
reasonable values for the hadron mass spectrum, these re-
sults cannot be regarded as final because of the finite-lattice
effects. It would appear that the 103X20 lattice used in one
of the latest calculations by the Italian group is still too
small. We note that this calculation took about 30 hours of
Cray-1 at the French Ministry of Electricity.

It is thus clear that the Monte Carlo method in QCD
with quarks has reached the limit of the possibilities of mod-
ern computers and does not as yet yield reliable numbers for
the mass spectrum. This could be reached with a computer
performing 10 billion operations per second and a storage of
a few million 8-byte words. A supercomputer of this kind is
planned for 1987 by CDC, according to its Vice-President
Schmidt.

The alternative is to develop specialized machines in
which several hundred computers work in parallel, each be-
ing responsible for its own portion of the lattice. The ma-
chine that has just been built by Christ et al. at Columbia
University utilizes, under the control of a VAX-11/780 host
computer, a two-dimensional lattice consisting of 256 nodes
(memory + processor). Each node is responsible for its own
plane of a 4-dimensional lattice. It has a memory of 128 kb
and costs in the neighborhood of two or three thousand dol-
lars. The machine can perform 4 billion operations per sec-

ond. It is designed for calculations of the hadron spectrum
on lattices of 164-324.

In our own country, lattice gauge theories are being
studied by about 20 people. We are urgently in need of ma-
chine time, which we have to find in roundabout ways. Un-
fortunately, despite the fact that the idea of these calcula-
tions was put forward by us 3 years before the Americans,
various technical difficulties have prevented us from exploit-
ing this advantage.

To eliminate the lag, the QCD theoreticians should
have access to at least one modern fast computer. What is
required is collaboration between theoreticians and engi-
neers, so that specialized computers, such as the Christ
mesh, can be developed. Finally, a search should be made for
a more efficient numerical method that would be an advance
on the Monte Carlo procedure and would combine numeri-
cal methods with analytical techniques. There is much hope
for methods using the equations of motion for the traces of
transfer matrices. It may well be that this will be the way
forward in developing a successful quantitative theory em-
ploying numerical methods only at some of the stages.

Yu. M. Makeenko, Usp. Fiz. Nauk 143, 161 (1984) [Sov. Phys. Usp. 27,
No. 6(1984)].

E. G. Maksimov. Use of computers in the physics of the
condensed state. Recent years have been characterized by the
increasing penetration of computer science into all branches
of human activity. Neither physics as a whole nor the phys-
ics of the condensed state have lagged behind in this general
computerization process. The particular feature of the cur-
rent state of computerization in the physics of the condensed
state is the transformation of the computer into an equal
participant, both in experimental and theoretical research.
A new trend in physics has been created or, more precisely, a
new branch of physics, i.e., computational physics, with its
own methods and techniques for studying nature. In general,
these are different from the traditional methods of experi-
mental and theoretical physics. Unfortunately, we are well
behind the West in developing this branch of physics. There
are at least two reasons for this. The first is objective and is
due to the fact that we are lagging behind the West in com-
puter science generally. There is, however, another, subjec-
tive, reason, namely, some members of our scientific com-
munity have underestimated the importance and
possibilities of computational physics.

In a brief, thirty-minute report, we cannot, of course,
examine all aspects of the computational physics of the con-
densed state. We can merely briefly recall the rapid develop-
ment of molecular dynamics and the Monte Carlo tech-
nique, which has led to considerable advances in our
understanding of the physics of the liquid state, in calcula-
tions of the properties of highly nonideal classical and quan-
tum plasmas, and in calculations of the critical indices in
phase transitions. We shall use the example of a relatively
narrow problem in the physics of the condensed state, name-
ly, the calculation of the electronic properties of crystals, to

demonstrate the development and advances in both theoreti-
cal approaches to this question and our computational possi-
bilities.

The single-particle description of the electron system in
a crystal has for long been one of the popular models used in
solid-state physics. Powerful and effective methods have
now been available for a relatively long time1 for the solution
of the Schroedinger equation describing an electron in a peri-
odic field V(r):

(1)

Calculations of the electron band structure within the frame-
work of this equation have been performed for a large num-
ber of metals, semiconductors, and dielectrics. These calcu-
lations reached the peak of their development in the sixties
and seventies in connection with the idea of the pseudopo-
tential.2 However, all these calculations suffered from one
important defect: there was no rigorous justification for the
corresponding single-particle description of a system of
strongly interacting electrons. This meant that there was
also no rigorous procedure for calculating the parameters of
the potential (or pseudopotential) from "first principles."
The parameters of the empirical potential were usually cho-
sen by comparing calculations with experimental data for
some particular phenomenon. Once this was done, calcula-
tions were performed on other effects as well. The results
obtained in this way were in surprisingly good agreement
with a whole range of physical properties of crystals.

The density functional method (DFM), developed in re-
cent years since the early paper of Kohn and Hohenberg,3

has provided a rigorous theoretical basis for both the use of
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The second-generation systems also incorporate spe-
cialized processors that improve the performance of the
computing assembly by a factor of 2-3 for particular classes
of problems (Fourier processor, matrix processor) or imple-
ment programming languages (ANALITIK interpreter, ac-
counting language processor).

Special attention has been devoted in the second-gener-
ation machines to adaptors and multiplexers for computer
networks and remote communication between SCS ma-
chines and other computers. The manufacture of new peri-
pheral storage devices, input-output systems, and so on, has
also begun.

Experience gained with first- and second-generation
SCS has shown that their range of application is much
greater than was envisaged during the initial development,
the single-particle description of electrons in crystals and the
derivation of the potential V(r) itself from "first principles."
As part of the development of this method, it was shown
rigorously that calculations of the ground-state energy and
the thermodynamic properties of a system of strongly-inter-
acting electrons could be reduced to the solution of the sin-
gle-particle problem of an electron in an external self-consis-
tent potential that depends only on the electron-density
distribution. The self-consistent potential is defined as fol-
lows:

+Fxe(r); (2)

where Fion (r) is the Coulomb potential of the ion, the second
term is the Hartree potential for the electrons, and Fxe (r) is
the exchange-correlation potential. The precise form of
Fxe (r) is not known. However, advances made in the study of
the homogeneous interacting gas can be used as a basis for
formulating different approximate expressions for Fxe (r).

By using the potential given by (2) and solving the
Schroedinger equation (1), it is possible to calculate the elec-
tron energy for different crystal volumes and different crys-
tal structures. Calculations of the bonding energy of the

crystal, its elastic moduli, phase diagram, and many other
properties can be calculated in this way. Recent calcula-
tions4 show that all these quantities can be calculated with-
out the use of adjustable parameters, simply from the given
atomic number to within better than 10%.

Generally speaking, there is no justification for using
the single-electron states, obtained within the framework of
DFM, to calculate the transport properties of electrons or
their dynamic response functions. However, it has been
shown (in particular, by our own group) that calculations of
the electrical resistance of metals due to scattering by phon-
ons, and of their optical properties using the electron spec-
trum obtained in DFM, also result in reasonable agreement
with experiment.5'6 Similar calculations for semiconductors
and dielectrics have yielded results that turn out to be too far
removed from experiment although the ground-state ener-
gy, obtained for semiconductors and dielectrics, can be cal-
culated just as well as for metals.

The above brief review of the present state of micro-
scopic calculations of crystal properties clearly shows the
necessity for an importance of such studies, and the urgency
of further computational as well as theoretical work in this
field.

'J. M. Ziman, the Calculation of Bloch functions, Solid State Phys. 26, 1
(1971) [Russ. Transl., Mir, M., 1973].

2V. Heine, M. L. Cohen and D. Weaire, Theory of Pseudopotentials,
Solid State Phys. 24, Acad. Pr., N. Y. (1970) [Russ. Transl., Mir, M.,
1973].

3P. Hohenberg and W. Kohn, Phys. Rev. B136, 834 (1964).
"V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic
Properties of Metals, Pergamon Press, New York, 1978.

5E. M. Savitskff, I. I. Mazin, and Yu. A. Uspenskii, Dokl. Akad. Nauk
SSSR 268, 858 (1983) [Sov. Phys. Dokl. 28, 155 (1983)].

6Y. A. Uspenskii, E. G. Maksimov, 1.1. Mazin, and S. N. Raschkeev. Z.
Phys. (in press).

Translated by S. Chomet

459 Sov. Phys. Usp. 27 (6), June 1984 Meetings and Conferences 459


