

o
is a functional of the Markov process. The fact that the
successive values of Ware uncorrelated means that the prob-
ability that the excitation will be lost on the /th donor is the
sum of the probabilities of quenching by all the ambient ac-

ceptors (W f = ^wik), and is independent of the value of this
k

sum on the preceding (/ — 1th donor from which the excita-
tion was transferred to the given donor. In other words, the
probability of realization of W after a hop preceded by W is

/ (W', W)=G (W), (5-8)

where G ( W ) is the density of the equilibrium distribution of
donors over the quenching probabilities and is the same as
the function G (U) in (3.7).

It is clear that the only uncorrelated mechanism is the
hopping quenching mechanism. When migration takes place
in small steps that add up to continuous diffusion, each of
them produces only a slight change in W. In order for the
new value W to be realized with equal probability indepen-
dently of the previous value, the migration step must be large
in comparison with the radius of the black sphere drawn
around the excitation. It is only in this case that the distribu-
tion of acceptors in this sphere and its immediate environ-
ment after the successive step will be completely new and in
no way resembling the previous state. The average over all
the possible realizations W(t), indicated by the angle brack-
ets in (5.7), has been performed13 under these assumptions.
This results in the Volterra integral equation which has fre-
quently been used to solve similar problems in nonlinear op-
tics,69 spectroscopy,70-71'72 and chemical kinetics:73

(5.9)

The function N0(t) describes the static kinetics (2.4) and is the
kernel of this equation, whereas r0~' is the frequency of hops
that constitute the Poisson process in the Markov theory.
The form of the kernel is specific for each of the problems
enumerated above, but the properties of the solution are
common to them all: static kinetics develops first, and the
final stage is exponential, as in (1.3).

When the rate of static quenching is q, as in (2.8a), the
migration process is slow so long as ̂ rc>l, and fast other-
wise. For slow migration, quenching essentially ends on the
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static stage and the excitation that still remains vanishes at
the rate TQ \ leaving the unfavorable acceptor-depleted re-
gion in a single hop.13 On the other hand, when migration is
fast, most of the excitations decay in accordance with (1.3b)
with the constant13

~J (5.10)
°

where Q(t) is defined in (2.6). Using this definition, we
have74'75

Ro

B. Concentration dependence of k

The estimate of the hopping rate of quenching based on
the black-sphere model can readily be justified by this for-
mula. Having determined the radius of the spheres from the
relation w(Rw)r0= 1, we can use the rectangular approxi-
mation to the integrand in (5.11), assuming that it is equal to
1 /TO for R0<r<Rw and zero elsewhere. If we neglect R0,
this way of estimating k immediately takes us to a formula
that is identical with (1.6) provided only T is replaced with r0.

Direct evaluation of the integral in (5.11) with R0 = 0
improves only the numerical coefficient in k. In the case of
dipole quenching, this yields

3T0

,„ .-,(5.12)

where/?w = (CDAr0)1/6.However,when/J0isnotneglected,
the increase in l/r0 unavoidably leads to the situation where
/Jw becomes less than R0 and the correction term in the de-
nominator of (5.11) can be neglected. In this situation, which
was originally referred to as "supermigration,"13 we again
obtain (2.10) which sets the upper, kinetic, limit on the rate of
quenching. The transition from the migration-accelerated to
the kinetic stage in the dipole-dipole interaction is described
by

Tl -^-arctg(^2-
L 31 \ fly? <5-1 2 a>

which, in the general case, is obtained23 from (5. 1 1).
In exchange quenching accelerated by hopping, the es-

timate of k based on the black-sphere model of radius
Rw = (L /2)ln WOTO gives practically the same result as direct
calculation76

;,_ n£8 In3 iiiyr,,) (513)
6T0

 V

When excitation transfer is due to the dipole-dipole interac-
tion, we can use (3.8) for r0, so that the dependence of the
constant on p is almost quadratic rather than linear as in
(5.12). In principle, this enables us to identify not only the
interaction responsible for quenching, but also its mecha-
nism. According to (4.22), fc~/o4/3 for exchange quenching
in the diffusion process, whereas for the hopping mechanism
the function k(p] is shown by (5.13) and (3.8) to be nearly
quadratic. This type of dependence has been found for
quenching by erbium in phosphate and borate glasses77'78

and may be evidence for hopping exchange quenching en-

0 0,2. 0,6 1,0

FIG. 8. Survival probability & = exp( — t /TD )N(t) for different values of
the ratio80 rD/T0.

hanced by dipole-dipole transfer. If, on the other hand, not
only quenching but also the transfer of excitation is of the
exchange type, the parameter TO in (5.13) must be replaced
with T from (3.9a) or, better still, with T from (3.14b). The
result of this will be that k (p) will become an exponentially
rising function, as in (4.23), i.e., quenching will suddenly set
in at the critical concentration given by68 rjc = (IT/
2) /?c /

 3 = 1 . A similar situation obtains in the case of capture
by a trap of a hopping electron executing migration over
impurity centers.79

C. Quenching kinetics

We now turn to hopping quenching kinetics. The solu-
tion of (5.9) has been determined by numerical methods,80 so
that it has been possible to follow how, as l/r0 increases, the
quasistatic dipole quenching transforms into hopping-accel-
erated quasiexponential quenching (Fig. 8). The latter can be
described analytically at all times, ranging from the nonsta-
tionary to the stationary stage.74 As a result, the kinetic de-
scription of concentration quenching can be improved, both
at the beginning and at the end of the process. For multipole
quenching,74

fexp{-(<7/*)3/m[l + (*/T0))} for «TO, (5.14a)
\ e x p ( — 6c — kct) for «»TO. (5.14b)

Comparison with (1.3) shows that the initial, quasistatic,
stage of the process is modified only slightly, and the fraction
of particles disappearing at this stage, \—e~Sc^8c, is
small. For multipole quenching, it is given by

and if both quenching and transfer are of the dipole-dipole
type, we find, using (3.8), that

»"=/•¥"§•' (fU5)

where ̂ zc/p ~ V^< 1, since migration is assumed to be fast.

D. Correlation of quenching probabilities

We now return to the restrictions on the generality of
the foregoing theory. They ensue from the fact that the fluc-
tuations in quenching probability are regarded as a Markov
process and are uncorrelated. Strictly speaking, this is not
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the case even when the donors form a spatially ordered
structure and are located at the sites of some extended crys-
tal lattice. There is, in fact, a finite probability that an excita-
tion migrating over this quasilattice will return to the center
on which it has already resided, and will do so more than
once. Consequently, the quenching probability correspond-
ing to this center is encountered more frequently than was
assumed in equilibrium statistics, and (5.8) loses its validity.
However, an attempt to validate the theory75 has shown that
its conclusions remain in force when r0 in (5.11) is replaced
with

T = i d f .

This result was subsequently confirmed in Ref. 81. When
excitation is delocalized in a regular lattice, its kinetics
differs from the exponential (Markov) kinetics only by the
long-term diffusional asymptotic behavior that includes the
return of the excitation to the original center.

As an example, the authors of Ref. 75 and 81 examined
a process with known kinetics along the entire time axis.35

This process occurs when the excitation can be transferred
only to neighboring sites in a simple cubic lattice. For this
process, r = 1.5r0. More generally,

T=|T 0 , (5.16)

where § is the mean number of returns to the original center.
When transfer is due to the multipole interaction, transitions
to arbitrarily distant centers become possible. The coeffi-
cient £ then depends on the structure of the lattice and on the
multipole order m. The scale of this factor may be judged
from the data taken from Ref. 82 and listed in Table I. The
last row corresponds to transitions between only the nearest
sites and may be looked upon as corresponding to the ex-
change interaction. It is clear that the correction due to the
return effect is small and decreases as the interaction be-
comes more extended.

E. Allowance for the random disposition of donors

The correction due to the random migration of excita-
tion over a disordered system is more important and more
difficult to introduce. The rigorous approach to this problem
must start with equations generalizing (3.1) with allowance
for the quenching of excitation by acceptors:

HI = — 2 Wj,«i + 2 «H»I —|Xft»i- I5'17)

The main difficulty is that the solution of these equations
must be averaged over the random distribution of both ac-
ceptors and donors. As we have seen, this cannot be done
rigorously even in the absence of quenching. Attempts to

TABLE I.

Lattice

m = 6
8

10
oo

Simple
cubic

5 = 1,266
1,404
1,464
1,517

BCC

1,214
1,307
1,342
1,393

FCC

1,211
1,299
1,328
1,345

solve these problems have had to rely on certain assumptions
that cannot always be controlled and are difficult to com-
pare.

Several different approaches have been proposed in
which account was taken of the difference between hopping
quenching in a disordered system of donors and the process
described above that develops in the "equivalent" regular
structure. The first of these attempts19 was a theory that was
linear in the donor concentration p. However, both the exci-
tation quenching kinetics and the delocalization discussed in
Section 3 are described by the linear theory only on the initial
nonstationary stage of the process. For this stage of dipole-
dipole quenching, it is found19 that (5. 14a) is replaced with

(5.18)

As before, the correction to the static term is small because
t ̂ TQ, but its functional dependence on time is different from
that in (5.14a). Purely fortuitously, this time dependence is
linear, and the corresponding proportionality coefficient
differs from the constant in (5.12) only by a numerical factor.
It is therefore sometimes identified with the latter, but this is
quite incorrect. It has been shown19 that, when the quench-
ing multipolarity is different, the correction term becomes
an irrational function of time, so that it has nothing in com-
mon with the exponential asymptotic behavior of quenching
for times ?>TO.

The last possibility was examined by Zusman,14 who
showed that that stationary density of excitations on donors
surrounding an acceptor was equal to the ratio of their deple-
tion times in the presence and absence of quenching:

By taking the average over a random distribution of donors,
and using the results given by (4. 1), he found that

(5.19)

This formula is a natural generalization of the definition of &
given by (5.10). It has not received its due recognition be-
cause, in the appendix to Ref. 14, Zusman reported a result
of doubtful validity, which claimed to describe quenching
kinetics along the entire time axis. The correction to the stat-
ic term in the nonstationary stage of quenching deduced
from Zusman's result differs both in magnitude and sign
from that given by (5.18).

In view of this, it is significant that (5. 19) has been con-
firmed independently by Vugmeister.15 He obtained an
equation that was a natural generalization of (5.9) to the case
of a non-Markov outflow process:

i

N (t) = N0 (t) RQ (t) - j #„ (t-f) R,, (t-f) N (t') dt'.

° (5.20)
This equation has recently been deduced in a different way in
Ref. 83. The only assumption made was that both the accep-
tor and the donor environment was subject to uncorrelated
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variation in the course of the random-walk migration. The
original Vugmeister papers on magnetic resonance were
confined to the spin, i.e., the dipole-dipole interaction when,
according to (2.8a) and (3.6), (3.9),

a fl = - T . (5.21)

From (5.20) we then obtain the following expression for the
rate of hopping quenching:

2T

(5.22)

Precisely the same result is obtained from (5.19) when (5.21)
is used in it.

These results can be improved somewhat by taking into
account the advantages of partial inclusion of the return of
excitation to the original center. This correction is desirable
because the outflow of excitation is a reversible and, conse-
quently, a correlated process. When the centers lie close to
one another, the corresponding probabilities U are not very
different and repeat more frequently than predicted by sta-
tistics. To take this into account in (5.20), it is sufficient to
replace84 R0(t ) with R (t ). This yields

Correspondingly, in (5.19) we must replace R0 with R, and r
with T:

k= - (5.24)

It is precisely in this way, using intuitive ideas, that the
quenching constant was estimated in the original variant of
the theory:12 it was obtained in terms of the mean excitation
quenching efficiency Q on a donor, divided by the mean time
r spent on the donor. From (3.12) and (5.24) we find that

8n3

9 /2

The numerical difference between this and (5.12) is wholly
due to the fact that the migration was assumed in (5.10) to be
a Markov process with r=r0 and R = exp( — t /TO) whereas,
in reality, the process is not of the Markov type and the time
distribution R (t) obtained from (3.12) is nonexponential.

Since quenching is a non-Markov process only in the
hopping limit, it has sometimes been assumed that this can
be ignored in the interests of a unified description of the
hopping and diffusion mechanisms.15-85 Judging by the re-
sults obtained on this basis,85 we find that the data can be
described by using the pseudo-Markov outflow function
R0 = expj — t/r), in place of R0 in (5.19). It is clear from
Table II that this produces an increase in the rate constant by

TABLE II.

the factor ̂ ir/2. The hopping quenching constant calculated
by Huber33'86 is greater by the same factor as compared with
(5.25). This agreement is not fortuitous: Huber's recipe for
calculating k is the same as (5.24) in which, however, we have
to use R = exp( — t/r). When this is done, we obtain (5.10)
which corresponds to the equivalent ordered lattice of do-
nors, but with outflow time ? instead of TQ. Evidently, the
"average ?-matrix" method used by Huber transforms
quenching into a Markov process. It is therefore not surpris-
ing that its temporal evolution is in better agreement with
the exact solution for ordered systems than with the solution
for disordered systems.87 According to Table II, the neglect
of the return of excitation produces a greater increase in the
final result than the non-Markov nature of the process. By a
happy accident, the very first estimate of the quenching con-
stant (5.12) obtained in Refs. 12 and 13 is the closest to the
standard value adopted here. Other Markov estimates, listed
in the last two columns, are obtained from it by a simple
replacement of r0 with r and r, respectively.

6. SEPARATION OF QUENCHING MECHANISMS AND
STAGES

Comparison of the inequalities given by (4.18) and (5.3)
shows that the diffusion and hopping quenching regions are
not, in general, in contact with one another. They are sepa-
rated by a gap in which

To describe quenching occurring in this region, and the con-
tinuous transition through it between the diffusion and hop-
ping mechanisms, we must adopt a more general approach
to the problem. It must be considered as a problem involving
a random walk of excitation around the acceptor that pro-
duces distant quenching. The stationary Markov formula-
tion of this problem is given by the equation63'85

(5.25) - (6.2)

This differs from (4.5) in the same way as the Einstein-Smo-
luchowski equation differs from the diffusion equation. Be-
cause of this generalization, we can proceed either to the
diffusion or the hopping limit in this equation.

A. Exchange quenching

It is also possible to solve (6.2) in a general form by
taking the kernel in the special form

8nrr>

The kernel chosen in Ref. 63 was
(6.3)

(6.4)

Formula

Numerical factor

Reference

(5.12)

s±
V 3

12, 13

(5.25)

1

84

(5.19)

Vz

14, 15

/H

85

I/I
V 2

33, 86
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Strictly speaking, it corresponds to hopping migration of a
solvated electron but, in the present context, it is looked
upon as a model that has an exact analytic solution. The only
parameter of this model is the root mean square hopping
length

(6.5)

which also appears in a natural manner in the expression for
the diffusion coefficient:

£ = _^L = iL. (6-6)
6T0 T0

Since the hopping length distribution is exponential, it mod-
els only the exchange process which, according to (3.22), is
characterized by this behavior for large r.

It was established in Ref. 63 that the general solution of
the problem is, as before,

k = 4jr/)/?Q, (6.7)

where D is given by (6.6) and R0 is the parameter in the
asymptotic solution (4.12) satisfying (6.2). This solution was
found in Ref. 63 for exchange quenching of the form given by
(2.1b), neglecting the intrinsic volume of the particles, i.e.,
for R0 = 0. This enables us to distinguish between mecha-
nisms of distant quenching of triplet excitations migrating
over the continuum.

Direct calculations confirm that (4.15) remains in force
in the region of diffusion quenching (L /2>A0). In the oppo-
site situation, (L /2<A0), we have

RQ= RW — K0 th-^-, (6.8)

where Rw = L ln(w0r0)/2 is the hopping radius of the black
sphere in exchange quenching. In the hopping quenching
region (Rw <A0), the hyperbolic function in (6.8) can be ex-
panded into a series in the small argument, and this yields

Substitution of this together with (6.6) in (6.7) brings us back
to (5.13), which describes hopping quenching in the case of
exchange interaction. If, on the other hand, Rv >A0, we find
from (6.8) that

RQ = Rw - Ka. (6.9)

This is the effective quenching radius in the intermediate
region defined by (6. l):L /2<</l0<Rw. Since this is practically
identical with Rw, one is tempted to estimate the rate con-
stant in the intermediate region in the black-sphere approxi-
mation, assuming that k = 4irRwD. This construction pro-
vides us with a basis for considering the quenching
mechanism as "mixed," since /?w is the hopping parameter
and D the diffusion parameter. This terminology was pro-
posed for the further reason that, in the region defined by
(6.1), the black sphere is entered by the excitation in a single
hop, whereas the region is crossed (reached) as a result of
many hops, which constitute continuous diffusion.

However, closer examination reveals that the black
sphere idea is only of heuristic value and of little significance
as a computational procedure.88 Although the error which it

In-J

FIG. 9. Transition from diffusion to hopping quenching with increasing
A0 at constant TO. Solid curve — R Q , broken curve — R w , dot-dash curve
(6.8) (all in units of R s }. R w /<5 = 1 5.

introduces into the calculated effective quenching radius is
small, the error is greater than the difference between the
diffusion and hopping estimates of the black-sphere radius in
this region:

D D _ ; -~ i
/lw — «Q — A0,> AOO - J- - w — s*

It follows from these relationships that ^?w > Rs > R Q in the
intermediate region, since the neglect of/t0 in (6.9) leads to an
illusory increase in the rate constant as compared with the
diffusion rate constant, whereas in actual fact there should
be a reduction. In other words, as we pass from the diffusion
region to the intermediate region, the ratio k /k D = R Q /Rs

does not increase with increasing A0 (as is shown in Fig. 3 of
Ref. 63) but, instead, decreases monotonically although very
slowly (Fig. 9). Moreover, the difference between the diffu-
sion and mixed mechanisms does not generally vanish62

when contact quenching is established, i.e., when it occurs in
the immediate neighborhood of the acceptor, in a thin layer
of thickness <5<RS — R0. The intermediate region is then ab-
sent altogether and diffusion quenching goes over directly
into hopping quenching.

B. Dipole quenching

In dipole-dipole distant quenching, the intermediate re-
gion is narrower than in exchange quenching. Although the
change in the rate constant in this region is not very large, it
is very important to know by how much it does change if we
wish to solve the inverse problem, namely, determine z from
the measured k. The general solution of (6.2) for dipole
quenching accelerated by dipole transfer85 is therefore valu-
able from this point of view. This solution employs r instead
of T0 and the kernel (3.22) which, after substitution of (3.6)
and evaluation of the integral with respect to time, assumes
the form

(6.10)

where a = 4irpx3/^ = (x/A )3 and x = Jr — r'|. Figure 4
shows this distribution over the hopping length. It is a uni-
versal function of the single parameter x/A and, in this, it
resembles the nearest-neighbor distribution, but has a some-
what different form. However, the solution of (6.2) with this
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FIG. 10. Rate constant for dipole quenching forced by dipole excitation
transfer as a function of a = j(CDA/CDD) . Broken line shows the be-
havior of this quantity in regions where hopping (H) and diffusion \D)
approximations are valid.

kernel can only be accomplished by numerical methods. The
result85 is shown in Fig. 10 which plots q>(a)/a = k/kD, i.e.,
the same quantity as Fig. 9, against a^zz1/4/2. It is clear that
the estimates ofk obtained in the diffusion and hopping lim-
its are asymptotic values obtained for the general solution as
z—>• oo and z—>0, respectively, as is indeed indicated by their
respective validity criteria given by (4.19a) and (5.4a). We do
not know a priori how strong these inequalities are because
this depends on the numerical coefficients in (4.19) and (5.4),
which are not known exactly. Figure 10 throws some light
on this question. It is clear from this figure that k can be
calculated to within about 10% from the asymptotic formu-
las (4.21) and (5.12), using TO instead of T, and this can be
done everywhere with the exception of the intermediate re-
gion defined by

0 , 2 < a < 2 or 3-lfJ-2 < z < 3-102. (6.11)

Since the rate constant changes across this region by only an
order of magnitude, it is clear that it must be measured with
high precision in order to enable us to use this type of graph
as a way of determining the value of z for which quenching
occurs.

The theoretical curve shown in the figure must also be
highly accurate because the reliability of the solution of the
inverse problem depends upon it. On the other hand, we
have seen that, in the present state of the theory, even its
asymptotic behavior is known only to within factors of the
order of unity.

In view of this, the most widely used method of identify-
ing the quenching mechanism is to test it for self-consisten-
cy. The static quenching kinetics is examined in the limit of
slow migration (low donor concentration and high acceptor
concentration) and the quantity CDA is determined. The rate
constant k is then measured in the diametrically opposite
situation (fast migration) and, knowing CDA, the quantity
CDD is calculated from the asymptotic formula correspond-
ing to the diffusion or hopping mechanism. If the value of
CDD obtained in this way corresponds to the validity crite-
rion for this formula (CDD <CDA for the diffusion mecha-
nism and CDD >CDA for the hopping mechanism), the meth-
od used to process the data is self-consistent. An alternative
quenching mechanism has to be chosen when this is not so.

C. Kinetic limit

In some cases, these mechanisms can be distinguished
phenomenologically. We refer here to solid solutions in
which all the lattice sites are occupied by donors up to the

limiting concentration^ corresponding to their ordered dis-
position. The situation prevailing in the LaF3-NdF3 system
investigated in Ref. 89 is of this type. The authors of Ref. 89
conclude that the kinetic quenching-rate limit can be
reached only for the hopping mechanism whereas, for the
diffusion mechanism, the rate should increase without satu-
ration for p<p0.

The validity of this conclusion can be justified on the
basis of asymptotic estimates of the constants. It is conven-
ient to introduce the following generalized concentrations:

(6.12)

in terms of which the rates of static dipole quenching
(q = ire2) and delocalization (l/r0 = Trp2/6) can be univer-
sally expressed. The kinetic rate constant deduced from
(5. 12a) for R0>R w depends on p0 = ^C~^,/R I , if we sup-
pose that/j0 = (4-irR o/3)~', so that

(6. 1 3)

The diffusion quenching rate with the constant given by
(4.2 1 (has the form

o,5«3/4'?p (6. 14)

whereas the hopping rate with the constant given by (5.12) is
independent of z:

It is now necessary to establish a common measure for
the quenching rate so as to be able to determine how it varies
between the static and kinetic stages. This is usually taken to
be the "stationary quenching probability" Ws defined by

, (6-16)

It was first introduced in Ref. 90 and has since been widely
used to characterize nonexponentially developing pro-
cesses,1'3'91 such as, for example, static quenching. When
quenching occurs well in advance of intracenter decay of the
excitation, the stationary probability determines the lumi-
nescence yield:

i i

Setting JV (t) = N0(t), we can readily show that, for static
dipole quenching,

WS=JL=J|J!5 (6.17)

whereas, on the migration-accelerated stage of hopping
quenching, we have, according to (5.14b) and (5.15)

(6.18)

The second term in parentheses is a measure of the fraction
of particles in the interior of the black spheres at the instant
of excitation of the system, which decay, without leaving
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FIG. 11. ffs as a function ofp for c = const for the diffusion (D) and
hopping (H) variant of the theory. Broken lines show asymptotic estimates
of the quenching rate. A" shows the kinetic limit.

then?, during the so-called "instantaneous" or quasistatic
quenching stage.11

A rough estimate for the separation boundary between
static and hopping quenching can be established by equating
the two rates given by (6.17) and (6.18). This yields

P =
nc~ (6.19)

This concentration is much smaller than p0 because, right
from the outset, we adopted the condition c<p0, (2.5), which
ensures disorder in the distribution of acceptors. The separa-
tion boundary between hopping and kinetic quenching can
be established in a similar way, i.e., by equating (6.18) and
(6.13). The result is

(6.20)

The result obtained in precisely the same way for the diffu-
sion mechanism turns out to lie outside the interval (0, p0).
The maximum diffusion rate, reached for/9 = p0, is a

3/4cp0/
2z'/4. Figure 11 illustrates these results by showing Ws (p} for
the diffusion and hopping mechanisms of quenching. Since
the kinetic limit of the quenching rate cannot be reached in
the case of diffusion, it is clear that the hopping mechanism
is more likely when the limit is detected.

D. Quasistatic quenching

As a rule, the Laplace transform of the quenching kinet-
ics

N(s)=\ N (t)e-st at
o

is more readily evaluated than the kinetics itself. This can
then be used to obtain a more realistic idea about the func-
tion W,, = ip] = 1/JV(0). It turns out that migration produces
an appreciable acceleration of quenching even for p <p'.

"We note in this connection that an empirical formula for Ws was put
forward in Ref. 92. It appears to provide the best approximation to the
computer simulations of hopping quenching performed in that paper. In
particular, it follows from this formula that all the theoretical estimates
of the rate of this process are too high by a substantial factor. However,
this conclusion and the approximation upon which it is based do not
inspire confidence. The approximation does not provide a qualitatively
correct description of the concentration dependence of instantaneous
quenching, since it gives it as a linear function of c rather than the qua-
dratic function of (6.18).

20

T l T r i
a,s 1,0

FIG. 12. Concentration quenching kinetics for z= 1.6xl04(l), 1(2), and
6.3 X 10~3 (3). Calculated in the three-particle approximation.93

This is confirmed by direct calculations of the process kinet-
ics for/5 = c, which was performed in Ref. 93 by partial sum-
mation of the series in the so-called three-particle approxi-
mation. It is clear from Fig. 12 that the quenching process
develops nonexponentially for a considerable time, and is
forced by migration to a lesser extent as z increases.

This is in qualitative agreement with expectations based
on (6.14) and (6.15), but quantitative comparisons with these
expressions are invalid because they hold forp>c. It follows
that the extent to which the partial summation method
agrees with Markov or non-Markov theories of concentra-
tion quenching is still an open question. However, it is noted
in Ref. 93 that the results are independent of z in the two-
particle approximation, i.e., they do not distinguish between
the hopping and diffusion quenching. Worse than that, the
static quenching kinetics N0(t) is not reproduced in the two-
particle approximation and, even in the three-particle ap-
proximation, it provides a satisfactory description of only
the initial stage (Fig. 13). Judging by these results and by Fig.
5, partial summation methods cannot be regarded as any
better than model-based theories of the phenomenon.

7. SELF-QUENCHING

In some systems, concentration quenching occurs even
in the absence of acceptors. It occurs in the course of cross
relaxation which ensures that the excitation is shared
between two interacting donors. It is clear that this process is
possible only whenever the donor energy spectrum contains

0,1 0,2 t/r.

FIG. 13. Static quenching kinetics for" c^f^ — 5. 1—Forster (exact) so-
lution, 2—three-particle approximation, 3—two-particle approximation.
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FIG. 14. Resonance cross-relaxation in Nd3"1", proceeding from the excit-
ed Stark sublevel of the donor (a) or acceptor (b) (Ref. 89).

an intermediate level lying roughly half-way between the
ground and the excited states.

The spectrum of one of the rare-earth activators, name-
ly, the ion Nd3 + , is precisely of this type. Cross relaxation
can occur along two channels in this case. The most impor-
tant is the resonance channel. It starts from one of the excit-
ed Stark sublevels of the ground or luminescing states (Fig.
14), so that

(7.1)

Cross relaxation occurring in the second channel excites the
ion from the 4I9/2 ground state to the 4I15/2 excited state via
the high-frequency transition of the partner from 4F3/2 to
4I13/2. It does not depend on T(CDA = const) but is a highly
exothermal process accompanied by the release of a large
number of phonons into the lattice. This means that, by vir-
tue of the Frank-Condon principle, the second channel is
much less effective than the first, and can be ignored at high
temperatures. This is the situation at least in LaF3-NdF3

crystals above 120 K, where the second channel predomi-
nates over the first89 only for T< 45 K. The activation ener-
gy in (7.1) is a minimum at such low temperatures and is
equal to 40 cm~ \ which corresponds to the gap between the
lowest Stark components of the ground and luminescing
states. For T> 45 K, the activation energy AE increases with
temperature because the population of the higher-lying
Stark components of the ground state accelerates the reso-
nance cross relaxation. At room and higher temperatures,
AE approaches12 300 cm~'.

Another example of self-quenching in a liquid solution
is the cross relaxation of vibrationally excited molecules, in-
vestigated by picosecond spectroscopy in Ref. 94. As a result

3000 -

2000

1000

-2u7-

CH3CCIS

-Or

FIG. 15. Frequencies of normal vibrations of the CH3CC13 molecule and
some of the overtones and combination modes (in cm~ ').94

of intramolecular conversion, the initially excited symmet-
ric stretching mode of the CH3 group very rapidly transfers
energy to overtones of low-frequency vibrations of the mole-
cule that are in resonance with it, so that the energy is even-
tually equally distributed among them (Fig. 15). At least one
of the overtones, namely, the doubly excited vibration v7,
can then experience cross relaxation in which it is replaced
by two single-quantum excitations of the two molecules D
and D' that interact via the dipole-dipole mechanism:94

2v7 (D) -+ v, (D) + v7 (D'). (7.2)

Molecular diffusion in liquids is usually too slow to acceler-
ate the dipole-dipole quenching process. There is also direct
evidence that (7.2) is a reaction due to energy transfer: its rate
is a quadratic function of the concentration p of the mole-
cules.94 At the same time, it is not a static process because it
develops exponentially in time rather than in accordance
with the Forster law (2.3a). The alternative explanation94 is
that the self-quenching process (7.2) is forced by resonance
migration of single-quantum excitation.

A. Difficulties of the continuous random walk theory

Resonance excitation transfer is also found to occur in
neodymium. It has therefore been assumed right from the
outset'2 that it is responsible for the exponentialization and
acceleration of the self-quenching process. However, it was
considered self-evident that the rate of this process could be
found from the formula W = ck by assuming that

0 = P- (7.3)
It is only recently that it has become clear that this is not

obvious and, generally speaking, self-quenching is not a spe-
cial case of quenching, as would appear at first sight.84 Even
if the total cross-relaxation probability Wand the total out-
flow probability U vary with time in an uncorrelated man-
ner, which was assumed in the derivation of (5.20) in Refs. 15
and 83, they are, nevertheless, strictly correlated in self-
quenching in any time section of the process. For example,
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when quenching and transfer are due to interactions of the
same multipolarity, it is obvious that

_5L — -£e^ = z==Const, (7.4)

where

whatever the specific environment of the excited molecule.
When it is such that the quenching rate is higher, the rate of
outflow is higher by a comparable factor. This means that,
whatever the center on which the excitation happens to re-
side during resonance migration, it is always quenched on it
to the same degree, i.e., WT= W/U = z. Whenz<l, strong
quenching does not occur anywhere and the rate of quench-
ing can be found by simply multiplying z by the mean hop-
ping frequency l/r. Using (3.8), we find that, for dipole
quenching,

(7.5)z
~T

3z

In contrast to what can be obtained from (5.22) with the aid
of (7.3), this rate is independent of CDD , since we appear to be
dealing with the kinetic limit. This generality is explained by
the fact that, for z<l, self-quenching is considered weak in
both the migrationally-accelerated and kinetic stages.

The same conclusion is arrived at when one introduces
the kinetic equation for self-quenching on the basis of the
assumptions usually employed in the theory of continuous
random walks. I5>83 The specificity of self-quenching is mere-
ly that, instead of two independent averages being evaluated
over the acceptor and donor configurations, which lead to
the product N0(t )R0(t ) in (5.20), the averaging of quenching
and outflow must be performed simultaneously over the sin-
gle distribution present in the single-component system of
centers. The resulting equation is different from (5.20), and
its solution for z< 1 decays exponentially at the rate indicat-
ed by84 (7.5).

B. Allowance for the return of excitation

However, this method of analysis and derivation, which
considers the outflow on a par with quenching as an irrevers-
ible process, can be criticized on a number of grounds. Even
when the particle configuration surrounding the excitation,
defined by the set of relative coordinates {/•,), changes in an
uncorrelated manner after each hop_pf the excitation, this
does not mean that the average time T spent in the center is

l/U. The maximum contribution to U = ) is provided

by the center closest to the excited center, but it is precisely
from this center that the excitation frequently returns to the
original center before it finally leaves the pair. This substan-
tially increases the time 7 and enhances quenching in pairs
for which FPF> 1 >• W / U. According to the recipe proposed in
Ref. 22, this can be taken into account by introducing the
replacement

where n(r, , t ) is defined by (3.10). Leaving the derivation un-
altered in all other respects, we readily obtain84

dt'. <7-6)

(7.7a)

(7.7b)

and the angle brackets represent averaging over the random-
ly distributed surrounding particles.

For quenching by alien impurities, the averages over W
and { r( j are independent and are performed in the usual way
with the consequence that we again obtain (5.23) after the
substitution of the results in (7.6). If, on the other hand, we

are concerned with self-quenching, we find that W = ^w(r, )
i

depends on the same coordinates as n(r, ,t ), so that a different
equation is obtained, namely,

+ -|-))MT' t~t')NAt'-
(7.8)

When z< 1, this equation differs from (5.23) only by the fact
that N0(c,t ) has been replaced with N0(p/2,t ), so that its qua-
siexponential solution decays at the rate

= BT- \ Q ( t ) R ( t ) d t . (7.9)

Using (2.6) and (3.12), we obtain the following result for self-
quenching:84

P>P"

p<p"

(7.10a)

(7.10b)

The same result can be obtained from the corresponding for-
mulas for ordinary quenching if, instead of (7.3), we use
c = p/2. However, it is not altogether clear whether this has
any advantages as compared with (7.3). Even if we allow for
the return of excitation, we take into account only quenching
at the original center, and this occurs at the same rate what-
ever the localization of excitation in the interacting pair.

C. Quenching pairs

From this point of view, it would be more rigorous to
consider a pair of closely spaced impurities as a single
quenching center to which excitation migrates over single
centers, experiencing practically no cross-relaxation upon
them.95 This picture of the phenomenon corresponds to an
initial Markov representation with the equivalent lattice
augmented by the concept of a quenching pair. Of course,
this is meaningful only when the concentration c of such
pairs is small in comparison with the total concentration p of
the impurities. This condition must be verified even when
the system is so diluted that the formation of clusters of three
or more particles has a low probability.

We shall refer to the quenching pair as a two-particle
cluster in which quenching is strong in the sense that (5.1) is
satisfied. In other words, acceptors will be pairs in which the
separation between the particles is r<,R w. This definition is
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essentially different from that used in Ref. 96 if the acceptors
are taken to be particles at the distance R0 of closest ap-
proach. The probability that a black sphere of radius R w

drawn around one center is entered by another center is
p4irR w /3, and the number of such pairs per unit volume is

(7.n,

where R w is defined as in (5.2) with n = m = 6 and we have
also noted the fact that each particle is taken into account
twice when probabilities are simply added. It is clear that the
number of quenching pairs is quite small precisely when
z<l, from which inequality the results given by (7.10) are
seen to stem.

We may now estimate the rate of migrationally-acceler-
ated quenching, assuming that it occurs only when excita-
tion reaches a quenching pair in the course of a random walk
over the equivalent lattice. Since the pairs are part of the
lattice, the transfer of energy to them proceeds at precisely
the same rate as to single centers: CDA = CDD. The concen-
tration of the latter isp — 2c, and the probability of hitting a
pair is obviously/? = c/\p — c)xc/p. Multiplying it by the
hopping frequency I/T, we obtain a very approximate esti-
mate for the rate of quenching

Jp = Jl»J^. (7.12)
T PT

This is the same as the estimate made in Ref. 97, where the
migrationally-accelerated quenching of electronic excita-
tion of rhodamine 6G in a glycerin solution was brought
about by dimers of the same dye. The only difference was
that the dimerized molecules are stable complexes bound
together by an interaction, and their concentration is
c = KTp2 (Kr is the monomer-type equilibrium constant). In
contrast to (7.11), it increases quadratically with/o and this
leads to the cubic function W(p) observed experimentally.97

If, on the other hand, we substitute (7.11) and (3.14a) in
(7.12), we obtain

rr* 4n5/2 ^m n ^ (7.13)

This result is smaller by a factor of only Jir/2 as compared
with (7. lOb), and by a factor ofV'2/3 obtained elsewhere95 by
a somewhat different method. These differences are not un-
expected because the estimate of the concentration of
quenching pairs was, to some extent, arbitrary.

Strictly speaking, the expression given by (7.12) is valid
only to within a numerical factor. The theory of continuous
random walks gives a more rigorous expression than (7.12)
for the rate of quenching corresponding to z = CDA/
CDD = 1. Assuming that the number of hops per unit time is
I/T, the theory takes into account the self-crossing of trajec-
tories with the result that some of the centers are visited by
an excitation more than once. Repeated visitations have no
effect on an excitation, and it is only a hop to a new center
that can be the last with probability p. We must therefore
take into account not all the hops 1 /r but only the fraction a/
T that takes the excitation to new centers:98

In ordered structures, a = l/£ is very sensitive to the geome-
try of the "equivalent" lattice (see Table I). However, com-
puter experiments have enabled us to determine a for disor-
dered structures:99 a~l/2 for the dipole-dipole interaction.
Equation (7.12) then turns out to be fortuitously exact, since
T = 2? according to (3.14a). We note that the rate of quench-
ing at z = I , calculated from (7.14), is smaller by a factor of
only V2 as compared with the extrapolation to this point of
equation (5.25) which refers to hopping quenching.

D. Static self-quenching

When z> 1, the isolation of quenching pairs from a ran-
dom ensemble of centers becomes meaningless, and the situ-
ation must be judged in the light of (7.8) transformed to

' = ̂ o(0-4- \ N0(t-t')N(t')At'. (7.15)

Solving this by iteration, we find in the first approximation
that

(7.16)

In contrast to (7.15), this result is valid independently of
whether the environment varies in an uncorrelated manner.
It corresponds to static self-quenching which alone remains
when resonance excitation transfer is turned off. It sets the
lower limit for the rate of the process as CDD—»0 (Fig. 16).

It is clear that the hopping and diffusion mechanisms
are not the alternatives in self-quenching. We have either
migrationally-accelerated self-quenching (z<l) or static
quenching (z> 1). The former includes the kinetic stage of the
process that is attained at moderate concentrations. The lat-
ter, on the other hand, persists at all concentrations (except
the very highest) that approach close packing. When p sp0,
static quenching must be described by the more general for-
mula put forward in Refs. 19 and 100. It describes the transi-
tion from the nonexponential kinetics (7.16) to the strictly
exponential decay in a crystal containing a continuous dis-
tribution of the activator in which disorder in the disposition
of the particles has been totally eradicated. The kinetics of
the quenching process in the region of the transition from the
disordered to the ordered system of centers was examined in
detail with the aid of this formula in Ref. 101.

FIG 16. Stationary probability of self-quenching: accelerated by migra-
tion (1) and static (2).
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8. EXPERIMENTAL CONFIRMATION OF THE THEORY

When experimental data are interpreted, it is very im-
portant to make the correct choice between the diffusion and
hopping quenching mechanisms. The solution of this prob-
lem depends on which particular type of quenching—ex-
change or multipole—prevails in the system. For exchange
quenching, the diffusion mechanism is very unlikely because
(4.20) is not satisfied in a dilute set of donors. If, on the other
hand, both quenching and energy transfer are of the dipole-
dipole type, everything is determined by the ratio CDA/
CDD =z which, in principle, can be either large or small,
depending on the particular activator and quencher. There is
even evidence that the inequality z$l 1 can change sign within
a particular temperature range, thus demonstrating the
transition from diffusion to hopping quenching.102

A. Interatomic excitation transfer

However, as a rule, when the diffusion mechanism is
given preference, this is only because the hopping mecha-
nism is not considered as an alternative and the results are
not checked for self-consistency.31'103 This approach can be
used readily to extend the diffusion description even to the
self-quenching of neodymium32 despite the fact that the hop-
ping mechanism is not an alternative in this case. However,
in the first papers devoted to concentration quenching of
neodymium in crystals and silicate glasses,12'104 measure-
ments of the rates of static and migrationally-accelerated
processes were used to determine the constants CDA and
CDD and to demonstrate that they satisfied the hopping
quenching criterion (5.4a): CDD >CDA. At the same time, it
became clear that the activation energy of the quenching
constant which, by virtue of (5.25) and (7.1), is equal to AE /
2, was in good agreement with the splitting of the Stark com-
ponents of the ground and excited states.12'89

It was shown subsequently that CDA could be deter-
mined using not only the disordered (Forster) stage of static
quenching, but also the earlier, though shorter, ordered
stage.17'18-89'104 During this stage, the process develops ex-
ponentially at the ratepk0, the constant for which is given by
(2.10). In addition to these two static stages, a study was also
made in these papers of the concluding migrationally-accel-
erated stage that occurred exponentially. When In In N is
plotted against In t, the initial and concluding exponential
stages are represented by straight lines of unit slope, but the
intervening disordered stage of dipole-dipole quenching,
which is nonstationary in time, has a slope of one-half (Fig.
17). The constants CDA found for these two stages of static
quenching are usually in good agreement with one another
when R0 is determined from crystallographic data.17-18 The
reverse formulation of the problem is also valid: R0 can be
determined from the kinetic rate constant if CDA has been
found from the kinetics of the disordered static quenching. It
is precisely in this way that the distance of closest approach
of luminescing impurities and quenching centers has been
established in glasses for the dipole-quadrupole interaction
between them.105

When static quenching is investigated with a view to
determining CDA, it is desirable to have systems with a high
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FIG. 17. Relative luminescence intensity jV = /,//„ (/„ corresponds to
infinitely diluted solution) as a function of time t since the instant of excita-
tion.104 Recorded at T= 4.2Kfor two concentrations ofNd3"1" inYA!O3:
2.5 (1) and 1.8 (2) at.%. Primed numbers show the concluding exponential
stage (for the same concentrations).

concentration of acceptors (c>p). Hopping quenching, on
the other hand, must be investigated in systems in which the
number of donors is greater than that of acceptors \p > c). By
taking all these data together, we can find CDD from (5.25) if
the quenching process is of the hopping type. This method
has been used to determine C DA ( T ) and C DD ( T ) for LaF3-
NdF3 crystals over a broad temperature range.89 It has
therefore become possible to provide a microscopic interpre-
tation of the temperature dependence CDD(T] in terms of
homogeneous and inhomogeneous broadening of lines due
to the 4F3/2—*4I9/2 transition over which migration in Nd3

+

takes place.89 It has also been established89 that the kinetic
limit of quenching, for which the rate on the concluding
stage is comparable with the initial rate, is reached for acti-
vator concentrations p > 5 at.%, and the region of static dis-
ordered quenching is then totally excluded. This corre-
sponds to the exponential development of the process along
the entire time axis with the maximum possible quenching
rate ck0.

In two-component crystals of the form106 Lat_x_y

Nd^- 'Ln.y P5O14, where the energy donor is Nd and the accep-
tors (Ln) are Tb or Eu, we can follow the transition from
hopping quenching to the kinetic limit as x =p/p0 is in-
creased (Fig. 18). This transition can be described semiquan-
titatively by (5.12a), but a more accurate expression has also
been used.106 The latter was obtained by replacing the inte-
gral over space in (5.11) by the lattice sum over the specific
crystal structure. It is clear from Fig. 18 that this results in
excellent agreement between theory and experiment. More-
over, the very fact that the kinetic limit is reached can be
regarded as clear evidence for the hopping quenching mech-
anism. This is also indicated by the ratio of CDA to CDD,
which turns out to be106 0.09 for the pair Nd-Tb and z = 0.05
for the pair Nd-Eu.

The existence of the kinetic limit predicted in Ref. 13 is
important not only from the standpoint of the hopping
mechanism, but also because it ensures that higher activator
concentrations do not enhance quenching. This opens up a
way for a significant improvement in the parameters of ac-
tive media exhibiting this property. It is also valid for self-
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FIG. 18. Rate of hopping quenching as a function of relative donor con-
centration x~p/p0 during the quenching of Nd3"1" ions by impurity
centers: Tb (1) and Eu (2) (Ref. 106). The points are experimental and the
solid curves theoretical.

quenching because losses in the kinetic limit are lower than
in the migrationally-accelerated stage, and increase linearly
rather than quadratically with density (see Fig. 16). These
considerations provide us with a basis for systematic search-
es for media with anomalously low concentration quenching
of luminescence.107"110 The theory of hopping quenching is
used not only to determine transfer constants from kinetic
data, but also to determine the optimum concentrations of
active particles in solid-state lasers.'': The decay kinetics of
donor luminescence can be used to judge the evolution in
time of the excited state of the acceptor, and the kinetics of
sensitized luminescence depends on this process.112'113 Sys-
tematic exploitation of the sensitization effect has resulted in
an increase in the efficiency of existing solid-state lasers by a
substantial factor.'14>115

B. Molecular transfer of excitation

The intermolecular transfer of electronic excitation has
been investigated to a lesser extent than interatomic transfer.
There have been individual studies of the kinetics of static
quenching of triplets''6> n 8 that were unrelated to concentra-
tion quenching. As a rule, the latter is investigated by sta-
tionary methods and information about it is obtained from
the concentration dependence of the luminescence yield3

__
I + WSTD

ou

= J_ f N (t) <T!/tD At.
-CD J '

(8.1)

This expression is essentially a definition of Ws that is more
general than that given by (6.16) because it is valid for any
WsTv ^. In particular, if follows from it that, in the migra-
tionally-acceleratedstageforwhich./V(f) = exp( — Wt (along
the entire time axis, we have fFs s; W. The fraction of excita-
tions transferred to acceptors is then

(8.2)

In solid molecular solutions, it is frequently the case
that both donors ("traps") and acceptors ("supertraps") of
excitation can luminesce, and do so with the same yield if
there is no energy transfer between them. Equation (8.2) then
provides us with a measure of the ratio of the luminescence
intensity /A due to acceptors to the total intensity due to all
impurities: 1 - rj =/A/(/D + 7A). At least, this is the situa-
tion in crystals of deuterated naphthalene119'120 or ben-
zene.120'121 The excitation traps in these crystals are proton-
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FIG. 19. Luminescence yield of acceptors as a function of donor concen-
tration. Broken curve corresponds to r = 4 and the dot-dash curve to
r = 1 (Ref. 68).

ated molecules whose concentration does not exceed a few
percent. The supertraps whose impurity levels lie lower, and
whose concentrations are lower still, are/0-methly naphtha-
lene (in naphthalene) and pyrazine (in benzene). The transfer
from traps to supertraps of both singlet and triplet excitation
was investigated in both these systems, whereas the transfer
of triplet excitation from protonated molecules to their
dimers was studied in phenazine crystals.122 In all these
cases, as soon as a certain specific trap concentration was
reached, the luminescence stopped and was replaced by lu-
minescence by supertraps which grew rapidly and reached
the same level despite the fact that their concentration was
lower by several orders of magnitude (Fig. 19).

These data have been interpreted semiquantitatively68

as the result of hopping quenching of excitation by super-
traps in the course of the random walk of the excitation over
these traps. The rate of hopping quenching was estimated
from the formula

1 —AT
0(Th) CQ (Th)

th
(8.3)

This approximate estimate is in obvious agreement with
(5.24) if one supposes that the time distribution has the form
d ( t — rh). We have already noted in Section 5 that the use of
rh instead of r in multipole quenching affects only the nu-
merical factor and not the functional form of k (p}. When
n — tn, this functional form is shown by (5.5) to be

^ x^/^/nxil ~(3/n) / n /3\_ 4 (Q A\1—'*^DA^DD pv/^ *, \u-^v

The same form of k (p) is obtained from (4.20) for diffusion
quenching. It remains practically the same even if we sup-
pose that the diffusion quenching length is unaltered—an
assumption that is sometimes introduced123 in very approxi-
mate estimates of k. As far as experimental data are con-
cerned, they can be satisfactorily explained if k~p" and
4 < r < 7 (Fig. 19). To achieve agreement with theory, it was
assumed in Ref. 68 that n = 14, which corresponds to the
octupole-octupole interaction.

The data can be explained with equal success if one as-
sumes that both transfer and quenching are of exchange
type. Although the dependence on p in (5.6) is not of the
power type, it can explain the rapid variation in rj near the
critical concentrationp1/2 given by ij(pl/2) = 1/2. We note,
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however, that the use of rh instead of r in this case produces
a functional change in k (p) to the extent that three-dimen-
sional migration is replaced by two-dimensional migration
which is regarded in Ref. 68 as an alternative and in Ref. 124
as the only possibility.

The yield was calculated from the general formula (8.1)
in Ref. 124 by taking the Laplace transform of the excitation
quenching kinetics for an excitation migrating over traps
distributed randomly on a plane. We have already shown
that, for the hopping quenching mechanism, this estimate of
17 has no advantages as compared with the simple formula
given by (8.2) and used for the same purpose in Ref. 68.
Moreover, the results obtained in these two papers are iden-
tical despite the fact that the two-particle method of summa-
tion used in Ref. 124 to calculate N (t} is far from perfect. On
the other hand, it is instructive to note that, when this meth-
od is applied to a finite-range interaction, it leads to a more
rapid transition near the critical concentration/) 1/2 than that
observed experimentally. This is interpreted in Ref. 124 as
an argument against the percolation theory which ignores
long-range effects characteristic of multipole transfer.124'125

It has recently become clear that the percolation interpreta-
tion of the phenomenon126'127 in the case of the transfer of
singlet excitation in naphthalene is, at best, satisfactory at
very low temperatures (1.8 K), whereas the hopping theory is
to be preferred128 even at 4 K (it is incorrectly referred to as
the "diffusion theory" in Ref. 128).

Inhomogeneous broadening of impurity levels, which
can be due to the same interaction as excitation transfer,129 is
very important at low temperatures. Spatial transfer is then
accompanied by a change in energy and therefore proceeds
at a different rate in forward and reverse directions. This
may give rise to the localization of a fraction of the interac-
tions on clusterized traps producing an energy "pocket"
which prevents them from reaching the supertraps. At least
this is the way in which the authors of Ref. 130 explain the
reduction with increasing concentration in the fraction of
triplet excitations reaching supertraps under laser excitation
of phosphorescence in naphthalene. However, the subse-
quent increase in concentration of traps facilitates the intro-
duction of a large number of clusters into the conjugated
chain, and the yield of phosphorescence from ^-methyl
naphthalene is partially restored. 13° To examine this pheno-
menon in greater detail, we must investigate the kinetics of
the process as in Ref. 131, and study the energy (frequency)
migration in pure form (in binary systems without super-
traps) under coherent excitation of luminescence. It was
shown in Ref. 132 that this can be accomplished in triplet-
triplet transfer to the same extent as in interatomic trans-
fer.23

C. Transfer of spin excitation

Longitudinal spin relaxation in an external magnetic
field, which can be investigated by the method of electron
spin resonance, is none other than dissipation of spin excita-
tion by the transfer of the energy of a Zeeman quantum to the
ambient medium.133 In this case, we are concerned with ex-
cess excitations as compared with their equilibrium concen-
tration which, at normal temperatures, is equal to half the

total concentration of particles. Hence the attainment of
equilibrium occurs twice as fast, i.e., at the rate I/
T\ = 2rD in the case of spin-lattice relaxation and 2w when
the excitation is quenched by spin exchange with a rapidly-
relaxing paramagnetic impurity.

Spin excitations produced on the hydrogen atom (do-
nor) are quenched by paramagnetic ions of many metals,
including Cu2+, Mn2+, Fe2+, Ce2+, Co2+, and Ni2+, the
longitudinal relaxation of which ranges from 3 X108 to
6X 1012s~', respectively. The kinetics of static quenching of
spin excitation by these ions in glassy water solutions of sul-
furic acid was investigated by the electron spin echo method
in Ref. 134. The theory of the method (stimulated echo)
shows that the quenching kinetics is described by
N(t)=l— (V/V0), where F( f ) is the signal amplitude at time
t and F0 is its stationary value.135'136 Since the transfer of
spin excitation is accomplished by the magnetic dipole-di-
pole interaction, the kinetics of disordered static quenching
should be of the Forster "square-root" type, and this is con-
firmed by experimental data obtained for all the ions that
were investigated.

A very important point established experimentally in
Ref. 134 is that, even in the absence of quenching ions, the
longitudinal spin relaxation of hydrogen atoms proceeds
nonexponentially in accordance with the "square-root law."
This also occurs for hydrogen atoms stabilized in fused
quartz.137 The phenomenon is explained by the dispersion of
the spin-lattice relaxation times. It is also observed in the
luminescence of neodymium12 and chromium5 in glasses.
On the other hand, if the static quenching kinetics can be
described by the square-root nonstationarity then, whatever
its origin, the migration of excitation over donors should
accelerate the process, transforming it into an exponential
process.

This was, in fact, established experimentally in Ref.
138. The migration of spin excitation over hydrogen atoms
was accomplished by the flip-flop process due to magnetic
dipole-dipole interaction between them. Its frequency l/r0

is an increasing quadratic function of the concentration of
hydrogen atoms, and the rate of hopping quenching in-
creases linearly in accordance with (5.25). Figure 20 illus-

15

1,0

1,0 2,0

FIG. 20. Transition from hopping to static quenching of spin excitation of
hydrogen atoms in frozen water solutions of sulfuric acid with decreasing
concentration of hydrogen atoms:138 z(cm~3) = 4.4-I018 (1), 2.6-1018 (2),
1.5-1018 (3) and 2-1017 (4).
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trates the exponentialization of the quenching kinetics as p
increases, which is identical with the theoretical prediction
(Fig. 8). In one respect, this experiment may be preferred to
the luminescence experiment: since spin excitation does not
exhibit natural decay, the function that is measured directly
is N (t) and not T (t}. This means that the kinetics of concentra-
tion quenching of hydrogen can be investigated, without any
complication, both in sulfuric acid and in quartz, and hence
we can verify that its rate is directly proportional138 to
p = [H]. ESR studies performed immediately after the early
papers12'13 are impeccable from the kinetic point of view.
The frequency of the flip-flop process obtained as a result of
these studies agrees with experiment not only in the depen-
dence on p, but also in the correlation with the width of the
ESR spectrum components of the hydrogen atom. These
studies have acted as a stimulus to the subsequent develop-
ment of the theory of hopping quenching in magnetic reso-

TABLE III.

nance.15,85

D. Transfer of vibrational excitation

The quenching kinetics of vibrationally excited
CHjCClj molecules (Fig. 15) is found to be a two-stage pro-
cess. The brief stage of activation by the picosecond pulse is
followed by the development of first static quenching and
then concentration quenching, which is exponential in time.

Since static quenching continues for a short time, its
kinetics is practically impossible to investigate, but the sepa-
ration between this stage and the asymptotic exponential be-
havior can be set quite clearly: /, = 5-10~12 s (Ref. 94). This
information can be used to determine CDD if ts is defined as
the point at which the rates of static and hopping quenching
become equal94 (Fig. 1):

P<? (f.) = W. <8-5)

Using Q from (2.8) and W from (7. lOb), we find that for di-
pole-dipole quenching,

(8.6).

(8.7)
which, for/? = 2-1021 cm 3, gives

Cnn = 8-10-33 cmVs.
Because of an accidental numerical error, the result reported
in Ref. 94 is very similar to this despite the fact that the rate
of quenching rather than of self-quenching was used in (8.5).

As soon as CDD is known, the cross-relaxation constant
CDA can be found from the concentration dependence of the
rate of hopping quenching W. This dependence can be writ-
ten analytically in the form

In W = 21np — \nA. (8-8)
Its slope confirms the square-root type dependence of the
rate of quenching (7.1 Ob) on the concentration of the mole-
cules, and the constant

(8.9)

turns out to be 2-1032 s/cm3 which, together with (8.7), gives

CDA = 3-10-35 cm'/s. (8.10)

Rate

Reference

2/1

95

1,72

139

1

it

/I

(7.14)

Hence, it follows that z — 0.004 is a low enough value to
ensure that hopping quenching will take place.95

We note that the precise value of the numerical coeffi-
cient in (8.9) is, as usual, not known. If we take it to be equal
to unity, the other methods of estimating the self-quenching
rate differ by the factors shown in Table III. Apart from
those considered above, the table lists two further rates ob-
tained simultaneously, but independently, in Refs. 95 and
139. Both these papers use the idea of quenching pairs, but in
a different way. The early result of quenching theory, given
by (5.12), is reproduced in Ref. 95. It had previously been
used to calculate the self-quenching rate.

This estimate of the rate turns out to be the highest, but
differs from the lowest by a factor of about two. In addition,
the magnitude of CDD, but not that of CDA, depends on this
uncertainty.

9. LIMITATIONS OF THE THEORY

Two important limitations of the above theory must be
mentioned once again in conclusion. They are: spatial iso-
tropy of the system and the balance approximation.

Departure from spatial isotropy may occur in different
ways. In some systems, impurity centers can aggregate into
dimers or clusters, and this violates spatial uniformity and
randomness of their disposition, which was assumed in all
derivations of (1.2). Further information about the problem
and the ways in which it is solved for static and diffusion-
accelerated quenching can be found in recent pa-
pers 53,140,141 A totally different anisotropy is found in sys-
tems of randomly distributed centers when they are coupled
by the dipole-dipole interaction, but the relative orientations
of their dipole moments are not random. The ensuing correc-
tion to the kinetics of static quenching is unimportant so
long as the acceptor concentration is low,142 but its contribu-
tion increases as the acceptors are packed into a regular lat-
tice.143

Migration of excitation contributes additional anisotro-
py if it occurs largely over planes or particular crystallogra-
phic directions. This type of anisotropy is usually well taken
into account by reducing the dimensionality of the space
down to two or even one. The kinetics of static quenching in
any of these situations can be determined, at least in princi-
ple, as in the three-dimensional case.144 The coefficients of
diffusion over disordered systems of different dimensiona-
lity can also be determined in a unified way.42 A fundamen-
tal difference is encountered only for diffusion-accelerated
quenching which, as we know, proceeds in a totally nonsta-
tionary manner in spaces of lower dimensionality.53 This re-
sult is, of course, reproduced in the case of diffusion over
impurity centers.145 In contrast, long-term kinetics is always
exponential in the theory of hopping quenching, and its rate
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is defined in the same way in spaces of any dimensionality.
The only difference is encountered for the concentration de-
pendence of the rate constant that follows from these defini-
tions.68 It is, however, important to recall that transition to a
space of lower dimensionality does not always reflect the
true situation in an anisotropic crystal. Even when excita-
tion migrates only over a plane, quenching is accomplished
by acceptors that are uniformly distributed in three-dimen-
sional space. Spaces of fractional dimensionality are some-
times employed125'126 to take this into account.

The above theories are also basically limited by the ba-
lance approximation, in which, right from the outset, con-
centration quenching is looked upon as a random process,
controlled by the transfer and quenching probabilities u and
w. In reality, one must start with the Hamiltonian for the
interaction between identical and different impurities, and
examine the conditions under which excitation transfer may
be looked upon as a noncoherent and quenching as a stochas-
tic process. Luckily, this problem has frequently been exam-
ined in its own right and is now considered to be practically
solved. The probabilistic description of static quenching has
finally been completed in Ref. 146. The quenching probabili-
ties are constant in time and additive when phase relaxation
in the transfer channel (y) proceeds sufficiently rapidly.146'3

The ability of natural decay of excitation to dephase the
transfer process is very restricted, and need not be taken into
account.147'148 As far as y is concerned, it must be greater
than the dipole-dipole or exchange interaction between im-
purities which, in dilute solutions, is on average sufficiently
small.

However, the situation may alter radically with increas-
ing donor concentration and, especially, when donors are
closely packed in glass or crystal. In molecular crystals such
as naphthalene and anthracene, interaction between neigh-
boring molecules is usually greater than y and the motion of
the exciton is coherent.

In principle, we can also have the reverse situation in
which the exciton moves noncoherently but so rapidly that
its interaction with the quenching impurity does not succeed
in turning into a stochastic process. A special theory has
been developed for this case and can be used to take into
account the dynamics of the quenching process modulated
by diffusion55 or random walks of excitation.58

CONCLUSION

To summarize, we must note that the last decade has
seen substantial progress in the understanding and descrip-
tion of processes developing in impurity systems after excita-
tion. The static quenching kinetics has been investigated in
all its stages and under arbitrary interaction. It has been
shown both theoretically and experimentally that the migra-
tion of excitation over a disordered system eventually trans-
forms into diffusion, and this despite the fact that migration-
accelerated quenching is usually of the hopping rather than
the diffusion type. The hopping mechanism of quenching
has become accepted relatively recently and provides the
correct description of the dependence of the rate of the pro-
cess on transfer microparameters and its saturation with in-

creasing activator concentration (kinetic limit). In its present
state, the theory describes not only stationary quenching,
but also its development in time after a delta-function excita-
tion. It can be used to calculate the yield and kinetics of
sensitized luminescence.

In writing this review, the author has benefited greatly
from direct contact and correspondence with the authors of
practically all the theoretical papers cited above, and is par-
ticularly indebted to those of them who have supplied him
with preprints and original diagrams from these papers.
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