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Some problems in the theory of van der Waals forces
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Several problems in the theory of van der Waals forces are reviewed: the interaction of atoms,

molecules, and small particles of condensed matter at large distances; the van der Waals interac-
tion of atoms with the surface of condensed matter; and the interaction between macroscopic

condensed objects of various shapes. These questions have attracted considerable interest in the
literature in recent years. Numerous results on these questions are given. All topics are discussed
from a common standpoint to the extent possible, on the basis of the understanding of the fluctua-
tional origin of van der Waals forces. Analysis of the physics content of the theoretical results on

van der Waals forces is emphasized.
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1. INTRODUCTION

The electromagnetic interaction in a system of many
particles (which obviously reduces to the Coulomb interac-
tion when retardation is ignored) takes the form of exchange,
multipole, fluctuational, and certain other interaction
forces. Among these forces we can distinguish some which
fall off in a power-law fashion at large distances. Such forces
are frequently called “long-range” forces to distinguish
them from the ‘“‘short-range” forces which fall off rapidly
{(exponentially in most cases) with increasing distance. The
distance dependence of short-range forces can rarely be de-
scribed as universal to any extent; it is determined by the
particular structure of the electron shells of the atoms. In
contrast, long-range forces are distinguished by their univer-
sal behavior at large distances. While the average charge
density and also the average dipole-moment density vanish
in a medium at equilibrium, the basic long-range forces are
generally forces of fluctuational origin, which are frequently
called ““van der Waals” or “molecular” forces.

In a description of the van der Waals interaction
between objects, the particular features of the atoms and
molecules and those of macroscopic objects can be taken into
account fully by using their permittivities or polarizabilities.
The success of the dielectric formalism in the theory of van
der Waals forces can be credited to the universal dependence
of these forces on the distance between the objects. Those
results of the theory of van der Waals forces which are writ-
ten exclusively in terms of the permittivities or polarizabili-
ties of the objects are frequently called “macroscopic” re-
sults and sometimes referred to collectively as the
macroscopic approach in the theory of van der Waals forces
or the “macroscopic theory of van der Waals forces.”
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Indeed, macroscopic distances (i.e., scale lengths large
in comparison with atomic dimensions, @ ~ 10~ % cm)always
figure in a study of the van der Waals interaction. One of
these scale lengths is the distance between the objects, R, and
another is the scale wavelength of the absorption spectrum,
A, (typical values are A~ 107°-107° cm). A dielectric de-
scription of the van der Waals interaction is made possible to
a large extent not only by the conditions R, 1,>a but also—
and to a greater extent—by the nature of the microscopic
fluctuation mechanism which gives rise to van der Waals
forces between objects: The van der Waals forces arise di-
rectly from the fluctuating charge and current densities of
the atoms or macroscopic objects and their interaction
through the long-wavelength fluctuating electromagnetic
field. The fluctuation nature of van der Waals forces for
macroscopic objects is largely the same as for individual
atoms and molecules. The macroscopic and microscopic
aspects of the theory of van der Waals forces are therefore
intimately related.

In reviewing several questions in the theory of van der
Waals forces here we will be primarily concerned with this
interaction. We will take it into account in reviewing the
macroscopic and microscopic aspects of the problem."

A fluctuating electromagnetic interaction may be either
classical or quantum-mechanical. At temperatures 7<#/7
the fluctuations are known to be of a quantum nature (see,
for example, § 110 in Ref. 3). For van der Waals forces the

YBack in 1975 we published a paper in this journal® on the theory of van
der Waals forces between macroscopic objects. We have recently revised
that paper to make it a chapter of a book,? adding and refining it to reflect
new research. Some of these additions will also appear in the present re-
view, but of course we will not be reproducing the contents of Refs. 1 and 2
here.
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scale time 7 is usually associated with either a scale value
wy ' = Ay/2mc for the absorption spectra or a parameter of
the inhomogeneity in the system, R /c.

For two ground-state atoms the fluctuations are of
course purely quantum in nature. If the propagation time of
the interaction, R /¢, is considerably shorter than the scale
periods of the motion of the electrons in the atoms, 27/w,,
the interaction between atoms can be treated as electrostatic
(this condition can be written in the form R <4, where
Ao = 2mc/w,). London*® offered a satisfactory explanation
for the long-range forces acting between nonpolar atoms and
molecules back in the infancy of quantum mechanics.

The predominant contribution to the attractive force
between atoms in the ground state can be calculated in sec-
ond-order perturbation theory for the electrostatic interac-
tion between two dipoles. The energy of the interaction (of
the attraction) turns out to be proportional to R ~° (see, for
example, § 89 in Ref. 6). It can be shown that the energy of
the interaction between the atoms stems from the appear-
ance of a correlation (d,;d,;) between fluctuations of the
dipole moments of the atoms, d, and d,.

If R R Ay, and the retardation of the interaction is im-
portant, the problem must be treated quantum-mechanical-
ly, as was first done by Casimir and Polder.” In the limit
R» A, the retardation causes the interaction energy to be
proportional to R ~7 (see, for example, § 85 in Ref. 8). The
fluctuating vacuum electromagnetic field plays an impor-
tant role in this limiting case. Values of the fluctuating vacu-
um electric field at different spatial points are known to be
correlated, so that we have (E{%(r,)E{(r,))#0 but
(E Pfr)) = (Er,)) = 0. Consequently, if we place atoms
at the points r, and r, the vacuum field will induce in these
atoms some fluctuating dipole moments which will in turn
be correlated with each other. The interaction of interest is
the average retarded interaction between atomic dipoles in-
duced by the fluctuating vacuum field (see Section 2 for more
details).

Fluctuational interactions are of a classical nature at
sufficiently high temperatures, e.g., in a gas of polar atoms
and molecules. If the orientations of the constant dipole mo-
ments of the atoms are equiprobable, the dipole moment of
the atom averaged over direction will be zero. A calculation
of the correlations between the orientations of the dipole
moments of different atoms, however, with a Boltzmann dis-
tribution in orientations leads in the first nonvanishing ap-
proximation to a fluctuating interaction with an energy
which falls off in proportion to R ~° as the distance between
the atoms is increased. Forces of this type were studied a
very long time ago by Reinganum® and Keesom. '’

Also a long time ago, London®® pointed out that in ad-

dition to the problem of the van der Waals interaction
between two atoms or molecules there is the interesting
problem of the van der Waals interaction of an atom with a
macroscopic object. This formulation of the question is im-
portant for analyzing physical adsorption of atoms on solid
surfaces. However, in the analysis of this question by Lon-
don and also in some early papers on the van der Waals
forces between two macroscopic objects,!"!? the interaction
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was found as simply the sum of the interactions between the
individual atoms, but this approach is justified only for low-
density gases. For objects of condensed matter, on the other
hand, collective effects must be taken into account in an
analysis of van der Waals forces.

In certain particular cases it was found possible to cir-
cumvent these difficulties even before the development of a
general theory of equilibrium fluctuations. For example, in
the problem of the van der Waals interaction of an atom or
molecule with a metal surface the problem can be solved in
the simplest case by the method of images.'*'> For large
distances, at which retardation effects become important, it
was found possible to solve the problem by taking into ac-
count the change in the energy of the zero-point oscillations
of the electromagnetic field.'® On the other hand, it was only
after the development of the fluctuation-dissipation
theorem'” and the analysis of its application to the electro-
magnetic field'® that Lifshitz'® was able to derive some sub-
stantially more general results. In Ref. 19 Lifshitz found a
general solution for the problem of the van der Waals inter-
action between two thick plates separated by an empty gap
(see also Ref. 20). He shows how one could work from the
fluctuational electromagnetic origin of the van der Waals
forces to construct a common description, including collec-
tive effects, of the van der Waals forces between macroscopic
objects with arbitrary permittivities. After quantum-field
methods in many-body theory were developed, Lifshitz’s ap-
proach was generalized by Dzyaloshinskii and Pitaevskii,”’
who derived some general expressions, with a broad range of
applicability, for the contribution of van der Waals forces to
the thermodynamic characteristics of inhomogeneous con-
densed media. Questions regarding the van der Waals parts
of, for example, the stress tensor and the chemical potential
of the condensed media were analyzed quite thoroughly.

On the other hand, the direct effect of van der Waals
forces on the thermodynamic potentials (the free energy, in
particular) of inhomogeneous media has still not been finally
resolved. Only comparatively recently has some light been
cast on the general case of absorbing media®>** (the problem
simplifies in the case of transparent media®*?*). This ques-
tion is discussed in most detail in Refs. 1 and 2. An analysis
of the van der Waals part of the energy or free energy of a
condensed medium benefits from the similarities between
this problem and the problem of the energy of thermal radi-
ation in transparent media and that of the energy of fluctu-
ations in electric circuits.

This review of course does not constitute a complete
discussion of the problem of van der Waals forces. Much has
been published in monographs and other reviews.-224° In
going through the literature we saw the need for a compre-
hensive discussion and theoretical description of the fluctu-
ation mechanism which gives rise to van der Waals forces.
To some extent, there was a similar void for the problem of
two atoms at large distances. In this other case we are of
course not talking about deriving new results but about a
method for deriving the results which would clarify both the
physical side of the problem and the applicability of the re-
sults in describing, for example, the van der Waals interac-
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tion between small particles of condensed matter (separated
by distances large in comparison with their own dimen-
sions).

Section 2 deals with the van der Waals interaction
between atoms, molecules, and small particles of condensed
matter. Section 3 deals for the most part with the interaction
of atoms with solid surfaces. Section 4 discusses the van der
Waals interaction between macroscopic objects of various
shapes. We conclude by citing several questions and prob-
lems which we were not able to discuss in more detail.

2. LONG-RANGE INTERACTION OF ATOMS, MOLECULES,
AND SMALL PARTICLES OF CONDENSED MATTER

a) An expression for the energy of the van der Waals
interaction between two atoms is usually derived in second-
order quantum-mechanical perturbation theory (§ 89 in Ref.
6), but we wish to begin this discussion of the van der Waals
interaction between atoms in a slightly different way. As a
result, the interaction energy will be expressed in terms of
the polarizabilities of the atoms, but the most important
point is that the applicability of the resulting expression to
not only atoms but also small particles of condensed matter
will become clear. More precisely, we consider from the out-
set two neutral “‘systems” (atoms, molecules, or small parti-
cles of condensed matter) separated by a distance R substan-
tially larger than the dimensions of the systems, a,,. We
then know quite well that in a first approximation we need to
consider the dipole-dipole electrical interaction between the
systems with the corresponding energy

U= dyd, — 3]&31“) (dyn) , (2‘ 1)
whered,(r,,? } and d,(r,,? } are the dipole moments of systems
1 and 2, respectively, which are at points r, and r, at time ¢.
We also introduce R =r, —r, and n = R/R. As we have
stated, we are assuming R>a, ,, but we also need the condi-
tion R €A, where 4, is some scale radiation wavelength, so
that we can ignore retardation effects (see the Introduction
and the discussion below). If the dipole moments are zero or
anomalously small, we would of course have to take into
account some higher-order multipoles (quadrupoles, etc.),
but we will not go into that possibility here.

The interaction U of course takes different forms in the
distinct cases in which both systems have some average di-
pole moment, only one of the systems has, or neither has
(“average” here is generally to be understood as the result of
quantum-mechanical and statistical averagings). For the
moment we are interested in the latter case, which holds, for
example, for two S-state atoms and for neutral small parti-
cles of condensed matter which lack an average dipole mo-
ment.? Under these conditions the dipole moments d, and
d,, with zero averages, contribute to the interaction only
through fluctuations. In the case of small particles of con-
densed matter at sufficiently high temperatures we could
speak of the appearance as a result of thermal motion of

IGenerally speaking, the electrostatic interaction between quadrupoles
can also contribute substantially to the long-range interaction. A ground-
state atom may also have an average quadrupole moment under certain
conditions (because of a strong external magnetic field, for example®26%7).
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fluctuating charges and corresponding dipole moments. For
an atom in a definite energy state with a given parity the
wave function is not an eigenfunction of the dipole moment
d = eZr, — eZ;r; (r; is the coordinate of the ith electron in
the atom, and r, is the coordinate of the nucleus), so that we
could say that this dipole moment and the electric field E
which it produces fluctuate. For the general case we assume
that a fluctuational dipole moment diP(r,,#) has spontan-
eously arisen in system 1 and has produced a field E,(r,?).
This field causes in the other system, 2, an induced dipole
moment d"(r,,t ) = &,E,(r,,¢’); here &, is the polarizability
of system 2, which is an integral operator when the frequen-
cy (or temporal) dispersion is taken into account. For simpli-
city we are assuming here that the polarizability of the sys-
tem is isotropic, so that the dipole moment d'™® is directed
along the field which causes it, E. The field E,(r,,? ) is the field
produced by the dipole moment of the first system, d{?(r,,?),
at the position of the second system:

30 (d{P (ry, O M) —dP (ry, B .
I

E1 (rz’ t) = (22)

Similarly, a dipole moment d5P(r,,7 ) which appears spontan-
eously in the second system induces in the first a dipole mo-
ment d™(r,t) = &,E,(r,t’). If retardation is ignored, it is
the average interaction of the fluctuational dipole in one sys-
tem with the dipole which it induces in the other which is
completely responsible for the dipole-dipole van der Waals
forces between these two systems in the case R<A,. This
mechanism for the onset of the van der Waals interaction in
the case of two atoms without retardation has been under
discussion for a very long time.>>*® After the general fluctu-
ation-dissipation relations were developed,'” it became pos-
sible to carry out the corresponding analysis for the general
case of two arbitrary systems.?*>!

We can go through these extremely simple calculations
here. The energy of this interaction can be written immedi-
ately:

Uvny= — %(&in(rm t))—%(&iE:(rn )

= % (&2 (dsip.’z) + &'1 (dszlztz)) . (23)
Here the angle brackets denote a statistical average, which
includes a quantum-mechanical average. In writing this
expression we have assumed that both of the “systems”
{atoms, etc.) are spherically symmetric, so that the condition
((dn)?) = (d2) = (d?) = (d? holds. A factor of 1/2 not
seen in (2.1) appears in (2.3) because of the well-known fact
that the energy of an “elastic” dipole is — dE/2. If absorp-
tion (or damping) is taken into account, expression (2.3)
would require further justification, which is possible in gen-
eral only for equilibrium systems.?!:1:2:26:52

Converting to the spectral densities of the fluctuations
in (2.3), we find

oo

UR) = — 5 | 52 (@2 (0)(d}, 3o+ ai(0) @}, Do), (24)
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o0
(dsil?'Z:) = '—ziln— S dw (d%, 21)0)'

— 00

(2.5)

We recall that since a real field E means that the induced
moment d = &@E must also be real we have

a (0) = o* (—o%),

(2.6)
where, by definition, d{w) = a{w)Es,e ~“’. Assuming that
the frequency o is real, and writing a(w)=Re a (@)
+ i Im a{w)=a'(w) + ia"(w), we find

a (w) = a' (—w), o (0) = —a' (—o).

2.7)

We now assume that both systems are at equilibrium
with a heat reservoir, and we use the fluctuation-dissipation
theorem. According to this theorem, the spectral density of
the square of the equilibrium fluctuations of the dipole mo-
ment of an isolated atom or particle is related to the imagi-
nary part of the corresponding polarizability by (see, for ex-
ample, § 124 in Ref. 3)

(@) =hoth o2 Im . (w). (2.8)

In the case of atoms the characteristic frequency @, in the
absorption spectrum usually falls in the ultraviolet region,
and at room temperature we have hw,> 7. We therefore set
T = 01in (2.8); i.e., we assume that the atoms or macroscopic
particles are in the ground state. From (2.8) we then find

(@) =R = -Ima (o). (2.9)
Substituting (2.9) into (2.4), and using (2.7), we find
U(R) = —— Im g do o, (0) a, (o). (2.10)
0

Since the polarizability a(w) is a linear-response function (a
generalized permittivity), it has no singularities in the upper
half-plane of the complex frequency . We also know from
the theory of analytic functions that the integral of an analyt-
ic function does not depend on the particular integration
path (if this path lies in the region in which this function is
regular), only on the initial and final points of the path. We
can therefore displace the integration contour (which initial-
ly coincides with the positive real frequency semiaxis) in
expression (2.10) into the upper half-plane and thereby
change this integration to one along the upper imaginary
frequency semiaxis. This transformation substantially sim-
plifies the integrand, since the polarizabilities a, (o) are
known to have a comparatively simple behavior on the upper
imaginary frequency semiaxis: Their imaginary part is zero,
and as the frequency is varied from zero to infinity along this
semiaxis these polarizabilities fall off monotonically, taking
on once each real value between a, , (0) and zero (§ 123 in
Ref. 3).

We therefore find from (2.10) that the energy of the van
der Waals dipole-dipole interaction of two atoms or particles
in the ground state is .

3n S dwa, (iv) a, (iv) T (2.11)
0

U(R)= — 2 7

Expression (2.11) was first found by Casimir and Pol-
der’ in the problem of the van der Waals interaction between
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atoms without retardation. Again we wish to point out that
relations (2.2), (2.3), and (2.9), which underlie this derivation
of expression (2.11), contain nothing which would specifical-
ly imply atoms. These relations apply equally well to any two
small, isotropic, condensed-matter particles under the con-
ditions

T €ho, K % <

e,
ai, !

(2.12)

here w, = 2mc/A,, 0 that the condition w,<€c/R is equiva-
lent to the inequality R €4,, under which we can ignore re-
tardation. The condition R»a, , not only allows us to re-
strict the discussion to the dipole-dipole contribution to the
van der Waals interaction but also allows us to use certain
other approximations. In particular, there is the circum-
stance that expression {2.9) is strictly valid only for isolated
particles.

In this derivation we also see the purely correlational
origin of the van der Waals interaction between objects.”
Actually, in this approximation the average dipole moments
of the particles or atoms have not yet arisen, and the charge
distribution in them remains spherically symmetric on the
average. All that has appeared is a correlation between the
spherically symmetric fluctuations of the dipole moments of
the atoms, and it is this correlation which gives rise to the
dipole-dipole van der Waals forces.

b) It is convenient and useful at this point to recall the
relationship between our approach here and the more com-
mon approach in studies of atoms. We appeal to an expres-
sion for the polarizability of a ground-state atom from the

theory of atomic dispersion (see, for example, § 59 in Ref. 8):
“fon (2.13)

a((“)):z m[(m?.o—(D?)—imé] 3 6—> +0.

Here f,,, is the so-called oscillator strength of the transition
from the state zero to the state », given by

fon =2 (EBn = Eo) | 3} 2o |

2
’

__2m
=7 Ono

2 (zi)On

(2.14)

where (z; )o,, is the matrix element of the coordinate z; of the
ith electron (of charge e and mass ) in the atom. Substitut-
ing (2.13) into (2.11), and carrying out the elementary inte-
gration, we find

— 3h eAfok fok-
UB) = —35 2 7o, i) oot
n,
@on P S @2)on. |

e IRy
= T TR ES TES—E(D —Eg® = T "R% »

n, n’

(2.15)

where the subscripts 1 and 2 specify atoms 1 and 2, respec-
tively.

Expression (2.15) is exactly the same as the result*?
derived in second-order quantum-mechanical perturbation

3In contrast with a study of objects of condensed matter of macroscopic
size, in studies of atoms and molecules the term “van der Waals interac-
tion” is sometimes understood to represent all long-range interactions,
including in particular those which are not of a fluctuational origin. In the
present review we are considering only the interaction of fluctuational
origin, and this is what we are calling the ““van der Waals interaction.”
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theory for the dipole interaction of two ground-state atoms
separated by a large distance (see also § 89 in Ref. 6).

We assume that only one transition is important in each
of the atoms and that the corresponding frequencies are
0,—"") and w,—o'Y,. From (2.15) we then find the London
interpolation formula:

— 3hetfifa ___3h00,  a,(0) a,(0)
U(R)=— 2mymaRP@1@, (0 + ©g)  2(@:+ :,2) 7o =,

(2.16)

where we have introduced the two masses m, and m, (in
place of m), and in obtaining the final expression we have
used e*f,, =a,(0)m, ,0%,, which follows from (2.13).
London called the van der Waals interaction between
ground-state atoms ‘‘dispersive” since it is expressed in
terms of the polarizabilities &, , , which also figure in disper-
sion theory.

At T = 0 the electromagnetic fluctuations (and, in par-
ticular, the fluctuations of the dipole moments of the atoms
or particles) are quantum fluctuations, so that the van der
Waals interaction between the “‘systems” at 7=0 is of a
purely quantum-mechanical nature. This nature is explicitly
reflected in expressions (2.11) and (2.16), which are propor-
tional to Planck’s constant #i. The quantum nature of the van
der Waals forces at T = O becomes particularly clear if, fol-
lowing London,>®* we note that if we ignore retardation
and damping the energy of the van der Waals interaction
between atoms is the change (due to the dipole-dipole inter-
action) in the zero-point-oscillation energy of the electric
field produced by the zero-point vibrations of the dipole mo-
ments of the atoms.

To pursue this point we consider two 3-dimensional un-
damped oscillators which are coupled with each other by a
dipole interaction. The equations of motion of these oscilla-
tors are

. a e%f; 3nm(ryn)—r,
r,+ o, =—m——-—2——

o (H‘; ' (2.17)
. e n (r;n)—r
Ty +‘D§rz = m:! lRa 1 ’

where the unit vector n runs along the line connecting the
oscillators, R is the distance between them, and f; and f; are
the oscillator strengths of the first and second vibrations. In
this system the natural frequencies @} of the normal vibra-
tion modes polarized along n (along the z axis) differ from the
frequencies @ £, of the normal modes polarized perpendicu-
lar to n. It is not difficult to see that the interaction potential,
taken as the change in the energy of the zero-point vibrations
of the oscillators,

U(R) =§(m§+m$ + 0z + 0y + of + 0F — 30, —30,),
(2.18)

is exactly equal to the potential of the van der Waals interac-
tion, (2.16), in the first nonvanishing approximation at large
distances. This coincidence is by no means simply fortuitous.
We will return to this question in Section 4.

The theory of the van der Waals forces between atoms
and molecules went through its growing pains a long time
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ago (see Refs. 4, 5, 50, 53, and 54; see also Refs. 29-34, 36, 37,
and 55 and the literature cited there). The present thrust of
theoretical research in this field is toward concrete quantita-
tive studies of the interaction of atoms and molecules—over
the spectrum of complexity ranging from the hydrogen atom
and inert gas atoms to biopolymers. The calculation meth-
ods used in this research are analyzed, and the specific re-
sults available are reviewed, in Refs. 34, 56, 57, 63, and 64,
among other places (see also the monographs in Refs. 29-33
and the papers in Refs. 58-62). In particular, these papers
derive and discuss many approximate expressions for U (R )
or, equivalently, for the coefficient Cg in (2.11). As the elec-
tronic structure of the atom or molecule becomes more com-
plex, the accuracy of the calculations of C¢ naturally falls off
substantially. Occupying a special place in this regard is the
case of two hydrogen atoms, for which the coefficient CH—H
was calculated extremely accurately a long time ago®*:

cB-H = 6.49903 a.u. = 6,2205.10-0 erg-cm® .

Recommended semiempirical values of the coefficient
C 27" have been tabulated for various pairs of atoms and
molecules.®*®® Table I shows the values recommended by
Dalgarno®’ for inert gas atoms.

¢} If we ignore the effect of the temperature and use
expression (2.8) instead of (2.9), then it is a simple matter to
derive the following expression for the free energy of the van
der Waals interaction of two remote “‘systems”:

oo

6T
RY

'ocl (iog) &, (io,), mn=l’;ln, (2.19)
n=0
where the prime on the summation sign means that the term
with # = 0 is to be assigned a weight of 1/2.
At room temperature (7= 300 K), the typical range of
frequencies in the sum over frequencies in (2.19) is
@5 =~2.5-10" s~'. On the other hand, the typical frequency

for the electron polarizability of an atom,

F(R)= —

a =12
" m (0 —?) ’

lies in the ultraviolet part of the spectrum, so we can use the
rough approximation w, =~2-10'®s ™. Since w; €w, , in ana-
lyzing the electron contribution to the interaction we can
very accurately replace the sum over frequencies w,, in(2.19)
by an integration; this is equivalent to taking the low-tem-
perature limit, which is described by (2.11).

In certain polar liquids an important component of the
effective polarizability stems from the rotation of a molecule

TABLE 1. Values of the coefficient C £ ~® for hydrogen atoms and inert
gas atoms (in atomic units®’).

A
H He Ne Ar Kr Xe
B

H 6,50 2,83 5,6 20 29 42
He 1,47 | 3,0 9,6 13 19
Ne 6,3 20 27 38
Ar 65 91 130
Kr 130 190
Xe 270
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and the associated rotation of its dipole moment. The aver-
age dipole moment of a molecule in such a liquid has a part
which is constant in magnitude and vanishes only after a
statistical average is taken over all possible orientations of
the dipole axis. For the orientational fluctuations of the di-
pole moments of molecules in (slightly nonideal) liquids the
typical frequencies w,,, =~ 10’ s~ fall in the microwave re-
gion. The corresponding component of the polarizability is
d2

%= FF I —Golorn]

Since w,, €w, this contribution is important in (2.19) only
in the n = O term. An analysis of only the n = 0 term corre-
sponds to taking the high-temperature limit of expression
(2.19), where the electromagnetic fluctuations and the corre-
sponding van der Waals interaction are classical (not quan-
tum-mechanical). Substituting the polarizability

ay,2(0) =,  (0)+aq, ,(0),

into the n = 0 term in (2.19), we find
3T
Fneg = — 5 2, (0) 2, (0)

_ did} e (0)ditae; (00d]  3Tae (0) ey (0) .
3T RS R® RS

(2.20)

The first term on the right side of (2.20) describes the classi-
cal orientational interaction®'® which we mentioned in the
Introduction. The second term on the right side of (2.20)
corresponds to the Debye-Falkenhagen induction interac-
tion. ®7° As for the third term we note that it may be regard-
ed as the classical (again, not quantum-mechanical) limit of
the dispersion interaction. It can be shown that this limit is
reached only under the inequality - >c/R [which does not
hold under the conditions assumed here, (2.12)), i.e., only at
distances R»(#ic/T)~7-10~*cm. Atsuch large distances the
van der Waals interaction is usually very weak. If we can
ignore the temperature dependence of the polarizability of
the “‘systems,” then the last term in (2.20) arises from a pure-
ly entropic contribution to the free energy. Specifically, in
this case we have

- TZ%(—F(RT’ ) ), =0,

S(R, T)= _( oF (R, T) )R: 30ty (0) @ep (0)

R ) (2.21)

Since we are dealing with another limit—the low-tem-
perature limit—for the dispersion interaction under the con-
ditions assumed here [see (2.12)], we should ignore the last
term in (2.20}. The free energy of the van der Waals interac-
tion is then described by the sum of (2.11) and (2.20). The
dispersion interaction (2.11) usually dominates the total en-
ergy of the van der Waals interaction. According to esti-
mates given in Ref. 40, for example, the dispersion compo-
nent amounts to 99% of the total energy of the van der Waals
interaction for carbon monoxide [the contribution in (2.20) is
included in this total energy], and the corresponding figure
for HCl is 86%. There are exceptions to this rule, the most
important of which is water. In H,O the contribution of dis-
persion interaction (2.11) is only 24% of the total van der
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Waals interaction, while the contribution of orientational
interactions is about 69%. We find a similar situation in
certain aqueous solutions of macromolecules and in several
other substances of interest for applications in biological and
biophysical problems. In solutions of macromolecules (in
protein solutions, for example), an important role may be
played by ““proton fluctuations” with typical frequencies in
the microwave region. These fluctuations, which are classi-
cal in nature, also give rise to a corresponding (van der
Waals) interaction between macromolecules. This interac-
tion has been studied by Kirkwood and Shumaker.”

d) Up to this point we have been discussing the van der
Waals forces acting between two spherically symmetric sys-
tems. If the systems are not spherically symmetric, the van
der Waals forces will depend on the relative orientation of
the interaction systems. A moment of the forces acting on
the systems will naturally arise. An anisotropy of van der
Waals forces can be seen, for example, in the interaction
between linear diatomic molecules (Fig. 1)’ (see also Refs.
31, 32, 61, 73, and 74). An expression for the interaction
energy of axially symmetric molecules of this type (under the
condition @, , <R €A,) can be derived by an approach com-
pletely analogous to that leading to expression (2.11) above.
It is simply necessary to make some obvious changes in Egs.
(2.3) and {2.9) to allow for an anisotropy of the polarizabili-
ties of the molecules. As a result we find the expression

U(R, 0, 6,, ¢)
13
= — 5 [(A—B,—B,+()

% (sin 9, sin 8, cos ¢ — 2 cos B, cos 0,)2+ 3 (B, — C) cos? 8,
+ 3(B,—C)cos?0,+ B, + B, - 4C]; (2.22)

here R is the distance between the centers of the molecules,
the angles &, , are the angles between the axis of each mole-
cule and the line connecting the centers of the molecules, and
@ is the angle between the projection of each of the axes of the
molecules onto the plane perpendicular to the line connect-
ing the centers of the molecules. The coefficients 4, B, B,,
and C are defined by

do o) (io) a? (io),

.
I

do of’ (io) afp’ (i0), B,=

C=\doa? (io)a? (in), B,=\ doafp (io)a} (ie).

(2.23)

St g Sty
Stem g O—ig

The quantities a|'(w) and a{"(w) are respectively the longitu-
dinal (along the axis of the molecule} and transverse compo-

FIG. 1.
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nents of the polarizability of the first molecule; a corre-
sponding notation is used for the second molecule.

When we analyze the interaction of only two atoms we
lose sight of a very important property of van der Waals
forces: their many-particle nature. Many-particle forces
arise because the interaction energies in a system of many
particles are not additive. Generally speaking, this nonaddi-
tivity arises because the superposition principle pertains to
the amplitudes of the electromagnetic field, while the inter-
action energy depends on quadratic combinations of these
amplitudes. A nonadditivity in interaction energy can be
seen even in classical electrostatics. For example, if a spheri-
cally symmetric small object (or atom) of polarizability « is
in the field of a constant electric dipole, the interaction ener-
gy will be — (1/2)2(0)E ?, where E is the field of the dipole at
the position of the atom. We now place another, identical,
dipole at the same distance from the particle but on the oppo-
site side. The field at the position of the particle and thus the
energy of the interaction of the particle with the two dipoles
then vanish. In this case the three-body term in the energy of
the interaction of the particle with the dipoles is exactly
equal to the sum of the energies of the binary interactions of
the particle with each separate dipole, taken with the oppo-
site sign. As for the nonadditive part of the energy in the case
of the van der Waals interaction, we note that it is frequently
small in comparison with the sum of the corresponding ener-
gies of the binary interactions. There are several problems in
which many-body van der Waals interactions are important
and in some cases even give rise to qualitatively new effects.
An example of the latter case is the effect of a substrate on the
van der Waals interaction of nearby atoms. Many-body
forces should in general also be taken into consideration in a
study of the van der Waals interaction between thick plates.
We turn now to the very simplest system in which the nonad-
ditivity of the van der Waals interaction is manifested (albeit
weakly): a system of three ground-state atoms (Fig. 2).

The energy of the van der Waals interaction in this sys-
tem can be written in the form

U= U+ Uss 4 Us + Usaa (2.24)
We already have an expression—(2.11}—for the binary in-
teraction potential U (i, j = 1, 2, 3; i#j) in the case of iso-
tropic atoms or particles of condensed matter. In general,
however, the energy of the interaction among three atoms,
(2.24), is not additive since in addition to the sum of binary
interactions there is a three-body term U, ,,. This term van-
ishes when any of the three atoms goes off to infinity. It was
first found by Axilrod and Teller’® and Muto® in a study of
dipole dispersion interactions of atoms in third-order per-

2
6,
Ry % &
(74 G5
7 Ry¢ I3
FIG. 2.
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turbation theory [see expression (2.31) below]. As we have
already seen, the binary van der Waals forces arise from an
interaction of a spontaneously fluctuating (virtual) dipole
moment in one atom with its “image” in another atom. To
find the three-body interaction we must also note that a
spontaneous fluctuating dipole moment in, for example, the
first atom, diP(r,,? ), gives rise to not only a dipole moment in
the second atom, di*(r,,¢ ') = &,E(r,, }-—through the direct
dipole interaction of the two atoms [see (2.3) and (2.2)]—but
also another contribution to the dipole moment of the sec-
ond atom, given by

45t (r, t)= &2j' (Rag) &3E1 (r3, 1), (2.25)
where
3nin;—0i; R
TyR)=—p—, n=p (2.26)

As can be seen from (2.25), this three-body contribution
means that we are first considering the dipole moment in-
duced in the third atom by the first, d™(r,,¢’) = ;E,(r5,2);
only after we have done this do we take into account the fact
that this dipole moment d(r,,#) in turn induces a dipole
moment d33'(r,,¢ ) in the second atom. It is the interaction of
the dipole moment dif(r,,z) with its “secondary image”
d(r,,t ) which contributes to the three-body interaction. In
an analogous way we need to consider the interaction of the
dipoles d%P(r,,?) and d¥(r,?) with their secondary images,
and once we have done so we have exhausted the three-body
contribution to the energy of the van der Waals interaction.

Since there is an error in the derivation of the expression
for the three-body term U, in the literature,® and since this
derivation is based on the arguments we are presenting here,
we will go through the detailed derivation of the expression
for the energy of the three-body interaction. As before, our
derivation will apply equally well to any small, spherically
symmetric particles of condensed matter—not only atoms—
at large distances.

It is not absolutely correct to use expression (2.3) for the
energy of the dipole interaction of three atoms. We write the
interaction energy in the dipole approximation in the follow-
ing form:

U(R)=8[ — @y (r, DE(r, )], (2.27)
where d, (x|, ) is the total fluctuational dipole moment of the
first atom (which incorporates both the spontaneous fluctua-
tional terms and those induced by other atoms). The field
E(r,,z)is created by the total fluctuational dipole moments of
the second and third atoms. The variation sign § in (2.27)
means that we are to subtract from the expression in square
brackets the values found for this expression by letting the
distances between the atoms go to infinity. In this manner we
eliminate the self-energy, which has no bearing on the inter-
action between atoms.

With an accuracy appropriate for this discussion we can
write the following expressions ford,(r,,z )and E(r ¢ ) (which
are consistent with the comments above):
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d, (v, t) =d¥ +&,T (R,)dF +,T (R,,) d¥
+a,F (Ryp) 2, (Ryy) A7
+a, T (Rqy) a5 (Ryg) d + ..., (2.28)
E(ry, t)=1 (Ry) &P + T (Rg) 25T (Ryg) d3F + T (Ryy) o7
+ T (Ryy) &T (Ryg) P + T (R ) @, T (Ryp) @5F
i T (Ryy) T (Ryy)
+ T (Ryg) 2T (Ryg) 25T (Ry,) d°F
+ T (Ryg) &7 (Rog) 2ol (R) AP+ ..., (2.29)

where T'(R) is the matrix whose elements are shown in (2.26).
Substituting (2.28) and (2.29) into (2.27), and using the fluc-
tuation-dissipation relation (2.9), we find (2.24), where

h A A A
Uygy= _‘ESP [T (Ryp) T (Ryg) T (Ryy)]

+<’° do
[0

o]
-0

+ay (0) [ (0) +2; (0)] Ima, ()

{223 (0) a5 (0) Im o (@)

+ay (o) (23 (0) +af (0)] Im @, (o)} (2.30)

Substituting in (2.26) for T;(R), and using (2.7), we find, after
some straightforward calculations,

Clzs

U123=m(3 cos 6, cos 0, cos 0, 4 1), (2.31)
] ¢ '
Cros= ‘3,—; Im S do a4 (0) a; (0) 2y ()
=2 [ doa, (10) 2 (10) a4 (i0). (2.32)
0

The procedure for deriving the expression in (2.32) is com-
pletely analogous to that for going from (2.10) to (2.11). The
complex-conjugate values of the polarizabilities appear in
{2.30) because for stationary fluctuations we have (see, for
example, § 122 in Ref. 3)

(duEo) =20 (dE), 8 (0 + @), (2.33)

and the polarizabilities furthermore satisfy (2.6). It is this
last point which was ignored in Ref. 30, where an expression
similar to (2.30) was derived for the three-body contribution
to the interaction energy, but the operation of complex con-
jugation did not appear in that expression even once. The
result was the derivation of an incorrect expression for the
coefficient C,,; in Ref. 30 with absorption [i.e.,, with
Im a(w)+#0]. The correct expression, (2.32), was first derived
by a different (quantum-electrodynamic) method by Aub
and Zienau’’ for atoms (see also Refs. 31 and 78).

The three-body component of the interaction energy
may take on both positive and negative values. This point
should not be surprising since to analyze this component of
the energy is equivalent to using third-order perturbation
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theory (not second-order, as for binary interactions). It fol-
lows from (2.31) that we have U,,, >0 if all the angles 8 | , 5
are less than 117°. If, for example, three atoms form an equi-
lateral triangle, then the three-body term is repulsive and
thus reduces the attraction between the atoms due to their
binary interaction. If, on the other hand, one of the angles
0,1 is greater than 126°, then we have U,,; <0, and this
term intensifies the attraction. This is the case, in particular,
when the atoms lie on a common straight line.

In a system of three atoms separated by large distances
the three-body term amounts to only a small fraction of the
binary interaction (usually, no more than a few percent’). In
principle, the role of three-body forces (and of higher-order,
many-body forces) might become more important in a sys-
tem of many atoms, since the number of different trios of
atoms is significantly larger than the number of different
pairs, as is clear from combinatorics. Nevertheless, in most
cases the three-body van der Waals forces continue to play a
minor role even in systems of many particles. This is a conse-
quence of the very anisotropic nature of the three-body inter-
action. As a result, if there is any symmetry in the arrange-
ment of the atoms the different three-body terms will cancel
out to a significant degree. This effect can be seen, for exam-
ple, in a numerical study of the contribution of van der
Waals forces to the binding energy of crystals.?° The reader
is referred to Refs. 31, 42, 56, and 80-84, for example, for
discussions of the role played by three-body terms in some
other cases.

A discussion of many-body forces in a system of many
atoms generally cannot be restricted to three-body interac-
tions alone. In a system of four atoms, a four-body interac-
tion will of course arise. In general, the van der Waals forces
are of an n-body nature. We might naturally ask how we
could find the total contribution of all the many-body forces
to the energy of the van der Waals interaction of atoms. In
the sections which follow we will return to this and some
related questions, but at this point we simply note that if we
examine the energy shift of the zero-point vibrations of three
oscillators coupled with each other by dipole forces [cf. Eqs.
(2.17) for two oscillators] we see that this shift also contains a
three-body term. For a system of n oscillators, on the other
hand, the energy shift of the zero-point vibrations due to the
fluctuational dipole interaction of these oscillators contains
all the n-body terms corresponding to van der Waals forces.
An analysis of van der Waals forces on the basis of the energy
of zero-point vibrations for an oscillator model (also called
the Drude-Lorentz model) is widely used for qualitative dis-
cussions of many problems (see, for example, Refs. 5b and
83-93).

e) We now consider the van der Waals interaction .
between atoms (or small particles of condensed matter) at
distances large enough (R R A} that retardation effects are
important. As before we assume that the atom is in its
ground state. The spontaneously fluctuating (virtual) dipole
moment of such an atom creates a dipole field (2.2) in the
near zone. No real radiation (i.e., no average energy flux)
from the atom can arise in the wave zone, since the atom is in
its ground state. To describe fluctuational phenomena at dis-
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tances R 2 A, and, in particular, in the wave zone we need to
allow for the fact that in the quantum-electrodynamics vacu-
um there is a fluctuational electromagnetic field (virtual
photons). The virtual excitation of an atom is of course relat-
ed to the absorption of a virtual photon and to a correspond-
ing influx of electromagnetic energy to the atom. In the case
of radiation, on the other hand, there is a cancellation of the
original electromagnetic energy flux, whose average value
remains equal to zero. Because of virtual processes of this
type, the atom leads to a change in the polarization of the
electromagnetic vacuum (a change from that in the case in
which there is no atom). This change naturally depends on
the distance from the atom, and at sufficiently large dis-
tances it is a small perturbation. The van der Waals interac-
tion at distances R R A, is due directly to this change in the
polarization of the vacuum. Consequently, calculations on
the van der Waals interaction between atoms at R2 A,
should be carried out in quantum electrodynamics. The cor-
responding expression for the interaction energy [see expres-
sion (2.40) below] is now well known (see, for example, § 85
in Ref. 8). This expression is derived in fourth-order pertur-
bation theory. It was found first by Casimir and Polder,” and
since then it has been analyzed by a variety of methods and
discussed many times (see, for example, Refs. 16, 31, 58, 94—
98, and 100). Here, as before (in the case R €4}, we are inter-
ested in the concrete fluctuational mechanism which gives
rise to the van der Waals interaction. Under the condition
Rz A, this interaction is, as before, due to correlations
between the fluctuating dipole moments of the atoms, but
here we find a completely new reason for the appearance of
these correlations. We will demonstrate this point and derive
a general expression for the energy of the van der Waals
interaction of two spherically symmetric atoms or small par-
ticles of condensed matter (for an arbitrary relation between
R and 4,) by working, as before, from expression (2.27) for
the average energy of the interaction of a polarizable dipole
with an electric field.

For an arbitrary relation between R and A,, there are
two circumstances which we ignored in the case R €4, which
we must now take into account: the retardation and the in-
teraction with the vacuum fluctuational field. When we take
retardation into account, we must replace expression (2.2}
for the field dipole. The expression we need for the spectral
component of the field with frequency w is (see, for example,
§ 72 in Ref. 99)

Ei (o, 1) = —= = O™ (0, R)dy, (0, 1)
- { ei@/O)R F( + _%) (8;,— n;ny)
42 ( )n nl]} dy; (@, Ty),
for =R, n=X. (234

The first term in (2.34) is the expression for the retarded
Green’s function of a free photon in vacuum, 2 {%w,R).
Furthermore, it follows from the theory of electromagnetic
fluctuations that the spectral density of the correlation func-

475 Sov. Phys. Usp. 27 (7), July 1984

tion of the vacuum electromagnetic field (without interac-
tions) can be written (see, for example, § § 76, 77 in Ref. 28)

o] o?
® c2

(B (r) E{Y (1,))0 = — Im 20" (0, r,—r,)-

(2.35)
Expression (2.35) has the meaning of a fluctuation-dissipa-
tion relation and is therefore combined with (2.9).

If we ignore retardation, i.e., in the limit (w/c)R—0, the
expression in braces (curly brackets) in (2.34) becomes real;
as a result, the right side of (2.35) vanishes. In a more general
case it follows from (2.35} that there is a spatial correlation
between fluctuations of the vacuum electromagnetic field. A
correlation between fluctuations of the vacuum field is one
reason for the appearance of an interaction between atoms
(this is the basic reason for van der Waals forces in the limit
R>A,). Let us assume that there are atoms at the points r,
and r,. The vacuum fluctuational field induces dipole mo-
ments d™ = aE” in these atoms. The average interaction of
all the fluctuating dipoles (retardation must of course be tak-
en into account here) will be nonzero because of the correla-
tion of the fluctuations of the vacuum field,
(E O )EQ(r,)),, [see (2.35)]. Working in this manner we
can take into account that part of the van der Waals interac-
tion which stems exclusively from the elastic scattering of
the vacuum fluctuational field by atoms. Another part of the
interaction stems from inelastic virtual processes, i.e., the
absorption and emission of virtual photons. This part can be
taken into account by an approach analogous to that taken
above where we ignored retardation; specifically, we can ex-
amine the spontaneous fluctuations of the dipole moments of
the atoms and use relation (2.9).

By jointly considering the spontaneous fluctuations of
the vacuum electromagnetic field and the atomic dipole mo-
ments we can derive a general expression for the energy of
the van der Waals interaction. To pursue this point we first
write expressions for the spectral components of the total
fluctuational dipole moment of the first atom, d,(r,,?), and
for the total fluctuational electric field E(r,,¢ ), which appear
in the original expression for the energy, (2.27). With an ac-
curacy sufficient for our purposes the dipole moment can be
written

dy i (ry, @)= dy’, it oy (©) ESLO) (r, o)
(@) =) ZE" @, 1 =) &1 (ry, ©)
+0, (0) (— o) ZP™ (@, 1 —r,)

&y (@) B (ry, @)+ ... (2.36)
The first term on the right side of (2.36) describes the sponta-
neous fluctuational contribution to the dipole moment of the
first atom. The second term is that part of the dipole moment
which is induced by the vacuum fluctuational field at the
point r,. The third term reflects the part of the dipole mo-
ment of the first atom which is induced by the field produced
by the spontaneous dipole moment in the second atom. Fin-
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ally, the last term written in (2.36) reflects the fact that the
vacuum fluctuational field induces in the second atom a di-
pole moment a,(@)E®(r,,w), which in turn induces a dipole
moment in the first atom.

It is also a simple matter to interpret the expression for
the electric field E(r,,»), which can be written

E; (ry, 0)

=E{" (r,, m>+( o) BN (0, r—r1) dF 1 (0, 1)

+ ( ﬁcz ) 28 (@, ry—r,) 0, (00) E® (0, 1)

+(_ Tio? ) @(O)R(m, I —Ty)

X oy (0) DRP (@, 1y—1,) dT 1 (r;, @). (2.37)

Substituting (2.36) and (2.37) into (2.27), and using (2.35) and
(2.9), we find

+00
v = -7 | o [rger ()]

X [(Im a4 (0)) ZPF (0, R)a? (0) TP (0, R)

+a,(0) T (0, R)a? (0) Im Z{P% (@, R)
+ay (0) PR (0, R) (Ima, (0)) DI (0, R)
+ay (@) D™ (0, R)a, (0) Im DT (0, R)).

(2.38)

We can now make use of the properties of the real and
imaginary parts of the Green’s functions and polarizabilities
upon the replacement w— — w. These properties follow
from (2.7) and from the analogous expression for the Green’s
function (we assume that the frequency o is real),

Z@" (—o, {)=2P% (0, R). (2.39)
Using (2.7), (2.39), and (2.34), we find the following result
from (2.38) after some straightforward calculations:

+oo

U(R)y=—5Im |

—o0

do o 2 2
5 To7 (Fer )
x [, (@)} DR (0, R) a, (0) DR (0, R)]

T —2(0/c)R

b3 4
- S doa, (io) a, "‘))T?—e‘
]
2 5 6 3
f [1+ oR/c - (0R/c)? + (wR/e)® + (@R/c)* ]

(2.40)

Expression (2.40) describes the interaction energy of
two atoms or condensed-matter particles separated by a
large distance for an arbitrary relation between the param-
eters R and A, = 27m¢/w,. In the limit R €4, we should set
(w/c)R—01in (2.40), and in doing so we find expression (2.11}),
which we discussed above. In the opposite limit, R»A,, the
exponential factor in (2.40) means that the integral will be
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dominated by frequencies from the spectral interval o Sc¢/
R<w, We can thus set a(iw)=a(0), since by assumption
there is no dispersion of the polarizability at frequencies
w<€w,. As a result we find from (2.40) the following simple
expression for the interaction energy of the atoms in the limit
R3»A, =2mc/w,.

23kc

U (R)= — 4 gr % (0) 22 (0)- (2.41)

For ground-state helium and hydrogen atoms A, is of the
order of 10~° cm, while for certain organic molecules 4, is
about an order of magnitude larger.

f') If the magnetic susceptibilities of the interacting par-
ticles are not too small in comparison with their electric po-
larizabilities in some important part of the spectrum, then
we also need to consider the contribution to the interaction
of spontaneous fluctuations of the magnetic dipole moments
of these particles. Furthermore, we must recall that the
vacuum fluctuating electromagnetic field induces both elec-
tric and magnetic dipole moments in the particles. The cor-
responding calculations are analogous to those given above,
so we will proceed immediately to the results. The contribu-
tion from the magnetic susceptibilities turns out to be most
important in the case R»A,, in which the typical frequencies
are low, w€¢/R<€w,. Another important point is that under
the condition R» A, the particles are outside the near zone
with respect to electric and magnetic dipole radiation. Since
the electric dipole of, say, the first particle, creates not only
an electric field but also a magnetic field outside the near
zone, both electric and magnetic dipole moments are in-
duced in the second particle. Analogously, the magnetic di-
pole moment of the first particle induces in the second not
only a magnetic but also an electric dipole moment. Taking
into account the correlations which arise between the fluctu-
ations of the electric and magnetic dipole moments of the
particles, we find terms in the expression for the interaction
energy which are bilinear in the permittivities and suscepti-
bilities of the particles (in addition to quadratic terms). As a
result, expression (2.41) is replaced by

U (R)= — 22 (23 (o, (0) a, (0)
%2 (0) 72 (0)) — 7 (et (0) %5 (0) -+ a5 (0) 24 (O))],
(2.42)

which was found in Ref. 98 by a quantum-field approach.
The contribution of magnetic susceptibilities to the disper-
sion interaction was also discussed in Ref. 58.

In the opposite limit, R €4, terms containing cross pro-
ducts of the permittivities a(w) and susceptibilities y (») do
not appear in the expression for the interaction energy of the
particles. The reason is that in the near zone an electric di-
pole creates only an electric field (the magnetic field is negli-
gibly weak), and a magnetic dipole only a magnetic field (in
this case the electric field is very weak). For atoms separated
by large distances the magnetic-interaction contribution to
the dispersion energy, studied in Ref. 101, is usually small. It
is small because the susceptibilities of atoms are small except
for very heavy atoms. For particles of condensed matter, on
the other hand, the static susceptibility can be quite large, in
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which case the magnetic interaction would have to be taken
into account. The existence of a magnetic polarizability does
not necessarily mean that the object consists of a magnetic
material: The polarizability y (w) might also be due to a
shielding of the magnetic field from the object by a skin ef-
fect. This circumstance is important for the interaction of
two small metal particles.'%

Wesee from (2.42) that the cross products of the electric
and magnetic polarizabilities enters the interaction energy
with a sign opposite that of the other terms. For this reason,
if we have ,(0)> y,(0) for one of the particles and a,(0) €y ,(0)
for the other the van der Waals interaction at distances
R> A, is repulsive [if y,(0) > 0]:

U (R) =i, (0) %2 (O) (2.43)

It is also a straightforward matter to incorporate the
magnetic-dipole contribution in an analysis of the van der
Waals interaction for anisotropic particles or molecules. If
the molecules are not optically active, the calculations
would be analogous to those for the isotropic case. For chiral
molecules or gyrotropic particles, on the other hand, we
would also need to consider the correlation which arises
between the spontaneous fluctuations of the electric and
magnetic dipole moments, d and p.:

Wido= — 52 (B (0) — BR(©))-
The dipole-magnetic-dipole polarizability tensor B;(w)
which appears here is expressed in terms of products of ma-
trix elements of the form (0|d;|n) (n|y;|0) and is nonzero
only if the molecule lacks an inversion center (when the par-
ity is not an integral of motion). For enantiomorphs (i.e., left-
and right-hand-rotating but otherwise identical molecules),
the polarizabilities 53 (w) differ in sign. On the whole, there-
fore, the van der Waals interaction of two chiral molecules
changes slightly if one of them is replaced by its enantio-
moph* (Refs. 58, 97, 103, and 104). Since an atom generally
becomes optically active when the weak interaction of an
electron with the nucleus due to neutral currents is taken
into account,'®® the atom acquires a nonzero chiral polariza-
bility tensor, which is a measure of the constant of this (par-
ity-breaking) weak interaction. Consequently, a P-odd part
appears in the van der Waals interaction between atoms.'*

To conclude this section we consider the van der Waals
interaction of atoms or small bodies in a liquid (up to this
point we have been talking about atoms and particles in
vacuum). The fluctuational nature of the van der Waals
forces can be seen quite clearly when we take into account
the screening of the interaction between atoms by the medi-
um. The situation can be seen particularly easily in the case
R €A, where it is sufficient to note that the presence of a
medium gives rise to a factor £~ in expression (2.2) for the
field of the dipole. Since the dipole-dipole van der Waals
interaction is a result of an averaging of expression (2.3),

(2.44)

“1n gyrotropic particles there is also a correlation between spontaneous
fluctuations of the dipole and quadrupole moments. The corresponding
contribution to the van der Waals energy also changes sign when one of
the particles is replaced by its enantiomorph, and this contribution can in
general be greater than the dipole-magnetic-dipole contribution.
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which is quadratic in the dipole field (2.2), the screening of
this interaction by the medium at the frequency w is propor-
tional to £~ 3(w), not £~ (w).

Another important point is that the presence of a medi-
um also- generates another factor causing an interaction
between atoms and small objects. In an isotropic medium,
even if retardation is ignored, there is a fluctuational spatial-
ly correlated electric field E® (r). For r, #r, the spectral den-
sity of the spatial correlations for the fluctuations of this
field is

(0] 3nink_6ik IIIl 1

2 umc o (245

(EP (1) B (rp))o=h

If there are atoms or small objects at the points r, and r,, the
spontaneous fluctuational field E¥' will induce in them di-
pole moments

dind — aE®.

The average interaction of these dipoles is not zero, by virtue
of (2.45), and this interaction can be an important part of the
overall dipole-dipole van der Waals interaction. The result,
as is easily shown, is that the overall dipole-dipole van der
Waals interaction of two particles or atoms in a medium is
described by the following expression if we ignore retarda-
tion [cf. (2.11)]:

3k

s Acy (i) Ac, (i0) do.

U(R)=— (o) (2.46)

ot—2g

A general expression for 4@, , () will be given a bit later.
Here we wish to point out (with reference to the rather sim-
ple case of a single-component liquid) that A&, , (w) is essen-
tially the difference between the effective polarizabilities for
impurity particles (or the atoms of a dilute solution) in a
liquid and for the atoms or molecules of this liquid (or sol-
vent). These effective polarizabilities, which describe a re-
sponse to an average macroscopic field, may in general be
quite different from the polarizabilities of the isolated atoms
of a solution and the atoms of a solvent, in particular, be-
cause of local-field effects. In the simple case in which only
these effects are important, and the Lorenz-Lorentz formula
applies, we have

a (0)) __& (m:)S—I—Z

a (w).

Furthermore, differences between effective polarizabilities
appear in (2.46) because when the distance between impurity
particles changes (when, for example, they are removed to
infinity) the positions which they previously occupied do not
remain empty but instead become filled with liquid.

When retardation is taken into account, we must re-
place w/c by wye(w)/c—equivalently, switch from Max-
well’s equations in vacuum to the macroscopic Maxwell's
equations in a medium—in addition to making the changes
due to the effects which we have already discussed. If ab-
sorption is ignored, this replacement corresponds to incor-
porating a change in the phase velocity of light at the fre-
quency o in the presence of a medium. As a result, in the
limit R>A,, for example, expression (2.41) is replaced by
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The van der Waals interaction of atoms or small objects
in a liquid was first analyzed by Pitaevskii.'”” As an initial
expression for the energy of the van der Waals interaction he
used that for two thick macroscopic plates separated by a
liquid-filled gap. He then'®’ considered the case in which the
gap was filled with a pure solvent, and the “plates” were
weak solutions of atoms of a different species with densities
N, and N, in the same solvent. When the expression for the
interaction energy of these “plates’ is used, it is a simple
matter to construct a binary interaction potential of two
atoms in a solution. From the results derived in Ref. 107
follows a general definition for the quantities Aé(w) which
figure in (2.46) and (2.47):

~ 1 "~
Ao (0) = '/E( a; 1(\,“)) )N:D.

Here Z(w) is the dielectric permittivity of the solution, and N
is the concentration of dissolved atoms. Since Ad@(w) is the
derivative of a linear-response function, its values on the up-
per part of the imaginary frequency axis may be either posi-
tive or negative. The energy of the van der Waals interaction
of atoms in a solution described by (2.46) [or (2.47)] may thus
correspond to a repulsion as well as an attraction. The force
is repulsive if one of the quantities A&, , (iw,) [4a,,(0)] is
positive and the other negative. The van der Waals interac-
tion between atoms in a liquid is also discussed in Ref. 82.

In examining the long-range forces earlier we assumed
that the interacting systems are, on the whole, localized and
that in this regard they can be treated quite accurately by a
classical approach. We essentially assumed that the condi-
tions for the applicability of the adiabatic approximation
were satisfied, so that we could treat the interaction poten-
tial U(r, — r,) as the interaction energy between systems at
points r, and r,. We note in this connection that taking an
average over electromagnetic fluctuations may also be con-
venient in another case, in which we can use the adiabatic
approximation for only one of the interacting atoms, while
the other system—a light particle—is not localized in any
definite place and must be treated quantum-mechanical-
ly.10°

U(R)= Aa, (0) Ad, (0). (2.47)

(2.48)

3. VAN DER WAALS INTERACTION OF ATOMS WITH THE
SURFACE OF CONDENSED MATTER

a) The interaction of atoms and molecules near the sur-
face of a condensed medium (in particular, a solid) has been
the subject of intense experimental and theoretical research
(see, for example, the reviews and monographs in Refs. 110~
124 and the literature cited there). In this section of the pres-
ent review we examine the van der Waals interaction of one
or two atoms near an interface, ignoring other interactions.
As in the preceding section, the results will generally also
apply to the interaction of molecules or small objects with a
surface.

The van der Waals interaction with a surface is by no
means always the dominant one. We know quite well that in
an interaction with a surface an atom will often form a
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chemical bond with it; i.e., the atom will undergo a chemical
adsorption. The properties of a chemisorbed atom may be
markedly different from those of the isolated atom. For ex-
ample, in the case of chemical adsorption on a metal the
atomic levels (i.e., the levels which convert into the atomic
levels as an atom is removed from the surface) are spread out
into quasilevels, and the extent to which they are filled de-
pends strongly on the position of the Fermi level in the met-
al. The binding energy of an atom with a surface in chemical
adsorption is usually greater than 0.1 eV, The van der Waals
forces play a minor role here, and there is no point in study-
ing them separately. On the other hand, atoms do not always
form a chemical bond with a surface. There are cases in
which the binding of the atom with the surface occurs pri-
marily as a result of van der Waals forces. This process is
called “physical adsorption” and is characteristic of, for ex-
ample, inert gas atoms on graphite, several alkali halides
(LiF, NaF, etc.), and several metals (Ag, Cu, Al, etc.). The
interaction energy corresponding to physical adsorption is
of the order of 107?-1072 eV. For heavy inert atoms (Kr,
Xe), whose polarizabilities are comparatively large, it is also
necessary to take into account the dipole moment induced in
these atoms during adsorption in certain cases. This dipole
moment is directed perpendicular to the surface. It arises
because of a deformation of the electron shells of the origin-
ally spherically symmetric atom by its interaction with the
substrate.?'®-325 For the lighter atoms, with small polariza-
bilities, the dipole moments induced in the atoms by the sur-
face are small and can usually be ignored. We assume here
that the average dipole moment of the atom is zero.

The van der Waals interaction of atoms and molecules
with a surface is seen not only in adsorption effects but also
in, for example, experiments on the scattering of atoms by a
surface at large impact parameters''”-121-125-130 (there are
several other situations). The net result is that we need to
study the van der Waals interaction of an atom or molecule
with a surface.

Let us assume that some impurity atom (or a small ob-
ject) is in a liquid with a dielectric permittivity £,(w), at a
distance/ from the plane surface of a crystalline solid with a
dielectric permittivity £,(w) (Fig. 3). We denote the effective
polarizability of the atom in the liquid by &(w), retaining the
notation a(w) for the polarizability of the isolated atom in
vacuum. In general, the interaction energy of the atom with
the surface can be written as

A

_

FIG. 3.
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Um=U)+ 3 U (l)eoP, (3.1)
G0

where the sum over reciprocal-lattice vectors G arises be-
cause the 2-D periodicity of the crystalline substrate is being
taken into account. The 2-D vector p describes the position
of the atom in the plane parallel to the surface. The sum over
2-D reciprocal-lattice vectors G in (3.1} corresponds to al-
lowing for the discrete structure of the condensed medium.
These terms must be taken into account if the distance from
the atom to the surface is of the order of the interatomic
distances in the crystal. Here we are considering the opposite
case, of large distances /, for which only thefirst term, U (/), is
important in (3.1). We also assume that / is larger than the
scale correlation length in the medium. We can then ignore
spatial-dispersion effects in analyzing the van der Waals in-
teraction.

The van der Waals dipole-dipole interaction of an atom
with a surface arises for essentially the same reasons which
lead to the interaction between two atoms (see Section 2). If a
fluctuational dipole moment di¥ arises spontaneously in an
atom, then we know that a polarization is induced in the
medium, and this polarization is of such a nature that the
field outside the medium corresponds to the field of an image
dipole with a moment

a’ind = £y (0) —&; (0)

T £a (0) (g (@) £, (@)

at the point {p, — / }. For simplicity we assume /<A, and
ignore retardation. The energy of the interaction of the di-
pole with its image, averaged over the fluctuations of the
dipole moment of the atom, is then described by

~ ~ 1
U (1) = 5 (d5pdind —3 (nd3P) (ndin0) 755
+o0

— g do & (@)—e (@)
T4 21 &, (@) (g5 (0) -8 (@)

In the case of an atom in a solution (or a small object in a
liquid), we would have to replace d7 in (3.3) by the difference
(4 d7) between the fluctuational dipole moments at the point
(p,/) in the case in which the impurity atom (or object) is at
this point and in the case of a pure liquid. Taking this cir-
cumstance into account in (2.9), which we now use, we
should replace the polarizability a(w), of the isolated atom,
by the quantity A&(w) defined in (2.61). The latter quantity,
as mentioned earlier, is the difference between the effective
polarizabilities for an atom (or particle) in a dilute solution
and for the corresponding small volume element of a pure
liquid. Also using (2.7), and writing a corresponding relation
for the dielectric permittivity for real frequencies (see, for
example, Ref. 131),

(@ (3.3)

e (0) = g* (—a).

Ree(w) =¢ (0) = ¢ (—w), Im e (0)

=¢ (0) = —¢' (o), (3.4)

we find from (3.3}
R £ (0) — &y () ~

U ()=t | doRe (e} Im (AG (@)

0

(3.5)
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In analyzing the second part of the van der Waals inter-
action of an atom with a condensed medium we take into
account the spontaneous fluctuations of the dipole-moment
densities in the medium. The electric field E(r) which arises
from these fluctuations induces a dipole moment d™ in the
atom. The interaction energy corresponding to this effect is

U@ ()= [ — % (AQE? (r, t))]

oo

=s[— T2 A% (@) (B2 (1)) ]

—~00

(3.6)

Here the variation sign means that we are to subtract from
the expression in square brackets the value found for this
expression when the impurity atom is removed from the sur-
face to infinity. The quantity A&(w) appears in (3.6), as it did
in (3.5), since when the impurity atom (or particle) is re-
moved the resulting vacancy will be filled with liquid, so that
the corresponding polarizability will change by the amount
Ad(o) given in (2.61).

According to the familiar result from the theory of elec-
tromagnetic fluctuations, the spectral density of the qua-
dratic correlation function for the electromagnetic field in
an inhomogeneous medium at temperatures which are not
too high (T'€#/7) satisfies the following relation [see, for ex-
ample, § § 76, 77 in Ref. 28; cf. expression (2.45), which refers
to vacuum fluctuations]:

By (1)) By (13))o = — 2L & Im 75 (05 1y, 1), (3.7)
where the retarded Green’s function for the electromagnetic
field in the medium satisfies the equations

2
[rotik rothl—%—e(m, r)GiZJ.@IRm(m; r, r')

= —4nhd;,0 (r' —1r'). (3.8)
We recall that Maxwell’s equations for the field of a neutral
point particle with a dipole moment d(r’,t } at the point r’ can
be written as

(rot rot—-‘—;;i e (o, r)] E (0, r):—?—:—4nd (@) 8 (r—r).
(3.9)

A comparison of (3.8) and (3.9) shows that the Green’s func-
tion % (w,r,r’) with fixed values of the index m and of r’
[which appear in (3.8) as parameters] is the same as the field
E(w,r) created by a point dipole d,(w) = — (c*/0?) #5,,, at
the point r'. It follows, in particular, that in the long-wave-
length approximation which we are using here the function
D (o;r,r') tends toward infinity in the limit r—r’ in the
same manner as the field of a point dipole as the position of
the dipole is approached. In expressions (3.6) and (3.7) for the
interaction energy U®(/) we see the quantity
8D jwrx)=2,_, . [E,,; (@) — E,,; (o,r)], which is a dif-
ference between two fields. The field E,{w,r) is the field of a
dipole at the point r'—r in a homogeneous medium with a
dielectric permittivity £,(w), separated by a distance /! from a
plane interface with a second medium of dielectric permit-
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tivity £,(w). The field E,(e,r) is the field of the same dipole in
the case in which the interface has been removed to infinity.
We wish to emphasize that the difference between these
fields has no singularity at the point r, and it is easy to show
that this field is simply the field of the image dipole (at the
point {p, — I }) evaluated at the position of the atom, {p,/ }.
Taking this circumstance into account, we find from (3.6),
(3.7), (3.2) and (2.7), (3.4)

~+oo
v @) == | dosa (@) 15

— oo

A ey (@)=t (0)
XIm [ 2 g ot e @) 6 @)
3 i ~ €9 (0) (@)
. 2 (0)—¢,
= TnF § do Re (Aa () Im e, @ -

(3.10)

We see from this expression that the energy U® (/) is
determined by those frequency regions in which Re{d@(w)),
Ime,(w), and/or Ime,(w) are comparatively large. Further-
more, certain spectral regions in which the media are trans-
parent may contribute substantially. In this case we would
have
gy () —2, (©)

g2 (©) (22 (®) 421 (@)

lim
Im Y (w)—~0

= — 1 [&; (0) — &, (0)] 6 (&5 () [&; (W) g, (0)]). (3.11)

It follows that if we ignore absorption the frequencies which
are important in the integral in (3.10) are those which satisfy
one of the equations

gy (0) = 0, (3.12)

e1(0) -+ & (0) = 0. (3.13)
We recall that Eq. (3.12) is the dispersion relation for longi-
tudinal waves in a homogeneous medium, while (3.13) is the
dispersion relation for surface waves at the plane interface
between two media without retardation.

It follows from (3.10) and (3.11) that the potential U ® (/)
must in general be taken into account even if absorption is
ignored, provided that Red&(w) is not too small at the fre-
quencies which are the roots of Eq. (3.12) or {3.13).

We can find an expression for the van der Waals inter-
action of an atom with a surface (under the condition /€A,)
by summing energies (3.5) and (3.10):

U)=UD1)+UD (1) =

5 §° do Lm [22(©) =&, (@)] 43 (0)

i J £, (0) [, (@) -+ 2 (@)]
- 1= ((0) ((0) ~
n 22 14 —E 1 .
= Gl do €y (ia)§ [ey (i(o)i{—al (i0)] Ac (iw). (3.14)

0

The last expression in (3.14) was derived by a method analo-
gous to that used to derive (2.11). An important point here is
that the integrand in the next-to-last expression in (3.14) is
analytic and has no singularities in the upper part of the
plane of the complex frequency w. As we have already men-
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tioned, the polarizabilities and dielectric permittivities have
the same properties. Furthermore, we should bear in mind
that the roots of Eqgs. (3.12) and (3.13) lie in the lower half-
plane of the complex frequency , since all the natural waves
must decay in equilibrium media.

In the particular case in which the atom which is inter-
acting with the surface is in vacuum, we must set £,()=1in
(3.14) and replace A&(w) by the polarizability of the isolated
atom, a(w). We then find

oo

€ (iv)—1 Cy

I3 ;
U()=— s S do o aio) = = (3.15)
0
We have omitted the subscript from the dielectric permittiv-
ity £,(w).

That the energy of the van der Waals interaction of an
atom with a surface is proportional to / ~> was first pointed
out by London,® who analyzed this interaction approxi-
mately as a sum of binary van der Waals interactions
between an adatom and atoms of the condensed medium. To
adopt this approximation is essentially to treat the con-
densed medium as a low-density gas of atoms with a surface
number density of particles ¥ and with a polarizability
a,, (w) of each atom. We can then substitute

e (0) = 1+ 4nNa, (0) (3.16)

into (3.15) and restrict the analysis to the term which is linear
in the density V. The resulting estimate for the coefficient C,
frequently turns out to be completely at odds with reality for
actual condensed media. The reason is the well-known fact
that the optical properties of condensed media may differ
substantially from those of the corresponding isolated atoms
or molecules. This difference is of course not restricted to the
optical part of the spectrum but extends over a broader
range. Even for the restricted class of substances in which
the atoms or molecules retain their individual properties toa
large extent relation (3.16) does not hold, in particular, be-
cause of local-field effects. In this regard the image method
may have important advantages in deriving an expression
for the energy of the van der Waals interaction of an atom
with a surface, since this method allows one to incorporate
collective effects in the condensed medium by a simple mac-
roscopic approach which uses only the dielectric permittivi-
ty of the medium.

The image method was first applied to this problem by
Lennard-Jones, > who took up the particular case in which a
substrate creates an ideal image of the fluctuating dipole mo-
ment in an adatom. Bardeen' later used perturbation theory
and the image method to analyze the more general case of a
metallic substrate. A related question was studied in Ref. 15.
To see the meaning of the results of those papers we substi-
tuteinto (3.15) a very simple expression for the high-frequen-

cy dielectric permittivity of a metal:
2

g(@)=1——2 (3.17)

2 ?

where w,, is the plasma frequency. We find

o (iw)
2 2 9
0+

ho? )
U(l)y=— Sdm

43
0

(3.18)
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where o, =, /yJ2 is the frequency of a surface plasmon.
Substituting expression (2.13) for the polarizability of an
atom into (3.18), we then find'?>1%3

UQ) = — g 3 Slon_0s/ony (3.19)

mny 1+ (@s/0ng) *

If we now restrict the sum (3.19) to a single characteristic
transition frequency @, and use expression (2.14) for the os-
cillator strength, we find from (3.19) the following simple
expression which corresponds to the result found by Bar-
deen'*:

ha,o (0) Wg/0, _ e2 (r2>r Wg/0, 1. (320)

U(l)y=——35 THese) 128 [1+(e5/e,)]

here (r*) is the mean square radius of the electron in the
atom. Lennard-Jones’s result’® can be obtained formally
from (3.20) under the condition (o, /@,}» 1, when the expres-
sion in brackets can be replaced by unity.

General expression (3.15) for the energy of the van der
Waals interaction of an atom with the surface of a condensed
medium is the same as the expression which follows from
Lifshitz’s result'® for the interaction of two thick plates if, in
the latter result, we take the limit in which one of the plates is
a low-density gas of atoms. Expression (3.15) has been dis-
cussed in several places by a variety of methods."*>™"*® It
follows from (3.15) that the van der Waals interaction of an
atom in vacuum with a surface is of the nature of an attrac-
tion. If the atom (or molecule) is instead in a liquid bounding
the solid surface,’*® the energy of the interaction determined
by (3.14) may correspond to either an attraction or a repul-
sion. According to the general properties of linear-response
functions we have a(iw)> 0,e(io)> 1 at @ > 0. The integral
which appears in (3.15) therefore always takes on positive
values. The sign of the integral over the frequency in (3.14),
on the other hand, depends on the relation between the di-
electric permittivities of the solvent, &,(iw), and of the con-
densed medium, £,(iw); it also depends on the sign of 4&(iw)
in the spectral region most important for the integration.

In this regard there is an analogy with the electrostatic
interaction of a charge with a surface. If the charge is in
vacuum then it is of course always attracted to its image and
thus to the surface. If the charge is instead in a medium with
a dielectric permittivity &,, which borders another medium
with ¢,, then the image force leads to a repulsion if
£,(0) > £,(0) or to an attraction if £,(0} < £,(0) (see, for exam-
ple, § 7 in Ref. 20).

The onset of a repulsion in the van der Waals interac-
tion of an impurity atom in a liquid with a wall can be ex-
plained quite simply not only by the image method but also
from a microscopic standpoint. As in the case of the interac-
tion of two impurity atoms in a homogeneous liquid, it is
convenient to consider the limit of low-density media and to
note that in this limit the potential U (/) is the difference
between two quantities. The first of these quantities is the
energy of the binary van der Waals interactions of the atoms
in the case in which the impurity atom lies a distance / from
the interface between the two low-density media, and the
second quantity is the corresponding energy in the case in
which the impurity atom is removed an infinite distance
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from the interface (but remains in the same gas). If this ener-
gy difference is positive, then energy considerations favor an
increase in the distance from the impurity atom to the inter-
face; this situation corresponds to a repulsion. If we assume
that only the second medium, in which the impurity atom is
immersed, has a low density, then we can use the approxima-
tionse,~1and Ad =a — a,, in(3.14). In this particular case
the repulsion has a particularly simple explanation. Clearly,
if the atoms of the low-density gas are attracted more strong-
ly than the impurity atom toward the wall, then the effective
interaction of the impurity atom with the surface will be
repulsive.

b) We believe that these solutions give a good explana-
tion of the particular fluctuational mechanism which gives
rise to the van der Waals forces and also the relationship
between the questions of image forces and van der Waals
forces (when results from the theory of electromagnetic fluc-
tuations are additionally taken into account). Many other
problems of van der Waals interactions could be solved by
methods analogous to that described above. In particular,
the image method could be used to treat the interaction of an
atom with a surface with retardation effects (the analysis
would have much in common with the analysis in Section 2
for the case of two atoms under the condition R ® A,) and to
incorporate certain other effects, which we will be discussing
below. However, there is hardly any point in pursuing these
calculations in this review, and we will simply look at the
results.

If I» A, such that retardation effects are important, and
the interaction stems from the existence of spatial correla-
tions of the spontaneous fluctuational electromagnetic field
in the medium, the potential of the van der Waals interaction
of an atom (in vacuum) with a surface becomes®®

3hca (0 0)—1
— 2l O an (e (0));

U(l)= (3.21)
here the monotonically increasing function @ o (x), x = £(0),
is of the order of unity: 0.77<@p (x)<1 for x > 1. The func-
tion @, (x) is given explicitly in Ref. 26 and generalized to
the case of the interaction of a molecule in a solution with a
wall in Ref. 139. For a metal we would have £(0}— o and
@(x)—>, .. 1, so that expression (3.21) would become the
well-known result for the interaction of an atom with the
plane surface of an ideal conductor.”'

If the distance from the atom to the surface reaches a
value of the order of the scale length (/) for spatial disper-
sion in the medium, then we need to consider the effect of
spatial dispersion on the interaction. These questions were
discussed in Refs. 138 and 140-144 for the interaction of an
atom with a surface. The effect of a surface roughness on the
interaction of a surface with an atom was discussed in Refs.
144-146. The effect of an external magnetic field on the van
der Waals interaction of an atom with a semiconductor plas-
ma was studied in Ref. 147. Dynamic corrections to the van
der Waals interaction of an atom with a surface—correc-
tions which depend on the velocity of the atom—were stud-
iedin Refs. 148—151 and 146. To some extent this latter ques-
tion is related to the problem of the dynamic image of a
charge moving near a surface. For atoms adsorbed on the
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surface of micropores and microcapillaries in solids or on the
surfaces of small particles of condensed matter and filaments
(with a radius of the order of 10~7-10~° cm), the dependence
of the van der Waals energy on the surface geometry be-
comes important, '46:148152-134 Eor molecules or small ob-
jects with anisotropic polarizabilities, the energy of the van
der Waals interaction with a surface depends on the orienta-
tion of the molecule with respect to the surface.”* '

If there are two atoms near a surface, the van der Waals
interaction between them will differ from the interaction of
these atoms in free space (in the case in which the atoms lie
an infinite distance from the surface). The effect of a sub-
strate on the interaction between atoms is of course governed
by the many-body nature of the van der Waals forces. This
effect was studied theoretically in Refs. 74, 134, 156, 157-
160, and 234; some corresponding experimental results are
reported and analyzed in Refs. 161-167. General formulas
describing the van der Waals interaction of two atoms (or of
two small objects) near a plane surface (under the conditions
R, 1, €A,) were first derived by McLachlan, ** who used an
image method. The van der Waals energy, which depends on
the distance between the atoms, is (Fig. 4)

3 . .
U(R, by b)= ——n 5 doa, (i0) o, (io)
0

h
+W (2"‘[‘3 cos 26+3COS 2(p)

e (lo)—1

X e oo A2
e ()11

doa, (iw) a, (io)

O'-’TB

¢ . . j0)—1 2
Y (S) doco, (ie) a, (i) [-’:;%3—_’_? ;
(3.22)
here
Nt N YA - WARE
sin @ =21, 51n(p_-—]/_1;_2__|__jm , R'=VRL4L,
I, > 1. (3.23)

The simple geometric meaning of R ', ¢, and 8 is clear from
Fig. 4. In particular, R ' is the distance between the image of
the first atom in the condensed medium and the second
atom.

The first term in (3.22) corresponds to the ordinary di-
pole-dipole van der Waals interaction of two atoms in free

FIG. 4.
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space, (2.11). We denote the sum of the two other terms in
{3.22) by U ,,. These terms, like the three-body U,,, in the
van der Waals energy (2.24), stem from intermediate (secon-
dary) images. In this case the role of the third body is played
by the condensed medium with a plane boundary. Clearly,
the image field of the spontaneous dipole moment d{¥ of one
of the atoms will induce an additional dipole moment d*® in
the other. The average interaction of the dipoles d¥ and di*®
contributes to the second term in (3.22). The third term here
receives a contribution from the interaction of the dipole di?
with the image field of the induced dipole d*. In addition to
these processes we must also take into account the fact that
there is a spatially correlated fluctuational electric field near
the surface of a condensed medium, even if we ignore retar-

¢ dation. The spectral correlation density (E;(r,)E;(r,)), de-

pends not only on the distance (R =r, — r,) between the
points r, and r, under consideration but also, generally
speaking, on the distances from these points to the surface: /,
and /,. This fluctuational field induces in the atoms at the
points r, and r, some fluctuating dipole moments which are
correlated with each other. The average interaction of these
dipoles also contributes to the second and third terms in
(3.22).

Depending on the positions of the atoms with respect to
the surface, the three-particle term U ,,; in the interaction
energy of atoms (or small objects) may be either positive or
negative; i.e., it may either reduce or increase the total ener-
gy of the van der Waals attraction between the atoms. The
quantity U ,,, is always smaller in modulus than the binary
van der Waals interaction (2.11). While the three-body con-
tribution to the van der Waals interaction for three atoms
amounts to no more than a few percent of the energy of the
binary interaction, the interaction between two atoms near a
surface may change substantially in value. In particular, if
R»!,,1,(8=¢~=0,R’'=R ), and thesurfaceshould be particu-
larly influential, we find from (3.22)

.

{ doa, (10) o (10) g—ggfj—jﬁ
0

In this case the dependence of the interaction energy on the
parameters /; and /, disappears, and there is an effective re-
normalization of Cg in comparison with the customary
expression, (2.11). This renormalization reaches a maximum
in the limit £&— o0, where the renormalization reduces to a
multiplication of the vacuum value of C (in the absence of a
condensed medium) by 2/3. In practice, on the other hand,
the effect may be significant if the dielectric permittivity of
the medium takes on large values at frequencies @ Sw,,.
Schmeits and Lucas'® analyzed the effect of surface curva-
ture on the van der Waals interaction between atoms moving
near it. Delanaye et al.'%® studied the role played by many-
body effects in the van der Waals interaction in a monolayer
of adsorbed atoms.

3k

iR

U=— (3.24)

4. VAN DER WAALS COMPONENT OF THE FREE ENERGY OF
CONDENSED MEDIA. INTERACTION BETWEEN
MACROSCOPIC OBJECTS

a) van der Waals forces arise between macroscopic (ex-
tended) objects for the same reasons as in the case of atoms
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and small particles of condensed matter. As is clear from the
discussion above, we are essentially dealing with the appear-
ance, at sufficiently large distances, of spatial correlations
between the densities of the fluctuating charges and currents
in the condensed media. These correlations arise because of
the induced charge and current densities or polarization in
one object caused by spontaneous fluctuations of these quan-
tities in the other object. In a more general case, we would be
dealing not with two different objects but with two well-
separated regions in an inhomogeneous condensed medium.
Another reason for the appearance of these correlations is
the presence in the medium (or in vacuum) of a spontaneous
fluctuational electromagnetic field, which induces an addi-
tional current and an additional polarization in the objects.
We know that the spatial correlations of this field may be
manifested over large distances.

In Sections 1 and 2 we considered the case in which the
atom or small object could be approximated by a point parti-
cle of polarizability a(w). In finding the van der Waals ener-
gy in this case it is convenient to use an image method along
with relations of the type in (2.8) and (3.7), which follow from
the fluctuation-dissipation theorem. When we make the
transition from the problem of point particles to that of ex-
tended macroscopic objects, the image method loses its sim-
plicity and clarity to a large extent, and the formalism based
on the image method becomes substantially more complicat-
ed, because, for example, of the need to consider multiple
images for objects of certain particular shapes. Essentially
what we are doing here is solving Maxwell’s equations for
the electromagnetic field of an elementary point dipole in the
system under consideration, ie., the equations for the
Green’s function of a photon in a medium [as is clear from
(3.8)]. Calculations of this sort could of course also be carried
out without appealing to the image method. Nevertheless, in
the general case of inhomogeneous condensed media it turns
out to be simpler to use a different method to find the energy
{and the other thermodynamic potentials) of the van der
Waals interaction, without making direct use of Green’s
functions.

The question of the energy of the van der Waals interac-
tion between objects (in a slightly more general formulation,
the question of the van der Waals contribution to the ther-
modynamic characteristics of inhomogeneous condensed
media) can be discussed at a general level, without appealing
to any specific problem. It is the general formula found for
the energy by this approach [or for the free energy; see (4.10)
below) which leads us to this comparatively simple method
we have mentioned for finding the van der Waals interaction
between macroscopic objects. This question is analyzed in
detail in Refs. 1, 2, and 23; we will offer only some brief
comments about it here.

We know well that the energy of an electromagnetic
field in the presence of charged particles contains the energy
representing an interaction between these particles. Similar-
ly, the energy of a fluctuational electromagnetic field in a
condensed medium must contain, in addition to the energy
of thermal radiation, the energy of that interaction between
particles, which is of a fluctuational origin. The van der
Waals interaction is of just this kind.
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In the limiting case of transparent media, with negligi-
ble damping, the energy of the equilibrium fluctuational
electromagnetic field is obviously described by the Planck
expression taking zero-point vibrations into account:

Fiwg O
En= 2 ( 7 T exp (g /T) —1 ) (4.1)
@
The corresponding expression for the free energy is
Fo=T 3 In (2sh e ). (4.2)

e/

where the @, are the natural frequencies of the electromag-
netic field in the system under study. Since frequencies @,
are found in the course of the solution of a boundary-value
problem for the macroscopic Maxwell’s equations, expres-
sion {4.1) clearly determines the energy of the fluctuational
field in a transparent medium as a functional of the dielectric
permittivity. In inhomogeneous media, the spectrum of nat-
ural oscillations of the electromagnetic field also contains
frequencies which depend strongly on the properties of the
inhomogeneities. In particular, in the two-body system there
are natural frequencies which depend on the macroscopic
distance between these bodies, /. The dependence of the free
energy of the fluctuational electromagnetic field on the dis-
tance which follows from (4.2) reflects the presence of forces
which are acting on the objects. We thus see that (4.1) and
{4.2), which apply to transparent media, contain, in accor-
dance with the discussion above, the energy of the van der
Waals interaction as well as the energy of the thermal radi-
ation.” As a result, if we ignore absorption the question of
the van der Waals forces between objects reduces to one of
finding the spectrum of natural waves in the system.

We thus see why the van der Waals interaction can be
found by calculating the energy of the zero-point vibrations
(if the temperatureis not too high and if damping is ignored).
This assertion applies in particular to the derivation (men-
tioned in Section 2) of the dispersive interaction between
atoms on the basis of the shift of the zero-point-vibration
energy in a system of 3-D oscillators with a dipole interac-
tion. In this example we are essentially dealing with the zero-
point oscillations of an electric field which is associated with
the zero-point vibrations of the dipole moments of oscilla-
tors. Clearly, the fact that the interaction can be described
not only qualitatively but also quantitatively by this ap-
proach is not simply a fortuitous result; it is a consequence of
the general nature of expression (4.1). On the other hand, for
a qualitative or illustrative discussion of the dispersive inter-
action between atoms it is sufficient to consider the case of,
for example, 1-D oscillators, as is done in several textbooks
(see Kittel'®® and Shpol’skii,'™ § 160). It is of course not
mandatory to use an oscillator model to calculate the energy
shift of zero-point vibrations. One might also consider arbi-

S'Expressions (4.1) and (4.2) can be proved in a simple way if the natural
frequencies @, do not depend on the temperature. A temperature depen-
dence of the frequencies w, arises when the temperature dependence of
the dielectric permittivity is taken into account. It can be shown that in
this case expression (4.2) does not change, while expression (4.1) acquires
terms with derivatives dw, /9T in accordance with the thermodynamic
equality E = — T?3(F/T)/3T.
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trary point particles with real polarizabilities a,(w) and
a,{®). As the distance between these particles is changed,
there is also a change in the spectral state density for the
electromagnetic field in the system under consideration, and
this change causes a shift of the energy of the zero-point
vibrations. For a discrete spectrum we would be dealing with
a shift of each individual natural frequency of the electro-
magnetic oscillations. This approach can be used to study
the van der Waals interaction with retardation'®!”" and
many-body forces®®®® (see also Ref. 29).

Before we discuss the more general case of absorbing
media, we will put expression (4.2) in a different form. For
this purpose we introduce the spectral state density for pho-
tons in inhomogeneous transparent media,

p (@) =218 (@—0,). (4.3)
Using (4.3), we can rewrite (4.2) as
O1ym o

Fn={ dop(@)TIn(2sh3z). (4.4)

0

The limiting frequency oy, defines the long-wavelength
part of the spectrum in integral (4.4); the value of wy;,, itselfis
unimportant for the problems we are considering here.” The
index a in (4.1)—(4.3) denotes both discrete and continuous
(or quasicontinuous) variables. We will single out the contin-
uous variables below and denote them by 3, leaving a to
stand exclusively for the discrete variables (which specify the
various branches of natural waves). In a homogeneous medi-
um the components of the wave vector play the role of the
variables 8. In inhomogeneous media, the specific choice of
variables B depends on the nature of the inhomogeneities. It
is also convenient to introduce a state density p{8) for the
variable B; for a homogeneous medium we would have
p = V /(2m)’, where Vis the volume of the system. In terms of
these variables we can rewrite expression (4.3) as

o) = | 0(B)dfs (0—oq (B). (4.5)
We also assume that the roots ot the equation
DB, o) =[]4,(B, @)=0 (4.6)

]

constitute all the natural frequencies w, (8) of electromag-
netic oscillations in the system. In a transparent medium the
frequencies w, (8 ) and the functions 4., (B,) are real, and we
find from (4.5) and (4.6)

o) ={p@®d N[22 58,0 0). @47
Y

If, on the other hand, we assume that the function 4, (8,)
has a small positive imaginary part, and we use the familiar
representation

. € .
elililo WE oTeE nd (A, (B, 0)), (4.8)
of the 8-function, we can then write p(w) as
p(@)=——Tm({p®dBLDE o)),  “9
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where the limit of a transparent medium should be taken
only at the end of the calculations, under the assumption
Im 4, (8,0)— + 0. Now substituting (4.9) into (4.4), and car-
rying out some transformations in the plane of the complex
frequency w (these calculations are discussed in detail in Ref.
2), we can put the expression for the free energy of an equilib-
rium fluctuational electromagnetic field in a transparent me-
dium in the following form:

(4.10)

Fa=T 3 [ o@D, iw,), 0,=2Ln,
n=90

where the prime on the summation sign means that the term
with n = 0 is to be assigned a weight of 1/2.

The transition to an analysis of absorbing media is ex-
tremely important for the theory of van der Waals forces. At
the same time, if there is absorption, and the natural frequen-
cies of the oscillations of the electromagnetic field are com-
plex, then expression (4.1), being complex, clearly does not
represent an energy. The question of the van der Waals con-
tribution to the free energy in the case with absorption was
studied in Refs. 21-23 and is set forth in detail in Refs. 1 and
2. It turns out that the free energy of an equilibrium long-
wavelength electromagnetic field in a medium is, by virtue of
its fluctuational origin, a functional of the dielectric permit-
tivity even when absorption is taken into account. Generally
speaking, this circumstance is not self-evident. We know, for
example, that the energy of a nonequilibrium long-wave-
length electromagnetic field in an absorbing medium cannot
in general be expressed in terms of the dielectric permittivity
alone. On the other hand, in the particular case of a transpar-
ent medium there is an expression of this sort for the energy
of a nonequilibrium field (see, for example, Refs. 35 and 172).
For an equilibrium fluctuational long-wavelength field it
turns out that the free energy is described by (4.10) also when
there is absorption.?” In this more general case, of course,
expression (4.10) is no longer equivalent to (4.2). On the other
hand, result (4.10) can also be written in the form (4.4), (4.9)
in the case of absorbing media. The effect, however, would
be to complicate the interpretation of the function p(w),
which generally is no longer a spectral state density for pho-
tons in the medium.

The function D {8,w) in (4.10} can be determined unam-
biguously and quite rigorously in terms of the spectral char-
acteristics of certain auxiliary macroscopic Maxwell’s equa-
tions.?>?* This circumstance allows us to see in a general way
that the function In D (8,)is analytic in the upper half-plane
of the complex frequency w, to find the relationship between
this function and the retarded Green’s function for a photon
in the medium, and to study the factorization of the function
D (B,w). These questions are discussed in detail in Refs. 1, 2,
and 23; here we simply note that the basic property of the
function D (B,w) in the case with absorption is, as before, the
circumstance that Eq. (4.6) has the meaning of a dispersion
relation for the (generally complex) natural frequencies of
electromagnetic oscillations in the system. As a result, the
question of finding the van der Waals part of the free energy
reduces to finding a dispersion relation of this type [the func-
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tion D (f,w) is also found] and then using expression (4.10).9
This method has now been used to solve many problems
involving van der Waals interactions between macroscopic
objects (see, for example, Refs. 1, 2, and 29 and the literature
cited there). Skipping the derivations, we will now examine
some of the major results obtained in this research.

b) Among problems involving van der Waals interac-
tions between macroscopic objects, that which has been
studied most thoroughly is the interaction between two thick
plates separated by a plane gap of width / (Fig. 5). Since the
corresponding results have been discussed in detail in the
literature!-2%-® (see also Refs. 1 and 2), we will not repro-
duce them here.

The contribution of classical orientational fluctuations
of the dipole moments of polar molecules to the total van der
Waals interaction of polar media separated by plane boun-
daries was analyzed in Refs. 173 and 174. It was shown that
this contribution is important in the case of aqueous media
separated by a lipid film, which is a case of importance in
biology. The van der Waals interactions in systems of inter-
est to biology are also discussed in Refs. 3941 and 29.

An important application of the results found concern-
ing the problem of the van der Waals interaction between
thick plates is to study the equilibrium thermodynamic
properties of liquid films on plane surfaces of condensed me-
dia.?6-198:175 The dependence of the chemical potential of a
film on its thickness />a ~ 10~8 cm is due entirely to the van
der Waals forces. It was shown in Ref. 175 that this depen-
dence is described by the same expressions as for the force of
the van der Waals interaction between the surface of a film
and the substrate. The question of the role played by van der
Waals forces in forming the equilibrium thickness of a liquid
film was recently revived?® in connection with experiments
on the “wetting transition,” i.e., the phase transition to a
state of total wetting. The conclusion that van der Waals
forces play an important role under these conditions has sub-
sequently been confirmed experimentally.?”

Manifestations of the van der Waals interactions in an-
isotropic media are also interesting. The dependence of the
van der Waals energy on the relative orientation of aniso-

SErrors are sometimes encountered in the analysis and discussion in the
literature of the role played by absorption in the van der Waals interac-
tion. For example, most of the assertions in the monograph of Ref. 30
about the effect of absorption are incorrect, especially the assertions in
Subsections 3.2 and 3.6. In particular, it is asserted in Ref. 30 that when
absorption is taken into account the free energy is described not by (4.10)
but by (in our notation)
T . miI
Frm 2 5 (0 ®dB10 1D, w2 D (B, =ion)]

o

n==
+oo

=7 3 fe®apm D@, wn,

n=—o0 (*)

Since the function D (B,iw, ) is of even parity if absorption is neglected,
expression (*) is equivalent to (4.10) for transparent media. For absorbing
media, on the other hand, Eqs. (*) and (4.10) are substantially different, as
is pointed out in Ref. 30. In this connection we wish to point out again that
expression (4.10) can be derived from an analysis of electrical fluctuations
in an RCL circuit? or also by the more rigorous approach which initially
uses a microscopic operator for the electromagnetic interaction.’***

485 Sov. Phys. Usp. 27 (7), July 1984

\e,(ﬁr“\ %
AN

£ ]

A

€z(w)

47474 %
12

53(‘0)
ANAN Y
Z LIS 7 0/1 74

& (w)

FIG. 5.

tropic objects gives rise to a van der Waals moment of forces
which acts on these objects, as we already mentioned back in
Section 2 in a discussion of the interaction between linear
molecules. An analogous effect occurs in the case of aniso-
tropic thick plates.’’®!”” General expressions for the mo-
ment of forces with retardation are given in Ref. 177. There
is an error in the calculations carried out to derive the mo-
ment of forces in Ref. 178. A particular consequence of this
error is that the coefficients in the final results are incorrect,
and these incorrect coefficients were subsequently repro-
duced in the review in Ref. 1.

There is the interesting question of manifestations of
the anisotropic nature of van der Waals interactions in liquid
crystals.!”-1%7 In liquid crystals the short-range forces are
comparatively weak, so that the long-range van der Waals
forces can in general have significant consequences. It was
shown in Refs. 179 and 180 that one reason for the appear-
ance of a spiral structure in cholesteric liquid crystals is the
van der Waals dipole-quadrupole interaction between chiral
molecules. This question was studied in a more general for-
mulation in Ref. 186, where it was treated as a manifestation
of nonlocal (gyrotropic) effects in the van der Waals interac-
tion in liquid crystals. It was shown in Ref. 184 that van der
Waals forces contribute substantially to the elastic moduli of
a nematic liquid crystal.

The method used for quick plates separated by a plane
gap can be used to solve the problem of the van der Waals
interaction between objects of other shapes. Both the calcu-
lations and the results simplify if, in particular, the smallest
distance between the objects is small in comparison with the
radii of curvature of the surfaces which are in contact and in
comparison with the dimensions of the objects themselves.

For the interaction between two spherical particles of
condensed matter of macroscopic size, with radii 7, and »,

(Fig. 6), under the conditions
l=R —7r  —ry Ky (4.11)

the free energy for the case R<€A,<c#i/T is given by the fol-

2\ ?

FIG. 6.
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lowing expression 8818 in the zeroth order approximation
in the parameters r,// and r,/1:

£

B _rirg iodﬁ)ioxzdx[(el+83)(ez+83) ex_i_J_i
) ;

T 6N it : (e1—£3) (82— 83)

(81 —83) (g —&5)

@ (e1+¢e3) (Ea+€3)

—~ i | 2nryryl ?
~oi6nt2 ri4r,

0
= Fg (1) Sets (1); (4.12)
hereg; = ¢ (iw),j = 1,2, 3. It is not difficult to see that in this
case the van der Waals part of the free energy, which de-
pends on the distance between the spheres, is the same as that
for the interaction between plane plates with some effective
contact area

25ryr,l

Sett (l)=m. (4.13)
Significantly, this quantity depends on the distance /.

If the distance between small particles of condensed
matter is comparable to the dimensions of the particles, the
van der Waals interaction will depend strongly on the shape
of the particles. This dependence can be significant in, for
example, colloidal solutions and in systems of macromole-
cules. An analysis of the dependence of the van der Waals
interaction between small macroscopic objects on the shape
of these objects usually requires extremely complicated and
tedious calculations. For a qualitative determination of the
functional dependence of the interaction on the shape of the
objects and their relative positions it is sometimes assumed
that the van der Waals forces are additive.*® ' 1%1%0-19 This
approach leads to correct estimates if nonlocal effects (spa-
tial dispersion) can be ignored. For a quantitative descrip-
tion of the interaction, on the other hand, one must use the
theory outlined above, which correctly incorporates the
electromagnetic response of condensed media.

The van der Waals interaction between spherical ob-
jects was studied in a case more general than (4.11) in Refs.
12, 29, 30, 188, 189, and 194-196; the corresponding expres-
sions are extremely complicated. Similar expressions de-
scribe the interaction between spherical cavities in con-
densed media.'¥’2% The results simplify substantially not
only under conditions (4.11) but also for large distances,
I»r,,. In the latter case the interaction energy is of course
described by the expressions given in Section 2.

The van der Waals interaction between condensed ob-
jects of cylindrical shape was studied in Refs. 87, 201-213,
29, and 30. This formulation of the problem arises, for exam-
ple, in studies of certain biological entities (protein mole-
cules in muscles, the cylindrical mosaic tobacco virus, etc.)
and of linear polymers, linked chains in organic macromole-
cules, and filamentary structures in certain condensed me-
dia.

Ifthe smallest distance (R ) between two cylindrical rods
is much greater than the radii of these rods, 7, and r,, then
the free energy of the van der Waals interaction between the
rods is (Fig. 7)
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(4.15)

0 is the angle between the axes of the cylinders, and s, , are
their cross-sectional areas. The dielectric permittivities of
the rods are assumed to be anisotropic. The anisotropy axis
with the principal value £}, (w) is directed along the axis of
the corresponding rod (the indices 1 and 2). The principal
values of the dielectric permittivity tensor perpendicular to
this axis in each rod are assumed to be identical and equal to
€1, (w) for the first and second rods, respectively. It is also
assumed in (4.15) that the rods are immersed in an isotropic
liquid with £,(w). All the dielectric permittivities in (4.15) are
taken for imaginary frequencies iw, = 27T /#n.

For a study of the interaction between long rods it is
convenient to introduce the effective rod contact distance
L 4(R,0). Expressions (4.14) and (4.15) apply if
L.4{R,0)<L,;, where L, are the lengths of the first and
second rods. For this reason, expression (4.14) for the free
energy of the interaction between the rods diverges in the
limit 6—0, when the rod axes become parallel to each other.
Obviously, at an angle 8 = O (i.e., for parallel axes}—and
only in this case—the rods interact with each other over
their entire length. In this case the total free energy of the
interaction of rods of infinite length becomes infinite, in ac-
cordance with expression (4.14). Under these conditions it is
natural to introduce a free energy per unit length. The cor-
rect expression for this linear density of the free energy of
parallel rods??'~2?® can be derived from (4.14) and (4.15) by
assuming that for @ #0 the length of rod which is effectively
involved in the interaction is

4R
Lett (R, e)zm- (4.16)
From (4.14)—(4.16) we find
F (R, 0) c(0=0)
Lett (R, 0) le=0  R® ° (4.17)
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Incorporating spatial dispersion generally leads to a
change in the functional dependence of the van der Waals
energy on the distance between the objects (a change from
the dependence found by ignoring spatial dispersion and, in
particular, with a simple addition of the binary van der
Waals interactions of the atoms making up the objects under
study). In the case of thick plates, however, the nonlocal
effects usually lead to only small corrections to the basic
contribution to the interaction energy. In certain cases one
can attempt to single out these corrections on the basis of
their qualitative features, e.g., a characteristic dependence
on an external magnetic field.'®® If, on the other hand, the
gap between the plates is filled with an electrolytic solution,
the nonlocal effects will lead, in particular, to a screening of
that part of the van der Waals interaction which results from
the low-frequency classical fluctuations of the electric
field.?'*?'* For aqueous electrolytic solutions, the screening
effect may be significant at distances /> 10~ * cm. In the case
of long, thin conducting rods, on the other hand, spatial-
dispersion effects may be significant, in particular, at shorter
distances and may also lead to qualitatively new results.

London’? discussed the effect of delocalized conduction
electrons on the van der Waals interaction of long molecules
many years ago. The concrete problems might involve 7
electrons in linked organic molecules or quasi-1-D (filamen-
tary) metals and semiconductors if the van der Waals rela-
tionship between conducting filaments is important in the
latter systems. The problem of the van der Waals interaction
of long, thin conducting rods was studied quantitatively in
Refs. 32 and 207-213. It was also shown in Ref. 213 that the
influence of spatial-dispersion effects on the van der Waals
interaction must be taken into account not only for 1-D but
also 2-D systems.

We do not have room here to discuss in detail nonlocal
effects in the theory of van der Waals forces; furthermore,
this problem still requires further study. We simply note that
further justification is required for using the existing results
of the general theory of van der Waals forces in the case of
spatial dispersion. We do know that these results [in particu-
lar, expression (4.10)] can be used, for example, to describe
plasma-like media in the random phase approximation'?
and to study gyrotropic effects in the first nonvanishing ap-
proximation.'®8 Furthermore, when we use expression (4.10)
[and ignore absorption: Eq. (4.2)] we just bear in mind that
when spatial dispersion is taken into account the van der
Waals interaction may result from not only surface waves
but also volume waves. This circumstance has been ignored
in several papers, with the consequence that erroneous re-
sults have been derived. Barton*’ has published a useful
critical review of this question on the basis of the simple
example of the hydrodynamic model of plasma half-spaces.

The contribution of van der Waals forces to the binding
energies of crystal lattices has been the subject of several
studies, " 88.83.80.216-288 Thiq problem can be reduced to one
of deriving a dispersion relation for collective polarization
modes of the crystal. In those cases in which the binding
energies of lattices of different structures differ only slightly,
van der Waals forces may be important in resolving the ques-
tion of the stability of the crystalline structures. Crystals of
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inert gas atoms,®>2'621%:220 the graphite lattice??? (see also
Ref. 213), and metal crystals?'8:2'9:221:223-228 Ly ve been stud-
ied in this connection. An analysis of the van der Waals in-
teraction of ions in metals must incorporate the screening of
the interaction of the ions by conduction electrons. The con-
tribution of van der Waals forces to the binding energy of
liquids was studied in Ref. 229. Among some other problems
which have been discussed in the literature we can cite the
van der Waals contribution to the dependence of surface ten-
sion on the radii of curvature of the surfaces®**~>* and to the
change in the density near surfaces.?33-235.26%

A comparison of theoretical results on van der Waals
forces with experimental data generally requires knowing
the dielectric permittivities of the objects and the polarizabi-
lities of the particles as functions of the frequency over an
extremely broad frequency range. Once this information is
available on specific condensed media and individual atoms
or molecules, it is then necessary to evaluate sufficiently ac-
curately the integrals over frequency which appear in the
expressions [see, for example expression (4.11)]. One possi-
bility here is to use theoretical model-based expressions for
the dielectric permittivities of the condensed media in the
calculations. This approach is ordinarily useful, however,
only for a qualitative analysis of the dependence of the
strength of the van der Waals interaction on the microscopic
parameters characterizing the condensed medium. If it is
instead necessary to take the specific dielectric properties of
the specific substances into account quantitatively, a se-
miempirical approach is most effective. In this approach,
some extremely simple analytic expressions are used to de-
scribe the dielectric permittivities as functions of the fre-
quency in each characteristic spectral interval. The numeri-
cal coefficients in these analytic expressions are chosen such
that these expressions can be used for accurate interpola-
tions of experimental data on the substance. These data of
course come from experiments which are totally unrelated to
measurements of the van der Waals interaction.

Semiempirical estimates of this type were essentially
carried out for quartz in an analysis of the first reliable mea-
surements of the van der Waals interactions between thick
plates.?*¢2% Detailed semiempirical calculations were later
carried out, in particular, for aqueous solutions and lipid
films,'”>?%° helium films on substrates of fluorite crys-
tals,2**2*! hydrocarbon films on water surfaces,?*? mica and
quartz plates,”** H and He atoms and hydrogen molecules
on the surfaces of fluorite crystals, Kr and Xe on the basal
plane of graphite,?** and certain other substances, 245-250.167

Most of the experiments on the van der Waals interac-
tions between atoms, molecules, and condensed ob-
jects?36-238:241.231263. have yielded results in satisfactory
agreement with the theory. There have also been cases of
disagreement,'?5-128:264.265 o at this point it is difficult to
identify unambiguously the reasons for the discrepancies.
The point which needs to be considered first is that measure-
ments of van der Waals interactions place extremely strin-
gent requirements on experimental accuracy, in particular,
on eliminating such secondary factors as electrostatic effects
and surface roughness. In addition, the present level of ex-
perimental accuracy places some stringent requirements on
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the accuracy of the semiempirical calculations and in the
experimental data on the dielectric permittivities of objects
over a broad spectral range which are used in these calcula-
tions. Measurements of the van der Waals interaction of al-
kali metal atoms with a gold surface have been discussed in
this connection.'?*~?8 It is mentioned in Ref. 244, for exam-
ple, that a theoretical (semiempirical) estimate of the interac-
tion of a Cs atom with a Au surface proposed in that paper
differs from a similar estimate in Ref. 128. The role played by
surface inhomogeneities, dynamic effects, and the effect of
surface curvature and of spatial dispersion on the interaction
have been discussed in this connection in Refs. 129, 144, and
146. Marvin and Toigo'*° conclude that the most important
factor in the experiments of Refs. 125-128 is surface rough-
ness and that this factor must also be taken into account
(along with retardation) in analyzing the results. The role
played by surface inhomogeneities in the interaction of two
thick plates was discussed in Ref. 266. A more general and
more detailed study of this question is reported in Refs. 267
and 268.

5. CONCLUDING REMARKS

Over the past two or three decades, and right up to the
present day, the van der Waals interaction has been the sub-
ject of active theoretical and experimental research. Many
results have been derived. Over these years the research on
van der Waals forces and related phenomena has essentially
become an independent field of research, united by common
theoretical concepts and including a variety of applications
in physics, physical chemistry, and biophysics. In the gen-
eral theory of van der Waals forces, several important ques-
tions have been developed substantially, and in a sense some
have been definitively settled. Many results of the theory of
van der Waals forces pertaining to specific problems have
found reliable experimental confirmation.

This review has of course excluded many questions of
the theory of van der Waals forces and its applications. Some
of these questions have not yet been studied adequately. One
case is that of van der Waals forces under nonequilibrium
conditions. The effect of a deviation from equilibrium on the
van der Waals interaction is of interest both from a general
physical standpoint and in connection with applications to,
for example, biophysical problems. The nonequilibrium na-
ture of electromagnetic fluctuations of course complicates a
theoretical description of the van der Waals interaction.
Only a few very simple problems have been studied so far.
For example, the van der Waals forces acting between atoms
or molecules in excited states have been studied in detail (see,
for example, Refs. 6, 34, and 271). A qualitatively new aspect
which appears here is the possibility of a van der Waals re-
pulsion of two atoms in vacuum, as has been observed ex-
perimentally.?’? The interaction between two objects which
are in equilibrium states but at different temperatures, so
that the system as a whole is not at equilibrium, was studied
in Refs. 273 and 274. Under these conditions, there is a ra-
diative heat transfer between the objects due to the absorp-
tion of the fluctuational (thermal) electromagnetic field (see
Ref. 275 and the literature cited there). Another example
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dealing with interactions under nonequilibrium conditions
is the case, mentioned above, of the van der Waals interac-
tion between moving objects, !48-131:146

We also note that the electrodynamic theory which has
been derived for van der Waals forces naturally serves as a
prototype for a theory of forces of van der Waals type acting
between hadrons, which has been derived in quantum chro-
modynamics (see, for example, Refs. 276-281), and for a
theoretical analysis of certain other long-range forces.2$2-285
The effect of boundaries on the energy of zero-point vibra-
tions (or, in a more general case, on the polarization of vacu-
um), which is of importance to the theory of van der Waals
forces, is manifested in, and must be taken into account in,
not only electrodynamics (see, for example, Refs. 16, 24, 171,
and 286-297) but also several problems of quantum field
theory and the general theory of relativity.?8¢295-317 We will
undoubtedly see a growth of research in the field of van der
Waals (molecular) forces of an electrodynamic nature and
also on analogs of van der Waals forces for nonelectromag-
netic interactions.
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